The fact sheets are designed to provide a **brief overview** on the ability of the river flow or groundwater models to reproduce (simulate) some of the most important components of the water cycle when using observed and modelled climate. This overview is given by sets of **statistics** (measuring the differences between two time series) and **graphs** (providing a visual comparison). Detailed information on the meaning of the statistics and graphs is provided in the **Modelling protocol** report (Crooks et al., 2012, SC090016/PN4) accessible from the FF webpages (www.ceh.ac.uk). This briefing note summarises the **meaning** and **relative importance** of the statistics and graphs; it **does not** provide any **interpretation** for specific catchments/model.

One fact sheet is delivered for each site and river flow or groundwater level model combination. If two hydrological models are used to simulate flow at the same site, two catchment fact sheets are provided for this site. Note that different models use different methods of calibration ranging from catchment specific to regionalised parameters. The advantage of a regionalised parameter model is to extend the climate range under which the model parameters are evaluated; this is particularly important in a warming climate for catchments where evaporation processes may change from a surplus of summer precipitation over evaporation to a deficit. The advantage of catchment calibrated models is that they are designed to reproduce well the local hydrological processes. The calibration method may affect the statistical measures of model performance.

A catchment fact sheet is divided in three parts. **Top front page**: general information section with the main physical characteristics of the catchment, its location and the availability of observed flow data. **Front**: how well the observed flow time series are reproduced by the models when using **observed climate**; or a measure of the confidence in the hydrological model. **Back**: how well flow time series are reproduced by the models when using **modelled climate**; or a measure of the confidence in the climate/hydrological model combination. **Both front and back** must be looked at to fully understand the factors affecting the Future Flows Hydrology (FFH) time series. This is very important when the FFH time series are used to assess climate change impact on a catchment ecosystem. The FFH flow time series are in m³s⁻¹.

Table

Summary of differences in modelling the flow with observed climate. Differences (except Nash Sutcliffe) give the % departure between statistics calculated from simulated and observed flow time series.

Names represent the considered statistics; Qx = % difference in flow percentile value (i.e. in flow exceeded x% of the time); Nash Sutcliffe measures if the modelled time series describes the observed time series better than the long term average. A value of 1 shows a perfect match.

Three parts of the hydrological regime are of interest: (i) Water balance, seasonality, and day to day variability (upper part of table); (ii) Low flows (flow percentiles Q75 and Q90); (lower left); (iii) High flows (flow percentiles Q25 and Q5) and flood peaks (RP2 to RP20, not all models) (lower right). Sets of statistics are given for two time periods. Statistics are only calculated when there is observed flow data which may be limited within the 1962-1991 period.

Differences include measurement errors and other factors affecting the observed flow but generally the smaller the difference the better the model simulation.

Graphs

The graphs illustrate how well the model simulates the flow time series by plotting together observed and simulated flow.

Two types of graphs are shown:

Hydrographs of mean daily flow for two 2-year periods (for most catchments representative of contrasting climatic conditions): (i) The 1975-1977 period illustrative of a dry episode and subsequent re-wetting; (ii) The 2000-2002 period illustrative of a wet episode and subsequent average conditions.

They give a visual assessment of the reproduction of different hydrological processes under contrasting conditions (e.g. drying during the recession phase; temporal variability typical of the flashiness of the catchment). Daily precipitation is also shown in these graphs.

Mean monthly flows and flow duration curves (shown on the back page). These graphs provide a visual assessment of how well the long-term variability and seasonality is reproduced by the simulation.

Model performance

Assessment of model performance is given for the statistics for the 1971-2005 period using three Bands as defined in Table 1 of the Modelling Protocol. Interpretation of the Performance Bands; (i) Define the purpose for which the FFH time series are being used; (ii) Select the statistics most relevant to the purpose; (iii) Assess the performance bands for these statistics. For example: for low flows look at the performance for Q90 possibly in conjunction with that in Jul, Aug and Sep; where flows at particular times of year are the main criteria use the pattern of monthly performance. Where several statistics have performance Band 2 or 3 then particular care should be taken in use of the FFH data.

Because of the year-to-year variability of the climate of the UK (also called climate variability) it is possible that several climate time series differ while representing different plausible realisations of the climate. In addition, because knowledge of the physics of the atmosphere is limited and it is not yet feasible to accurately model small-scale climate features, it is now recommended that several climate models projections are considered together when assessing future projections in hydrology. For both reasons, an ensemble of climate models has been used to drive the FF hydrological models and generate an ensemble of FFH time series for each of the sites. The FFH ensemble is derived from the ensemble of Future Flows Climate (FFC) which contains information on both climate variability and climate modelling uncertainty; no single projection should be considered in isolation of the others as this might mask some important information given by the other ensemble members. Note that as FFC is derived from a climate model, the day-to-day sequencing of the climate and resulting flow is not the same as that of observed flow when directly comparing time series. Long-term statistics, such as the flow duration curves, should match more closely those derived from simulations using the observed climate.

Table

Summary of the percentage differences in modelling the flow with observed and modelled climate (FFC time series; note that FFC is a version of HadRM3-PPE where systematic biases in precipitation and temperature have been corrected, a snowmelt module has been applied and which has been downscaled at a hydrologically-relevant scale). Naming convention and units are as on the Front page.

Comparisons are made for a 30-year period representative of 1962-1991, called control. This gives an assessment of the difference introduced by the use of modelled rather than observed climate when simulating flow. This is important because FFH time series, as they project into the future, can only be derived from modelled climate. These differences help identify two possible features:

Systematic differences in the climate-hydrological chain for a **specific part of the regime**; e.g. if all summer flows show a large difference, this might suggest that modelled summer climate (rainfall and/or potential evaporation (PE)) is different from observed:

Systematic differences in the climate-hydrological chain for **specific ensemble member**; e.g. if all statistics associated with afixa show a large difference, this might suggest that afixa climate (rainfall and/or PE) has different characteristics from the observed climate;

In both cases, the statistics should only suggest caution when interpreting the results of the whole FF ensemble, in particular if runs/periods with large differences in the control period are associated with a future signal different from the rest of the FF ensemble. Large differences in some statistics of the control runs should not be used to automatically reject one of the ensemble members.

Graphs

Two sets of graphs are shown.

Mean monthly flows and flow duration curves (observed and modelled climate)

The upper pair of graphs gives a visual assessment of how well the long-term variability of observed flows is reproduced using the observed climate (1971-2005, or period of observed flow record if this is shorter). The lower pair shows how similar the flow simulated from the 11 modelled climate time series is to the flow simulated from observed climate for the control period (1962-1991).

Change in mean monthly flow and flow duration curve

The lower pair of graphs shows the percentage change in mean monthly flow and flow exceeded x% of the time between two 30 year periods - the 1970s (1961-1990) and 2050s (2040 - 2069) for the 11 modelled climate series (FFC). The line of zero change is also shown. The range of change is indicative of uncertainty in the climate modelling