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Abstract 11 

Estimating the permeability of superficial deposits is fundamental to many aspects of catchment 12 

science, but can be problematic where insufficient in situ measurements are available from pumping 13 

tests in piezometers.  Consequently, common practice is to estimate permeability from the material 14 

description or, where available, particle size distribution using a formula such as Hazen.  In this 15 

study, we examine the relationships between particle size, relative density and hydraulic 16 

conductivity in superficial deposits in Morayshire, Northern Scotland:  a heterogeneous environment 17 

typical of many catchments subject to previous glaciations.  The superficial deposits comprise 18 

glaciofluvial sands and gravels, glacial tills and moraines, raised marine sediments, and blown sands. 19 

Thirty-eight sites were investigated:  hydraulic conductivity measurements were made using 20 

repeated Guelph Permeameter measurements, cone resistance was measured in situ with a Panda 21 

dynamic cone penetrometer; material descriptions were made in accordance with BS5930:1999; and 22 

disturbed samples were taken for particle size analysis.  Overall hydraulic conductivity (K) varied 23 

from 0.001 m/d to > 40 m/d; glacial till had the lowest K (median 0.027 m/d) and glacial moraine the 24 

highest K (median 30 m/d). However, within each geological unit there was great variability in 25 

measured hydraulic conductivity values.  Multiple Linear regression of the data indicated that log d10 26 
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and relative density (indicated by cone resistance or BS5930:1999 soil state description) were 27 

independent predictors of log K and together gave a relationship with an R2 of 0.80.  Material 28 

description using the largest fraction (e.g. sand or gravel) had little predictive power.  Therefore, in 29 

heterogeneous catchments, the permeability of superficial deposits is most strongly related to the 30 

finest fraction (d10) and relative density of the material.   In situ Guelph permeameter 31 

measurements at outcrops with good geological characterisation provide an easy and reliable 32 

method of determining the permeability of particular units of superficial deposits. 33 

 Keywords:  Permeability; Superficial deposits, Particle Size, Permeameter, Relative density, Hydraulic 34 

conductivity  35 

  36 



  

3 

 

1. Introduction 37 

Estimating the permeability of superficial deposits is fundamental to many aspects of catchment 38 

science and hydrogeology.  It is critical to characterising groundwater/surface water interaction and 39 

in particular baseflow to upland rivers (e.g. Morrice et al., 1997; Soulsby et al., 2007); groundwater 40 

vulnerability assessments (Gogu RC and Dassargues 2000; Lake et al., 2003; Ó Dochartaigh et al., 41 

2005); urban hydrogeology (Bruce and McMahon, 1996; Chilton, 1999); groundwater recharge 42 

(Lloyd et al., 1981; Cuthbert et al., 2009; Misstear et al. 2009; Griffiths et al., 2011) and increasingly 43 

for predicting and mitigating flooding  (Macdonald et al., 2008).  Where sufficiently permeable and 44 

saturated, superficial deposits form aquifers which can be developed for both private and public 45 

water supply (e.g. Maupin and Barber, 2005; MacDonald et al., 2005).  46 

The most obvious, and reliable, way to estimate permeability is through testing the saturated 47 

portion of the aquifer using constant rate pumping tests in piezometers (e.g. Melville et al., 1991; 48 

Jones et al., 1992; Jones, 1993; Meinken and Stobar, 2003).  However, there are a number of 49 

difficulties in relying solely on piezometers for characterising the permeability of superficial deposits:  50 

(1) superficial deposits are highly complex, and sufficient boreholes are not generally available for 51 

testing; (2) the deposits are often unsaturated (pumping tests are only applicable below the water-52 

table); (3) permeability can be too low to measure easily with standard pumping tests (Jones, 1993; 53 

Renard, 2005); (4) the complexity of superficial sequences can mean that it is difficult to control 54 

which units are being tested, and (5) fine-grained material can smear borehole walls causing 55 

permeability to be underestimated (McKay et al., 1993).  Various methods have been designed to 56 

directly measure in situ permeability within soil, for example disc permeameters and infiltrometers 57 

(Perroux and White, 1988; Angulo-Jaramillo et al,. 2000), constant head permeameter (Amoozegar 58 

1989; Elrick et al. 1989); but these methods are rarely used below the top soil.  59 
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Therefore, due to a lack of directly measured permeability data , surrogate information is used – for 60 

example particle size analysis (e.g. Song et al., 2009), or permeability is inferred from the geological 61 

description (e.g. McCloskey and Finnemore, 1996; Fogg et al., 1998; McMillan et al., 2000).   The 62 

relationship between permeability and particle size is well established and has been used as a 63 

predictive tool since the 19th century (e.g. Hazen, 1892; Schlichter, 1899).  These relationships are 64 

still used today, and in a review of 19 studies of particle size and permeability Shepherd (1989) 65 

demonstrated the clear trend of increasing permeability with increasing particle size.   D10 (the 66 

particle diameter that 10 % of the sample is finer than) is often seen as the best predictor of 67 

permeability and central to many formulae used for calculating permeability (e.g. Hazen, 1892; 68 

Kozeny, 1927; later modified by Carman, 1937, Carrier, 2003).  However, many different methods 69 

predict permeability using particle size data.   For example, Alyamani and Şen (1993) used the full 70 

distribution of particle sizes, rather than just the D10; and Cronican and Gribb (2004) developed a 71 

method of determining permeability from particle size information in materials containing more 72 

than 70 % sand.  Permeability values derived from particle size analysis are different depending upon 73 

which formulae are used (Vuković and Soro, 1992; Milham and Howes, 1995; Odong, 2007; Song et 74 

al., 2009; Vienken and Dietrich, 2011).  It is generally agreed that determining permeability using 75 

particle size analysis is best suited to loose sand and gravel dominated sediments and is less suited 76 

to deposits dominated by silt and clay (Vokovic and Soro, 1992; Chapuis, 2004).   77 

It is clear that particle size alone does not determine permeability, and the wider factors controlling 78 

permeability are the subject of ongoing study.  Permeability of unconsolidated deposits is affected 79 

by the particle shape, particle packing and degree of compaction (e.g. Sperry and Peirce, 1995; 80 

Koltermann and Gorelick, 1995).   Permeability is much higher in loose sediments than in compact 81 

(dense) sediments, which have lower porosity and a less well developed network of interconnected 82 

voids (Summers and Weber, 1984; Taylor et al., 1990; Koltermann and Gorelick, 1995; Watabe et al., 83 

2000; Hubbard and Maltman, 2000; Mondol et al., 2007).   These complicating factors are more 84 
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significant in heterogeneous material, where the clay content, compaction and deformation of the 85 

deposits are variable.  In many catchments, and in particular those that have been subject to 86 

glaciation, superficial deposits are highly heterogeneous and therefore it is often not appropriate to 87 

use standard particle size models to reliably predict permeability. 88 

Scale effects, and ensuring that permeability measurements relate to the same material that 89 

engineering data (e.g. particle size analysis, relative density) have been collected for, provide 90 

additional problems for developing robust models.  Removing material to carry out permeability 91 

measurements in a laboratory allows good control over the material on which the tests are being 92 

carried out, but compromises the in situ characteristics of packing and density.  Removing the 93 

material as a core can partially overcome these issues, but the material needs very careful handling 94 

to avoid deformation; also if the material is taken as a core then normally only vertical permeability 95 

can be measured, and thus be limited by the lowest permeability layer within the sequence.  In situ 96 

tests such as pumping tests or slug tests sample a larger area and often report higher permeabilities 97 

than laboratory tests, mainly due to the presence of fracturing (Daniel, 1989; Neuzil, 1994; Schulze-98 

Makuch et al., 1999; Gierczak et al., 2006).  This is particularly common within very low permeability 99 

till material (e.g. Hendry, 1982; Keller et al., 1988; Fredericia, 1990; McKay et al., 1993; Nilsson et al., 100 

2001).  If tills are not fractured, then scale effects are less of an issue (Keller et al., 1989).  101 

In this study, we examine a variety of superficial deposits from Morayshire, Northern Scotland, 102 

measuring in situ saturated hydraulic conductivity, taking samples for particle size analysis, making 103 

soil descriptions, and measuring in situ cone resistance. The aim is to examine the relationships 104 

between particle size, relative density and hydraulic conductivity, and to determine how well the 105 

surrogate data predict hydraulic conductivity in this heterogeneous suite of deposits, typical of many 106 

catchments that were subject to Quaternary glaciations. 107 

  108 
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2. Study area 109 

The northeast coast of Scotland, between Inverness and Aberdeen, has interesting hydrology and 110 

geology, which have a significant impact on land use and society.  Several major rivers flow 111 

northward from the Grampian highlands in the south towards the Moray Firth (Figure 1).  These 112 

rivers are prone to flooding (McEwen and Werrity, 2007), and considerable effort and resource is 113 

being invested in developing flood alleviation schemes to protect the coastal towns of Elgin and 114 

Forres.   Previous glaciation of this area has resulted in the formation of a coastal strip of flat land 115 

approximately 10 – 20 km wide.  This ground is underlain by 10s of metres of superficial deposits 116 

which form fertile soils and enable high-value agriculture.  The coastal strip receives relatively little 117 

rainfall compared to the rest of Scotland (< 600mm) and groundwater is widely abstracted for 118 

agricultural and industrial use, and in some locations for public supply (Ó Dochartaigh et al., 2010).  119 

Characterising the permeability of the strata is fundamental to helping to predict and mitigate 120 

flooding, assess the risk of groundwater flooding, and also assess the potential of the superficial 121 

materials for sustaining large scale groundwater abstraction. 122 

The area is underlain by a complex succession of Glacial and Post Glacial strata (Figure 1) that have 123 

mainly accumulated during the last 25,000 years. These range in thickness from a few to many tens 124 

of metres. The sandstone and ancient crystalline bedrock is generally concealed beneath a variable 125 

thickness of glacial till (Figure 1 and 2). Much of this till was laid down during the Main Late 126 

Devensian ice-sheet glaciation of Scotland, although some sandy tills and associated moraines in the 127 

coastal area were deposited by re-advances of a major fast-flowing glacier that occupied the Moray 128 

Firth after the surrounding uplands had become ice free. Most of the glacial tills crop out in steep 129 

river cliffs, where they are seen to be overlain by a considerable thickness of sand and gravel that 130 

were deposited by glacial meltwaters as the ice decayed.  Mounds and ridges of poorly sorted 131 

cobble and boulder gravel were laid down in contact with the ice, whereas the well stratified sand 132 
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and gravel that forms terraces up to 15 m in height on the flanks of the present valleys were 133 

deposited by meltwater rivers beyond the ice margins. In the coastal area meltwater flowed into 134 

what is now the Inner Moray Firth, where it mixed with seawater and laid down sandy and silty 135 

glaciomarine sediments many metres in thickness. 136 

Much of the outcrop of the glacial, glaciofluvial and glaciomarine deposits is concealed by Post 137 

Glacial sediments (Figure 2). Along the coast, the glaciomarine sediments are largely buried beneath 138 

Post Glacial raised shoreline deposits of silt and sand, and both are locally concealed beneath 139 

extensive dunes of blown sand. Inland glacial, glaciolacustrine and glaciofluvial sediments have been 140 

reworked by rivers and streams to form spreads of sandy and gravelly alluvium and river terraces 141 

along the major valleys; silty lacustrine deposits and peat infill many ice scoured hollows and 142 

kettleholes, and blanket peat is still accumulating on the higher ground. 143 

 144 

3. Methods  145 

3.1 General/Site selection 146 

Twenty-five sections of superficial deposits for which the geology is well characterised were selected 147 

in an area of approximately 250 km2 (Figure 1).   The sites were chosen to include all the main types 148 

of superficial deposits present.  Sections were between 2 and 20 m high, and at some sections 149 

several different types of superficial deposits were present and were sampled.  Figure 3 shows a 150 

photograph of a typical section.  In total, 38 different deposits were sampled at the 25 sections of 151 

which 14 were glacial tills, 3 were glacial moraines, 7 were glaciofluvial sands and gravels, 3 were 152 

glaciolacustrine deposits, 8 were raised marine deposits, and 3 were blown sand deposits. 153 

Each site was visited by a team including a Quaternary geologist, hydrogeologist and engineering 154 

geologist.  The Guelph permeameter was used to obtain an in situ measurement of the hydraulic 155 
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conductivity of the deposits. The cone resistance of the material was measured in situ with a Panda 156 

dynamic cone penetrometer to give an indication of relative density, superficial deposit descriptions 157 

were made at the outcrop in accordance with BS5930:1999 (British Standards Institute, 1999a); and 158 

disturbed samples were taken for particle size analysis.   At each site, in situ  Guelph permeameter 159 

and Panda cone penetrometer measurements were carried at the same place within the outcrop 160 

and within the same material, which was then sampled for particle size analysis. 161 

3.2 Guelph permeameter field methods 162 

The Guelph permeameter measures the field saturated hydraulic conductivity of unsaturated 163 

deposits and involves measuring the volume of water required to maintain a steady-state constant 164 

head using a Mariotte bottle system constructed of plastic tubes (Figures 3 and 4, see Reynolds and 165 

Elrick (1985) for a full description of the apparatus and procedure). The major advantage of this type 166 

of test is that the material is in situ so a more representative volume of material can be tested than 167 

in the laboratory (Daniel, 1989).    In this study, the one head method was used (Elrick et al., 1989; 168 

Reynolds et al., 1992) which should generally give results within 25% of the two head method.  The 169 

permeameter used has an approximate quoted range of 10-7 to 10-4 m/s; however we found the 170 

permeameter to have repeatable results slightly outside this range and determined a practical range 171 

of   0.001 to 40 m/d (1.2 x 10-8 to 5 x 10-4 m/s).  Others have also used the Guelph permeameter 172 

within this expanded range (e.g. Lee et al.,  1985; Mohanty et al., 1995).  173 

Six sections were sampled in September 2008 and the remaining sections were sampled in June 174 

2009.  At each measuring point a flat ledge was excavated into the exposure at least one metre 175 

below the soil (Figures 3 and 4).  The ledge extended into the face ensuring that measurements were 176 

not affected by small scale fracturing at the edge of the ledge, or by the roots of any vegetation 177 

present at the top of the outcrop.  A hole of constant diameter (which ranged from 5 to 6 cm 178 

between test sites) with a depth of 6 to 10 cm was excavated into the ledge.  In clayey materials the 179 
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walls were de-smeared using a sharp metal spoon and small wire brush (Bagarello et al., 1997).  The 180 

Guelph Permeameter was placed in the hole immediately after excavation with a small packof  5 – 181 

10 mm pea gravel to prevent the sides of the hole collapsing.  Water was released from the Guelph 182 

Permeameter to obtain a constant head of 4 to 5 cm in the hole.  Gradations on the Guelph 183 

Permeameter were read at regular intervals to determine the rate of water input required to 184 

maintain the head.  Readings were taken at intervals determined by the rate of water movement 185 

and varied from every 5 seconds to every 15 minutes depending upon the permeability of the 186 

deposit.  In the highest permeability deposits measurements were made until the reservoir emptied, 187 

but in other deposits measurements continued until a regular rate of water input was consistently 188 

observed. 189 

At most sampling locations a second measurement was made in the same deposit, and if there were 190 

substantial variations between the two measurements or some other problem (e.g. flooding, 191 

collapse, or cracking of the material surrounding the hole), a third measurement was made.  The 192 

repeated measurements were made on a new ledge constructed at the same depth and into the 193 

same material as the first. Occasionally it was only possible to obtain one reliable measurement in a 194 

deposit type because of the geometry of the section, or because the permeability was below the 195 

measuring capacity of the permeameter.  Hydraulic conductivity was calculated from the data using 196 

the software G-Perm1 which is based on the formulae outlined in Reynolds and Elrick (1985). 197 

3.3 Soil description field method 198 

Soil descriptions, in accordance with British Standards BS5930:1999 (British Standards Institution 199 

1999a) and BS5930:1999 amendment 1 (British Standards Institution, 1999b), were made for all the 200 

superficial deposits encountered at each section by an engineering geologist.  The standards 201 

systematically describe the state, structure, colour and the size and relative proportions of 202 

composite particles. Particular emphasis was given to the descriptions of soil state which directly 203 
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describes relative density (for coarse soils) or is directly related to relative density (for fine soils).  204 

Descriptions of fine soils were made in accordance with BS5930:1999 amendment 1 such that the 205 

soil state of silt and clay was described from very soft through soft, firm and stiff to very stiff.  206 

Descriptions of coarse soils were made in accordance with BS5930:1999 such that the soil state of 207 

sand and gravel was described from very loose through loose, medium dense, dense to very dense. 208 

Descriptions of all soil properties were based solely on field observation. 209 

In order to allow the relationship between soil state and hydraulic conductivity to be quantified a 210 

Soil State Description Value (SSD) was derived. The coarse soil state descriptions were numerically 211 

ranked from 1 to 5, very loose to very dense. The soil state descriptions for fine deposits were 212 

numerically ranked from 1 to 5 from very soft to very stiff. 213 

 214 

3.4 Particle size distribution sampling and analysis 215 

Large disturbed bulk samples were taken from each superficial deposit, at each location, in 216 

accordance with BS5930:1999 amendment 1 (British Standards Institution, 1999b). Large cobbles 217 

and boulders were not sampled due to limitations on the mass of material that could be obtained at 218 

each outcrop. Instead, a note of any omission of large cobbles and boulders was made for each 219 

sample where it occurred, and the mass percentage of cobbles and boulders was estimated and 220 

added to the soil description. The particle size distribution analysis data does not include particles 221 

larger than cobble size (>200 mm). The sample material was obtained adjacent to in situ test 222 

locations to ensure they were representative of the deposits tested by both the Guelph 223 

permeameter and Panda penetrometer. 224 

Thirty-four samples were tested for particle size distribution in accordance with BS1377:Part 2:1990 225 

(British Standards Institution, 1990) and Eurocode 7: Part 2 (2007). The analysis was undertaken 226 

using the wet sieving method. Where a significant fraction (>10%) of material <63 μm remained, 227 
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further analysis was undertaken to separate the silt and clay fraction. Fine particle analysis was 228 

undertaken, in accordance with Eurocode 7 (2007), by x-ray monitored gravity sedimentation using a 229 

Micromeritics SediGraph III.   As part of the analysis the d10, d15, d30 and d60 for each sample was 230 

calculated, corresponding respectively to the 10th, 15th, 30th and 60th percentile of the particle size 231 

distribution. 232 

 233 

3.5 Panda penetrometer field methods  234 

Dynamic cone penetrometer measurements were undertaken for thirty deposits at 23 locations. This 235 

technique measures the in situ dynamic cone resistance (in megapascals - MPa) of the soil through 236 

which the cone is passing and is, therefore, directly related to the relative density of the deposit. The 237 

test was undertaken by driving a 4 cm² steel cone on the end of a set of 0.5 m long threaded steel 238 

rods through the target deposit using a fixed weight hammer. The Panda2 measures the velocity of 239 

the hammer impact on the head of the rods and the depth of cone penetration in order to 240 

determine the dynamic cone resistance using a modified form of the Dutch Formula (Langton, 1999).  241 

The method can reach depths of up to 6 m in soils with a resistance up to 20 MPa. It is relatively 242 

lightweight (20 kg) and portable thereby making it ideal for testing soils in situ. A more detailed 243 

explanation of the Panda Penetrometer testing methodology and correlations with other dynamic 244 

and static cone penetration tests can be found in Langton (1999). 245 

The thirty in situ Panda Penetrometer tests were carried out in two field seasons: Sept/Oct 2008 and 246 

June 2009. The tests were undertaken adjacent to the location of the Guelph permeameter tests to 247 

ensure the deposits tested were representative of those tested by the Guelph permeameter. 248 

However, tests were performed sufficiently far apart (in the order of 1 – 5 m), in order to minimise 249 

the interference effects. Panda penetrometer tests were also not performed at the same time as 250 

Guelph permeameter so that vibration did not affect deposits being tested by the Guelph 251 
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permeameter.  At each location an initial attempt was made to test the entire exposed section by 252 

probing from the top of the section to the base. Where this was not possible then a flat shelf or 253 

series of shelves were dug at appropriate intervals so as to intersect the target strata (Figure 5). The 254 

test was terminated once effective refusal was reached (where cone resistance was consistently >20 255 

MPa) or once the rod length was below the level of the exposed section. Where effective refusal 256 

occurred as the likely result of an isolated obstacle, such as a cobble or boulder, then a repeat test 257 

was conducted at the same level but offset by a few metres to avoid the obstacle. Where refusal 258 

occurred in dense and/or cobbly and bouldery strata (i.e. where obstacles were not isolated) then a 259 

second test was undertaken, where possible, on a flat excavated shelf or surface below the level of 260 

the dense and/or coarse stratum. 261 

The dynamic cone resistance measured at each test location was recorded by the Panda2 unit as a 262 

single sounding.  Examples of typical soundings from two sites are shown in Figure 6.   There is 263 

variability in the dynamic cone resistance measured by each separate hammer blow, which is to be 264 

expected in heterogeneous deposits.  However, it is possible to correlate sections of the Panda 265 

sounding with separate layers identified as part of the geological descriptions made in the field. The 266 

median value of the section referring to the target geological unit was used in the analysis. Where 267 

more than one Panda test was undertaken in a deposit, the average was used. 268 

4.  Results 269 

4.1 Guelph permeameter results 270 

The field data produced consistent plots of water-level through time indicating the steady infiltration 271 

rate of water during the test required for analysis (Figure 7).  Figure 8 shows that repeat samples in 272 

the same deposit type at the same outcrop give similar hydraulic conductivity (R2 = 0.9) indicating 273 

that the measurements are reproducible.  For the 28 sample sites where 2 or more reliable hydraulic 274 

conductivity values were obtained, a mean hydraulic conductivity for the site was used for further 275 
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analysis.  Since Figure 8 indicates a high degree of reproducibility in the data, the 10 sampling sites 276 

for which only one measurement could be made were also used in the further data analysis 277 

described below.   278 

The results for the 38 sampling sites are presented in Table 1 and Figure 9.   Hydraulic conductivity is 279 

highly variable within, as well as between, particular types of superficial deposits from different 280 

sample locations reflecting the heterogeneity of these types of materials.  Glacial tills had the lowest 281 

hydraulic conductivity with a median of 0.027 m/d, but a range of < 0.001 m/d to approximately 1 282 

m/d. Glacial fluvial deposits, (comprising both fluviatile and lacustrine deposits) had a much higher 283 

hydraulic conductivity with a median of 2.5 m/d, but again a wide range, < 0.1 to  > 40 m/d.  The 284 

raised marine deposits showed fairly consistent hydraulic conductivity with median 1.7 m/d and 285 

interquartile range of 0.9 – 3 m/d.  Raised Marine deposits in this area are variable in composition 286 

and include sands and gravels with relatively high permeability, and the Ardersier Silt Formation 287 

which varies in composition from sands to silts.  Two sites were in the raised marine Ardersier Silt 288 

Formation where it is predominantly silt and these had lower permeability than other sites in Raised 289 

Marine deposits. There were few sites in blown sand and glacial moraines.  The three available 290 

blown sand results were consistent and varied from 4.5 to 9.5 m/d reflecting the uniform nature of 291 

the material.  The three sites testing glacial moraine deposits showed variable permeability 0.15 to > 292 

40 m/d, and one site had the highest permeability recorded in Morayshire, exceeding the measuring 293 

capacity of the Guelph permeameter. 294 

4.2 Engineering data 295 

Summary graphs displaying particle size distribution analysis envelopes for each superficial deposit 296 

are presented in Figure 10. The d10, d60 and sample descriptions are given in Table 1. The graphs 297 

demonstrate a consistency of particle size distribution in the glacial tills, glacial moraine and blown 298 

sand; however, there is greater variability in the particle size distribution of the glaciofluvial and the 299 
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raised marine deposits. Moraine and blown sand are coarse deposits with no significant silt or clay 300 

components. Raised marine, glaciofluvial and glacial till are mixed fine and coarse deposits with 301 

significant proportions of silt and clay. 302 

The soil state descriptions (SSD) of the superficial deposits described at each section are given in 303 

Table 1. They display a high degree of variability both between superficial deposit types and, in many 304 

cases, within a single superficial deposit category. A comparison of SSD indicates: glacial till to be 305 

highly variable but generally denser than other deposits; raised marine and glaciofluvial deposits 306 

have moderate SSD (with greater intra-deposit variability than glaciofluvial deposits). Blown sand 307 

and moraines have the lowest SSD and appear to have less intra deposit variability, although this 308 

could be due to the low sample number. 309 

The dynamic cone resistance values are shown in Table 1. There is high variability within each 310 

superficial deposit type, with the exception of blown sand deposits. In general, till deposits have the 311 

highest resistance, followed by glaciofluvial, raised marine, moraine and then finally blown sand 312 

deposits. 313 

 314 

4.3 Multiple Linear Regression 315 

The engineering and hydraulic conductivity data were analysed together using multiple linear 316 

regression (MLR) and Pearson correlation tests. Since particle size and hydraulic conductivity are 317 

both logarithmically distributed, they were log transformed before analysis.   There were 27 sites 318 

which had sufficient data to be included in the analysis (Table 1).  Table 2 shows the results of the 319 

Pearson correlation tests.  All parameters, (except d60) were significantly correlated with hydraulic 320 

conductivity.   Unsurprisingly there is a high degree of correlation between many of the input 321 

parameters, particularly d10, d15 and d30.  322 
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The results of stepwise multiple linear regression for hydraulic conductivity, particle size and cone 323 

resistance (CR) are shown in Table 3.  The analysis indicates that, for this dataset, cone resistance 324 

and logd10 are the only independent predictors of log K. The relationship for the 27 sites is described 325 

as: 326 

log K =0.97 log(d10) + (2 – 0.11CR)       Equation [1] 327 

Where D10 is in mm, CR in MPa and K in m/d.  The statistical relationship is strong, with R2 = 0.80 328 

when adjusted for the size of the dataset (Figure 11).   Independently, log d10 and CR predict log K 329 

with an R2 of 0.6 and 0.35 respectively.   Using soil state description, rather than CR allows a slightly 330 

larger dataset of 34 for the analysis.  A similar relationship is given :  331 

log k = 0.79log d10 + (2.1 – 0.38 SSD)       Equation [2] 332 

with a similar strength of correlation as for Cone Resistance (R2 = 0.78). Figure 12 illustrates how 333 

field descriptions of density together with D10 relate to hydraulic conductivity.   334 

The proportion of each fraction, (clay, silt, sand, gravel and cobbles) was also calculated for each 335 

sample, and is reported in Table 1 in the material description. Figure 13 demonstrates an overall 336 

relationship between the particle size of the largest fraction and hydraulic conductivity, but its 337 

overall predictive power is weak, as demonstrated by the 4 orders of magnitude between 10th and 338 

90th percentile for sand, and the weak correlation (R2 = 0.16). 339 

 340 

5.   Discussion 341 

This study of the hydraulic conductivity of heterogeneous superficial deposits, typical of many 342 

glaciated catchments of NW Europe, has provided useful information on the dominant factors 343 

controlling permeability across the different deposits, and therefore which properties should be 344 
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measured to help characterise hydraulic conductivity.  In addition, the methodologies developed 345 

within this study have proved an effective way of characterising permeability in a complex 346 

catchment: the integrated geological, hydrogeological and engineering approach; and the field 347 

methods for measuring in-situ hydraulic conductivity. 348 

 349 

The smallest 10% of particle sizes within the deposit and the relative density of the material together 350 

explain much of the variance in hydraulic conductivity for this heterogeneous catchment. Therefore, 351 

modified Hazen formulae, which account for relative density as well as d10, are likely to be the best 352 

method for estimating permeability in these glaciated environments.   This is probably due to the 353 

range of deposits present, and also to the large variability in the relative density of materials formed 354 

within a glaciated environment, where over consolidated glacial tills co-exist next to loose glacial 355 

moraines, or modern alluvium.  Additional information on the particle size distribution such as those 356 

found useful by Alyamani and Şen (1993), were found not to help predict hydraulic conductivity.  357 

Our results are consistent with previous studies which highlight the importance of d10 in grain size 358 

analysis to determine hydraulic conductivity (e.g. Hazen, 1892; Vuković  and Soro, 1992; Odong, 359 

2007) and the effect of varying degrees of compaction on hydraulic conductivity (e.g. Watabe et al., 360 

2000; Lu, 2007).   These two parameters appear to be the dominant controls on permeability when 361 

considering a wide range of different and heterogeneous superficial deposits.  The relationship 362 

remains strong across the range of materials tested and is therefore useful for this heterogeneous 363 

environment.  However, for more detailed work in one particular type of material a specific 364 

relationship may give more accurate results (e.g. Vinken and Deitrich 2011). 365 

 366 

The size of the largest fraction had little predictive power.  Therefore, using the bulk descriptors 367 

SAND, SILT, or GRAVEL, to help classify the permeability is of limited use.  This was also observed in a 368 

study by Fogg et al. (1998) who found only a weak correlation between these sorts of bulk 369 
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descriptors and hydraulic conductivity.  Particular attention must therefore be given to the presence 370 

of silt or clay, and the degree of consolidation of the material.  For this reason, where detailed 371 

information is not available for a catchment, building a conceptual understanding of the superficial 372 

geology, and the palaeo-environment and nature of deposition, can help to generate more 373 

information on the likely presence of fines and the degree of compaction (see Griffiths et al., 2011).  374 

The influence of the finest 10% of the material also has relevance for sampling.  Drillers logs, and 375 

samples taken from the drilling and installation of piezometers, often do not record much of the 376 

finest fraction.  The fines are held in suspension, or washed away by the drilling process.  Therefore 377 

samples are best taken from outcrop, or from cores. 378 

 379 

The methodology developed  to measure hydraulic conductivity of the superficial deposits proved to 380 

be robust and relatively rapid to undertake.  Targeting measurements to distinct geological outcrops 381 

identified by a Quaternary geologist ensured that heterogeneity of the catchment could be 382 

confidently reflected in the sampling.  Also the repeated Guelph permeameter measurements gave 383 

reassuringly similar results at each outcrop (R2 = 0.9) and could be undertaken rapidly. Therefore, 384 

despite the robust relationship between d10, relative density and hydraulic conductivity, it may be 385 

more effective to carry out repeated Guelph permeameter measurements at characteristic outcrops 386 

than gathering surrogate information and estimating permeability.   387 

The use of soil state descriptors proved reliable, and as significant a predictor when correlated with 388 

d10 as cone resistance (Table 2).  Therefore, given the difficulties in making in situ measurements of 389 

cone resistance, and the wide availability of soil state descriptions in borehole and trial pit logs, 390 

observations made in accordance with BS5930:1999 can be used as an adequate substitute for the 391 

measurement of relative density. 392 

 The wide range and heterogeneous nature of the deposits tested suggests that our findings may be 393 

fairly widely applicable in superficial deposits.  However it would be useful to obtain more data in 394 
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blown sand and glacial moraine deposits and other deposit types that were not tested (e.g. fluvial 395 

deposits). 396 

  397 
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6. Conclusions 398 

This study has investigated the hydraulic conductivity of superficial deposits in a heterogeneous 399 

catchment in northern Scotland, typical of many catchments subjected to past glaciations in North 400 

West Europe. In total, 38 different deposits were sampled at 25 sections.  The deposits comprised: 401 

glacial tills and moraines; glaciofluvial and glaciolacustrine deposits; raised marine deposits; and 402 

blown sand.  Hydraulic conductivity measurements were made using repeated Guelph Permeameter 403 

measurements, cone resistance was measured in situ with a Panda dynamic cone penetrometer (to 404 

give an indication of relative density); material descriptions were made in accordance with 405 

BS5930:1999; and disturbed samples were taken for particle size analysis.  The following conclusions 406 

can be drawn: 407 

1. In situ measurements of hydraulic conductivity made with a Guelph permeameter at deposit 408 

outcrops proved highly repeatable (R2 = 0.9).   409 

2. Hydraulic conductivity (K) ranged from 0.001 m/d to > 40 m/d; glacial till had the lowest K 410 

(median 0.027 m/d) and glacial moraine the highest K (median 30 m/d). 411 

3. The results of stepwise multiple linear regression for hydraulic conductivity, particle size and 412 

cone resistance  indicate  that, for this dataset, cone resistance and log d10 are the only 413 

independent predictors of log K [log K =0.97 log(d10) + (2 – 0.11CR)],  where d10 is in mm, CR in 414 

MPa and K in m/d.  The statistical relationship is strong, with R2 = 0.80 when adjusted for the size 415 

of the dataset. 416 

4. Using soil state material descriptions made in accordance with BS5930:1999 instead of the cone 417 

resistance to give an indication of relative density gave a similar relationship and strength of 418 

correlation (R2 = 0.78).  Therefore high quality soil state descriptions are a good surrogate for 419 

cone resistance measurements. 420 
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5. The size of the largest fraction had little predictive power.  Therefore, using the bulk descriptors 421 

SAND, SILT, or GRAVEL, to help classify the permeability of unconsolidated heterogeneous 422 

sediments is of only limited use.   423 

6. In situ Guelph permeameter measurements at outcrops with careful geological characterisation  424 

provide a good method of determining the permeability characteristics of superficial deposits 425 

where large-scale permeability testing is not feasible. 426 

With the growing recognition of the importance of the hydraulic conductivity of superficial deposits 427 

to many aspects of catchment hydrology and hydrogeology, robust methods of characterising 428 

hydraulic conductivity will become increasingly important.  The methodologies and relationships 429 

developed within this paper should help to inform future studies of catchment permeability. 430 

 431 
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Figure Captions 593 

 594 

Figure 1: Simplified superficial geological map of the study area. 595 

Figure 2:  Schematic cross section across the area illustrating the general succession of deposits. 596 

Figure 3: Guelph Permeameter measuring hydraulic conductivity of the grey coloured Ardersier Silts 597 

at Cloddymoss (locality 20, Figure 1) with ledges below excavated into the underlying orange 598 

coloured till.  599 

Figure 4:  Ledge and hole excavated into raised marine sands. 600 

Figure 5:  Panda Penetrometer test undertaken in till 601 

Figure 6:  Results of cone resistance tests using the Panda2 instrument at the Grangehall Ditch 602 

glaciofluvial site (site 11 on Figure 1) and the Ardersier Silt Race Track site (Site 15 on Figure 1).  603 

Figure 7: Example plots of water depth in the Guelph Permeameter reservoir with time used to 604 

determine the steady intake rate of water, with the resulting hydraulic conductivity values (K).     605 

Repeated measurements (A and B) within the same deposit at the same site show largely consistent 606 

results. 607 

Figure 8: Comparison of duplicate hydraulic conductivity measurements (A and B) taken in the same 608 

material at the same section, generally sampled within 5 m of each other. 609 

Figure 9: Box plot of hydraulic conductivity (one value per site) for superficial deposits in Morayshire.  610 

The number of sites where hydraulic conductivity was measured is shown in brackets.  (Glaciofluvial 611 

material includes both fluviatile and lacustrine deposits). 612 

Figure 10:  Particle Size Distribution envelopes for each superficial deposit type.  613 
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Figure 11: Relationship between predicted hydraulic conductivity (using d10 and Cone Resistance 614 

(CR)) and measured hydraulic conductivity (K) for 27 sites in heterogeneous superficial deposits in 615 

Morayshire. 616 

Figure 12: Relationship between hydraulic conductivity, d10 and soil state descriptor as observed in 617 

the field.  618 

Figure 13: Box plots of hydraulic conductivity plotted for particle size of the largest fraction in each 619 

sample.  Note that  this has much less predictive power (R2 = 0.16) than using d10 and CR (R2 = 0.8). 620 

 621 

 622 
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Table 1: Results

Locality (and site number on 
Fig. 1) 

Lithology 
Strength 

description 
In situ k 
(m/day) 

In situ Cone 
Resistance (Mpa) 

d10 d60 Material Description 

Rivermeads (1) Glacial Till Dense 0.102 6.2 0.0060 0.5894 Gravelly (f-c) very silty SAND (f-m) with some COBBLES 

Rivermeads (1) Glaciofluvial  Loose 1.04 2.32 0.0019 0.1700 Gravelly (f-m) very silty SAND (f-m) 

Highland Boath (2) Glacial Moraine Very Loose 26.8 
 

0.4104 16.8732 SAND (f-c) and GRAVEL (m-c) with some cobbles 

Riereach Burn Site 1 (3) Glacial Till Very Dense 0.01 10.555 0.0011 0.7693 Very clayey very gravelly (f-c) SAND (f-c) 

Riereach Burn Site 1 (3) Glacial Till Very Dense 0.051 9.52 0.0096 1.3623 Silty very gravelly (f-c) SAND (f-c) 

Riereach Burn Sand Pit (4) Glaciofluvial  Loose 31.1 3.61 0.1863 0.5880 N/A 

Drynachan (5) Glacial Till Dense 1.3 6.21 0.0186 0.3025 Gravelly (f-m) very silty SAND (f-m) 

Drynachan (5) Glacial Till Dense 0.054 7.52 
  

Gravelly (f-m) very silty SAND (f-m) 

Drynachan (5) Glacial Till Very Dense 0.015 12.63 0.0106 0.3534 Gravelly (f-m) very silty SAND (f-c) 

Riereach Burn Site 2 (6) Glacial Till Dense - Very Dense 0.12 9.99 0.0024 0.7711 Very silty very gravelly (f-c) SAND (f-c) 

Dunearn (7) Glaciolacustrine Firm 0.042 9.08 0.0010 0.0083 Slightly clayey SILT 

Dunearn (7) Glaciolacustrine Loose 2.51 
 

0.0232 0.1383 Silty SAND (f) 

Dunearn (7) Glaciolacustrine Loose 30.2 
 

0.2581 0.5153 SAND (m-c) 

Easterton (8) Glacial Till Loose - Med. Dense 0.151 2.84 0.0038 0.2498 Gravelly (f-c) very silty SAND (f-m) with some cobbles 

Findhorn Raised Marine (9) Raised Marine Medium Dense 3.2 12.545 0.1759 16.6746 SAND (f-m) and GRAVEL (m-c) 

Findhorn Raised Marine (9) Raised Marine Very Loose 4.97 1.11 0.1355 0.2045 SAND (f-m) 

Chapleton Mountain Bike (10) Glaciofluvial  Medium Dense 1.77 7.575 0.2653 11.3743 Very sandy (f-c) GRAVEL (f-c) with a little cobbles 

Grange Hall Ditch (11) Glaciofluvial  Loose 0.432 3.22 
  

Gravelly SAND (not fully recorded) 

Grange Hall Ditch (11) Glaciofluvial  Loose 0.048 1.595 0.0025 0.3045 Silty gravelly (f-c) SAND (f-m) 

Findhorn Blown Sand (12) Blown Sand Very Loose 8.55 0.75 0.1339 0.2043 SAND (f-m) 

Findhorn Blown Sand 2 (13) Blown Sand Very Loose 9.46 0.65 
  

SAND (f-m) 

Ardersier Silt (14) Raised Marine Soft - Firm 0.575 2.98 0.0015 0.0279 Slightly sandy slightly clayey SILT 

Ardersier Silt Race Track (15) Raised Marine Very Loose 2.33 4.98 0.0388 0.1780 Silty SAND (f-m) 

Dunearn Pit (16) Glaciofluvial  Loose 8.06 1.48 0.1113 0.2039 SAND (f-m) 

Dunearn Pit (16) Glaciofluvial  Dense 5.53 
 

0.7146 33.7607 Very sandy (m-c) GRAVEL (f-c) with some cobbles 

Riereach Road Moraine (17) Glacial Moraine Very Loose >40 2.6 0.6856 6.0503 Very sandy (m-c) GRAVEL (f-c) 

Riereach Road Moraine (17) Glacial Moraine Loose - Med. Dense 0.147 13.68 0.1175 12.1595 Silty very gravelly (c) SAND (f-c) 

Culbin Forest (18) Blown Sand Very Loose 4.41 0.99 0.1491 0.2207 SAND (f-m) 

Grange Hill (19) Glacial Till Dense - Very Dense 0.027 3.33 0.0010 0.2077 Gravelly (f-m) very silty SAND (f-m) 

Cloddymoss (20) Glacial Till Dense 0.0012 9.8 0.0019 0.2935 Gravelly (f-c) very silty SAND (f-c) 

Cloddymoss (20) Raised Marine Stiff 0.013 2.695 0.0010 0.0176 Slightly sandy (f) slightly clayey SILT 

Cothall (21) Glaciofluvial  Loose 4.93 
 

0.1727 0.4087 Slightly gravelly (f) slightly silty SAND (m) 

Cothall (21) Glacial Till Firm - Stiff 0.006 11.87 0.0010 0.2175 Slightly gravelly (f-m) slightly clayey sandy (f-c) SILT 

Croft Road Wood  (22) Raised Marine Loose 1.1 3.74 0.0289 0.1619 Slightly clayey silty SAND (f-m) 

Altyre Estate Site No. 3 (23) Glacial Till Very Dense 0.004 
   

Slightly silty gravelly (f-c) SAND (f-c) 

Altyre Estate Site No. 1 (24) Glacial Till Dense 0.004 
 

0.0051 0.5129 Very silty very gravelly (f-c) SAND (f-m) 

Wind Farm (25) Raised Marine Loose 2.94 1.46 0.1365 0.2106 SAND (f-m) 

Wind Farm (25) Raised Marine Loose 1.04 
 

0.2457 22.2066 Very sandy (m)GRAVEL (m-c) 
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Table 2: Pearson correlation matrix for in situ hydraulic conductivity and engineering parameters for 

27 samples in Morayshire 
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Significance 

level Cone 
Resistance 

1.00 0.64 -0.21 -0.23 -0.05 0.42 -0.53 

  Soil State 
Description 

0.64 1.00 -0.60 -0.59 -0.34 0.04 -0.74 

 
  100% 

Log d10 
-0.21 -0.60 1.00 0.94 0.78 0.56 0.83 

 
  99.99% 

Log d15 
-0.23 -0.59 0.94 1.00 0.87 0.62 0.78 

 
  99.9% 

Log d30 
-0.05 -0.34 0.78 0.87 1.00 0.82 0.61 

 
  99% 

Log d60 
0.42 0.04 0.56 0.62 0.82 1.00 0.25 

 
  95% 

Log K 
-0.53 -0.74 0.83 0.78 0.61 0.25 1.00 

    

 

Table 3: P values for multiple linear regression analysis of the Morayshire dataset for log K and 

various material properties.  The sign indicates whether the predictor is directly (+) or inversely (-) 

related. 

Source Value 
Standard 

error t Pr > |t| 

logd10 1.123 0.349 3.216 0.004 

Cone Res (MPa) -0.096 0.046 -2.091 0.049 

logd15 -0.313 0.519 -0.602 0.553 

logd30 0.456 0.630 0.723 0.478 

logd60 -0.235 0.430 -0.547 0.590 

Bold are those significant at the 95% level 
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We examine the permeability of superficial deposits in a heterogeneous catchment  

K ranges from 0.001 to > 40 m/d, highest in glacial moraine, lowest in till 

MLR showed that K was related to log d10 and relative density with r2 of 0.80 

Material description of largest fraction had little predictive power of K 
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