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Data fusion for reconstruction of a DTM, under 
a woodland canopy, from airborne L-band 

InSAR 
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Abstract— This paper investigates the utility of different 

parameters from polarimetric interferometric SAR data for the 
identification of ground pixels in a woodland area to enable 
accurate digital terrain model (DTM) generation from the InSAR 
height of the selected ground hit pixels. The parameters assessed 
include radar backscatter, interferometric coherence, surface 
scattering proportion (based on Freeman-Durden decomposition) 
and standard deviation of the interferometric height. The method 
is applied to Monks Wood, a small semi-natural deciduous 
woodland in Cambridgeshire, UK, using airborne E-SAR data 
collected in June 2000. The 1428 variations of SAR-derived 
terrain models are validated with theodolite data and a LiDAR-
derived DTM. The results show that increasing the amount of 
data used in the DTM creation does not necessarily increase the 
accuracy of the final DTM. The most accurate method, for the 
whole wood, was a fixed window minimum filtering algorithm, 
followed by a mean filter. However, for a spatial subset of the 
area using the υ3 backscattering coefficient to identify ground 
pixels out-performs the minimum filtering method. The findings 
suggest that backscatter information may often be undervalued 
in estimating terrain height under forest canopies. 
 

Index Terms— polarimetric interferometric synthetic aperture 
radar (PolInSAR), vegetation, digital terrain model (DTM), 
ancillary data, interferometry, polarimetry  
 

I. INTRODUCTION 
nSAR is an established technique that allows the estimation 
of elevation from the phase difference between two 

overlapping images acquired from slightly different sensor 
positions [1]. InSAR sensors record the phase and the 
amplitude of the backscatter return, with the difference in 
phase between the two images being related to the difference 
in path length to a point and therefore its location. 
Polarimetric data is sensitive to the orientation of the elements 
within a pixel and may be recorded at co-polarized HH 

(horizontal transmit, horizontal receive), VV (vertical 
transmit, vertical receive) and cross-polarized HV or VH 
polarizations (transmitted in one orientation, received in the 
other). Fully polarimetric data sets, where HH, HV, VV and 
VH polarizations are recorded, enable more information about 
the scattering processes to be determined, particularly through 
polarimetric decomposition [2]-[4].  
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Incorporating polarimetric data into SAR interferometry 
enables information on the scattering processes and their 
height to be determined. Applications of polarimetric SAR 
interferometry (PolInSAR) have focused on forested areas, but 
have also explored the potential for PolInSAR analysis over 
agricultural and urban areas [5], [6] and snow [7]. Forest 
height mapping is the most developed PolInSAR application 
area with work focusing primarily on model development and 
model inversion to yield canopy height, topography and 
canopy extinction rates [8]-[10]. The more independent 
observations used to invert these simplified models, the better 
the resulting estimate of canopy height becomes, with multiple 
polarizations, multiple baselines or multiple wavelengths all 
valuable additional sources of information [11], [12]. 

Estimates of canopy height from radar and airborne laser 
scanner data can be derived in a number of ways. One method 
is to use a digital surface model (DSM) to map the height of 
the top of the canopy and a digital terrain model (DTM) to 
give the height of the underlying terrain. The difference 
between the DSM and DTM provides the estimate of canopy 
height. This approach has been successfully applied to dual 
wavelength InSAR data [13], [14] and LiDAR discrete-return 
data for a deciduous woodland [15]. The accuracy of the 
height estimates is dependent upon the accuracy of the DSM 
map of canopy height, which depends mainly upon the degree 
of signal penetration, and the accuracy of the DTM, which 
maybe poor, especially under dense canopies.  

In cases where a suitable DTM can not be derived from 
available remote sensing data existing topographic maps have 
proved useful, in conjunction with InSAR derived large-scale 
DSM’s [16], [17]. Large-scale InSAR DSM’s are now 
available, with the Shuttle Radar Topography Mission 
(SRTM) product, which was flown in February 2000, 
mapping 80% of the Earth’s land surface with a C-band 
(5.6cm) InSAR to produce an almost global DSM at ~30m (1 
arc second) resolution in the US and ~90m (3 arc seconds) 
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resolution elsewhere [18]. Airborne InSAR systems are also 
being used to generate large-scale DSM products, notably 
NEXTMAP produced by Intermap with their X-band (~3cm) 
Star-3i system [19]. 

The generation of DTM’s from DSM’s is problematic in 
regions with forest or urban land cover, as the influence of 
tree canopy and buildings needs to be removed or minimized 
to avoid contaminating the DTM. A number of methods have 
been investigated to derive DTM’s from InSAR DSM’s, with 
[20] investigating rules for the automatic generation of DTM 
in urban areas. Whilst ground height estimates are produced 
by inversion of some InSAR canopy models they have not 
generally been exposed to the rigorous validation applied to 
the canopy height products [8]-[11]. Creation of DTM’s under 
forest canopies has been mainly the preserve of the airborne 
laser scanning community (for example [21]-[24]). Data 
fusion methods are beginning to be explored for the 
improvement of InSAR and LiDAR DTM’s, such as using the 
interferometric coherence to identify areas where an InSAR 
DTM performs poorly and filling those gaps with elevation 
from a stereoscopic SAR DTM [25]. Multi-spectral and 
LiDAR have been successfully combined to produce a 
sophisticated method of building detection to enable more 
accurate generation of urban DTM’s from LiDAR data sets 
[26]. 

PolInSAR data sets comprise a number of parameters, 
including polarization, wavelength, interferometric phase, 
interferometric coherence, backscatter intensity and spatial (or 
textural) information. In many applications only a single 
parameter out of this family is exploited. This paper proposes 
a method for incorporating ancillary data sets into the 
generation of InSAR DTM’s for areas under forest canopies 
and assesses the utility of various data sets for identifying 
ground pixels. We define a ground pixel as a pixel where the 
primary influence on the interferometric phase is the ground 
and hence where the pixel can be identified by the dominance 
of surface scattering in the InSAR signal. The method is tested 
at a temperate, semi-natural deciduous wood.  

This paper is organized as follows: Section II describes the 
study site and data sets, and is followed by Section III which 
outlines the DTM production method, while Section IV covers 
the validation method. Section V presents the results and is 
followed by the discussion and conclusions in Sections VI and 
VII respectively. In this paper we use the following 
definitions: The DTM is the elevation of the terrain, including 
terrain underlying vegetation or urban areas. The DSM is the 
‘raw’ elevation product from the sensor in question and 
includes the height of vegetation albeit with some 
underestimation due to signal penetration into the canopy. 

II. STUDY SITE AND DATA SETS 

A. Study site 
Monks Wood (52°24'N, 0°14'E) is a semi-natural deciduous 

woodland located in south-east England, UK and covers 
157ha. The principal overstorey species are ash, maple and 

oak, with main understorey species including hawthorn, hazel 
and blackthorn. The maximum tree height is around 26m and 
the mean tree height is about 12m. Terrain elevation varies 
from 6m to 46m, with a maximum slope angle of 14.5° [27]. 
Canopy cover varies from completely open along rides and 
two fields, within the woodland perimeter, to completely 
closed. The wood is divided into stands, by rides and paths 
through the wood, but the stands are heterogeneous in terms 
of overstorey and understorey density, tree age distribution 
and species composition. 

 

B. InSAR data and processing 
A fully polarimetric L-band InSAR data set of Monks 

Wood was acquired by the airborne E-SAR sensor on 1st June 
2000. The L-band (23cm wavelength; 1.3 GHz) data were 
repeat-pass with a temporal baseline of 13 minutes and a 
horizontal and vertical baseline of approximately 10m and 
0.4m respectively. The flight altitude was roughly 3km 
producing a ground range pixel size of 1.49m in the range 
direction and 0.85m in the azimuth direction. The data were 
multi-looked during the interferometric processing by 2 and 4 
looks in the range and azimuth directions correspondingly. 
The InSAR processing produced a data set with a vertical 
accuracy of around 2m (e.g. L-HH root mean square elevation 
error of 1.95m against 14 bare ground control points). The 
incidence angle range across the wood is 39º – 54º. All InSAR 
raster data products were geocorrected to enable comparison 
with georeferenced theodolite and LiDAR data sets.  

The fully polarimetric nature of the SAR interferometry 
data set enabled the three optimized coherence channels to be 
derived in addition to the L-HH, L-HV and L-VV 
polarizations based on the method developed by [8]. The 
method involves determining the optimum scattering 
mechanisms in polarimetric SAR interferometry data by 
maximizing the interferometric coherence. Twinned with a 
coherent decomposition algorithm it allows separation of the 
scattering phase centre heights for the optimum scattering 
mechanisms, resulting in three pairs of scattering mechanisms 
[8].  

In the optimized coherence polarization basis the first 
singular value (υ1) has the highest coherence and therefore 
typically contains the highest proportion of surface scatter. 
The third singular value (υ3) has the lowest coherence and as 
such generally represents volume scattering, or a combination 
of volume scattering and surface scattering [28]. The 
coherence for the second singular value (υ2) is an intermediate 
stage and is likely to feature a higher level of canopy 
scattering than υ1 [28]. 
 

C.  Theodolite data 
A set of reference theodolite data, containing terrain 

elevation measurements at 244 points, were collected in June 
2000 using a Pentax R-125N electronic total station (laser 
theodolite). The x, y and z co-ordinates of each point were 
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calculated in relation to a permanent Ordnance Survey 
benchmark located at the Centre for Ecology and Hydrology 
(CEH) Monks Wood research station. The terrain elevation 
points comprised of 140 measurements under the canopy, with 
the remaining 104 in open areas of the wood [15]. 

 

D. LiDAR-derived DTM and canopy height model 
On 10th June 2000 the small-footprint airborne laser terrain 

mapper (Optech ALTM 1210) was flown over Monks Wood. 
The ALTM operates at 1047nm (near-infrared) and on 
average recorded one point (with a diameter of 0.25m) per 
4.83m2, with a minimum point density of 6.50m2 and a 
maximum of 2.80m2 in areas of swath overlap [15]. The first 
and last returns were recorded enabling a DTM and canopy 
height model (CHM) to be derived. Full details of the 
processing are given in [15], but in summary the first and last-
return point cloud data were converted to a gridded product 
using a triangulation algorithm. The last return data were then 
filtered with an adaptive morphological filter to identify local 
minima, by varying the filter size based on canopy structural 
heterogeneity, to create a DTM [29]. The CHM was created 
by subtracting the DTM from the gridded first return data. The 
root mean square error (RMSE) for the LiDAR derived 
products, when assessed against the theodolite data (described 
in Section II, part B), was 0.51m for the DTM and 1.28m for 
the CHM [15], [29]. 

III. DTM GENERATION 
Two methods were applied to produce DTMs (Fig. 1). The 

first, the minimum filtering method, relies upon filtering the 
InSAR DSM height values to create the DTM from local 
height minima, which are assumed to originate from the 
terrain under the vegetation canopy. The ancillary data method 
is the second method and it exploits various parameters from 
the PolInSAR data set, plus some derived PolInSAR products, 
to identify ground pixels (Fig. 1). The ancillary data sets used 
were coherence and backscatter, plus derived products such as 
the spatial and spectral standard deviation and fraction of 
surface scatter derived from a polarimetric decomposition 
algorithm. The underlying physical principle is that the 
volume scattering from the canopy layer and the surface 
scattering from the ground affect the radar signal in specific 
ways, and consequently radar parameters can be used to infer 
scattering properties of the target.  

The ancillary data sets were incorporated into the DTM 
generation by applying a threshold to the ancillary data set 
pixels to create a binary mask with 1 representing “ground” 
pixels and 0 “non-ground” pixels (Fig. 2). The InSAR height 
pixels which were identified as “ground” pixels, via the 
thresholding, were then interpolated to create a terrain surface 
under the wood. The final stage was the application of a mean 
filter to smooth the DTM. To identify the most appropriate 
mean filter size a series of filters with windows of 5, 15, 25, 
35, 45, 55 and 65 pixels diameter were tested. To determine 
the optimum threshold level for each of the ancillary data sets 

a range of thresholds were also tested, which in conjunction 
with the 6 InSAR DSM’s available and the number of mean 
filtering options applied led to 1428 DTM being created 
overall (see Table I). Details of the two methods are described 
below, including a brief rationale why we expect the ancillary 
data sources to be able to separate ground pixels from canopy 
pixels. 

 

A. Minimum filtering 
The minimum filtering method uses only the InSAR DSM 

height values, as the DTM is produced by applying a filter to 
determine local height minima and then smoothing with a 
mean filter (Fig. 1; Table I). Six window sizes were tested for 
the minimum filter, specifically 3x3, 5x5, 7x7, 9x9, 15x15 and 
25x25 pixels. After the minimum filtering, to maintain 
consistency with the ancillary data DTMs, 7 mean filter sizes 
were applied (square filters of 5, 15, 25, 35, 45, 55 and 65 
pixels diameter) producing a total of 252 minimum filtered 
DTMs (6 input DSMs x 6 minimum filter sizes x 7 mean 
filters). 

 

B. Data fusion using ancillary data  
Backscatter: At L-band the radar signal penetrates the 

canopy and is scattered primarily by tree branches and trunks, 
and is unlikely to interact with the ground, if the canopy is 
dense. Consequently, assuming stable moisture conditions, 
high biomass canopies generally produce high backscatter and 
low biomass canopies low backscatter at L-band [30], [31], as 
a result relatively low backscatter values are assumed to 
characterize “ground” pixels, which are better suited for 
inclusion in the DTM generation. The backscatter coefficient 
was the only logarithmically scaled (and hence non-linear) 
parameter used. The backscattering coefficient, σ0, was 
calculated for the six polarizations (L-HH, L-HV, L-VV, υ1, 

υ2, υ3) and the thresholding was applied to the dB scaled 
values (Fig. 2, Table I). Fig. 3a shows the L-HH σ0 image of 
Monks Wood, with rides, gaps in the canopy and sparser areas 
of the canopy exhibiting low backscatter as expected from L-
band scattering processes. 

Interferometric coherence: The coherence was calculated 
for the L-HH (Fig. 3b), L-HV, L-VV polarizations and also 
for the optimized channel polarizations. For the optimized 
coherence, by definition, υ1 has the highest coherence and υ3 
the lowest. One consequence of this is that in some cases the 
υ3 coherence is too low to reliably determine the InSAR DTM, 
so it contains more missing pixels than the other channels. We 
set a coherence threshold of 0.2 below which we did not 
calculate InSAR height. 

 Interferometric coherence, for repeat-pass sensors, is a 
function of the temporal, volume and sensor decorrelation, 
with the volume decorrelation being important for this 
application. For predominantly ground pixels we expect only 
a negligible amount of volume decorrelation, so the 
interferometric coherence should be relatively high. 
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Conversely, for canopy pixels we expect high volume 
decorrelation, due to the large number of scatterers in the 
canopy, producing relatively low coherence. Temporal 
decorrelation for volume scatterers within the image is also 
likely to be increased by the windy conditions at the time of 
image acquisition, even though the repeat-pass time (13 
minutes) was short.  

Low coherence may also occur due to low SNR resulting 
from the very low backscatter observed from smooth surfaces, 
which would confound our assumption that low coherence 
implies volume scattering and hence presence of a vegetation 
canopy. However, this behavior was not observed within the 
perimeter of the wood. The coherence thresholds applied are 
detailed in Table I. 

Spatial InSAR DSM standard deviation: The spatial 
standard deviation of the InSAR DSM’s for each polarization 
(L-HH, L-HV, L-VV, υ1, υ2, υ3) was calculated over a 3x3 
window. A small window size was chosen to allow detection 
of small gaps in the canopy. We assumed that the spatial 
standard deviation of a cluster of bare ground pixels varies 
less than the canopy height at Monks Wood over an 
equivalent area, so that a low standard deviation is likely to 
indicate a cluster of ground pixels, whilst higher values 
suggest canopy scattering (Table I). This assumption is less 
robust than the others, as it is not based on the differences 
between SAR surface and canopy scattering mechanisms and 
will be discussed later (section V part A). Fig. 3c shows that 
canopy pixels in the Monks Wood data set have high spatial 
standard deviation complying with our assumption. 

Spectral InSAR DSM standard deviation: The InSAR 
DSM’s for the six polarizations (L-HH, L-HV, L-VV, υ1, υ2, 

υ3) were used to determine the spectral standard deviation 
(Fig. 3d). The rationale for using the spectral standard 
deviation was that ground pixels would have low height 
standard deviation across the six polarizations, whereas the 
different polarizations would produce a range of phase 
scattering heights within the canopy and so a higher standard 
deviation for canopy hits. The threshold levels are given in 
Table I. 

Surface scatter: The Freeman-Durden model [3] enables 
decomposition of fully polarimetric SAR data into a 
combination of three physically based scattering mechanisms, 
volume scatter, double bounce scatter (e.g. ground-trunk 
interactions in wooded areas) and rough surface scatter. The 
decomposition is achieved through a simplified model of the 
scattering interactions, whereby the canopy scattering is 
solved for a canopy layer of randomly orientated, thin 
cylindrical scatterers. Double-bounce scattering is modeled as 
a dihedral corner reflector, with variable dielectric properties, 
whilst surface scattering is modeled using a first order Bragg 
model [3]. The Freeman-Durden decomposition has been 
successfully used to create ancillary data sets to improve 
speckle-filtering of PolInSAR data [4]. 

The Freeman-Durden decomposition was applied to the 
Monks Wood L-band E-SAR data to estimate the percentage 
of scattering attributed to each of the three scattering 

mechanisms. The surface scatter ground pixel selection, along 
with the spectral standard deviation pixel selection, are 
independent of polarization, as the same set of ground pixels 
are used for each polarization (Fig. 3e). For the other methods 
the set of ground pixels selected will vary slightly depending 
on polarization, although the number and distribution of 
points is likely to be highly correlated between different 
polarizations. 

 

IV. VALIDATION OF THE 1428 DTMS 
The accuracy of an interpolated DTM under a vegetation 

canopy is dependent upon: 
1. A sufficient number and even distribution of ground 

pixels being retained for the interpolation throughout the 
wood. This is determined by a variety of study site and sensor 
characteristics, including the scale of terrain variability, the 
spatial resolution and wavelength of the SAR system and 
attenuation of the signal in the canopy. 

2. Having a suitable method of separating and identifying 
the ground or predominantly ground pixels from canopy 
pixels. 

The first point is addressed by the validation against the 
theodolite elevation measurements and LiDAR DTM 
(described in point i) and iii) below), whilst the second point 
is addressed using a set of ground pixels derived from the 
LiDAR CHM. 

i) Accuracy assessment against theodolite data set - the 
InSAR DTM’s are evaluated against the theodolite terrain 
elevation data set producing an estimate of the accuracy of the 
DTM against a high accuracy set of point data. 

ii) Assessment of the pixels selected as ground – this stage 
of the assessment procedure is intended to investigate whether 
the pixels identified as “ground” via the thresholding of the 
ancillary data sets, really are ground pixels. This was tested 
using a LiDAR CHM [15] to determine the pixels where the 
canopy was less than 1.0m tall, which we used as our 
reference set of ground pixels.  

iii) Spatial distribution of error – the final stage in the 
accuracy assessment was to assess the spatial distribution of 
error for all the pixels, by comparing the InSAR DTM’s to the 
LiDAR DTM [15] and assessing to what extent the InSAR 
DTM error is influenced by spatial factors, such as incidence 
angle. 

V. RESULTS 

A.  Accuracy assessment against theodolite data  
A summary of the RMSE values, between the theodolite 

measurements and the best DTM surface (defined as the 
lowest RMSE against the test data) for each of the methods of 
DTM generation is given in Table II. The results show that the 
minimum filter produces the lowest RMSE result 
(RMSE=4.23m), with the surface scattering method producing 
the second lowest result (RMSE=4.9m). The optimized 
coherence υ2 and υ3 values produce the best results for most 
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ancillary data set methods, whereas the L-HH polarized data 
produce the best overall result, via the minimum filtering 
method (Table II). Applying different mean filter window 
sizes to the DTMs typically produced relatively high error for 
large and small filter windows and reached a minimum at 
some mid-range filter window size. Generally, the 55x55 pixel 
mean filter, corresponding to a 165m x 165m window, 
produces the best result in Table II. This is a relatively coarse 
filter given the small size of the wood and possibly highlights 
the low rates of terrain elevation change and the subsequent 
high levels of spatial autocorrelation within this wood. This is 
illustrated in Fig. 4a which presents the best results from the 
minimum filtering and for an ancillary data set (specifically 
surface scatter) and shows that there is systematic over and 
under-estimation, presumably as a consequence of the 
interpolation and filtering stages. 

 Visual inspection of the distribution of elevation error 
across the wood showed that at the south-eastern side of the 
wood the error was particularly high (discussed in section V 
part C). When the lower accuracy south-eastern theodolite 
points are excluded from the analysis, the best σ0 ancillary 
data DTM is more accurate than the best minimum filter DTM 
(Table III, Fig. 4b). This suggests that the minimum filter, 
with the least input data has less error propagation and so is 
more robust, than the data fusion methods. When the input 
data are of higher quality, then the data fusion methods may 
produce better results. It is also noticeable that the range in 
RMSE values is larger for Table III (1.59m between max. and 
min. RMSE) than for Table II (0.59m), hence the choice of 
ancillary data set has less impact on the accuracy of the DTM 
when assessed against the subset of theodolite points. 

The improvement in the InSAR DTM accuracy for the 
western set of theodolite data is reflected in the reduction of 
the mean filter size, between Tables II and III. Additionally, 
with the exception of the spectral standard deviation, all the 
thresholds change so that the number of pixels, creating the 
surface to be interpolated, is reduced between the best 
scenarios in Table II and III. This indicates that a spatially 
adaptive filter, possibly utilizing the coherence, in conjunction 
with ground pixels identified from an ancillary data set may 
improve the accuracy of the interpolated surface further. L-
HH and υ3 consistently produce the highest accuracy DTM’s 
suggesting that they have the strongest scattering response 
from the ground, within the selected ground pixels. 

The weakest rationale underlying the use of any of the 
ancillary data sets was for the spatial standard deviation, as it 
was assumed that low values signified a cluster of ground 
pixels. However, in the quantitative assessment it produces 
similar results to the coherence data set (Tables II & III). 
 

B. Validation of ground pixel selection 
The second stage of validation was to assess whether 

thresholding the ancillary data sets accurately identified 
ground pixels. To investigate this we used the LiDAR-derived 

CHM to identify pixels where the CHM was less than 1m, 
which we took to be ground pixels. The LiDAR identified 
ground pixels were then compared with the ground pixels 
selected by each of the ancillary data set scenarios (threshold 
and polarization combinations) to identify the highest 
percentage of accurately identified ground pixels (Table IV). 
The ancillary data set scenarios identified in Table IV equate 
to a set of DTM’s rather than a specific DTM, so for the 
backscatter, coherence and spatial standard deviation data sets 
a set of 7 DTM’s is produced, as 7 mean filter sizes were 
applied (see Fig. 1). Whereas for the spectral standard 
deviation and the surface scatter data sets, which are 
polarization independent, the number of DTM for a specified 
threshold is determined by the number of mean filter sizes (7) 
and the number of polarizations (6) creating a set of 42 
DTM’s. Consequently, the RMSE values reported in Table IV 
are the lowest RMSE values for a set of 7 or 42 DTM.  

The maximum percentage of correctly identified ground 
pixels is 98% for the coherence, although it is based on a 
small number of pixels and as the RMSE shows produces a 
very poor set of DTM’s. The spectral standard deviation 
scenario identified coincides with the best spectral standard 
deviation result identified in Table II for the full theodolite 
data set.  The maximum percentage values for the backscatter 
and surface scatter data sets were produced by the scenarios 
that resulted in the highest accuracy in Table III and are based 
on 3079 and 126 accurate ground pixels respectively. The 
large difference in the number of accurate ground pixels, 
between these two cases, has little impact on the ensuing 
accuracy of the DTM, which may imply the underlying terrain 
is relatively simple in shape and can be reconstructed 
relatively accurately from a small number of well-distributed 
points. The scenarios identified in Table IV coincide 
occasionally with the best results identified in Tables II and 
III, however, knowledge of the percentage of accurate ground 
pixels, or the number of accurate ground pixels does not relate 
directly to the quality of the final DTM. 

 

C. Comparison of InSAR and LiDAR DTMs 
The focus of the final stage of evaluation was to assess the 

spatial distribution of error in an attempt to understand the 
limiting factors. The two DTM’s with the highest accuracy 
against the full theodolite data set (Fig. 4a), plus the two 
DTM’s with the highest accuracy against the western subset 
of points (Fig. 4b), were selected for comparison with the 
LiDAR DTM. Fig. 5 shows the spatial distribution of error in 
the four InSAR DTM’s, using the LiDAR DTM as a reference 
data set. The overall pattern of residual error is similar 
between the 4 DTM’s displayed, with error lowest at the 
northern edge of the wood (near range position) and 
increasing towards the southern (far range) and eastern edges, 
although at a finer scale there are distinct differences.  

To further investigate the residual error an analysis, with 
regard to incidence angle, canopy height and each of the 
ancillary data types (i.e. coherence, backscatter etc.), was 
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conducted. No relationship between the residual error and the 
ancillary data sets or canopy height was found. The lack of 
relationship between residual error and canopy height might 
appear unexpected, as canopy height and the probability of the 
radar penetrating the canopy to ground-level are often linked. 
However, Monks Wood has a dense shrub layer, which has a 
potentially greater impact on the probability of canopy 
penetration than the overall height of the canopy, as was 
found in an earlier LiDAR-based study of Monks Wood [29]. 
A relationship between incidence angle and residual error was 
found (Fig. 6), possibly due to increased signal attenuation at 
higher incidence angles. The mean residual is relatively low 
between 39° - 45°, before increasing for all but the most 
coarsely filtered minimum filter DTM. This suggests that the 
coarse filtering provided some immunity to the effects of 
incidence angle variations, although beyond 50° all four 
DTM’s show high residual error. Consequently, the error 
towards the southern edge of the wood (far range) is thought 
to be due to incidence angle, whereas the error towards the 
eastern edge may be due to phase unwrapping errors, as the 
error extends eastwards into the croplands beyond the 
perimeter of the wood (Fig. 5 a-d).  

VI. DISCUSSION 
The data fusion method proposed has only been tested at 

one study site and needs testing at further sites with both 
airborne and spaceborne data sets. In particular, it requires 
assessment on larger forested areas, with more varied 
topography underlying the canopy. It would be worthwhile for 
the InSAR community to compile an international 
experimental database containing standardized data sets for a 
series of test sites, against which to test new algorithms or 
approaches. The current situation of various approaches being 
applied to different areas and different InSAR sensors, with 
varying degrees of validation, makes it difficult to compare 
methods. Precedents for this have already been set by other 
remote sensing communities, with the model intercomparison 
exercise by the optical canopy reflectance modelers [32], [33] 
and the point cloud filtering experiment conducted by the 
LiDAR processing community [34]. In addition, work is 
required to determine a suitable error metric (or set of metrics) 
for quantifying the accuracy of DTM under forest canopies 
where the error is very variable spatially. 

The use of ancillary data sets to identify ground pixels for 
use in DTM generation could potentially be extended to use 
other types of data, both to determine the ground pixels and 
also to generate the DTM’s. If the data are accurately geo-
located, then data from other types of remote sensing sensor 
or even ground data might be suitable for incorporation. For 
example, optical vegetation indices, such as the normalized 
difference vegetation index (NDVI) and normalized difference 
water index (NDWI) could be produced and then thresholded 
to produce a mask of canopy or non-canopy (or sparse 
canopy) pixels. One of the key problems would be differences 
in wavelength and hence canopy penetration, between the 

radar and optical sensors, as they respond to different 
biophysical properties [12].  

Two of the ancillary data sets tested in this paper can only 
be derived from a fully polarimetric interferometric data set 
(e.g. surface scatter, InSAR height standard deviation), 
whereas the others can be derived from single polarization 
InSAR data (e.g. coherence, backscatter and spatial standard 
deviation). The fact that three of the ancillary data products 
can be generated from a single polarization InSAR data set 
make the approach suitable for L-band spaceborne InSAR 
sensors like ALOS-PALSAR [35].  

Our motivation for improving the quality of the DTM is to 
improve the accuracy of canopy height mapping, using X-
band InSAR data to map the top of the canopy and an InSAR 
DTM to map topography [14]. Once an accurate DTM is 
derived for an area it will not require updating, as frequently 
as the canopy height, so growth could be monitored by a one-
off DTM generation, followed by periodic canopy height 
measurements with satellite-borne X-band InSAR. 
Alternatively accurate under-canopy DTM’s could be useful 
in constraining the inversion process in PolInSAR canopy 
models, enabling alternative parameters to be retrieved in the 
inversion process. 

VII. CONCLUSIONS 
In this paper we have proposed a method for using ancillary 

data sets to determine likely ground pixels within a wood, 
from which to interpolate a DTM. The results show that the 
method has promise; in particular, the υ3 backscattering 
coefficient to determine ground pixels produces better results 
than the minimum filtering method, when assessed against a 
spatial subset of the theodolite data. An analysis of the InSAR 
DTM’s against a LiDAR DTM showed that residual error was 
correlated to incidence angle, with incidence angles above 50° 
particularly associated with higher errors. Overall, whilst the 
method shows some promise it needs applying to other InSAR 
data sets covering a range of forest and terrain types to 
provide a full assessment of the method’s limitations and 
robustness. This type of analysis would be greatly facilitated if 
the InSAR community compiled a standardized series of data 
sets for different types of forests and sensors against which 
new algorithms and methods could be tested. 
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TABLE 1 

RANGE, THRESHOLDS AND INCREMENTS FOR SELECTION OF POTENTIAL GROUND PIXELS FROM ANCILLARY DATA SETS. 
THE NUMBER OF DTM’S GENERATED WAS CALCULATED AS: NUMBER OF INCREMENTS  NUMBER OF CHANNELS (I.E. 6 
POLARISATIONS IN ALL CASES) x NUMBER OF MEAN FILTER SIZES TESTED (7 IN ALL CASES). 
 

Method Minimum 
threshold 

Maximum 
threshold 

Increment Number of 
increments 

Ground 
expected to 
produce: 

Number of 
DTM’s 
generated 

Minimum 
filtering 

n/a n/a n/a n/a n/a 252 

Backscatter 
coefficient 

-22.5dB -12.5dB -2.5dB 5 Low values 210 

Coherence > 0.3 > 0.9 0.1 7 High values 294 
Spectral 
standard 
deviation 

0.5m 2.5m 0.5m  5 Low values 210 

Spatial 
standard 
deviation 

0.5m 2.5m 0.5m  5 Low values 
(assuming 
cluster of 
ground pixels) 

210 

Surface 
scatter  

>0.2 >0.7 0.1 6 High values 252 
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TABLE 2 
RMSE BETWEEN THE FULL SET OF THEODOLITE ELEVATION MEASUREMENTS AND THE MOST ACCURATE DTMS FROM 
EACH OF THE METHODS, PLUS DETAILS OF THE POLARISATION, FILTER SIZE AND THRESHOLD PRODUCING THE BEST 
RESULT. 
 

Method RMSE (m) Polarization Mean 
filter 

Threshold 

Minimum filter 4.23 L-HH 55 Minimum 
filter size 

9x9 
Backscatter  5.39 υ3 25 <-20.0dB 

Coherence 5.82 υ2 55 >0.3 

Spatial standard 
deviation 

5.75 υ2 55 <2.5 

Spectral standard 
deviation 

5.48 υ3 55 <0.5m 

Surface scatter 4.9 υ3 55 >0.6 
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TABLE 3 
RMSE BETWEEN THE WESTERN SET OF THEODOLITE ELEVATION MEASUREMENTS AND THE MOST 
ACCURATE DTMS FROM EACH OF THE METHODS, PLUS DETAILS OF THE POLARISATION, FILTER 
SIZE AND THRESHOLD PRODUCING THE BEST RESULT. 
 
 

Method RMSE (m) Polarization Mean 
filter 

Threshold 

Minimum filter 3.37 L-HH 35 Minimum 
filter size 

3x3 
Backscatter  2.97 υ3 35 <-22.5dB 

Coherence 3.56 L-HH 35 >0.30 

Spatial standard 
deviation 

3.50 L-HH 25 <5 

Spectral standard 
deviation 

3.53 υ3 25 <1.0m 

Surface scatter 3.41 L-HH 55 >0.70 
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TABLE 4 

SCENARIOS PRODUCING THE HIGHEST PERCENTAGE OF ACCURATELY IDENTIFIED GROUND PIXELS (DEFINED AS THOSE 
PIXELS WHERE THE LIDAR-DERIVED CHM IS < 1M) FOR EACH OF THE  ANCILLARY DATA SETS.  
 

Scenario for highest 
percentage of accurate 
ground pixels 

Lowest RMSE for range 
of DTM fitting scenario 

Method Highest 
percentage of 
accurate 
ground pixels 

Number of 
accurate 
ground pixels 

Threshold Polarization All 
theodolite 
points 

Western 
theodolite 
points only 

Backscatter  51 3079 <- 22.5dB υ3 6.00m 2.97m 
Coherence 98 81 > 0.90 υ3 18.10m 22.89m 
Spatial standard 
deviation 

24 6681 < 0.5m υ3 6.29m 4.38m 

Spectral standard 
deviation 

20 5178 < 0.5m n/a 5.48m 3.60m 

Surface scatter 30 126 > 0.70 n/a 6.45m 3.41m 
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FIGURES 
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Fig. 1. The two basic methods applied to create the ground DTM using a) height information only, and b) data 
synergy between InSAR DSM and a variety of additional data sets. 1 The mean filtering was conducted with a series 
of square filters of: 5, 15, 25, 35, 45, 55 and 65 pixels diameter.  
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Fig. 2. Illustrated schematic of the data processing chain for the data fusion method, using SAR backscatter as the 

ancillary data source and the υ3 DTM as the input elevation values. 
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a)  b)  c)  

 

d)  e)  

 

Fig. 3. The ancillary data products for Monks Wood (image centred on: 52°24'N, 0°14'E; image width = 1.8km; 
image height=2km). (North (top of image) is near-range; south (bottom) is far-range). 
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Fig. 4. Validation of InSAR DTM elevation for the two best DTM in the comparison with a) all the theodolite 
points (Table 2) and b) western set of theodolite points (Table 3). Legend in graph gives minimum filter and mean 
filter size for minimum filter method; or ancillary data seta and threshold, plus mean filter size for data fusion 
method.  
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a)  b)  

 

c)  d)  

 

Fig. 5. Spatial distribution of error from a comparison of the LiDAR DTM and four selected InSAR DTMs for 
Monks Wood. The perimeter of the wood is shown by the dotted line, whilst the black border around the image 
signifies no data and is an artefact of the filtering. Details on the processing method are in brackets for the images, 
with minimum filter and mean filter size for minimum filter method; or ancillary data seta and threshold, plus mean 
filter size for data fusion method.  
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Fig. 6. Relationship between residual error and incidence angle for selected Monks Wood DTM derived from 

InSAR data. 
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