nerc.ac.uk

The 1969 subglacial eruption on Deception Island (Antarctica): events and processes during an eruption beneath a thin glacier and implications for volcanic hazards

Smellie, J.L.. 2002 The 1969 subglacial eruption on Deception Island (Antarctica): events and processes during an eruption beneath a thin glacier and implications for volcanic hazards. In: Smellie, J.L.; Chapman, M.G., (eds.) Volcano-ice interaction on Earth and Mars. London, Geological Society of London, 59-79. (Geological Society Special Publication, 202).

Full text not available from this repository. (Request a copy)

Abstract/Summary

A short-lived eruption of basaltic andesite to andesite on Deception Island in 1969 occurred from a series of fissures underneath a glacier. The glacier was thin (c. 100 m) and the eruption created a large and sudden discharge of meltwater that overflowed the glacier, severely damaging buildings on the island. The eruption was unusually well documented and it illustrates several features of subglacial eruptions that are only poorly known and not well understood. In particular, overflowing meltwater is contrary to predictions based on existing simple hydrological models for eruptions beneath thin glaciers. The eruption is analysed in this paper and used as a model for the fluid dynamics and thermodynamics of eruptions beneath a thin glacier mainly composed of impermeable ice. It is suggested that, in eruptions of relatively fluid magmas with a low magma rise rate, volatiles and magma are able to decouple and subglacial melting is strongly influenced by the superheated magmatic and hydrothermal gases (mainly steam). Thus, melting is much faster than that due solely to coupled conductive (magma) and convective (meltwater) heat transfer. The influence of gasdriven melting also has an important effect on the shape of the meltwater cavity and may be at least partly responsible for the cylindrical ice chimneys developed above vents on Deception Island. The results of the study are important for reconstructing the shapes of englacial cavities melted above a vent. They also highlight the importance of glacier structure and densification, rather than simply glacier thickness, in determining the hydraulic evolution of an eruption. Even eruptions beneath thin glaciers can generate significant meltwater floods.

Item Type: Publication - Book Section
Digital Object Identifier (DOI): 10.1144/GSL.SP.2002.202.01.04
Programmes: BAS Programmes > Antarctic Science in the Global Context (2000-2005) > Global Interactions of the Antarctic Ice Sheet
ISBN: 1-86239-121-1
Date made live: 22 Mar 2012 15:07
URI: http://nora.nerc.ac.uk/id/eprint/17425

Actions (login required)

View Item View Item