nerc.ac.uk

Summertime NOx measurements during the CHABLIS campaign: can source and sink estimates unravel observed diurnal cycles?

Bauguitte, Stephane; Bloss, W.J.; Evans, M.J.; Salmon, Rhian Anya; Anderson, Philip; Jones, Anna ORCID: https://orcid.org/0000-0002-2040-4841; Lee, J.D.; Saiz-Lopez, A.; Roscoe, Howard K.; Wolff, Eric; Plane, J.M.C.. 2012 Summertime NOx measurements during the CHABLIS campaign: can source and sink estimates unravel observed diurnal cycles? Atmospheric Chemistry and Physics, 12 (2). 989-1002. https://doi.org/10.5194/acp-12-989-2012

Before downloading, please read NORA policies.
[img]
Preview
Text
acp-12-989-2012.pdf - Published Version

Download (753kB) | Preview

Abstract/Summary

NOx measurements were conducted at the Halley Research Station, coastal Antarctica, during the austral summer period 1 January–10 February 2005. A clear NOx diurnal cycle was observed with minimum concentrations close to instrumental detection limit (5 pptv) measured between 04:00–05:00 GMT. NOx concentrations peaked (24 pptv) between 19:00–20:00 GMT, approximately 5 h after local solar noon. An optimised box model of NOx concentrations based on production from in-snow nitrate photolysis and chemical loss derives a mean noon emission rate of 3.48 × 108 molec cm−2 s−1, assuming a 100 m boundary layer mixing height, and a relatively short NOx lifetime of ~6.4 h. This emission rate compares to directly measured values ranging from 2.1 to 12.6 × 108 molec cm−2 s−1 made on 3 days at the end of the study period. Calculations of the maximum rate of NO2 loss via a variety of conventional HOx and halogen oxidation processes show that the lifetime of NOx is predominantly controlled by halogen processing, namely BrNO3 and INO3 gas-phase formation and their subsequent heterogeneous uptake. Furthermore the presence of halogen oxides is shown to significantly perturb NOx concentrations by decreasing the NO/NO2 ratio. We conclude that in coastal Antarctica, the potential ozone production efficiency of NOx emitted from the snowpack is mitigated by the more rapid NOx loss due to halogen nitrate hydrolysis.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.5194/acp-12-989-2012
Programmes: BAS Programmes > Polar Science for Planet Earth (2009 - ) > Chemistry and Past Climate
BAS Programmes > Polar Science for Planet Earth (2009 - ) > Climate
ISSN: 1680-7316
Additional Information. Not used in RCUK Gateway to Research.: Open access article made available under a CC-BY Creative Commons Attribution license.
NORA Subject Terms: Atmospheric Sciences
Date made live: 22 Mar 2012 14:49 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/17422

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...