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Abstract 6 

 7 

Grid refinement is introduced in a numerical groundwater model to increase the accuracy of 8 

the solution over local areas without compromising the run time of the model.  Numerical 9 

methods developed for grid refinement suffered certain drawbacks, for example deficiencies in 10 

the implemented interpolation technique; the non-reciprocity in head calculations or flow 11 

calculations; lack of accuracy resulting from high truncation errors, and numerical problems 12 

resulting from the construction of elongated meshes. A refinement scheme based on the 13 

divergence theorem and Taylor’s expansions is presented here.  This scheme is based on the 14 

work of De Marsily (1986) but includes more terms of the Taylor’s series to improve the 15 

numerical solution.  In this scheme flow reciprocity is maintained and high order of refinement 16 

was achievable.  The new numerical method, investigated by modelling flows in homogeneous 17 

confined aquifers, produced results with acceptable degrees of accuracy. It converges and 18 

reproduces the desired solution in heterogeneous aquifers. This method also shows the 19 

potential for application to solving groundwater heads over nested meshes with irregular 20 

shapes.  21 

 22 

Introduction 23 

 24 
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The finite difference technique is a numerical method that is used to solve the differential 25 

equation representing the spatial and temporal variations of the groundwater heads of 26 

groundwater systems.  Like other numerical techniques, for example, the subsurface flow finite 27 

element models FEHM (Zyvoloski et al., 1997) and FEFLOW (Diersch, 2005), the continuous 28 

aquifer domain is discretised into a set of sub-domains or nodes, where groundwater heads are 29 

calculated. The increased number of nodes both improves the accuracy of the numerical 30 

solution and improves the processing time required to produce the solution.  In the early days 31 

of finite difference applications, computational resources were limited in terms of both storage 32 

capacity and computational speed.  This made the efficiency of a numerical method an 33 

important feature and most often the resolution of the numerical grids holding nodes was 34 

compromised to benefit run time.  Today, storage capacity imposes few restrictions and 35 

computer speed is ever-increasing allowing more complicated and accurate numerical methods 36 

to be applied.  However, the complexity of groundwater applications is increasing in parallel 37 

with the development of computer abilities and this has led researchers, for example Szekely 38 

(1998), Hayes(1999), Jackson (2000),  Mehl and Hill (2004), Mehl et al. (2006), Dickinson et al. 39 

(2007), Szekely (2008) to continue to work on the development of numerical applications that 40 

satisfy both speed and accuracy.   41 

 42 

The speed of solving a groundwater problem is mainly controlled by the power of the 43 

processor and by the number of nodes included in the numerical model.  The accuracy of the 44 

solution, on the other hand, depends on many factors.  A major factor is the spacing between 45 

adjacent nodes of the numerical grid.  This affects the truncation error introduced into the 46 

numerical approximations and the accuracy of the representation of the rate of change of 47 

groundwater head over distance.  A smooth change in the hydraulic gradient, as is the case in 48 

regional aquifers, for example, allows the use of a large interval without affecting the accuracy 49 
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of the solution.  In radial flow modelling, for example Rushton and Redshaw (1979) or Mansour 50 

et al. (2011), the use of a logarithmic radial mesh increases the node density in the region 51 

around the well where steep hydraulic gradients occur and reduces the node density in the 52 

more distant parts of the aquifer.  However, steep hydraulic gradients may occur in a regional 53 

aquifer due to the existence of special features, such as rivers, wells, faults, and changes in the 54 

aquifer properties.  This requires the use of a small space interval over these limited areas.  55 

Mesh refinement is a useful technique that increases the accuracy of the model without 56 

limiting its run-time efficiency or increasing computer memory. 57 

 58 

Mesh refinement techniques were investigated as early as 1946 (Southwell, 1946) and 59 

different mesh refinement schemes have been developed over the years.  For example 60 

telescopic refinement schemes with multiple scale models are used by Ward et al. (1987), 61 

Bravo et al. (1996) and Miller and Voss (1987), adaptive mesh refinement schemes are used by 62 

Berger and Oliger (1984), Arney and Flaherty (1989) and De Lange and De Goey (1994) and 63 

local grid refinement schemes are used by Szekeley (1998), Bennet and Smooke (1999), Hayes 64 

(1999), Jackson (2000) and Mehl et al. (2006).  These methods successfully served the needs of 65 

their users giving acceptable accuracy for the type of problem investigated. However, each of 66 

these methods suffers from certain drawbacks, for example deficiencies in the implemented 67 

interpolation technique, lack of accuracy resulting from high truncation errors, and numerical 68 

problems resulting from the construction of elongated meshes. Other methods do not 69 

maintain grid reciprocity, which specifies that if point A is included in the finite difference 70 

approximation at point B, then point B must be included in the approximation at point A. If 71 

reciprocity exists then the approximation of flux leaving A and entering B can be formulated in 72 

exactly the same way as the approximation of the flux leaving B and entering A (Jackson, 2000; 73 

Mehl et al., 2006).  De Marsily et al. (1978) present a refinement scheme based on integrated 74 



4  

finite differences that has certain attractions.  This scheme uses the Green Theorem to 75 

calculate the groundwater flows at the sides of the nodes located at the coarse-fine grid 76 

interfaces.  It fits, therefore, neatly within the conventional finite differences and maintains a 77 

flow balance.  However, the one drawback of the method as presented by De Marsily (1986) is 78 

its limited accuracy.   79 

 80 

Jackson (2000) developed equations that are more accurate than De Marsily et al. (1978) and 81 

De Marsily (1986) although they do not maintain flow reciprocity.  The lack of accuracy in the 82 

scheme developed by De Marsily (1986) originates from limiting the number of terms in the 83 

Taylor’s series used to develop the numerical equations to just three, i.e. the heads and first 84 

gradients of heads.   85 

 86 

This paper presents a refinement scheme based on the refinement scheme developed by De 87 

Marsily (1986) but improved by including more terms of the Taylor’s series to derive the 88 

necessary numerical equations.  The challenges of this are first to produce numerical equations 89 

that have the desired groundwater equation forms as the product of head differences 90 

multiplied by conductance parameters and second that the developed numerical technique is 91 

stable and converges to the required solution with an acceptable degree of accuracy.   This 92 

paper discusses the steps required to derive the numerical equations and presents the grid 93 

discretisation scheme that reduces the effort required to derive these equations.  The 94 

convergence of the numerical scheme is demonstrated by simulating groundwater flows in one 95 

and two dimensional homogeneous aquifers under steady state conditions.  The convergence 96 

of the numerical scheme in transient problems is demonstrated by comparing the numerical 97 

results to the Theis solution.  Finally the limitations of the method and recommendation for 98 

future development are discussed. 99 
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 100 

Description of the Methods 101 

Integrated Finite Differences. 102 

The basic flow equation in an anisotropic and heterogeneous aquifer is given by: 103 
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De Marsily et al. (1978) introduced the integrated finite difference technique based on the 105 

Divergence Theorem, or Green’s Theorem.  In two dimensions, the Divergence Theorem states 106 

that for any continuous vector function V with continuous first partial derivatives, the double 107 

integral of the divergence of this function over a closed area A can be transformed into a 108 

contour integral of the scalar product of the vector function with the unit outward normal 109 

evaluated along the perimeter C of the area A.  This is expressed by, for example Boas (1983), 110 

De Marsily et al. (1978): 111 

   
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sdAddiv nVV           Equation 2 112 

 113 

To generalise the method, De Marsily (1986) considered an anisotropic aquifer and constructed 114 

a mesh where the grid elements have a polygonal shape with nodes located within them.  In a 115 

conventional finite difference approximation, Equation 1 would be written at each of the 116 

nodes.  In integrated finite differences, the integral of the flow equation over the area Ai 117 

surrounding each node is formed.  This leads to: 118 
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and by recognising that the left hand side is a divergence term Equation 3 can be written as: 120 
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Finally the divergence theorem allows the left-hand side to be replaced by a line integral: 122 
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Where nx and ny are the direction cosines of the unit vector n perpendicular to the boundary, 124 

and ds is an element of , the boundary of the element surrounding the node.  As a result of 125 

this transformation, numerical approximations to 
x

h
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 128 

To evaluate the hydraulic gradients 
x

h




and 

x

h




at an arbitrary point (m) moving along line AB 129 

(Figure 1), De Marsily (1986) wrote three Taylor’s series expansions for the head values  at , J 130 

and K. Only three terms of the Taylor’s series are retained, as shown in Equation 6, allowing the 131 

gradients 
mx

h




and

m
y

h




 at the point m to be calculated in terms of the heads at the 132 

surrounding nodes and their positions.   133 
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De Marsily (1986) showed that the gradients are independent of the location of point m and 135 

that they are constant along AB.  This allows the rearrangement of the left-hand side of 136 

Equation 5 by writing the head gradients outside the integrals.  This greatly reduces the 137 

mathematical procedure required to carry out the integration and yields a relatively simple 138 

form as given in Equation 7. 139 
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CJ and CK are constants that depend on the aquifer characteristics, specifically the 141 

transmissivity and the dimensions of the mesh.  Equation 7 shows that integrated finite 142 
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differences lead to an expression for flow in the form of head differences multiplied by 143 

constants.  This is similar to the structure in conventional finite difference formulae.  In 144 

addition, the method maintains both a flow balance and the reciprocity requirement.  145 

However, it also generates a high truncation error.   146 

 147 

In conventional finite differences, the truncation error resulting from the calculation of 
x

h
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
 148 

or
2

2

x

h
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, using the central difference scheme, is in the order of O(x2).  The approach used by 149 

De Marsily results in an error in the order of O(x) for the calculation of 
x

h


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 or 

y

h
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
.  De Marsily 150 

et al. (1978) recognised that a model based on this approach does not represent the system 151 

accurately and De Marsily (1986) restricted the refinement by halving the mesh interval to 152 

maintain accuracy.  This makes other refinement approaches such as the one developed by 153 

Jackson (2000) more desirable, even without maintaining reciprocity, since they produce better 154 

quality results. 155 

 156 

The New Formulation 157 

 158 

De Marsily et al. (1978) described their work as having a “logical synthesis” and as being 159 

“hydrogeologically plausible”.  Indeed, integrated finite differences fit neatly with conventional 160 

finite differences and keep important features such as providing clear discretised aquifer units, 161 

maintaining a flow balance, and dealing with heterogeneous aquifers.  However, the major 162 

problem with the method, as represented by De Marsily et al (1978) and De Marsily (1986), is 163 

the limited accuracy.  To overcome this difficulty, a new formulation for the head gradients 
x

h
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 164 
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and 
y

h




 is developed.  Like De Marsily et al. (1978) it is based on using Taylor’s series at 165 

selected grid nodes but it includes additional terms in the expansion. 166 

 167 

There are three main challenges to this approach.  The first is that the approximations become 168 

large and a tidy outcome where the fluxes consist of expressions composed of head differences 169 

multiplied by constants is not guaranteed.  Second, the head gradients depend on the position 170 

of the point m as it moves along the interface and this complicates the integration to 171 

determine the flow.  Finally, the equations must produce an accurate solution.  172 

  173 

To increase the accuracy of the head gradient approximation to the order of O(x2) three extra 174 

terms of Taylor’s series involving the terms 
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 are included in the head 175 

equation at a given node in addition to the three used by De Marsily et al. (1978) and shown in 176 

Equation 6.   The calculation of the values of these six terms necessitates the application of 177 

Taylor’s series at six nodes.  However, the locations of these nodes define the structure of the 178 

equations.  It is, therefore, preferable to arrange the nodes carefully in a definite geometrical 179 

layout so the mathematical manipulation is reduced.  Two possible grid layouts for the 180 

refinement scheme are presented here. The first is similar to the one implemented by Jackson 181 

(2000) and is illustrated in Figure 2.  This layout consists of a coarse grid with a refined region 182 

giving elongated rectangular flow interaction areas at the mesh interface. 183 

 184 

For a typical node, , on the fine-coarse interface, there are three sides of the flow interaction 185 

area , AB, BC and AD that require a new formulation of the head gradient,
x

h
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, while on 186 

the fourth side, CD, the conventional finite difference expression can be applied.  Many 187 
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problems arise in this case, especially along the sides BC and AD.  Along segment BC for 188 

example, the determination of the hydraulic gradient 
y

h




 requires two different evaluations, 189 

one along BE and the other along EC.  The same is true for the determination of 
y

h




 along AD.  190 

A second more serious problem concerns the water balance.  Line AF, for example, represents 191 

a common boundary between nodes K and .  For the flow balance at node K, the expression 192 

for 
y

h




 is based on head values at points L, , K, R and J.  When considering node , the gradient 193 

is based on head values at points L, N, , K, and J.  In theory the two expressions should 194 

produce the same results, but because of the truncation errors this is not guaranteed.  In 195 

general, the use of different combinations of head values will lead to inconsistent estimates of 196 

flow across a common boundary. 197 

 198 

The second layout divides the coarse grid into a number of discrete areas for which flow 199 

balances are calculated.  In this case, the areas can extend beyond the original coarse grid lines, 200 

as shown in Figure 3.  This eliminates the elongated areas and ensures that all nodes in all 201 

meshes have a square or a rectangular shape with an aspect ratio similar to that of the coarse 202 

grid.  The advantage of this arrangement is that for all the nodes located on the interface, there 203 

is only a need to derive one expression for one head gradient, either 
x

h




or

y

h
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 depending on 204 

the direction of the node face.     205 

 206 

In the new scheme groundwater heads at the six points , K, J, L, N and P, shown in Figure 3, are 207 

expressed by Taylor’s expansions based on a point m that is moving along the line AB.  208 

Equation 8 shows the expression for Node ; the heads at the other nodes take the same form.   209 
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 214 

This equation was used by Quandalle and Franlab (1985) who built a numerical model with 215 

composite grids.  However, they considered refinement in one direction only and estimated 216 

the hydraulic gradient at a single node at the mid-point of line AB.  They did not derive a 217 

general expression for the hydraulic gradient and integrate it along the interface.  218 

 219 

The next stage consists of solving the six equations containing values of six unknown head and 220 

head gradients to evaluate the hydraulic gradient
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Where x and y are the grid intervals on the fine grid and X  and Y are the corresponding 232 

values on the coarse grid as shown in Figure 3.  Integrating Equation 9 over the interval AB and 233 

multiplying by the transmissivity in the x direction, gives the flow across AB.  In the case of 234 

node  shown in Figure 3, the integration is carried out in the y direction.  This only affects the 235 

variable ym in Equation 9, since all other terms are independent of the position of m.  The 236 

integration results in multiplying all terms that do not include ym by y and in replacing ym , by 237 

  yyyy IAB  22

2

1
.  The flow equation becomes: 238 
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 242 

The symbol P in Equation 10 is used to indicate a term which changes for certain nodes.  In 243 

general P is equal to y.  The value changes when nodes fall along the line of the original coarse 244 

grid.   Node N in Figure 3 represents one such node where the integration of Equation 9 over 245 

the interval BF is achieved in two steps.  The first integral occurs over BE using head values 246 

located below the line LN while the second occurs over EF and uses head values located above 247 

LN.  In both cases the equations are based on the hydraulic characteristics of node N and are 248 

similar to Equation 10.  However, for the flow moving across segment BE, the value of P is 249 

adjusted to: 






 


4

y
yN and across EF the value of P is: 




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

4

y
yN .  With these modifications, 250 

Equation 10 is a general equation that takes a desirable numerical form of head differences 251 

multiplied by constants and it can be applied at all nodes along the grid interface. 252 

 253 
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The corresponding equations for interfaces oriented in decreasing x, and increasing and 254 

decreasing y directions can be obtained by careful re-arrangement of Equation 10.  An example 255 

of this treatment can be found in Jackson (2000). 256 

 257 

One slight problem arises at the extremities of the expanded mesh.  The procedure does not 258 

allow the determination of groundwater head at nodes located at the corners of a child grid.  259 

This arises from the need for six points to calculate the flow balance as demonstrated for node 260 

 in Figure 4.  For a point such as C in Figure 4, which is located at the corner of the child grid, 261 

the sixth node required for the calculation of the flow across DE is missing.  To overcome this 262 

difficulty a virtual node is introduced beyond the extreme corner of a fine mesh.  The head 263 

value at this extra node has to be estimated by interpolation. 264 

 265 

Convergence of the Numerical Scheme 266 

Convergence to steady state conditions 267 

A first check on the new refinement scheme is to examine a simple steady state problem.  This 268 

consists of a 2.5 km square aquifer, refined as shown in Figure 5a.  The parent and the child 269 

grids are composed of 500 m and 100 m square cells respectively.  The child grid lies at the 270 

middle of the coarse grid and both have the same transmissivity values of 100 m2 day-1.   271 

 272 

Successive Over Relaxation (SOR) is used to solve the numerical system.  SOR is a point iterative 273 

approach based on the Jacobi and the Gauss-Seidel iteration methods to solve a system of 274 

linear equations. The allowable error, representing the maximum flow imbalance at each node 275 

and at which the SOR procedure terminates, is set to a very small value of 8101   m3 day-1.  276 

The head values generated by the model fit the analytical solution with maximum differences 277 

between the results of the analytical and numerical solutions not exceeding 0.15%. In this 278 
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special case the interpolation technique calculates the groundwater heads at the missing nodes 279 

and the groundwater heads at the extreme ends of the child grid.  The flows calculated by the 280 

model confirm that no flow is generated in the y direction and that the flow in the x direction is 281 

equal to that calculated using the analytical solution.  This is an important check of the coding 282 

of the model because it confirms the correct implementation of the various forms of the 283 

refined area equations as well as the proper linkage between the different types of node. 284 

 285 

The boundary conditions are specified as fixed head values on all sides and zero groundwater 286 

heads are specified everywhere as initial condition.  A curved surface is created by introducing 287 

an abstraction well approximately in the centre of the child grid at the location labelled Node C 288 

in Figure 5a. 289 

 290 

The numerical solution resulting from the proposed refined grid is compared to that produced 291 

using a regular fine mesh grid having 100 m square cells over the whole aquifer.  After a certain 292 

period of continuous abstraction at a rate of 1000 m3 day-1, a steady state condition is reached.  293 

Figure 5b shows the contour lines resulting from both grids.  The results are in close agreement 294 

and the contour lines of both solutions almost coincide.  However, a closer examination reveals 295 

that some differences in head exist, reaching at certain locations an absolute value of 1.4%.  296 

This behaviour becomes clearer when the difference between the two solutions at the child 297 

grid boundary is examined.  Since a line of symmetry crosses the aquifer diagonally, as shown 298 

in Figure 5a, only the upper and the lower faces of the child grid need be considered.  Figure 6 299 

shows the absolute head difference along these two boundary lines.  The head difference 300 

varies from a minimum of 0.1% to a maximum value of 1.4% with the maximum difference 301 

located at the node opposite the abstraction point.  The flow crossing the coarse-fine interface 302 

at the nodes common to both models is also compared in Figure 6.  The absolute percentage 303 
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difference in flow ranges from a minimum of zero to a maximum of 5.0%.   It is clear that a 304 

small error in the computed head leads to a larger error in the flow.  Reciprocally, a relatively 305 

large error in the flow may lead to insignificant differences in the corresponding head values.  306 

This is the main reason for basing the convergence criterion on an accurate determination of 307 

flow, i.e. minimising the flow imbalance, which certainly leads to an accurate head 308 

determination.  This is also an advantage of the integrated finite difference refinement method 309 

which relies on the calculation of flow as a means of to determining head at the coarse-fine 310 

interface and not vice versa. 311 

Reproducing time variant groundwater heads 312 

Theis’ (1935) analytical solution is used to investigate the capability of the new refinement 313 

scheme to produce the groundwater flow solution under time variant conditions.  314 

Groundwater flows are simulated in a large 10 km square aquifer with fixed heads at its outer 315 

boundaries.  Large dimensions of the aquifer are necessary to reduce the interference of the 316 

outer boundaries with the numerical results, especially at the later times of the simulation.  the 317 

transmissivity of the aquifer is set to a value of 100 m2 day-1 and the storage coefficient is set to 318 

a value of 0.0001.  To satisfy the Theis assumptions, no recharge is applied, the initial head 319 

values are set to zero, i.e. no drawdown occurs at time zero, and the abstraction increases 320 

instantaneously to the rate of 1000 m3 day-1.  Finally, to allow a small nodal area at the 321 

abstraction borehole so that it resembles an infinitely small well, the aquifer is refined in three 322 

stages; at the coarsest level, a grid with 500 m square cells is used, followed by a grid with 100 323 

m square cells as an intermediate stage and finally a grid with 20 m square cells is used for the 324 

finest mesh.  These settings are shown in Figure 7. 325 

 326 

Time drawdown curves generated by the model are compared to the Theis solution at three 327 

observation wells.  The locations of the observation (Figure 7) wells are selected to show 328 
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groundwater head values calculated at nodes located on the three grids.  The distances 329 

between the observation boreholes and the abstraction borehole are 141 m, 500 m and 1500 330 

m.  Figure 8 shows the simulated time drawdown curves and those produced using the Theis 331 

solution.  It is clear that there is good agreement between these curves except at the early 332 

times of pumping. The disparity between the results is attributed to the difference in the 333 

representation of the sink in the numerical model and it representation as a line source in the 334 

Theis analytical solution.  After day 7 the outer boundary effects start to appear in the 335 

simulated results.  This is reflected by the reduction of the gradient of the time drawdown 336 

curves indicating that some water is being supplied by the outer fixed head nodes to the 337 

pumped borehole. 338 

Simulation of groundwater heads in heterogeneous aquifers 339 

The presented numerical scheme can be readily used to simulate groundwater heads in 340 

heterogeneous aquifers on condition that the transmissivity value specified at one coarse grid 341 

node is the same as the transmissivity values of the child nodes in contact with it. Reproducing 342 

the groundwater heads in heterogeneous aquifers is tested in this section.  343 

An aquifer that is 5 km long and 2.5 km wide with a global transmissivity value of 100 m2 day-1 344 

and a storage coefficient value of 0.0001 is discretised using a grid with 500 m square cells, 345 

which is refined at its centre as illustrated in Figure 9a. The refining grid has 100 m square cells. 346 

The aquifer has zones with transmissivity values of 50 and 200 m2 day-1 as shown in Figure 9a. 347 

The aquifer has fixed head boundaries along its sides, has no recharge and is pumped at a rate 348 

of 1000 m3 day-1 at its centre.  Figure 9b shows the groundwater head contour lines produced 349 

from this model and those produced from a model using a fine with 100 m square cells after a 350 

simulation time of 10 days. These contours are in close agreement with the observed 351 

discrepancy related to contouring artefact. A closer comparison between the simulated results 352 

shows that the overall discrepancy is ranging between 3 and 5% but with few cells showing 353 
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high error values of up to 13%. While the latter error figure recommends further investigations 354 

into its source, the cells associated with it are located next to the fixed head boundaries. The 355 

groundwater heads calculated at these cells are in the order of 10 cm while the highest 356 

drawdown values calculated at the centre is 1%.  357 

 358 

Discussion and Conclusion 359 

 360 

The refinement scheme is based on the integrated finite differences approach. It is similar to 361 

that used by De Marsily et al. (1986) as it relies on the divergence theorem and Taylor’s 362 

expansions.  The divergence theorem is used to transform a double integral of the basic flow 363 

equation over the area associated with a node into a contour integral around the perimeter of 364 

this same area.  Taylor’s expansions are used to determine the hydraulic gradient along the 365 

perimeter.  The accuracy of the developed numerical equations is improved by including terms 366 

up to the second order from the Taylor’s expansions.  This is the main difference from the work 367 

presented by De Marsily et al. (1986); however, the inclusion of these additional terms requires 368 

extra mathematical computation to derive the numerical equations that describe the flow 369 

across the fine-coarse mesh interface.  Significantly, the new flow equations maintain the 370 

desired form, which calculates the flow as the product of head differences multiplied by a 371 

constant as in the conventional finite difference formulae.   372 

 373 

The numerical grid layout used to refine the grid affects the difficulties associated with 374 

producing the numerical equations.  It has been found that dividing the nodes rather than the 375 

mesh increases the number of sides over which the conventional finite difference equations 376 

are applied, and increases the accuracy of the model.  The derived numerical equations 377 

converged to the required solution without difficulty, although in some cases the over 378 
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relaxation factor had to be limited to values less than 1.4 to ensure the convergence of the 379 

solution. 380 

  381 

The new refinement scheme is tested for its ability to represent the groundwater heads in 382 

homogeneous and heterogeneous aquifers under steady state and time variant conditions.  383 

The developed numerical technique relies on the principle of using the Taylor’s series to 384 

calculate the groundwater head gradients at a point moving along a node face.  This requires 385 

that the groundwater surface is continuous and differentiable between all the nodes in order 386 

to calculate the gradient at that point.  For a heterogeneous aquifer, the refining grid must be 387 

selected such that the aquifer does not change in its properties between the nodes 388 

surrounding the point where the hydraulic gradients are calculated  389 

  390 

Accurate results were generated for a drawdown surface that curves in one direction only.  391 

However, the technique generated undesirable but small errors in the representation of a 392 

drawdown surface that curves in two directions.  These errors arise because of the 393 

interpolation necessary to calculate head values at the imaginary nodes at the corners, which 394 

are required to comply with the new formulae.  However, the differences between the 395 

numerical results and the analytical results fall within an acceptable range.  The flow errors are 396 

found to be higher than the head errors; this is expected since a very small change in the head 397 

values can lead to relatively high changes in water flows.  It is therefore much better to stop 398 

the iteration process in the numerical model when it attains an acceptable water balance 399 

rather than when the heads stop changing significantly.  This is where the integrated finite 400 

difference approach, where the calculation of flows at all node faces is possible, prevails over 401 

other refinement schemes. 402 

  403 
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This refinement scheme shows the potential of having more advantages than other refining 404 

techniques so far reported in the literature.  For example, the order of refinement can be 405 

increased to order of refinement higher than 5, the limit imposed by Jackson (2000) on his 406 

refinement technique.  This refinement approach together with the layout of the grid 407 

described in this paper also offers the possibility of setting a concave refinement configuration, 408 

i.e. when the part of the child grid takes an L shape.  In addition, the integrated finite 409 

difference application presented here can be applied to non-linear grid interface. This opens 410 

the possibility of deriving groundwater flow equations to nodes located at the edges of a 411 

cylindrical grid model and consequently embedding the cylindrical grid model in a Cartesian 412 

model. This investigation is ongoing.  413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 
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Figure 1: Parent-Child grid interface in a refined grid 484 
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Figure 2: Grid layout proposed by Jackson (2000). 490 

 491 

 492 



22  

 493 

Figure 3: The new grid layout used to derive the numerical expressions 494 
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Figure 4: An imaginary node replaces the missing node adjacent to the corner node. 500 
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Figure 5: Refined grid representing a homogenous aquifer. 504 
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 515 

Figure 6: One dimensional representation of a homogeneous aquifer subjected to uniform 516 

recharge. 517 
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 520 

Figure 7: Contour lines resulting from a model with a refined grid (blue line) and a regular fine 521 

mesh (red line) 522 
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Figure 8: Absolute percentage flow and head differences at nodes located on the left and upper 527 

sides of the child grid. 528 
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 539 

Figure 9: Three levels of refinement in a homogeneous aquifer subject to pumping. 540 
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Figure 10: Comparison between simulated time drawdown curves and the Theis solution at 546 

observation boreholes located at 100 m, 500 m and 1500 m from the abstraction borehole. 547 


