Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Grid refinement in Cartesian Coordinates for groundwater flow models using the Divergence Theorem and Taylor’s Series

Mansour, M.M.; Spink, A.E.F.. 2013 Grid refinement in Cartesian Coordinates for groundwater flow models using the Divergence Theorem and Taylor’s Series. Groundwater, 51 (1). 66-75. 10.1111/j.1745-6584.2012.00924.x

Abstract
Grid refinement is introduced in a numerical groundwater model to increase the accuracy of the solution over local areas without compromising the run time of the model. Numerical methods developed for grid refinement suffered certain drawbacks, for example, deficiencies in the implemented interpolation technique; the non-reciprocity in head calculations or flow calculations; lack of accuracy resulting from high truncation errors, and numerical problems resulting from the construction of elongated meshes. A refinement scheme based on the divergence theorem and Taylor’s expansions is presented in this article. This scheme is based on the work of De Marsily (1986) but includes more terms of the Taylor’s series to improve the numerical solution. In this scheme, flow reciprocity is maintained and high order of refinement was achievable. The new numerical method is applied to simulate groundwater flows in homogeneous and heterogeneous confined aquifers. It produced results with acceptable degrees of accuracy. This method shows the potential for its application to solving groundwater heads over nested meshes with irregular shapes.
Documents
17345:26889
[thumbnail of 2_Mansour_Groundwater_Submitted.pdf]
Preview
2_Mansour_Groundwater_Submitted.pdf

Download (801kB) | Preview
Information
Programmes:
UNSPECIFIED
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item