High Precision U–Pb Zircon Ages for Mesozoic Igneous Rocks from Hong 1 Kong 2 3 R. J. Sewell^a, D. W. Davis^b and S. D. G. Campbell^{a,1} 4 5 6 ^aGeotechnical Engineering Office, Civil Engineering and Development Department, 101 Princess Margaret Road, Kowloon, Hong Kong Special Administrative Region, China. 7 ^bJack Satterly Geochronology Laboratory, Department of Geology, University of Toronto, Toronto, Ont., 8 9 Canada. 10 11 Abstract: Sixteen new high precision U–Pb zircon ages are reported from 12 Jurassic and Early Cretaceous silicic volcanic and plutonic rocks of Hong Kong. 13 14 When combined with the existing age dataset, the new ages constrain more tightly the timing of major periods of volcanism and plutonism at 162.6 ± 4.5 Ma, 146.715 \pm 1.1 Ma, 143.0 \pm 1.0 Ma and 140.8 \pm 0.6 Ma. However, two ages of 151.9 \pm 0.2 16 Ma and 148.1 ± 0.2 Ma, from eastern New Territories and southern Hong Kong 17 indicate additional and therefore more continuous, albeit pulsed, magmatic 18 activity than previously thought. 19 20 Keywords: Hong Kong, U–Pb dating, Mesozoic, zircon 21 22 1. **Introduction and Geological Setting** 23 Jurassic to Cretaceous silicic volcanic rocks and related granitoid rocks crop out over 24 approximately 85% of the land surface area of the Hong Kong Special Administrative Region 25 (1050 km², herein called Hong Kong). They belong to a 400 km wide belt of Mesozoic 26 (Yanshanian) magmatic rocks exposed along the coastal region of southeast China and have 27 been divided into four main volcanic groups, and corresponding granitoid suites, based on 28 petrographic, geochemical and age criteria (Davis et al., 1997; Sewell et al., 2000; Campbell 29 et al., 2007). The spatial distribution and geometry of the volcanic centers and related 30 plutons in Hong Kong are strongly controlled by east-, north-, northwest- and northeast-31 trending faults (Figs. 1-4). These faults are thought to have been active during periods of 32

¹ Present Address: British Geological Survey, Murchison House, Edinburgh EH9 3LA, United Kingdom.

rapid, pulsed, crustal extension with associated strike-slip movement along the northeasttrending Lianhuashan Fault Zone during the Late Mesozoic (Campbell and Sewell, 1997).
This paper presents new U–Pb zircon dates on volcanic rocks, dykes and granitoid
plutons from each of the four magmatic groups measured by isotope dilution thermal
ionization mass spectrometry (ID-TIMS) (Table 1). Samples were collected in order to
further refine knowledge of the pace and episodicity of magmatism. Details of sample
locations and field relationships are given in Table 1 and Figs 2–4.

40

41 2. Analytical Methods

42 <u>2.1 Laboratory Procedures</u>

Rocks were crushed with a jaw crusher followed by a disk mill. Initial separation 43 involved multiple passes of crushed rock over a Wilfley table to concentrate heavy minerals. 44 Further heavy mineral separation was carried out by density separations with bromoform and 45 methylene iodide and paramagnetic separations with a Frantz isodynamic separator. 46 Descriptions of zircon populations are given in Table 1. Final sample selection was by hand 47 picking under a microscope, choosing the freshest, least-cracked zircon grains. In some cases, 48 exterior surfaces of selected zircon grains were removed by air abrasion (AA, Krogh 1982). 49 In others, zircon populations were treated by the chemical abrasion (CA, Mattinson, 2005) 50 method. Zircon grains that underwent CA treatment were annealed in quartz crucibles at 51 52 1000°C for 3 days. This removes much, although not all, of the radiation damage induced by decay of U and Th contained in the mineral, rendering the unmetamict zircon more inert to 53 chemical attack. The annealed grains were subsequently leached in a 1:1 mixture of 54 concentrated HF and 6N HCl for about 16 hours in a teflon bomb at 195°C. The metamict and 55 altered parts of the crystals, which contain isotopically disturbed Pb, dissolve more rapidly 56 57 than annealed, unaltered crystal domains for low to moderate levels of radiation damage.

58 Attack was variable, depending on the uranium concentration of the grains and the 59 consequent degree of radiation damage. Residues of damaged grains consist of whitish 60 fragments. Fragments were chosen to contain as little white discoloration as possible. In cases 61 where there is noticeable etching, the presence of a small amount of discolouration does not 62 seem to affect the results.

To minimise the possibility of inheritance, a minimum number of zircon grains was 63 64 analyzed in a fraction having characteristics typical of the igneous population, such as a euhedral shape and an abundance of melt or rod-like inclusions. Weights of mineral fractions 65 66 chosen for ID-TIMS analysis were estimated from photomicrographs (Matthews and Davis, 1999). Estimated weights should be accurate to about $\pm 20\%$. This affects only U and Pb 67 concentrations, not age information, which depends only on isotope ratio measurements 68 (Table 2). Samples were washed briefly in HNO₃ prior to dissolution. For AA grains, ²⁰⁵Pb-69 ²³⁵U spike was added to the dissolution capsules during sample loading. In the case of CA 70 grains, ²⁰⁵Pb-²³³U -²³⁵U spike was added after HF dissolution. 71

Zircon grains were dissolved using concentrated HF in teflon bombs at 195°C for 5
days, then redissolved in 3N HCl to ensure equilibration with the spike (Krogh, 1973). U and
Pb were separated using 0.05 ml anion exchange columns.

Pb and UO₂ were analyzed on a VG354 mass spectrometer using a Daly collector in 75 pulse counting mode for small samples. The mass discrimination correction for this detector 76 77 is constant at 0.07%/AMU. Larger samples were analyzed in multidynamic mode using 3 high mass Faraday collectors and the axial Daly detector. The Daly gain was continually 78 monitored by measuring the ²⁰⁵Pb signal in the Daly and adjacent Faraday collectors. 79 80 Thermal mass discrimination corrections are 0.10% /AMU for Pb. For CA samples, mass discrimination for U was corrected using measured ²³³UO₂ /²³⁵UO₂ ratios after correction for 81 O isotopic composition. Dead time of the Daly system (about 20 nsec) and multi-collector 82

R J Sewell, D W Davis and S D G Campbell

Faraday cup efficiencies were monitored using the SRM982 Pb standard. Faraday amplifier
gains were monitored daily using a constant current source.

85

86 <u>2.2 Data analysis</u>

Isotope results are given in Table 2 as ages with 2σ absolute errors. Concordia 87 coordinates and errors are readily calculated from the ages using formulas given in the 88 footnotes to Table 2. Average ages are summarized in Table 3 (errors here and in the text are 89 given at 95% confidence). Data from individual samples are presented as 2σ error ellipses on 90 concordia plots on Figs 5-8. Mass spectrometer data were reduced using in-house software 91 (UTILAge program written by D.W. Davis). Age results were averaged and plotted on 92 concordia diagrams using Isoplot software (Ludwig, 2003). U decay constants are from 93 Jaffey et al. (1971). Probability of fit is a measure of the likelihood that data overlap within 94 error. In a random distribution of coeval data with correctly assigned errors, this would be 95 expected to be 50% on average. Low values generally indicate scatter due to Pb loss or 96 97 inheritance.

Common Pb corrections are made assuming an isotopic composition similar to laboratory blank. The plotted data, as well as results in Tables 2 and 3, are corrected for 230 Th disequilibrium, assuming a Th/U ratio in the magma of 4.2, the terrestrial average. This increases the 206 Pb/ 238 U ages by about 0.09 Ma in all of the samples. Th/U is calculated from the measured 208 Pb/ 206 Pb ratio and 206 Pb/ 238 U age.

Because of depletion of the shorter half-life ²³⁵U isotope, there is much less ²⁰⁷Pb than ²⁰⁶Pb for relatively young samples. Therefore, for Mesozoic and younger samples, ²⁰⁶Pb/²³⁸U ages are much more precise and reliable than ²⁰⁷Pb/²³⁵U ages, which are subject to greater corrections for common Pb, as well as possible measurement biases and excess ²⁰⁷Pb from disequilibrium values of ²³¹Pa. A bias from one or more of these sources is the likely reason

why many of the error ellipses plot slightly to the right of the concordia curve. Discordance
may also be due in part to a systematic error in the ²³⁵U decay constant as suggested by
Schoene et al. (2006). ²⁰⁷Pb/²⁰⁶Pb ages are quite imprecise because the concordia curve is
nearly parallel to a line through the origin. Therefore, ages for these samples are calculated as
²⁰⁶Pb/²³⁸U ages. ²⁰⁶Pb/²³⁸U ages are sensitive to secondary Pb loss, but this is likely to have
been eliminated by the AA and CA treatments.

114

115 **3. Results**

116 Samples in Tables 1-3 and Figs 5-8 are grouped according to age. Most samples produced overlapping data sets with clearly defined ages. Slight indications of inheritance in 117 samples HK12067, HK13277 and HK13278 may be due to cores or zircon xenocrysts from 118 119 earlier events. The measured age range of inheritance is less than a million years so it may be due to cores from earlier phases of magmatism making up the same event or 'autocrysts' 120 from earlier pulses of magmatism within the same magma chamber. In these cases, multiple 121 analyses were carried out and the eruptive age was estimated from the average of the 122 youngest cluster of overlapping data. HK12073 shows inheritance from a Paleoproterozoic 123 source (from the ca. 1850 Ma projection of a discordant datum, Fig. 8d). Zircon analyzed 124 from HK9015 may all be inherited from a variety of Phanerozoic sources (Fig 7d). In this 125 case, only an older age limit can be defined. 126

Despite the above complications, at least four distinct short-lived periods of magmatism can be recognized. Taking the mean and twice the standard deviation of ages from periods 1 to 4, respectively, gives 162.5 ± 4.7 Ma (2 samples) for Period 1, 146.9 ± 1.6 Ma (5 samples) for Period 2, 143.1 ± 1.2 Ma (4 samples) for Period 3, and 140.9 ± 0.6 Ma (4 samples) for Period 4. One age of 151.9 ± 0.2 Ma was not included since it falls outside the apparent duration of ca. 3 Ma for the closest period.

R J Sewell, D W Davis and S D G Campbell

Each of the periods, except the first, contains multiple samples with overlapping ages 133 that may allow magmatic ages to be defined to a higher level of precision than previously 134 defined. The youngest data clusters from three samples from Period 2 give overlapping ages. 135 If it is assumed that all three samples crystallized at the same time, a more precise age for this 136 event of 146.37 ± 0.08 Ma (73% probability of fit over 10 data) can be obtained by pooling 137 the data. Similarly, eight overlapping data from three samples in Period 3 give 142.96 ± 0.13 138 139 Ma (61% probability of fit), while eleven data from three samples in Period 4 overlap with an average age of 140.73 ± 0.15 Ma (60% probability of fit). However, it should be emphasized 140 141 that these ages and errors are only meaningful if the samples from each group are coeval.

142

143 **4. Discussion**

The analyzed samples add significantly to the already substantial existing age dataset 144 arising from previous stratigraphical, geochronological and geochemical studies on the 145 volcanic and plutonic rocks of Hong Kong (Campbell and Sewell, 1997; Davis et al., 1997; 146 Sewell et al., 2000; Campbell et al., 2007; Table 3). As a result, all of the fifteen Middle 147 Jurassic to Early Cretaceous volcanic formations recognized in Hong Kong have now been 148 precisely dated using U–Pb single crystal zircon geochronology. Among the intrusive rocks, 149 twenty-one of the twenty-five recognized units (Sewell et al., 2000) have now been 150 151 radiometrically dated. These include several plutons that occur only on outlying islands, and 152 several rhyolite dyke swarms (Figs 2 and 3). In addition, the ages of several isolated volcanic outcrops (Fig. 4), previously correlated only on the basis of whole-rock geochemistry, have 153 now been confirmed. The exceptionally tightly-constrained record of Mesozoic volcanic and 154 plutonic activities provided by the precise zircon ages reveal, in remarkable detail, the cyclic 155 nature of Late Yanshanian magmatism in this comparatively small area. 156

Campbell and Sewell (1997) demonstrated that eastnortheast-trending and northwest-157 trending faults exerted a strong influence on the distribution and loci of Middle Jurassic to 158 Early Cretaceous volcanic deposits and centers in Hong Kong. They inferred that as the 159 regional tectonic stress field changed from an active margin dominated by subduction to a 160 back-arc regime dominated by crustal attenuation, dextral strike-slip movement along 161 eastnortheast-trending faults gave way to sinistral strike-slip movement. This transition was 162 163 accompanied by increasing activity on northwest-trending faults punctuated by periods of unusually rapid extension. 164

The oldest measured U–Pb age on the Sai Lau Kong Formation (HK12026, Fig. 4;
Fig. 5a) places an upper limit of 164.1 Ma on the age of the Tsuen Wan Volcanic Group.
Moreover, the presence of tuff-breccia and rhyodacite lava flows suggests that the formation
occupies a northwest-trending depression related to a nearby volcanic fissure-vent.
Therefore, the Sai Lau Kong Formation may mark the earliest expression of changes in the
regional stress field leading to the onset of sinistral strike-slip fault movement and rapid

171 extension in the Hong Kong area.

The 160.8 ± 0.2 Ma age of the Chek Mun Rhyolite (HK12069, Fig. 4; Fig. 5b) 172 suggests that eastnortheast-trending and northeast-trending axes of extension and dextral 173 transtension were dominant in the late Middle Jurassic (Campbell and Sewell, 1997). 174 Sporadic northeast-trending rhyolite dykes also intrude the A-type Lamma Suite granitoids 175 176 (Table 3) in the western New Territories dated at ca.159 Ma (Davis et al., 1997) suggesting that dextral transtension continued to dominate the regional structural regime at this time. 177 Previously, the only indication of magmatic activity outside the four distinct periods 178 179 of Middle Jurassic to Lower Cretaceous magmatism in Hong Kong was from zircon inheritance (Davis et al., 1997), and these ages generally indicated Precambrian sources 180 rather than broadly contemporaneous magmatism. However, rocks belonging to the 146 Ma 181

R J Sewell, D W Davis and S D G Campbell

period have consistently revealed inherited zircon ages of between 149.5 ± 0.4 Ma and 153.8 ± 0.4 Ma (Davis et al., 1997), suggesting that a latent igneous event may have occurred during this period. The new date from a rhyolite dyke (HK12066, Fig. 3; Fig. 6a) at the southern tip of D'Aguilar Peninsula confirms the presence of this magmatic event although it has no major volcanic expression within Hong Kong. Furthermore, the location of the dyke, close to the southern margin of Hong Kong, suggests that a magmatic province of that age could lie immediately to the south of Hong Kong waters.

The 148.1 ± 0.2 Ma age on the South Lamma Granite (HK 12075, Fig. 3; Fig. 6b) is 189 190 slightly older than the oldest age so far recognized for the ca.146 million year old magmatic period. The stratigraphically lowermost volcanic rocks belonging to the Lantau Volcanic 191 Group on Lantau Island have been dated at 147.5 ± 0.2 Ma (Campbell et al., 2007; Table 3), 192 193 whereas the bulk of the volcanic and intrusive rocks within the Group and the coeval subvolcanic Kwai Chung Suite have been dated at 146.4 ± 0.2 Ma (Davis et al., 1997; Table 194 3). Geochemically, the South Lamma Granite is similar to granites belonging to the Kwai 195 Chung Suite, although prior to obtaining the new age it had been assigned to the Cheung 196 Chau Suite (Table 3) largely on the basis of petrographic criteria. Thus, the best interpretation 197 for the South Lamma Granite is that it belongs to an early phase of emplacement of the Kwai 198 Chung Suite. The 147.3 ± 0.2 Ma age for a swarm of east–west-trending rhyodacite dykes 199 (Shan Tei Tong Rhyodacite, HK13273, Fig. 3; Fig. 6c) intruding the South Lamma Granite 200 201 suggests that these dykes may signal the onset of rapid extension that characterised the main ca.146 million year old magmatic period. 202

A U–Pb zircon age of 146.2 ± 0.2 Ma had previously been obtained for a sample of the Sha Tin Granite (Davis et al., 1997; Table 3) collected from north of the Tolo Channel Fault. Two samples of granite collected from south of the Tolo Channel Fault have now revealed evidence for two separate intrusions. The 146.4 ± 0.1 Ma age of coarse-grained

granite (HK13278, Fig. 2; Fig. 6d) from north of Kowloon reveals that it belongs to the Sha 207 Tin Granite. By contrast, the new 144.0 ± 0.3 Ma age for medium-grained granite (HK12072, 208 Fig. 2; Fig. 7a) from northeast of Kowloon has confirmed the existence of a northeast-209 oriented ellipsoidal pluton (Shui Chuen O Granite) belonging to the Period 3 magmatic event. 210 Previously, the only dated granite pluton belonging to this event (Davis et al., 1997; Table 3) 211 was known from Chi Ma Wan farther to the southwest. The new age indicates that plutonism 212 213 belonging to the ca. 143 Ma event is more widespread and voluminous than previously thought. 214

A new age has now been obtained for medium-grained granite on the Po Toi Islands (HK13274, Fig. 3; Fig. 6e), which was previously assigned to the 141 Ma event. The new 146.4 \pm 0.2 Ma age for the granite confirms, however, that it was emplaced earlier during Period 2 magmatism. This suggests that a major east–west-trending magnetic anomaly lying to the south of the Stanley and Lamma peninsulas may represent a major tectonomagmatic discontinuity.

The 146.4 \pm 0.2 Ma age of the feldspar-phyric rhyolite dyke (HK13269, Fig. 2; Fig. 6f) from the island of Kau Yi Chau in Victoria Harbour indicates that it belongs to an easterly extension of the Lantau Dyke swarm previously dated at 146.3 \pm 0.3 (Davis et al., 1997; Table 3). A small outcrop of coarse ash crystal tuff on Kau Yi Chau, which is cut by the dyke, most likely also belongs to the ca.164 Ma event.

The age of the Mount Davis Formation (HK13275, Fig. 2; Fig. 7b) at its type locality in northwest Hong Kong Island has now been confirmed. Previously, this formation was dated at 142.8 ± 0.2 Ma (Campbell et al., 2007; Table 3) based on a single sample from a distal outlier on Lantau Island. The new 143.0 ± 0.3 Ma age confirms that the bulk of the volcanic rocks forming Hong Kong Island belong to the ca.143 Ma magmatic event.

R J Sewell, D W Davis and S D G Campbell

The 142.9 ± 0.2 Ma age for the sample of tuff from Mang Kung Uk Formation 231 (HK12067, Fig. 2; Fig. 7c) confirms that it also belongs to the ca. 143 Ma Period 3 magmatic 232 event. This volcaniclastic unit may have accumulated in a depression formed as a result of a 233 caldera-forming eruption that deposited the underlying Che Kwu Shan Formation. 234 The $<142.7 \pm 0.1$ Ma age of the sample of tuff from the Ngo Mei Chau Formation 235 (HK9015, Fig. 4; Fig. 7d) confirms the observations of Lai et al. (1996) regarding the 236 237 stratigraphy of this unit. The data are also in accord with available geochemical and petrographic data for the formation, indicating close similarities with the Ap Lei Chau 238 239 Formation of the Repulse Bay Volcanic Group. Inheritance data yielded by this sample also support other recently acquired age data that indicate a thermal event at around 148 Ma 240 (Campbell et al., 2007). As discussed earlier, this event may have been a precursor to the 241

major period of volcanism and plutonism at 146 Ma (Davis et al., 1997), which was
dominated by a northeast- to eastnortheast-trending structural regime.

The new 141.2 ± 0.3 Ma age for the Pan Long Wan Formation (HK13277, Fig. 2; Fig. 244 8a) suggests that it probably represents the first eruption of the Kau Sai Chau Volcanic 245 Group. This trachydacite lava unit immediately overlies the Mang Kung Uk Formation and 246 may represent a cryptodome that extruded prior to caldera-forming eruptions associated with 247 the ca. 141 Ma Period 4 magmatic event. This age is also similar to one reported earlier for 248 fine ash tuff of the Kau Sai Chau Volcanic Group (undifferentiated) from Lantau Island 249 250 (Table 3, Campbell et al., 2007), which rests unconformably on the crystal tuff of the Repulse Bay Volcanic Group. 251

The overlapping 140.6 ± 0.3 Ma ages of quartz monzonite from D'Aguilar Peninsula (HK12022, Fig. 3; Fig. 8b) and the Sok Kwu Wan Granite (HK12023, Fig. 3; Fig. 8c) from Lamma Island indicate that they belong to the youngest period of volcanic and plutonic activity in Hong Kong, which was previously dated at 140.8 Ma (Davis et al., 1997).

Geochemical and petrographic similarities also suggest that these separate outcrops are distinct facies of the same intrusion. Outcrops of quartz monzonite in Hong Kong are generally related to 'fissure-type' plutonic-volcanic assemblages (Sewell and Campbell, 1997) that are thought to mark deep crustal fractures and caldera boundaries. The linear series of discontinuous quartz monzonite stocks across southern Hong Kong Island and Lamma Island are closely associated with screens of fine-grained granite that may represent more fractionated equivalents of the quartz monzonite.

The new 140.9 ± 0.2 Ma age for the large intrusion of flow-banded feldspar-phyric rhyolite at Shek Nga Shan (HK12073, Fig. 2; Fig. 8d) suggests that it probably fed lava flows of the Clear Water Bay Formation exposed farther east.

With the exception of the Hok Tsui Rhyolite, average ²⁰⁶Pb/²³⁸U ages for the different 266 magmatic periods may be defined by combining all of the available U-Pb age data from 267 previous studies (Table 3). These are: Period 1, 162.6 ± 4.5 Ma (11 samples); Period 2, 146.7 268 \pm 1.1 Ma (13 samples); Period 3, 143.0 \pm 1.0 Ma (10 samples); and Period 4, 140.8 \pm 0.6 Ma 269 (9 samples). It is noteworthy that the recurring periods of magmatism during the Middle 270 Jurassic to Early Cretaceous show a general trend toward shorter and more energetic pulses 271 with time, along with a narrowing of repose intervals. The catastrophic eruption of the High 272 Island tuff (ca. 141 Ma) appears, therefore, to represent the final, cataclysmic expression of a 273 string of magmatic pulses that surged in frequency and intensity toward the end of the Early 274 275 Yanshanian (190–140 Ma) magmatic period in southeastern China.

276

277 **5.** Conclusions

278 Sixteen new precise U–Pb single zircon ages for intrusive rocks from southern Hong
279 Kong lead to the following conclusions:

11

281	1)	The new ages add significantly to the existing age dataset for Hong Kong and
282		constrain more tightly the timing of major periods of volcanism and plutonism at
283		162.6 ± 4.5 Ma, 146.7 ± 1.1 Ma, 143.0 ± 1.0 Ma and 140.8 ± 0.6 Ma.
284		
285	2)	A previously unrecognized magmatic event in the Hong Kong region occurred 152
286		million years ago. Although as yet only one absolute zircon age for this event has
287		been recorded, several previously dated samples from Hong Kong have revealed
288		inheritance data from the same event. The preserved and exposed volcanic expression
289		of this event appears, however, to be limited.
290		
291	3)	The main magmatic period at ca.146 Ma was preceded by a precursor magmatic pulse
292		at 148 Ma, which may have signalled the onset of accelerated extensional tectonics.
293		The new age for the South Lamma Granite also suggests that the east-west-trending
294		rhyodacite dykes on Lamma Island belong to an early pulse of the Lantau Dyke
295		Swarm.
296		
297	4)	The final period of magmatism at ca. 141 Ma commenced with extrusion of
298		trachydacite magma prior to the onset of major explosive rhyolitic eruptions.
299 200		
300 301	5)	Stocks of quartz monzonite in southern Hong Kong between the D'Aguilar Peninsula
302		and Lamma Island probably belong to the same intrusive unit. These stocks may mark
303		the position of a major structural feature, possibly a caldera boundary at depth as
304		quartz monzonites associated with later volcanic periods can be strong indicators of
305		caldera-bounding faults (Campbell and Sewell, 1997).
306		

R J Sewell, D W Davis and S D G Campbell

307	6)	Combined with structural data, these new ages provide further confirmation that
308		northwest-trending and northeast- to eastnortheast-trending faults are likely to have
309		exercised a strong influence on the distribution, loci and form of volcanic centers.
310		Although dextral strike-slip movement on northeast- to eastnortheast-trending faults
311		may have been dominant throughout the main periods of Middle Jurassic to Early
312		Cretaceous magmatism, sinistral strike-slip movement, indicating changes in the
313		regional tectonic stress field, seems to have commenced sporadically as early as the
314		Middle Jurassic.
315 316	7)	The new age data presented in this study indicate that Jurassic to Cretaceous
317		magmatism in Hong Kong was mostly concentrated in at least four distinct episodes
318		but activity also occurred sporadically between these periods.
319 320		
321	Ackno	owledgements
322	Isotop	e work was carried out in the Jack Satterly Geochronology Laboratory at the Royal
323	Ontari	o Museum, Toronto, Canada, and the Department of Geology, University of Toronto,
324	with a	ssistance from Y.Y. Kwok. We are grateful to F. Corfu and an anonymous reviewer for
325	helpfu	l comments which considerably improved the manuscript. This paper is published with
326	the app	proval of the Director of Civil Engineering and Development, Hong Kong SAR, China.
327	S.D.G	. Campbell publishes with the permission of the Executive Director of the British
328	Geolo	gical Survey, and thanks to Alison Monaghan for her review of the manuscript.
329		
330	Refer	ences
331	Campl	bell, S.D.G., Sewell, R.J., 1997. Structural control and tectonic setting of Mesozoic
332		volcanism in Hong Kong. Journal of the Geological Society, London 154, 1039–1052

R J Sewell, D W Davis and S D G Campbell

334	Campbell, S.D.G., Sewell, R.J., Davis, D.W., So, A.C.T., 2007 New U-Pb age and
335	geochemical constraints on the stratigraphy and distribution of the Lantau Volcanic
336	Group, Hong Kong. Journal of Asian Earth Sciences 31, 139–152.
337	
338	Davis, D.W., Sewell, R.J., Campbell, S.D.G., 1997. U-Pb dating of Mesozoic igneous rocks
339	from Hong Kong. Journal of the Geological Society, London 154, 1067–1076.
340	
341	Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., Essling, A.M., 1971. Precision
342	measurement of half-lives and specific activities of ²³⁵ U and ²³⁸ U. Physical Review 4,
343	1889–1906.
344	
345	Krogh, T.E., 1973. A low contamination method for hydrothermal decomposition of zircon
346	and extraction of U and Pb for isotopic age determinations. Geochimica et
347	Cosmochimica Acta 37, 485–494.
348	
349	Krogh, T.E., 1982. Improved accuracy of U-Pb ages by the creation of more concordant
350	systems using an air abrasion technique. Geochimica et Cosmochimica Acta 46, 637–
351	649.
352	
353	Lai, K.W., Campbell, S.D.G., Shaw, R., 1996. Geology of the northeastern New Territories.
354	Hong Kong Geological Survey Memoir No. 5. Geotechnical Engineering Office,
355	Hong Kong.
356	

357	Ludwig, K.R., 2003. User's manual for Isoplot 3.00 a geochronological toolkit for Excel.
358	Berkeley Geochronological Center Special Publication 4.
359	
360	Matthews, W., Davis, W.J., 1999. A practical image analysis technique for estimating the
361	weight of abraded mineral fractions used in U-Pb dating, in: Radiogenic Age and
362	Isotopic Studies: Report 12; Geological Survey of Canada, Current Research 1999-F,
363	pp. 1–7.
364	
365	Mattinson, J., 2005. Zircon U-Pb chemical abrasion (CA-TIMS) method: Combined
366	annealing and multi-step partial dissolution analysis for improved precision and
367	accuracy of zircon ages. Chemical Geology, 220, 47-66.
368	
369	Schoene, B., Crowley, J.L., Condon, D.J., Schmitz, M.D. and Bowring, S.A., 2006.
370	Reassessment of uranium decay constants for geochronology using ID-TIMS UPb
371	data. Geochimica et Cosmoachimica Acta, 70,: 426-445.
372	
373	Sewell, R.J., Campbell, S.D.G., 1997. Geochemistry of coeval Mesozoic plutonic and
374	volcanic suites in Hong Kong. Journal of the Geological Society, London 154, 1053-
375	1066.
376	
377	Sewell, R.J., Campbell, S.D.G., Fletcher, C.J.N., Lai, K.W., Kirk, P.A., 2000. The Pre-
378	Quaternary Geology of Hong Kong. Geotechnical Engineering Office, Civil
379	Engineering Department, The Government of the Hong Kong Special Administrative
380	Region.
381	

Figure Captions

Figure 1. Simplified geological map of Hong Kong showing distribution of Middle Jurassic to Early Cretaceous volcanic–plutonic groups, general location of dated samples, and regional geological setting.

Figure 2. Simplified geological map of northern Hong Kong, Kowloon, and central New Territories showing the location of analyzed samples, outcrop of relevant volcanic and plutonic units, and major structural features (refer to Table 3 for key to abbreviations).

Figure 3. Simplified geological map of southern Hong Kong showing the location of analyzed samples, outcrop of relevant intrusive units, and major structural features (refer to Table 3 for key to abbreviations).

Figure 4. Simplified geological map of NE New Territories showing the location of analyzed samples, outcrop of relevant volcanic formations, and major structural features (refer to Table 3 for key to abbreviations).

Figure 5. U–Pb concordia plots for Jurassic rocks of Period 1.

Figure 6. U–Pb Concordia plots for Late Jurassic rocks of Period 2 and the Hok Tsui Rhyolite dyke, which may be representative of a slightly earlier period of magmatism responsible for inherited zircon.

Figure 7. U–Pb concordia plots for Cretaceous magmatism of Period 3.

Figure 8. U–Pb concordia plots for Cretaceous magmatism of Period 4.

Figure 1 Print Only

Figure 1 Web Only

Figure 2 Print Only

Figure 2 Web Only

Figure 3 Print Only

Figure 3 Web Only

Figure 4 Print Only

Figure 4 Web Only

Figure 5 Print Only

Figure 5 Web Only

Figure 6 Print Only

Figure 6 Web Only

В

0.21

 \square

0.20

Formation/Pluton	Sample	Lat./Long.	Field description	Zircon description		
<u>Period 1</u> Sai Lau King Formation	HK12026	22°31'31.773, 114°17'10.150	Rhyodacite lava flow, youngest formation of Tsuen Wan Volcanic Group, intercalated with tuff-breccia, tuffaceous sandstone and siltstone. Restricted to Double Haven and Starling Inlet areas.	Small amount of zircon, fresh, euhedral prismatic grains, some with well-developed high order crystal		
Chek Mun Rhyolite	HK12069	22°29'30.098, 114°19'06.203	5 m–wide NE-trending quartz phyric rhyolite dyke intruding Tolo Channel Formation at Pak Kok Tsui on N side of Tolo Channel, part of swarm of NE-trending rhyolite dykes across New Territories.	faces. Moderate amount of zircon, long and short prismatic colourless crystals with poorly developed high-order faces, abundant melt inclusions.		
Hok Tsui Rhyolite	HK12066	22°11'52.041, 114°15'38.112	10 m-wide NE-trending quartz phyric rhyolite dyke at Hok Tsui, D'Aguilar Peninsula. Part of swarm of NE-trending, flow-banded rhyolite dykes intruding Tai Po Granodiorite and Yim Tim Tsai Formation tuff.	Moderately abundant cracked zircon, colourless short-prismatic grains, high- order crystal faces, abundant amorphous melt inclusions.		
Period 2						
South Lamma Granite	HK12075	22°31'26.733, 114°07'36.344	Medium-grained granite. Forms subcircular pluton centred on the southern part of Lamma island. Sample collected from near the summit of Mt Stenhouse, highest point on the island.	Abundant but highly altered zircon, colourless short and long prismatic crystals with well-developed high- order faces		
Shan Tei Tong Rhyodacite	HK13273	22°11'09.999, 114°08'07.768	Rhyodacite core of 40 m-wide composite dyke with basaltic andesite margins exposed in the southern part of Lamma Island. Part of a swarm of E-trending dominantly felsic dykes intruding the South Lamma Granite	Zircon population similar to HK12075 but more abundant		
Sha Tin Granite	HK13278	22°20'52.570, 114°10'08.239	Coarse-grained granite. Forms an NE-oriented pluton centred on Sha Tin. Sample from near the top Beacon Hill. Only sample of Sha Tin Granite to be dated south of the Tolo Channel Fault.	Abundant euhedral prismatic zircon.		
Po Toi Granite	HK13274	22°09'50.891, 114°15'03.381	Medium-grained granite. Isolated pluton forming the Po Toi Island Group in SE Hong Kong. From a coastal exposure on Po Toi Island with large angular xenolithic blocks of coarse-grained Lantau Granite	Small amount of euhedral prismatic zircon, generally altered.		
East Lantau Rhyolite	HK13269	22°17'09.967, 114°04'46.796	Feldsparphyric rhyolite dyke. Sampled from a prominent 10 m-wide ENE-trending dyke on the northeastern tip of Kau Yi Chau. Dyke intrudes block of coarse ash crystal tuff. Part of the Lantau Dyke Swarm.	Moderate amount of fresh prismatic zircon with abundant melt inclusions.		

Table 1 (continued)

Formation/Pluton	Sample	Lat./Long.	Field description	Zircon description
<u>Period 3</u> Shui Chuen O Granite	HK12072	22°21'52.089, 114°12'15.394	Medium-grained granite. Forms an ellipsoidal pluton with long axis oriented to northeast on south side of Sha Tin valley. Sample from near the summit of Shui Chuen O.	Small amount of zircon, mostly colourless short-prismatic altered crystals with low-order crystal faces and few inclusions.
Mount Davis Formation	HK13275	22°16'24.329, 114°07'19.053	Coarse ash crystal tuff. Large outcrop of coarse ash tuff with intercalated volcaniclastic sedimentary rocks exposed on northwestern Hong Kong Island. Sample from type locality of the formation at Mount Davis.	Moderate amount of prismatic zircon with melt inclusions.
Mang Kung Uk Formation	HK12067	22°19'10.893, 114°16'45.810	Coarse ash crystal tuff. Dominantly a volcaniclastic unit comprising well-bedded tuffite and epiclastic units and occasional interbedded fine and coarse tuff layers. Sample from near base of formation at Pik Sha Wan.	Small amount of zircon, generally tiny short-prismatic colourless crystals with low-order faces.
Ngo Mei Chau Formation	HK9015	22°31'43.397, 114°18'53.391	Eutaxitic fine ash tuff exposed on Ngo Mei Chau in Mirs Bay. Formation comprises dominantly welded fine ash vitric tuff, with subordinate lapilli tuff and rhyolite lava and is bounded in the west by a NW-trending fault.	Small amount of zircon, euhedral with well-developed low-order crystal faces and melt inclusions, no evidence of cores .
Period 4				
Pan Long Wan Formation	HK13277	22°17'08.173, 114°17'24.671	Trachydacite lava. Forms part of a lava dome overlying the Mang Kung Uk Formation at Clear Water Bay. Thought to represent a final expression of the 142 Ma magmatic event.	Small amount of zircon, high proportion of stubby grains with melt inclusions.
D'Aguilar Quartz Monzonit	HK12022	22°12'43.105, 114°14'51.007	Medium-grained quartz monzonite sampled from a large stock exposed on D'Aguilar Peninsula. Intruded on the northern margin by fine-grained granite correlated with the Sok Kwu Wan pluton	Abundant zircon, fresh, euhedral, prismatic grains with high order crystal faces; large, amorphous melt
Sok Kwu Wan Granite	HK12023	22°12'58.095, 114°08'02.499	Fine-grained granite sampled from a pluton centred on the eastern side of Lamma Island in the vicinity of Sok Kwu Wan. Texturally similar to nearby quartz monzonite outcrops but contains more	Small amount of fresh, euhedral, colourless zircon.
Clear Water Bay Formation	HK12073	22°22'58.217, 114°14'05.068	Feldsparphyric rhyolite lava. Large intrusion of rhyolite lava exhibiting subvertical flow-banding within main vent feeder complex subparallel to the Chek Keng Fault. Sample collected from near Shek Nga Shan.	Abundant colourless short prismatic zircon grains, many with melt inclusions and some with high-order crystal faces.

Table 2 U–Pb isotopic data on zircon from Hong Kong rocks

Fraction Analyzed		Weight	U	Th/U	PbC	²⁰⁶ Pb	²⁰⁶ Pb†	2σ	²⁰⁷ Pb†	2σ	²⁰⁷ Pb†	2σ	Error Correl.
		(mg)	(ppm)		(pg)	²⁰⁴ Pb*	²³⁸ U	abs.	²³⁵ U	abs.	²⁰⁶ Pb	abs.	Coefficient
		× 0,			QU,		Age (Ma)		Age (Ma)		Age (Ma))	
HK	12026 Sai Lau Kong Form	nation											
1	3 AB ZR, LPR	0.008	139	0.52	0.7	2603	163.92	0.42	163.57	1.01	158.5	14.9	0.298
2	1 AB ZR	0.004	301	0.67	1.7	1201	164.04	0.60	164.86	2.05	176.5	30.7	0.186
3	3 AB ZR	0.015	73	0.60	0.7	2479	164.31	0.44	163.23	1.24	147.6	18.3	0.302
4	3 AB ZR, INCL	0.012	121	0.50	0.6	3863	164.11	0.63	163.94	0.98	161.4	14.1	0.410
HK	12069 Chek Mun Rhyolita	2											
5	3 AB ZR, EQ, CK	0.010	326	0.65	13.4	413	161.1	0.46	162.6	5.26	184.4	78.3	0.275
6	5 AB ZR, SPR	0.012	241	0.68	0.8	5974	160.8	0.34	160.5	0.58	155.5	7.7	0.553
7	3 AB ZR, LPR, INCL	0.008	380	0.79	5.6	890	160.8	0.35	161.3	2.23	169.5	34.6	0.068
8	3 AB ZR, SPR	0.007	312	0.76	0.9	3909	160.5	0.42	160.3	0.76	156.6	10.9	0.406
HK	12066 Hok Tsui Rhyolite												
9	5 AB ZR, CK	0.01	362	0.65	0.7	8338	151.95	0.35	152.16	0.53	155.4	7.2	0.573
10	4 AB ZR, SPR, CK	0.015	341	0.64	1.7	4741	151.93	0.36	152.05	0.56	153.9	8.2	0.490
11	12 AB ZR, SPR	0.02	262	0.68	1.0	8123	151.80	0.47	151.49	0.57	146.7	6.6	0.728
HK	12075 South Lamma Gra	nite											
12	4 AB ZR, INCL	0.02	140	0.68	1.1	3821	148.17	0.40	148.23	0.76	149.2	11.9	0.410
13	1 AB ZR, INCL	0.02	95	0.77	1.9	1484	148.08	0.33	147.62	1.34	140.3	22.3	0.208
14	2 AB ZR, INCL	0.02	231	0.68	2.3	2992	147.96	0.34	147.98	0.78	148.4	12.3	0.389
HK	13273 Shan Tei Tong Rhy	vodacite											
15	2 CA ZR, SPR, INCL	0.019	284	0.75	1.7	4793	147.28	0.32	147.60	0.52	152.7	6.4	0.707
16	2 CA ZR, SPR, INCL	0.018	391	0.60	0.6	17133	147.41	0.40	147.71	0.52	152.4	5.5	0.787
17	2 CA ZR, CK, INCL	0.023	358	0.84	1.1	11616	147.29	0.71	147.55	0.74	151.6	4.4	0.937

Table 2 (continued)

Fra	action Analyzed	Weight	U	Th/U	PbC	²⁰⁶ Pb	²⁰⁶ Pb†	2σ	²⁰⁷ Pb†	2σ	²⁰⁷ Pb†	2σ	Error Correl.
	·	(mg)	(ppm)		(pg)	²⁰⁴ Pb*	²³⁸ U	abs.	²³⁵ U	abs.	²⁰⁶ Pb	abs.	Coefficient
					10		Age (Ma)		Age (Ma)		Age (Ma)	1	
HK	13278 Sha Tin Granite										-		
18	1 CA ZR, STUBBY	0.006	328	0.76	1.0	3007	146.80	0.20	147.29	0.73	155.1	11.2	0.525
19	2 CA ZR, FRAG	0.008	297	0.67	1.2	3055	146.31	0.24	146.98	0.72	157.7	10.8	0.536
20	2 CA ZR, TIP FRAG	0.005	570	0.68	1.3	3172	146.53	0.21	146.54	0.67	146.6	10.2	0.528
21	1 CA ZR, STUBBY	0.004	407	0.46	0.8	2676	146.96	0.42	147.29	0.89	152.6	12.6	0.572
22	1 CA ZR, STUBBY	0.006	243	0.63	1.4	1537	146.30	0.18	146.56	1.20	150.9	19.1	0.582
23	1 CA ZR, STUBBY	0.004	383	0.72	3.0	693	146.49	0.54	146.39	2.68	144.7	42.9	0.478
HK	13274 Po Toi Granite												
24	1 CA ZR, TIP FRAG	0.012	228	0.67	0.8	5087	146.32	0.36	146.96	0.61	157.2	8.0	0.660
25	1 CA ZR, TIP FRAG	0.009	329	0.58	1.2	3877	146.46	0.25	147.53	0.59	164.8	8.4	0.581
26	1 CA ZR, TIP, CK	0.011	1186	0.57	1.4	13308	146.24	0.36	146.71	0.45	154.2	4.0	0.853
HK	13269 East Lantau Rhyol	ite											
27	2 CA ZR, INCL, SPR	0.015	237	0.14	1.3	4042	146.10	0.44	146.55	0.66	153.7	7.9	0.714
28	2 CA ZR, INCL	0.012	446	0.74	1.5	5276	146.40	0.32	146.70	0.68	151.5	9.8	0.541
29	2 CA ZR, SPR, TIP	0.007	279	0.77	1.0	3007	146.41	0.26	147.13	0.69	158.7	10.1	0.555
HK	12072 Shui Chuen O Grai	nite											
30	3 AB ZR	0.010	43	0.98	0.9	693	144.16	0.59	145.21	3.05	162.3	51.4	0.156
31	1 AB ZR, INCL, CK	0.010	137	0.96	3.3	628	143.98	0.52	144.38	2.99	151.0	51.9	0.010
32	1 AB ZR, INCL	0.005	90	0.83	1.2	588	143.90	0.53	139.73	3.56	69.3	64.1	0.028
33	4 AB ZR	0.012	330	0.71	1.8	3109	143.23	0.45	143.36	0.77	145.6	11.6	0.503
HK	13275 Mount Davis Form	ation											
34	1 CA ZR, INCL	0.021	155	0.72	0.8	5562	142.96	0.30	143.24	0.52	147.8	6.9	0.667
35	3 CA ZR, SPR, INCL	0.027	317	0.73	1.4	8811	143.01	0.28	143.28	0.40	147.8	4.5	0.786
36	1 CA ZR, SPR	0.030	153	0.72	1.0	6603	142.73	0.49	142.84	0.62	144.6	6.7	0.795

Table 2 (continued)

Fraction Analyzed		Weight	U	Th/U	PbC	²⁰⁶ Pb	²⁰⁶ Pb†	2σ	²⁰⁷ Pb†	2σ	²⁰⁷ Pb†	2σ	Error Correl.
	·	(mg)	(ppm)		(pg)	²⁰⁴ Pb*	²³⁸ U	abs.	²³⁵ U	abs.	²⁰⁶ Pb	abs.	Coefficient
					10,		Age (Ma)		Age (Ma)		Age (Ma)		
HK	12067 Mang Kung Uk For	rmation					-		-		-		
37	5 AB ZR	0.010	113	0.63	0.6	2768	143.82	0.42	143.64	0.93	140.6	14.9	0.407
38	4 AB ZR, INCL	0.010	195	0.62	2.2	1301	143.14	0.50	142.87	1.51	138.5	25.2	0.294
39	7 AB ZR CK	0.015	128	0.67	0.8	3640	143.06	0.39	142.24	0.75	128.7	11.8	0.457
40	3 ABE ZR, INCL	0.010	251	0.79	1.8	1976	142.91	0.46	143.27	1.29	149.2	21.4	0.317
41	2 AB ZR	0.008	237	0.70	0.6	4570	142.69	0.37	142.62	0.70	141.6	10.6	0.503
HK	9015 Ngo Mei Chau Form	nation											
42	3 AB ZR	0.008	415	0.67	1.5	3121.7	142.69	0.28	142.46	0.77	138.7	12.3	0.416
43	1 AB ZR	0.010	246	0.40	2.5	1483.1	148.58	0.47	149.20	2.36	159.0	38.0	0.282
44	2 AB ZR	0.010	519	0.66	29.3	296.1	157.06	0.51	158.56	5.01	181.0	78.0	0.042
45	17 AB ZR	0.015	477	0.52	3.0	3856.4	158.68	0.31	160.50	0.64	187.4	8.6	0.540
46	4 AB ZR	0.014	325	0.68	123.6	76.08	156.80	1.87	160.12	29.71	209.6	412.0	0.115
HK	13277 Pan Long Wan For	mation											
47	1 CA ZR, TIP, INCL	0.033	33	0.90	2.2	728	141.60	0.31	142.51	2.44	157.6	40.4	0.586
48	1 CA ZR, TIP	0.043	12	0.66	1.8	400	141.24	0.32	141.86	4.47	152.3	75.2	0.890
49	2 CA ZR, LPR	0.041	41	0.78	0.9	2606	141.32	0.20	141.37	0.74	142.3	11.8	0.532
50	1 CA ZR, LPR, INCL	0.018	97	0.82	0.4	6437	141.06	0.26	141.31	0.49	145.5	6.7	0.645
51	4 CA ZR, LPR, FRAG	0.035	76	0.68	0.5	7032	141.96	0.19	142.28	0.38	147.5	5.0	0.691
HK12022 D'Aguilar Quartz Monzonite													
52	3 AB ZR, INCL	0.015	100.3	0.1	1.45	1481.1	140.44	0.42	139.58	1.40	125.0	24.6	0.210
53	1 AB ZR	0.006	39.9	0.82	2.56	150.6	140.61	1.32	141.66	14.16	159.3	235.0	0.020
54	1 AB ZR	0.025	47.1	0.74	1.62	1050.1	140.86	0.48	140.74	1.94	138.8	34.0	0.158
55	1 AB ZR	0.004	103.6	0.81	13.66	61.535	141.81	2.44	145.23	38.00	201.3	555.0	0.076

Table 2 (continued)

Fraction Analyzed		Weight	U	Th/U	PbC	²⁰⁶ Pb	²⁰⁶ Pb†	2σ	²⁰⁷ Pb†	2σ	²⁰⁷ Pb†	2σ	Error Correl.
		(mg)	(ppm)		(pg)	²⁰⁴ Pb*	²³⁸ U	abs.	²³⁵ U	abs.	²⁰⁶ Pb	abs.	Coefficient
							Age (Ma)		Age (Ma)		Age (Ma)		
HK	12023 Sok Kwu Wan Gran	nite											
56	1 AB ZR	0.003	151.8	0.67	1.88	361	140.42	0.62	140.79	5.66	147.1	98.5	0.013
57	1 AB ZR, LPR	0.008	67.3	0.67	1.12	700	140.46	0.52	139.18	3.10	117.5	54.4	0.186
58	2 AB ZR, INCL	0.008	142.3	0.56	0.68	2378	140.69	0.44	139.98	0.90	119.5	25.0	0.174
59	1 AB ZR	0.003	245	0.5	3.94	283	140.88	0.68	141.35	6.66	154.9	109.0	0.033
HK	12073 Clear Water Bay Fo	rmation											
60	3 AB ZR, INCL	0.015	217	0.60	1.5	3513	159.00	0.36	181.56	0.70	486.3	8.0	0.507
61	1 AB ZR, ROD INCL	0.010	125	0.47	1.0	1878	142.73	0.41	142.43	1.11	137.5	18.4	0.333
62	1 AB ZR, ROD INCL	0.015	276	0.47	5.7	1056	141.01	0.34	141.31	1.69	146.3	29.6	0.120
63	3 AB ZR, ROD INCL	0.012	537	0.77	25.6	375	140.86	0.65	141.71	4.78	155.9	83.0	0.037
64	2 AB ZR, ROD INCL	0.015	577	0.61	2.8	4424	140.69	0.43	140.71	0.62	141.0	9.3	0.552

Footnotes to Table 2:

Weights are based on estimates from microphotographs.

Abbreviations: Number of grains analyzed is at beginning, AB - air abraded, CA - chemically abraded, ZR - zircon, INCL - inclusions,

EQ - equant, SPR - short prismatic, LPR - long prismatic, CK - cracked.

Th/U calculated from radiogenic 208Pb/206Pb ratio and 206Pb/238U age assuming concordance.

PbC: common Pb assuming the isotopic composition of lab blank:

²⁰⁶Pb/²⁰⁴Pb - 18.221; ²⁰⁷Pb/²⁰⁴Pb - 15.612; ²⁰⁸Pb/²⁰⁴Pb - 39.360 (2% error).

* ²⁰⁶Pb/²⁰⁴Pb are measured values corrected for fractionation and spike.

† ²⁰⁶Pb/²³⁸U age, ²⁰⁷Pb/²³⁵U age and ²⁰⁷Pb/²⁰⁶Pb age are corrected for common Pb assuming laboratory blank composition and 230Th disequilibrium assuming a magmatic Th/U of 4.2.

Uranium decay constants: $L238 = 1.55125 \times 10^{-4}$ /Ma, $L235 = 938485 \times 10^{-4}$ /Ma (Jaffey et al., 1971).

Concordia coordinates: Y = 206Pb/238U = EXP(L238*(206-238 Age)) - 1; X = 207Pb/235U = EXP(L235*(207-235 Age)) - 1 207Pb/206Pb = X/(137.88*Y);

Error Correl. Coefficient: Error correlation coefficient for concordia coordinates

Table	3

Summary of the volcanic-plutonic nomenclature and U-Pb age data for Mesozoic igneous rocks of Hong Kong (after Sewell et al., 2000)^{1,2}

			VOLCANIC ROCKS		GRANITOID ROCKS						
Group)		Formation	U–Pb Age (Ma)		Suite	Intrusion	U–Pb Age (Ma)			
KAU SAI CHAU VOLCANIC GROUP			High Island (Kkh) Clear Water Bay (Kkw) Undifferentiated (Kku) Pan Long Wan (Kkp)	140.9 ± 0.2^{1} 140.7 ± 0.2^{1} $140.9 \pm 0.2^{*}$ 141.1 ± 0.2^{2} $141.2 \pm 0.3^{*}$	JCK SUITE	'GRANITIC' SUBSUITE	Mount Butler Granite (Klb) Kowloon Granite (Klk) Fan Lau Granite (Kll) Sok Kwu Wan Granite (Kls)	140.4 ± 0.2^{1} $140.6 \pm 0.3^{*}$			
			Unconformity		LION RC	MONZONITIC' SUBSUITE	Tei Tong Tsui Quartz Monzonite (Klt) Tong Fuk Quartz Monzonite (Klf) D'Aguilar Quartz Monzonite (Kld)	140.4 ± 0.3^{1} $140.6 \pm 0.3^{*}$			
	-		· · ·								
VOLCANIC	RHYOLITIC	SUBGROUP	Mount Davis (Krd) Long Harbour (Krl)	142.8 ± 0.2^{2} $143.0 \pm 0.2^{*}$ 142.7 ± 0.2^{1} 142.8 ± 0.2^{1}	CHAU						
REPULSE BAY GRO	TRACHYTIC	SUBGROUP	Mang Kung Uk (Krm) Che Kwu Shan (Krc) Ap Lei Chau (Kra) Ngo Mei Chau (Krn)	$\begin{array}{c} 142.9\pm0.2*\\ 142.5\pm0.3^{1}\\ 142.7\pm0.2^{1}\\ <142.7\pm0.1* \end{array}$	CHEUNG C SUITE		Luk Keng Quartz Monzonite (Kcl) Chi Ma Wan Granite (Kcc) Shui Chuen O Granite (Kcs)	${}^{<143.7 \pm 0.3^1}_{-144.0 \pm 0.3^*}$			
			Unconformity								
LANTAU VOLCANIC GROUP			Lai Chi Chong (Jll) Undifferentiated (Jlu) Undifferentiated (Jlu)	146.6 ± 0.2^{2} 146.6 \pm 0.2^{1} 147.5 \pm 0.2^{2}	KWAI CHUNG SUITE		Sha Tin Granite (Jkt) East Lantau Rhyolite (Jko) East Lantau Rhyodacite (Jkd) Needle Hill Granite (Jkn) Sham Chung Rhyolite (Jks) Po Toi Granite (Jkp) Shan Tei Tong Rhyodacite (Jke) South Lamma Granite (Jkl)	$146.4 \pm 0.1^*$ 146.2 ± 0.2^1 146.3 ± 0.3^1 $146.4 \pm 0.2^*$ 146.5 ± 0.2^1 146.4 ± 0.2^1 146.6 ± 0.2^2 146.6 ± 0.2^2 $146.4 \pm 0.2^*$ $147.3 \pm 0.2^*$ $148.1 \pm 0.2^*$			
			<u>.</u>				Hok Tsui Rhyolite	$151.9\pm0.2*$			
			Unconformity		SUITE	'A-TYPE' SUBSUITE	Tai Lam Granite (Jma) Tsing Shan Granite (Jms) Chek Lap Kok Granite (Jmc) Chek Mun Rhyolite	$\begin{array}{c} 159.3 \pm 0.3^1 \\ < 159.6 \pm 0.5^1 \\ 160.4 \pm 0.3^1 \\ 160.8 \pm 0.2^* \end{array}$			
TSUEN WAN VOLCANIC GROUP			Sai Lau Kong (Jtl) Tai Mo Shan (Jtm) Shing Mun (Jts) Yim Tin Tsai (Jty)	$\begin{array}{c} 164.1 \pm 0.3^{*} \\ <164.5 \pm 0.7^{1} \\ 164.2 \pm 0.3^{2} \\ 164.7 \pm 0.3^{2} \\ 164.5 \pm 0.2^{1} \end{array}$	LAMMA ?	'I-TYPE' SUBSUITE	Lantau Granite (Jml) Tai Po Granodiorite (Jmt)	161.5 ± 0.2^{1} <164.6 ± 0.2 ¹			

 $^{-1}$ U–Pb ages from Davis et al. (1997). 2 U–Pb ages from Campbell et al. (2007). * This paper.