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ABSTRACT 

Autonomous underwater vehicles (AUVs) are used increasingly to explore hazardous marine 

environments. Risk assessment for such complex systems is based on subjective judgment and 

expert knowledge as much as on hard statistics. Here we describe the use of a risk management 

process tailored to AUV operations, the implementation of which requires the elicitation of 

expert judgment.  We conducted a formal judgment elicitation process where eight world experts 

in AUV design and operation were asked to assign a probability of AUV loss given the 

emergence of each fault or incident from the vehicle’s life history of 63 faults and incidents. 

After discussing methods of aggregation and analysis, we show how the aggregated risk 

estimates obtained from the expert judgments were used to create a risk model. To estimate AUV 

survival with mission distance, we adopted a statistical survival function based on the 

nonparametric Kaplan-Meier estimator. We present theoretical formulations for the estimator, its 

variance and confidence limits. We also present a numerical example where the approach is 

applied to estimate the probability that the Autosub3 AUV would survive a set of missions under 

Pine Island Glacier, Antarctica in January-March 2009. 

 

KEY WORDS: autonomous underwater vehicles; under ice operations; risk management; 

Kaplan-Meier. 
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1. INTRODUCTION 

Progress in oceanography, ocean biology and climate sciences demands ever more 

sophisticated data collection platforms, carrying more sensors, and able to reach previously 

inaccessible areas. Autonomous Underwater Vehicles (AUVs) are increasingly used to support 

marine science campaigns (1:10). These vehicles are complex systems, composed of mechatronic 

technology and software for vehicle navigation and data collection and processing. In many 

instances, data are transmitted by satellite to a shore laboratory, where scientists can analyse 

them in near real time. Losing a vehicle can be very costly: some of these vehicles cost millions 

to build or purchase, and the outcome of some research programmes depend on data gathered by 

them.  

Despite this, very little has been published on AUV reliability or on the risk of operating in 

extreme environments. The loss of the Autosub2 AUV in Antarctica in 2005 motivated a major 

effort to improve the risk and reliability practices at the National Oceanography Centre, 

Southampton (NOCS), which operates the AUV. As a result, a novel operational risk 

management process model was derived to support decision making before the start of a 

campaign (11). Expert judgment elicitation plays a pivotal role in this operational risk assessment. 

When we attempted to integrate independent expert judgment in the risk management process we 

concluded that existing statistical survival methods had to be modified to accommodate expert 

subjective probability judgment. As result, we derived an extended version of the Kaplan-Meier 

statistical survival model (see below).  

We implemented the risk management process specifically to manage the risk in the Autosub3 

AUV science campaign to the Pine Island Glacier, Antarctica where the vehicle was to operate in 

a more challenging environment than that where Autosub2 was lost. The campaign was 

successful; Autosub3 covered approximately 510km under the glacier. This was the first time 
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that a series of missions had been carried out by an AUV under a floating glacier. We present a 

brief summary of the risk management strategy carried out both before and during the campaign. 

2.   OPERATIONAL RISK MANAGEMENT PROCESS FOR AUTONOMOUS 

UNDERWATER VEHICLES 

The AUV risk management process (RMP-AUV) was developed to support decision making 

for operations in extreme environments(11). Many definitions of risk exist in the literature and 

different industrial sectors adopt different definitions. Arguably, the most widely adopted risk 

definition is that proposed by Kaplan and Garrick(12)(13), where risk is defined by the triplet 

(Si,Li,Xi), where Si stands for the scenario, Li the likelihood and Xi the consequence. The RMP-

AUV considers only AUV loss. The approach does not attempt to quantify financial loss, or the 

loss of science data. The likelihood (L) comes in first as the elicited subjective probability which 

refers to loss given that a fault (F) emerges in the declared environment (E). Thus our risk 

definition is based on the duplet subset of Kaplan-Garrick’s (S,Li), where Li is the subjective 

probability P(L|F,E). This risk model is static, which means that on its own it only allows us to 

rank faults on their risk. In a second stage, the static risk model is integrated with Kaplan-Meier 

statistical survival methods; the resulting risk model allows assessment of mission risk with 

distance. For this ‘dynamic risk model’, risk remains defined by the duplet (S,Li).  Although the 

loss scenario remains the same as for the static model, the likelihood is now the probability of 

loss given a specific distance (d), P(L|d).  

2.1   Risk Management Process  

The process consists of a sequence of steps that must be performed by an individual or groups 

of stakeholders; Figure 1 presents a flow-diagram representation of the process. The process is 

generic, when applied to marine science campaigns the user is the principal investigator (PI) and 

the owner is the head of the laboratory. In a different industrial sector, for example commercial 
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or military, these roles would be performed by different individuals; however the structure of the 

risk management process would remain unchanged.  

In phase 1, the AUV owner specifies the acceptable probability of loss (L) for a given 

campaign. This figure is calculated based on the vehicle’s capital cost, the daily cost of 

operation, including vessel and staff time, the cost of spares, value of the science expedition, an 

element of depreciation, the campaign length, and the severity of the target operating 

environment.  

In phase 2, the AUV user defines the mission operational requirements, presented in terms of 

individual mission distances in a given operating environment. The user is expected to specify a 

minimum required set of missions and a desired set of missions.  

In phase 3, the risk assessor calculates the AUV computed probability of loss (A) for the 

campaign. If the computed probability of loss is lower than the acceptable probability of loss, the 

process jumps to phase 5, the campaign is recommended to proceed. Otherwise, if the computed 

probability of loss is higher then the acceptable probability of loss (A > L), a recommendation is 

made not to pursue the campaign but to revisit the risks. Risk mitigation actions may reduce the 

computed probability of loss to a value lower than the acceptable probability of loss. This feature 

is represented by the link from phase 6 to phase 3. The campaign acceptance decision may also 

be reached if the AUV owner decides to increase the acceptable probability of vehicle loss to a 

value greater than the computed probability of loss or the AUV user sets out requirements with 

lower risk.  
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Figure 1 Operation Risk Acceptance Process proposed by Griffiths and Trembranis(11). 

 

The operational risk model is created based on the vehicle’s prior fault history. The limitations 

to this approach are discussed in section 7. 

2.2   Basis of the risk computation – the fault incident history  

The initial design of the AUV subsystems used Hazard Analysis to understand the risks and to 

prioritise expenditure and engineering effort.  In practice, however, the revealed reliability of the 

vehicle during trials was more important, as many of the subsystems were new, unique, and with 

limited scope for testing apart from within the entire vehicle at sea. The qualitative nature of 

Hazard Analysis is a shortcoming in complex vehicles, as has been found, for example, in the 

Space Shuttle programme (14). Despite the use of fault tree analysis, failure rate and probability 

data, this programme acknowledged the need for assumptions based on engineering judgment. 
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A total of 38 Autosub3 missions between July 2005 and April 2007 formed the basis of the 

dataset. Eight experts in AUV design and operations considered 63 faults on 28 missions 

(Appendix I). Ten missions showed no faults, included as censored data in later analyses. The 

missions varied in distance from 1.5 km to 302.5 km. Faults or incidents were caused by 

different factors such as human, operational or maintenance errors, or software or hardware 

design errors. We considered this history (38 missions, 1931km) representative of the likely 

faults to emerge over the subsequent campaign for which the risk assessment was to be 

performed (six missions, 495km). Results from that campaign would be added to the dataset for 

the next campaign, and so on. 

2.3   Environments 

We created the risk model for each of four contrasting AUV operating environments – open 

water, coastal water, sea ice and ice shelf(16). These distinct environments have different 

operational challenges. A major factor in the expert judgment on risk of loss is whether recovery 

can be affected if the AUV encounters a problem or suffers a fault. If an incident occurs under an 

ice shelf, where the ice thickness may be over 100 m, the risk of loss is far higher than for the 

same fault in open water. Some factors are common to one or more environments, such as launch 

and recovery, incidents during which can lead to loss or insurance write-off (18).  

2.4 Expert judgment elicitation 

The fault history and probability of loss of Autosub3’s precursors were based on a one-person 

judgment and knowledge elicitation exercise (17). This approach was criticised as too insular and 

too informal, but was taken up by some (19). As a consequence of the criticism, the present study 

has involved more people and a more formal approach (16). The purpose of the formal elicitation 

exercise was to model AUV risk in different operational environments, given the Autosub3 
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history of faults. We made the full fault history public (Appendix I) and engaged experts to 

estimate P(L|F,E). 

2.5 Extending the Kaplan Meier survival model 

Having quantified the risks as subjective probability of loss through expert judgment, the next 

step incorporates frequentist statistics on probability of occurrence and at what distance the faults 

or incidents occur. Although it is common practice to examine survival as a function of time, 

here we use distance, which is more applicable to the AUV example. However, the proposed 

method is equally applicable to survival with time. The product-limit method derived by Kaplan 

and Meier is a well-established nonparametric model for estimating and displaying survival 

functions (or equivalently P(F)) based on a small or medium data sample (20)(21).  

Using the survival estimator in its usual form, we can only deal with loss or survival to end of 

a mission (which becomes censored data), as in an earlier simplified analysis (17). The aggregated 

expert judgments contain a representation of uncertainty on whether or not a given failure would 

lead to loss, represented as a subjective probability. To model this uncertainty, the conventional 

Kaplan-Meier approach must be modified, leading to the expression in equation 1. The 

mathematical proof is presented in appendix II.  
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Where  is the number of events at risk at range , and the probability of fault leading to 

loss. Thus if is zero we have a censored case; that is, no loss is observed during the interval 

of interest. If equals one, loss is observed during the interval of interest. For these 

extremes, the approach reduces to the original version of the Kaplan-Meier method.  
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3.   FORMAL EXPERT JUDGMENT ELICITATION PROCESS  

The goal of the formal judgment elicitation process is to remove biases (22)(23)(24). We followed 

the formal elicitation process of Otway and Winterfeldt (25). In brief, it consists of a sequence of 

steps that ensure that the problem is clearly presented, that experts are trained on assigning 

probability to events, that judgments are formally studied and misunderstandings are corrected, 

and that suitable methods are used for aggregating experts’ judgments. The following 

subsections summarise how all phases of the formal judgment elicitation process were 

implemented.   

1) The issues. Given the set of facts on faults and incidents with Autosub3 throughout its 

life to date, we sought to estimate the probability of loss of the vehicle in different 

operating environments. At issue is how likely was it that each fault or incident, taken 

in isolation, but with the expert’s knowledge of the wider issues, could lead to loss in 

the four example environments.   

2) Selecting experts. Here, the aim was to maximise experts’ independence from the 

Autosub3 design, development or operation by using individuals from different 

backgrounds, areas of expertise and nationality. All eight experts selected were 

experienced in one or more areas of AUV concept design, development and operation. 

Here experts are referred to by their initials: TC (20 years experience in military and 

scientific research), BF (8 years experience in military), CJ (11 years experience in 

scientific and military), MM (6 experience in scientific research), RM (9 years 

experience in scientific research), AS (1.5 years experience in scientific research), CW 

(10 years experience in scientific research), and DY (15 years experience in scientific 

research).  

3) Clearly define the issues. We asked experts to answer the straightforward question: 

“What is the probability of loss of the vehicle in the given environment X given 
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fault/incident Y?” The purpose is to quantify the impact of the fault or incident on the 

probability of loss of the vehicle, not, for instance, on the impact that the given fault 

might have on science delivery, or on the probability of the fault occurring or recurring.  

4) Training the experts. We briefed six experts on the background and method of 

eliciting expert judgment at a presentation in August 2007 (16). We later briefed two in 

person. We gave experts access to independent information. Experts were given access 

to independent information. First, for open water and coastal environments, Leviathan, 

a leading marine insurance binding authority, stated that they had not paid out on an 

AUV loss in the two years to June 2007. Second, out of some 150 vehicles produced by 

Hydroid LLC, a manufacturer of AUVs used in open and coastal waters, and under sea 

ice, we believe that none were lost as of August 2007. Third, through the early stages 

of development and operations with Seaglider (a buoyancy-driven AUV), eight out of 

the first ten vehicles were lost, in environments that ranged from open water to areas of 

sea ice, and of the next twelve built, two were lost as of September 2005.  

5) Eliciting judgments. The experts worked independently using a pro forma that 

tabulated the fault or incident and required a judgment on the probability of loss and a 

confidence score to be given for each judgment, in each of the four environments. A 

text box was available for each fault for the expert to explain their judgment. The 

typical time taken to complete the pro forma was half to one day.  

6) Analyzing the judgments. We conducted analyses of the expert judgments in two 

steps. First, we examined the distribution of the longitudinal probability judgments 

over all faults for all four environments. This first assessment was necessary in order to 

identify and understand the main differences between individual judgments of the same 

fault or incident. Second, we sought to understand how experts assigned their 

judgments. For example, an expert that used a wide range of probabilities was less 
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likely to manifest bias due to anchoringi. However the expert judgments’ variability 

may vary with change in environment.  

7) Aggregating expert judgments. Behavioural methods for combining expert 

probability involve eliciting probability judgments from a group of experts, where 

experts must all agree on each judgment. In contrast, mathematical methods make use 

of analytical algorithms to combine individual probability judgments; in this case we 

kept experts separate during the elicitation process. Previous research has shown that 

mathematical aggregation methods tend to perform better (29). However, it is generally 

advised that one should conduct sensitivity analysis of different mathematical methods 

in order to study their sensitivity to individual expert judgments (30).  

8) Complete analysis and write up. A report presented each expert’s assessment in full, 

included detailed analyses of the experts’ judgments and raised recommendations 

wherever misunderstandings or mistaken assumptions were indicated. The original data 

and the full analysis of expert judgments are presented elsewhere (26). 

4.   RESULTS OF THE ELICITATION PROCESS  

With eight experts, sixty three faults and four environments, we had a possible total of 2016 

expert judgments. In practice, we had 1863 because not all combinations were completed by the 

experts. The purpose of the analysis was to provide feedback to experts. Our intention was not to 

suppress differences of opinion, or to introduce our own views, or to bias the results, but to draw 

our experts’ attention to those faults where there appeared to be resolvable differences of 

opinion, misunderstandings or typographical errors.  

We queried opinions regarding eight faults in open water, four in coastal waters, seven under 

sea ice and six under shelf ice (several being common to more than one environment). This was 

10% of faults; in 90% of cases there was no need to draw attention to differences between 
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experts’ opinions. The analyses supported by these graphs are presented in the following 

sections, where we also draw upon the written comments of the experts, especially where there 

were major differences in interpretation. 

4.1 Longitudinal judgments distribution 

The longitudinal distribution of the probability judgments provided a visual mechanism for 

identifying major discrepancies in expert judgments. The method allowed us to identify major 

discrepancies in six faults in open water, three in coastal, five in sea ice and six under an ice 

shelf. Figure 2 presents the probability judgments where there were major discrepancies for the 

under-ice shelf environment. Failure 391_2 concerns a fault with the GPS antenna, which can 

significantly effect the system navigation. Some experts deemed this fault critical, but others did 

not consider it critical when actually under ice where it is never used. The remaining faults 

occurred either during recovery or when the vehicle was onboard. One might expect these faults 

to be deemed of low criticality. However, our aim was not to impose our views, but simply to 

highlight differences in opinion.   
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Figure 2   Comparison of expert judgments for ice shelf. Expert judgments for faults 391_2, 403_1, 404_7, 405_2, 405_1, and 
408_1. 

 

 
4.2 Frequency distribution of experts’ judgments 

We analysed variability in judgments in terms of how often experts used different ranges of 

probability judgments. We considered nine intervals of probability. We examined expert 

judgment variability across different environments and then looked at variability in the totality of 

assessments between experts. A summary of our analysis is presented below.  

4.2.1   Open water 
The cumulative distribution (Figure 3) shows that some experts use a wider range of 

probability in their judgments than others. A P(L| F,E) of 0 is only assigned by five experts; a 

minimum P(L| F,E) of 0.001 was assigned by two experts and a minimum of 0.01 by one. Only 

one expert assigns P(L| F,E) values between 0.001 and 0 (0.0001 in four instances). Six experts 
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have at least 98% of all their P(L| F,E) judgments under 0.03; two are more pessimistic, one with 

90% and one with 92% below 0.03.     
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Figure 3  Comparison of the cumulative probability Cumulative frequency of the expert probability judgments. Open water (top 
left), Coastal water (top right), Sea ice (bottom left) and Ice shelf (bottom right).  

 

4.2.2   Coastal water 

In coastal water, two experts reduce the number of times that they assign a P(L| F,E) < 0.0001 

compared with open water: MM assigned P(L| F,E) < 0.0001 in 29% of judgments compared 

with 44% for open water; TC assigned P(L| F,E) < 0.0001 in 25% of judgments compared with 

29% for open water. A cluster of experts (formed by AS, MM, BF, RM and TC) quite frequently 

used the mid-lower ranges of [0.0003, 0.001] and [0.001, 0.003].  

4.2.3   Sea ice and Ice shelf 

In this environment, some experts’ cumulative distribution had a narrow ‘S’ shape (AS, BF, 
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CJ, CW, MM and TC), whereas others displayed a broad ‘S’ shape (DY and RM). Together with 

the clustering in the median probability, this inspired us to classify experts as optimists (experts 

whose cumulative distribution follows a narrow ‘S’ shape) or pessimists (experts whose 

cumulative distribution displays a broad ‘S’ shape). The existence of two “schools of thought”, 

especially for operations under sea ice and ice shelf demands caution when using an average 

over all experts. 

The main difference between the judgments provided for sea ice and ice shelf are in the 

number of judgments that lie in the range of [0.3, 1.0]. Six experts assign P(L| F,E) values in this 

range when assessing the ice-shelf scenario, whereas two experts are optimists. The other experts 

who were optimists for sea ice became pessimists for ice shelf. 

4.3 Probability of loss across the four environments 

If we compute the un-weighted average of the expert judgments for all four environments we 

obtain the distribution depicted in Figure 4.  
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Figure 4  Comparison of the cumulative probability distribution of the un-weighted average for four operating scenarios. 

Open water (blue), Coastal water (red), Sea ice (brown) and Ice shelf (black).  

The distributions across all four environments cluster into two groups.  Group 1 comprising 

open water and coastal water and group 2 sea ice and ice shelf. These two groups are separated 
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by a significant gap.  For ice shelf, the average judgment is dominated by an increased view of 

risk from six of the eight experts. The distributions presented in Figure 3 do not capture the 

influence of each expert’s confidence on his/her risk assessment. The following section considers 

how the experts’ self assessment of confidence influences the aggregated opinion for each of the 

four environments. 

4.4   Aggregating expert Judgments 

Our approach was to use a simple linear opinion pool, having discounted the logarithmic 

opinion pool because of the veto given to experts assigning a zero probability. 

We applied a linear weighted opinion pool to combine expert judgments concerning all 63 

faults (28), defined as follows: a single probability judgment is created by summing the products 

between an individual expert’s own confidence ( ) and their judgments (iw )(ip ) for the n 

experts. Where   is the uncertain event (which in our case is AUV loss). Some researchers argue 

that self-rating is an effective way to quantify the experts efficiency (31); we have not altered any 

self-ratings. Equation 2 sets out the linear pool aggregation method. 
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The confidence varies in a range of 1 to 5; 5 indicating a high and 1 a low confidence. 

Figure 5 depicts the linear weighted cumulative distribution for each of the four environments. 

Comparing the relative frequency of the judgments for open and coastal water, the distribution 

shows that whilst the shape of both distributions is similar, the coastal water distribution presents 

a shift of judgments towards greater risk. Similarly to open water, the majority of probability 

judgments for coastal water lie in the range [0.01, 0.03]. However there was 17% increase in 

judgments in the range [0.03, 0.1] and two failures are assigned a P(L| F,E) greater than 0.1 but 

lower than 0.3.  
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Figure 5   Comparison of the cumulative probability distribution of the linear-weighted average for four operating scenarios. 
Open water (blue), Coastal water (red), Sea ice (brown) and Ice shelf (black). 

The shift of probability judgments towards greater risk becomes more evident in the 

aggregated judgments for sea ice and ice shelf. Ice shelf is the most severe environment where 

41% of all failures are assigned a P(L| F,E) > 0.3. A summary of the statistical properties of the 

P(loss) distributions obtained using the linear aggregated opinion pool is presented in Table I. 

Table I    Statistical properties of the linear aggregated opinion pool.  

Environment Statistics 

Open water Coastal Sea ice Ice shelf 

Quartile 25% 0.0083 0.0083 0.045 0.072 

Median 0.018 0.021 0.088 0.17 

Quartile 75% 0.026 0.037 0.17 0.40 

Quantile 95% 0.049 0.090 0.36 0.75 

 

5. RISK MODEL FOR EXTREME ENVIRONMENTS 

The risk model is based on two components, the subjective probability of a fault or incident 

leading to loss in a declared environment and, independently, the frequentist probability of the 

fault occurring. The first component has been established through the expert judgment 
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elicitation. For the second, we have the fault history, mission by mission, and we have those 

missions on which no fault occurred.  

5.1   Static risk model 

The expert judgment analysis identified optimists and pessimists. One might argue that a 

behavioral aggregation method could be used to encourage consensus between expert judgments. 

However from reading the explanations, we concluded that some of the disagreements were 

simply due to the fact that an expert had an optimistic view of the possible outcome, whereas the 

others would have a pessimistic view. The risk model must in this case capture both schools of 

thought; a linear pool averaging of all experts would remove these distinct views. We used the 

cumulative distribution of the frequency of the probability judgments to select which experts 

followed optimistic or pessimistic profiles. Table II presents the different groups for all operating 

environments.  

Table II    Experts groups description 

Model Experts 

Optimist MM,CJ,RM,TC and 
Open water Pessimist BF, CW and DY 

Optimist AS, CJ, RM and TC 
Coastal Pessimist BF, MM, CW and 

Optimist TC, CJ and AS 
Sea ice Pessimist MM,BF, RM, CW 

Optimist CJ and TC 
Ice shelf Pessimist AS,MM,BF,RM,CW 

5.2   Dynamic risk Model 

It is only possible to apply statistical survival methods to a single AUV if it is considered to be 

a repairable system. That is, after a fault or incident, the item in question is repaired or replaced, 

such that the AUV is put back into the state it was in before the mission started. In this model, 

the serial missions of the single AUV are treated analogously to the parallel items in a parts 
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failure analysis. Instead of time to failure, we use the range achieved by the AUV before a fault 

or incident occurred. If no failure or incident occurred, we treat the mission as censored data, 

with its associated range. 

In practice, the assumption of the AUV as a repairable system does have weaknesses. 

Whenever faults occur, the engineers seek a repair or replacement that increases reliability. 

However, the pattern of faults that have occurred shows no discernable reliability growth over 

two years, see Appendix I. At this stage in the vehicle’s use, therefore, we consider the past 

history to be a good guide as to the immediate future. Despite this limitation, the risk model is 

transparent, traceable and easily understood.  

We implemented equation 1 in a Visual Basic program running on Excel 2003. Figure 6 

presents the survival distribution obtained for open water, coastal water, sea ice and ice shelf, 

separately for the optimistic and pessimistic subgroups. 
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Figure 6 Kaplan Meier optimistic assessment (left) and pessimistic assessment (right) for the survival of Autosub3, 
for all four operational environments prior to any mitigation measures.   
 

The optimistic Kaplan-Meier survival distribution for operations under ice shelf (Figure 6) 

shows a steep decline in the probability of survival at shorter distances, whereas at mid distances 

the survival distribution is almost flat. For managing the risk, if we can monitor the AUV at 

these shorter ranges and recover the vehicle to address any problems if they emerge, the risk 
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posed by those failures will significantly reduce, thus reducing the probability of loss when 

under ice. In practical terms, this means that if the AUV is about to undertake an operation  

under ice, it should cover some distance in open water before diving under ice. Mathematically, 

the mitigated risk can be estimated using conditional probability as described in section 6.1. 

6.   CAMPAIGN TO THE PINE ISLAND GLACIER, ANTARCTICA 

The science expedition to the Pine Island Glacier was a joint UK-US scientific programme, 

sponsored by the Natural Environment Research Council, UK and by the National Science 

Foundation, US. Its main goal was to gather data needed to understand how warm Circumpolar 

Deep Water (CDW) gets beneath the glacier and how it determines the rate of glacier melting. 

Subsidiary objectives were to map the seabed beneath the glacier as well as the glacier’s 

underside, and to determine where and how heat is transferred from the inflowing CDW to the 

outflowing ice-ocean boundary layer. 

We used the survival function obtained from this analysis to estimate the risk of a scientific 

campaign to the Antarctic that would use Autosub3ii. We derived the following four scenarios 

from the operational requirements:  

 Scenario 1 – Minimum set of three 60km open-water and three 60km under-ice shelf 

missions. 

 Scenario 2 – Minimum set as above with 540km under sea ice over the six missions, no open 

water.  

 Scenario 3 – Desirable set of three 60km open-water, three 60km and three 120km under-ice 

shelf missions. 

 Scenario 4 – Desirable set as above but with 720km under sea ice over the nine missions. 

We used the extended survival function to compute the probability of Autosub3 loss for the 

four scenarios. For each scenario, we computed a probability of loss using an optimistic and 

pessimistic model of the expert judgments. We present the results in Table III. 
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Table III    Probability of losing Autosub3 based on Kaplan-Meier analyses for each scenario. The 
optimistic assessment is the first number in each cell, the pessimistic the second.  

 
Analysis Model Scenario 1 Scenario 2 Scenario 3 Scenario 4 
Kaplan-Meier  0.26 – 0.56 0.40 - 81 0.53 – 0.86 0.64 – 0.96 

The computed probability of loss exceeded the acceptable limits defined by the Autosub3 

responsible owner, namely: 10% for scenario 1, 17% for scenario 2, 20% for scenario 3 and 23% 

for scenario 4.  

6.1   Modeling the effect of mitigation 

The difference in risk acceptance shown above comes from a risk model that takes into 

account the different mission environments, and the number of missions. As a consequence, risk 

mitigation measures are necessary before the risk of loss will become acceptable. These will 

need more than rectification of the faults found, which would merely return the vehicle to its pre-

fault state. Rather, we undertook a series of technical measures aimed at reducing the incidence 

of faults. In addition, this statistical risk analysis suggested a further mitigation strategy. 

The flat shape of the nonparametric Kaplan-Meier survival distribution does not lend itself to 

an analysis to quantify the effect of mitigation measures such as varying the monitoring distance. 

This effect is better captured by a parametric survival distribution such as a Weibull distribution 

derived from the failure distance and the expert judgments on the probability of loss for each 

failure.  We took a simulation-based approach to deriving the Weibull parameters for the case of 

loss given our experts’ judgments. For each fault or incident we generated 1000 copies, with 

integer(1 – P(ei))*1000 entries censored, the others marked as losses. We then obtained the 

parameters of the Weibull distribution (Figure 7) using JMP software package from SAS. 
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Figure 7 Weibull survival distribution (left) optimistic assessment and (right) pessimistic assessment for loss under 
an ice sheet before any mitigation measures. The straight red line is the best fit used to estimate the Weibull 
parameters alpha and beta.  

 

To study the effect of mitigation through varying the monitoring distance we take the 

conditional probability of the AUV surviving distance X given that it has survived distance Y, 

where Y corresponds to the monitoring distance, as given by equation 3. 
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      (3) 

Where F(·) is the Weibull cumulative distribution function. For the example shown in Table IV 

we used the experts’ optimistic assessments. We excluded in a reanalysis the faults on one 

mission where the causes were very well understood and modifications made that put the vehicle 

into a state where its reliability should be higher than before the faults occurred. We included 

open-water trial missions before the under-ice missions of the expedition, and assumed a 

monitoring distance Y of 48 km. Under these conditions, the mitigated probability of loss in for 

the four scenarios is reduced when compared with the unmitigated case (see Table IV).  

Table IV    Probability of losing Autosub3 based on Weibull analyses for each scenario based on the 
optimistic experts’ assessments without and with mitigation. 
 

Analysis Model Scenario 1 Scenario 2 Scenario 3 Scenario 4 
Weibull unmitigated 0.29 0.47 0.57 0.72 

Weibull mitigated 48km 0.035 0.09 0.18 0.23 
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Although a monitoring distance of 48km is adequate for scenario 4 it is too onerous for 

scenarios 1, 2 and 3 because it would involve monitoring the vehicle for 8 hours. The P(loss) of 

0.035 for scenario 1 is well below the acceptable P(loss) of 0.10 and would result in unnecessary 

use of ship time. A monitoring distance of 28km for scenario 1 would provide a P(loss) ~ 0.10. 

Using the same argument, a monitoring distance of 33km would give P(loss) ~0.17 for scenario 

2, and a monitoring distance of 43km would give P(loss) ~ 0.20 for scenario 3. These are all 

within the acceptable risk margins defined by the responsible owner, and therefore formed 

guidance for the operations team at sea depending on the conditions they faced. 

6.2 Autosub3 campaign results 

On 5 January 2009 the US ice breaker, the Nathaniel B. Palmer, with Autosub3 onboard 

departed Punta Arenas, Chile, for Pine Island Glacier, Antarctica(32)(33). The vessel arrived in the 

working area on 16 January 2009. The environment conditions were benign for initial operations; 

there was no sea ice in front of the ice shelf and the sea was relatively calm. The PI decided to 

run scenario 1, which began with three 60km missions under the ice shelf (30km into and out of 

the cavity, respectively). The campaign started with an open-water test mission (mission 427) 

during which Autosub3 reached a depth of 836m and covered a distance of 37.5km. A fault was 

observed on one scientific sensor, which was later fixed. Subsequent science missions (428, 429 

and 430) were successful, although a minor fault occurred during mission 429. On mission 428, 

which took 18.4hrs, Autosub3 travelled 101km, including 60km under the ice shelf. On mission 

429, Autosub3 travelled 113km in 21hrs and on mission 430 the vehicle travelled 107km in 

19hrs. The navigation plan, for all these missions, was for the vehicle to track the bottom of the 

seabed when travelling into the cavity, and to maintain a distance of 100m from the ice when 

travelling out of the cavity.  
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The above set of missions corresponds to scenario 1. The PI decided to move on to scenario 3 

(desirable) with three additional, longer, under ice missions. During the first of these, mission 

431, the vehicle collided with the ice on its way out of the cavity having entered a large, complex 

fissure. The collision avoidance system initially prevented impact but in attempting to avoid the 

ice ahead the vehicle subsequently turned in to the ice wall. It then scraped along, until a gap 

allowed it to turn. However, the vehicle then scraped along the opposite wall until diving out of 

the fissure. The vehicle’s return to a safe depth, away from the ice, implied that it was unable to 

profile the ice on its way out of the ice shelf. Lack of information about ice topography and the 

behaviour of the collision avoidance system were the main causes for this incident.   

The discovery of a ridge running across the ice cavity during mission 431 led to a new science 

requirement. The PI requested two more missions. The first of these (mission 433) involved a 

run on the north side of the cavity, travelling approximately 50km into the cavity and 50km out, 

using bottom track for navigation. Mission 434 involved a run of approximately 30km into the 

cavity (from point 2 to point 5 in Figure 8), then a turn south, travelling 15km (from point 5 to 

point 4 in Figure 8) whilst profiling the new ridge. It would then turn north and travel 30km 

(from point 4 to point 6 in Figure 8).  

These additional missions required a new risk assessment. Data collected from missions 427, 

428, 429, 430 and 431 were added to the risk model. The criticality of faults that emerged during 

missions 429 and 431 were assessed by the NOC’s AUV experts. The computed probability of 

loss for the two missions was approximately 0.09, provided that a monitoring distance of 48km 

was set before the two missions. This was acceptable to the Responsible Owner, communicated 

to the ship, and subsequently Autosub3 successfully completed these missions.  
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Figure 8 Plan for mission 434 (in red). Autosub3 started at point 1, -102.003 Longitude, -75.007 Latitude. The 
vehicle was set to perform the following path: 125456521. Courtesy of Google Earth. The 
Google Earth drawing of the coastal line, in yellow, is not exact is just an estimation. 
 

7.   DISCUSSION 

All risk management models are subject to uncertainties, especially those incorporating expert 

judgments and other model assumptions such as descriptions of operating environments. When 

risk models are used to support critical ‘go - no go’ decisions it is imperative to understand the 

sources of uncertainty, how they affect the computed risk and how to reduce them. We will 

therefore now critically review of our methodology, focusing on uncertainties that affect risk 

computation and uncertainties that affect the application of the RMP-AUV itself. Uncertainties 

potentially affecting the decision maker’s estimation of the acceptable risk are discussed 

elsewhere (11).  

The expert judgment approach is arguably a significant source for uncertainty in the risk model. 

First, how expert are the experts? We followed Otway and Winterfeldt (25) in aggregating expert 
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judgments, combining individual probability assessments and the experts’ self assessment of 

confidence in their own probability judgements. Cooke and Goossens(35) argue that aggregation 

should also take into account how well experts perform in a series of seed questions. These are 

questions about uncertain events relevant to the topic, but for which the facilitators know the 

answer. How to best to combine expert self assessment with performance in the seed questions 

without introducing bias is still debated (36). In a subsequent project we used seed questions as 

part of expert training on assigning probability to judgements.  

Second, how uncertain are the experts? For this work, experts provided a single probability 

judgment for each fault, so their uncertainty about individual judgments was not captured. 

O’Hagan and co-workers (37) require experts to provide a probability range instead of a single 

probability judgment. The process is based on behavioural aggregation, involving a brief 

discussion of individual assessments after which experts are encouraged to agree on a single 

cumulative distribution for each judgment. 

There is also uncertainty over depiction of the operating environment. The risk models used 

within the RMP-AUV were developed for specific, well defined environments. Risk may alter if 

the real operating environment deviates from the environment description. In principle, causal 

relations between variables affecting risk could be defined, and the weight between, local, causal 

relations could be quantified, via expert judgment for instance. In this case, a Bayesian approach 

could be adopted for updating calculated risk according to variations in the operating 

environment and conditions.  

Under the RMP-AUV a science campaign is authorised only if the computed risk (probability of 

loss) is lower than or equal to the acceptable risk. One way to cope with uncertainty is to reduce 

the computed risk to a level below the acceptable risk. The resulting gap between computed risk 

and acceptable risk is analogous to the safety factor concept used in structural engineering, and 

would need to be specified by the owner. Increasing the gap between the risk estimates would 
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increase the ‘go ahead’ decision robustness, not only to uncertainties, but also to future faults. 

The decision should be based on the number of faults that maximise the robustness for a given 

gap between the computed risk and the acceptable risk (37).   

Minimal historic data exist for under-ice shelf AUV missions. Frequentist statistics from the 

three known campaigns (of which is described here is the third) are, cumulatively: 1 loss from 1 

mission; 2 losses from 3 missions; 2 losses from 9 missions (34). The latter is close to the 

acceptable and computed risk in this study. Experience from future under-ice missions could 

update this frequentist assessment.  

The present dynamic risk model is limited to repairable faults, and future work should address 

the case of unrepairable faults. When incidents are caused by interaction between vehicle and 

environment, the necessary changes to behaviour algorithms generally cannot be made in the 

field, and hence are considered unrepairable until a proper opportunity arises.  

A central predicament in risk analysis is how to predict unlikely events. The RMP-AUV is based 

on observed faults and successful missions. One problem is how to take into account faults that 

have not manifested themselves during AUV trials or subsequent science missions. One possible 

approach is to extend the elicitation process beyond the set of historic faults, for example with a 

structured ‘what if’ approach. The richness of the data would depend on the expertise and 

breadth of knowledge of experts.  Nevertheless, such an approach would increase the robustness 

of risk estimates. Within RMP-AUV, design integrity and that the risk assessment that goes with 

it are no less relevant, and it is important that engineers and managers brainstorm on the 

operational risks before campaigns. However, we contend that the reliability of a product is 

given by its operational history and not by its design integrity. Historic data reveal the reliability 

of electronic hardware, software and mechanical components, the AUV operators, and, most 

importantly, how these factors interact. Nevertheless, given its clear importance, future work 

should integrate design integrity with the RMP-AUV. 
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8.   CONCLUSION 

A formal expert judgment exercise based on the fault history of a one-off, complex underwater 

vehicle in environments with different risks has led to quantitative estimates of the probability of 

vehicle loss. The number of experts engaged (eight) was sufficient to show that, in this very 

immature area of risk analysis, there were two ‘schools of thought’ (optimistic and pessimistic) 

on the risks for AUV operation under ice. This is likely to continue until more experience is 

gained of operating AUVs in these environments. Applying an extended version of the Kaplan-

Meier model enabled estimates to be made of the probability of AUV survival as a function of 

range. Estimating the risk of a series of missions over a campaign allows the predicted risk of 

loss to be compared with the Responsible Owner’s risk appetite. Although engineering best 

practice and the permanent removal of some of the faults that occurred provided two mitigation 

measures, the shape of the Kaplan-Meier survival curves suggested a mitigation strategy based 

on conditional probability. We derived scenario-dependent monitoring distances using a 

parametric analysis, now included in standard operating procedures for the AUV, thus improving 

the risk management decisions made at sea. However, as the shape of the Kaplan-Meier curve 

may be different for other AUVs, the mitigation strategy does need to be tailored to the history of 

each vehicle. 
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Appendix I – Autosub3 historical fault description 
Fault 
 code 

Distance Description 

384 1 1.5 Mission aborted (to surface) due to network failure. (Much) later tests showed general problem with the cable 
384_2 1.5 Loop of recovery line came out from storage slot, long enough to tangle propeller. 
385_1 15.2 Autosub headed off in an uncontrolled way, due to a side effect of the removal of the upwards-looking Dopler 

Velocity Log (DVL). 

386_1 26 GPS antenna failed at end of mission. 
387_1 27.2 Homing failed, and the vehicle headed off in an uncontrolled direction. Mission was stopped by acoustic command. 

Problem was due to (a) the uncalibrated receiver array, and (b) a network message (“homing lost”) being lost on the 
network. 

388_1 0.5 Aborted after 4 minutes post dive, due to network failure. Logger data showed long gaps, up to 60s, across all data 
from all nodes, suggesting logger problem.

388_1 0.5 Depth control showed instability. +/- 1m oscillation due to incorrect configuration gain setting. 
389_1 3 Vehicle went into homing mode, just before dive and headed north. Vehicle mission stopped by acoustic command.  It 

was fortunate that the ship-side acoustics configuration allowed the ship to steam at 9kt (faster rather than 6kt with the 
towfish) and catch the AUV. 

389_2 3 Separately, homing mode not exited after 2 minutes, as expected. It will continue on last-determined heading 
indefinitely – a Mission Control configuration error. 

389_3 3 Problem with deck side of acoustic telemetry receiver front end, unrelated to vehicle systems. 
391_1 31 ADCP down range limited to 360m, reduced accuracy of navigation. 
391_2 31 GPS antenna flooded. No fix at end point of mission. 
391_3 31 EM2000 swath sonar stopped logging during mission. 
392_1 32 As consequence of GPS failure on M391, AUV ended up 700m N and 250m E of expected end position. 
393_1 5 Acoustic telemetry giving poor ranges and no acoustic telemetry. 
394_1 3 Jack-in-the-box recovery float came out, wrapping its line around the propeller, jamming it, and stopping the mission. 

Caused severe problems in recovery, some damage to upper rudder frame, sub-frame and GPS antenna. Required boat 
to be launched. 

395_1 8 Jack-in-the-box line came out, wrapped around the propulsion motor and jammed. 
396_1 4 Current estimation did not work, because minimum time between fixes for current to be estimated had been set to 

15min; leg time was only 10min. Mission stopped and restarted with configurable time set to 5min. 

397_1 4 Main lifting lines became loose, could have jammed motor. 
398_1 8 Operators ended mission prematurely, they believed the AUV was missing waypoints. In fact, a couple of waypoints 

had been positioned incorrectly. 
401_1 7.5 Configuration mistake; DVL up configured as down- looking DVL causing navigation problems through tracking sea 

surface as reference. This data was very noisy and put vehicle navigation out by a factor of 1.5. 
401_2 7.5 Damaged on recovery, “moderately serious” to sternplane, shaft bent. 
402_1 274 Stern Plane stuck up during attempt to dive, 2d 20h into mission. Stern plane actuator had flooded.   
402_2 274 Abort due to network failure. Abort release could not communicate with depth control node for 403s. Possibly side-

effect of actuator or motor problems.
402_3 274 Motor windings had resistance of 330 ohm to case. Propeller speed dropping off gradually during a dive. 
402_4 274 Only one position fix from tail mounted ARGOS satellite telemetry transmitter.
402_5 274 GPS antenna damaged on recovery. 
403_1 140 Recovery light line was wrapped around the propeller on surface. Flaps covering the main recovery lines (and where 

the light line was towed) were open.
403_2 140 Took over 1 hour to get GPS fix at final waypoint. 
403_3 140 Propeller speed showed same problem as m402. Subsequent testing of motor with Megger showed resistance of a few 

kohm between windings.
404_1 75 Pre-launch, abort weight could not be loaded successfully due to distorted keeper. “If not spotted, could have dropped 

out during mission”, considered low probability of distortion and not checked.
404_2 75 Pre-launch, potential short circuit in motor controller that could stop motor. 
404_3 75 Propeller speed showed same problem as on m402 and 403. 
404_4 75 CTD (scientific instrument) drop-out of 1 hour (shorter drop-outs noted in previous missions). 
404__5 75 M404 recovery was complicated when lifting lines and streaming line became trapped on the rudder (probably stuck 

on the Bowline knot where the two were attached).  Recovery from the situation required the trapped lifting lines 
grappled astern of the ship, attached to the gantry lines, and the caught end cut. 

404_6 75 The forward sternplane was lost due to lifting line trapping between the fin and its flap on recovery. 
404_7 75 The acoustic telemetry nose transducer was damaged due to collision with the ship. 
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Cont.  

Fault 
code 

Distance Description 

405 1 2.5 Fault found pre-launch, LXT acoustic tracking transducer had leaked water – replaced. 
405_2 2.5 Fault found pre-launch, starboard lower rudder and sternplane loose. 
406_1 104 AUV ran slower than expected and speed dropped off during mission, due to motor problem. 
406_2 104 Current spikes of 3A and voltage drops in first part of mission. 
405_1 2.5 Fault found pre-launch, LXT acoustic tracking transducer had leaked water – replaced. 
406_3 104 Propulsion motor failed 500V insulation test on recovery on windings to case. 
406_4 104 One battery pack out of four showed intermittent connection 
406_5 104 Acoustic telemetry unit gave no replies. 
406_6 104 On surfacing first GPS fix was 1.2km out. 
406_7 104 Spikes in indicated motor rpm 
407_1 204 Acoustic telemetry unit gave no replies at all – no tracking or telemetry. 
407_2 204 Noise spikes on both channels of turbulence probe data. 
408_1 302.5 Propulsion motor felt rough when turned by hand – bearings replaced before deployment. 
408_2 302.5 Aborted at 50m due to overdepth as no depth mode commanded. Unless compounded by another problem, this would 

show itself immediately on first dive. 
408_3 302.5 No telemetry from Acoustic telemetry unit. 
408_4 302.5 Difficulty stopping Autosub on surface via radio command. Separate problems with the two WiFi access points. 
408_5 302.5 Still spikes on motor rpm that need investigating. 
409_1 1.5 No acoustic  telemetry or transponding. LXT acoustic ship side ultra short baseline navigation receiver had leaked 

during mission giving poor bearings to sub, replaced with spare.
410_1 9 No acoustic  telemetry or transponding. 
411_1 128 No GPS fix at the end of the mission. GPS antenna bulkhead had water inside and had flooded. 
412_1 270 No GPS fix at end of mission. After next mission, GPS fixes started coming in after vehicle power up/power down; 

perhaps problem was due to initialisation with receiver – and not this time the antenna. 

412_2 270 Problem at start for holding pattern. Holding pattern timed out due to programming mistake. 
415_1 6 Prior to dive, checks showed reduced torque on rudder actuator. Actuator replaced with new one - first use for this 

new design of actuator motor and gearbox. However, AUV spent most of mission “stuck” going around in circles at 
depth due to rudder actuator fault. The new actuator overheated, melting wires internally, the motor seized, and 
internal to the main pressure case, the power filter overheated. Some of the damage may have been caused by an 
excessive current limit (3A); correct setting was 0.3A. But this does not explain high motor current. Possible damage 
during testing when motor stalled on end stop? Compounded by wiring to motor held tightly to case with cable ties, 
and worse, covered with tape (acting as an insulator). Wires were not high temperature rated. 

415_2 6 Three harness connectors failed due to leakage, affecting payload systems: EM2000 swath echo sounder tube, 
acoustic Doppler current profiler (ADCP) down, and Seabird CTD. Despite connector problems the system worked 
without glitches and failed only when the power pins had burned completely through on the connector feeding power 
t th b t t415_3 6 Although it worked properly at the start of the mission at a range of 1200m, the acoustic telemetry stopped working at 
the end of mission. Hence could not stop the mission acoustically when needed. 

416_1 18 Not possible to communicate with vehicle at 1180m depth; holding pattern caused a timeout, and AUV surfaced. 
Acoustic telemetry max range was 500m for digital data. 

418_1 15 When homing was stopped deliberately after 10 min, the AUV did not go into a “stay here” mode. Rather it continued 
on the same heading; stopped by acoustic command 500m from shore. Cause was incorrect configuration of mission 
exception for homing. Default in campaign configuration script was not set due to inexperience with new 
configuration tools. 
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APPENDIX II – Extended version of the Kaplan Meier Estimator 

This section provides the rationale for the extended version of the Kaplan-Meier survival 

estimator and its associated variance.  

Assumption 1. The system is repairable. After the repair of a fault, the system is left in the state 

that it was before the fault.  

In its usual form, the KM nonparametric estimator of S(r) – the survivor function with range r is 

defined as: 

ˆ S (r) 
ni  di

niri r


 (1) 

where ni is the number (of missions) at risk immediately prior to range ri and di is the number of 

deaths at range ri. Instead of the instance i signifying a death, let it signify a failure. Consider the 

ith fault. With probability pi this is fatal and 

ˆ S (ri) 
ni 1

ni

ˆ S (ri1)
        (2) 

and with probability (1-pi) the failure is not fatal and 

ˆ S (ri)  ˆ S (ri1)         (3) 

Taking expectations, the survivor function becomes 

ˆ S (ri)  pi

ni 1

ni

ˆ S (ri1)  (1 pi) ˆ S (ri1)
      (4) 

Rearranging terms and simplifying, this becomes 

ˆ S (ri)  (
ni  pi

ni

) ˆ S (ri1)
        (5) 

Applying this relationship recursively, gives 

ˆ S (ri) 
ni  pi

niri r


        (6) 
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It has been assumed that no two failures can occur at exactly the same range. If this is not the 

case, then the combined pi for (6) from the multiple failures can be obtained from 

pi 1 (1 pn )
n1

m


        (7) 

where there are m failures at range i  each with a probability of pn of leading to death. 

The variance for the original Kaplan-Meier estimator is typically computed using the 

“exponential” Greenwood formula(21): 


 


rri iii

i
2 )d(nn

d

(r))Ŝ(log

1
V̂        (8) 

For the case where no two failures occur at exactly the same range, noting that (6) is (1) with pi 

substituted for di, for the probabilistic KM, the variance may be written: 


 


rri iii

i

2KM )p(nn

p

(r))Ŝ(log

1
V̂        (9) 

The variance of the extended Kaplan-Meier estimator must also take into account the variance in 

the expert judgments. The combined variance is: 

)V̂,V̂(CovV̂V̂EEJ)(KM V̂ EEJKMEEJKM  2 (10) 

Assuming that the expert judgments are aggregated using the linear opinion pool: 



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
nj

1j
kjEEJ μp
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1
V̂

k
   (11) 

Where k stands for the fault index, n is the number of experts that provided judgments for fault k 

and  is the un-weighted average of the probability judgments assigned to fault k. The combined 

variance must take into account that multiple faults may occur at the same range. Thus for a 

given range and assuming independence between faults that have occurred at the same range: 





m

k
EEJrEEJ k

V̂V̂
1

 (11) 

The variance for the extended Kaplan-Meier formulation is: 
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with asymmetric confidence intervals bound between 0 and 1: 

exp(exp(c(r)))  ˆ S (r)  exp(exp(c(r)))      (13) 

where: 

c(r)  log(log ˆ S (r))  z / 2
ˆ V       (14) 
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i It is a heuristic in which people start with an initial estimate, also denoted as anchor, and then 

adjust up or down. It is a mental shortcut that can ease the assessment of repetitive situations; it 

can reduce mental processing time. However in some occasions people tend to stick too closely 

to their initial judgment or not to adjust their judgment sufficiently. 

ii As specified by the principal investigator, Dr Adrian Jenkins (British Antarctic Survey). 
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