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A MARKOV CHAIN STATE TRANSITION APPROACH TO 

ESTABLISHING CRITICAL PHASES FOR AUV RELIABILITY 

Mario P. Brito, and Gwyn Griffiths 

 

Abstract— The deployment of complex autonomous underwater platforms for marine science 

comprises a series of sequential steps. Each step is critical to the success of the mission. In this paper 

we present a state transition approach, in the form of a Markov chain, which models the sequence of 

steps from pre-launch to operation to recovery. The aim is to identify the states and state transitions that 

present higher risk to the vehicle and hence to the mission, based on evidence and judgment. 

Developing a Markov chain consists of two separate tasks. The first defines the structure that encodes 

the sequence of events. The second task assigns probabilities to each possible transition. Our model 

comprises eleven discrete states, and includes distance-dependent underway survival statistics. The 

integration of the Markov model with underway survival statistics allows us to quantify the likelihood 

of success during each state and transition and consequently the likelihood of achieving the desired 

mission goals. To illustrate this generic process, the fault history of the Autosub3 autonomous 

underwater vehicle provides the information for different phases of operation. The method proposed 

here adds more detail to previous analyses; faults are discriminated according to the phase of the 

mission in which they took place. 

 

Index Terms—Markov processes, Risk Analysis, Underwater vehicles. 
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I. INTRODUCTION 

OWADAYS the execution of many marine science programmes involves the deployment and 

recovery of sophisticated mechatronics systems such as autonomous underwater vehicles (AUVs), 

remotely operated vehicles (ROVs), or undersea gliders. Common to all of these systems is that the 

deployment sequence from pre-launch checks to operation in the water to recovery consists of a series 

of sequential phases. With each phase there is an associated risk of loss. This risk is most obvious when 

the vehicle is subsurface executing its task, but is non-zero during all of the phases. For example, while 

ready on deck there is a possibility of loss due to an electrical fire. It is widely acknowledged that 

significant risks attend launch, and especially recovery. Indeed some insurers require the owner to co-

insure during these particular phases [1]. Although each phase involves risk, there is also the ability to 

repair the system after a fault, failure or incident from all but two of the phases considered. 

 N

While the risks with the deployments of these sophisticated vehicles are becoming better understood 

and several studies have attempted to quantify the overall risks [2]-[7], until now no framework has 

been proposed to structure a risk analysis for underwater vehicles by the mission phases. We propose in 

this paper a Markov chain approach to model the risk in the different phases and to quantify risk for 

different scenarios. Markov chains were chosen because analytical results associated with the model 

facilitate analysis of the operating sequences before they are generated, indicating how the operation is 

likely to unfold. Furthermore, the Markov approach allows for the essential statistical dependence 

between phases. The Markov model was implemented in Matlab version 12 [8].   

An early use of Markov chain theory in engineering was to estimate the reliability of hardware 

systems carrying out a simple task in a fixed environment [9]. The approach was extended to model 

multi-phased systems [10]. The term multi-phased system is used to describe a system that either 

changes structure, or whose failure characteristics change during its operation or mission. While the 

Markov chain presented in this paper models a structure (vehicle) that does not change, we argue that 

through the transitions between phases of the deployment process, the failure characteristics do alter. 

For example, the set of hazards, which determine risk, during launch and recovery phases are very 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) 
< 

3

 
different to the set of hazards when the vehicle is underway.  

Markov chains have also been applied to the estimation of the reliability of software-based systems 

[11], where a model was used to generate statistical testing sequences that would ultimately help define 

the reliability of a software artefact. Recent research has focused on the integration of Markov chains 

with other mathematical approaches, such as Bayesian theory, Monte Carlo methods and event trees 

[12], [13]. The end result in all of these cases is a system that provides an insight into the specific 

problem that would be impossible to obtain by the use of Markov chains alone. Here we extend the 

formalism by embedding distance-related survival statistics into a Markov chain model applied to an 

underwater vehicle.  

Throughout this paper the word ‘state’ is used to reference a state of the Markov model, and the word 

‘phase’ is used to reference a phase of the deployment process, there is a one to one correspondence 

between a state and a phase. 

The approach to devising the framework, and the questions that can be asked using the framework 

and Markov chain, are generic. They can be used with any item of apparatus. Here, the motivation was 

for the analysis of AUV mission risks, hence we draw extensively on data concerning the reliability of 

the Autosub3 AUV [7].  

The Markov chain representing AUV deployment sequence requires estimates for the transition 

probabilities between states. Griffiths and Trembranis [6] described an elicitation exercise for 

Autosub3, in which experts were asked to assign a probability of loss for the vehicle for each of 63 

faults or incidents. It was possible to assign particular state transitions to many of the elicited 

probabilities. However, the judgments obtained in the elicitation exercise were not sufficient to populate 

all transition probabilities of the proposed Markov chain. For example, the study did not fully cover the 

pre-launch tests or incidents, neither did it consider whether ‘Loss’ was final, or whether salvage was 

possible and, if so, whether the salvaged vehicle could be returned to service or had to be scrapped. 

Therefore, where possible, we elicited judgments from two colleagues, senior engineers (Stephen 

McPhail and Peter Stevenson) with a vast amount of experience in Autosub3 development and 
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deployment, for the transition probabilities which were not obtainable from the wider expert judgment 

study.  

This paper is organised as follows. Section 2 gives a brief background on the Markov chain 

formalism; more detail concerning this formalism is given elsewhere in the literature [14]. Section 3 

presents the Markov chain model that captures the sequence of activities undertaken during the 

deployment of an AUV together with details of the transition probabilities. In section 4 we present a test 

case illustrating applications of the approach and the nature of the analysis that can be supported by the 

Markov chain formalism. This includes estimating probability of loss at different phases and including 

answers to questions an operator might ask of the model. There is, for example, the obvious question, 

“Given that the vehicle passed its pre-launch check what is the likelihood of a successful open water 

mission of xkm?”. There are also many questions related to particular phases, for instance, on the likely 

availability of the vehicle: “Prior to pre-launch tests, what is the likelihood of being able to have a 

mission start when needed?”. Or on the likelihood of a forced early recovery: “Prior to pre-launch tests, 

what is the likelihood of having to recover the vehicle immediately after launch?”. In section 5 we 

present our conclusions.  

II. MARKOV CHAIN FORMALISM 

In classical probability theory a set of possible outcomes E1, E2, … Ek. is given, with which there is 

associated a probability pj, Pr (Ej )= pj; the joint probability is defined by the multiplicative property Pr 

(E1, E2, … Ek)= p1 ·p2 ·…..·pk. The Markov chain theory introduces an assumption that simplifies this 

expression; it considers that the outcome of any trial depends on the outcome of the preceding trial1 and 

only on it [14]. Thus, instead of associating a probability to an event, it associates a probability to a pair 

of events. For every pair of events (Ej, Ek) there is a corresponding transition probability pjk, where pjk 

is the probability of Ek occurring given that Ej occurred in the previous trial. According to Markov 

chain theory, in addition to pjk, one must also define the probability of Ej occurring at the initial trial, 

aj0. Therefore for the initial trial the P{(Ej, Ek)}=  aj0· pjk. For the general case, considering a sequence 
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of many transitions, given that event Ej0 precedes Ej1 which precedes Ej2 and so on for the remaining 

events, the joint probability distribution is computed using the expression in 1: 

 
nnnn jjjjjjjjjjnjjr ppppaEEEP

1122110
.......,,, 010 

   1. 

The expression in 1 is a result of a sequential application of the condition probability assumption 

entailed by the Markov condition. 

Generally speaking, a sequence of trials with possible outcomes E1, E2, …Ek is called a Markov chain 

if the probabilities of sample sequences are defined by 1. Quite often a state has more than one 

preceding state. When this is the case transition probabilities are arranged in a matrix, also denoted in 

the literature as a transition matrix or stochastic matrix [13]. The transition probability together with the 

initial state vector completely defines the Markov chain. The matrix in 2 is an example of a transition 

matrix for a Markov chain with k states.  























kkkk

k

k

ppp

pp

pp

P

...

...........

......

...p

10

110

00100

  2. 

Considering the stochastic transition matrix in 2, p01 is the probability of moving from state 0 to state 

1, p0i is the probability of going from state 0 to state i, pii is the probability of the system not leaving 

state i in the next step. The stochastic matrix is useful to study the probability of a sequence of steps 

taking place before the sequence is generated, and is the basis of the analyses in section 4. 

 

III. MARKOV CHAIN STATE MODEL FOR AUV OPERATIONS 

The deployment process is represented as a sequence of discrete states. The time spent in each state is 

not critical to the analysis, except when underway, which we deal with in a different way. When 

underway, time is proportional to distance, and distance is an input to a model of survival statistics. 

With respect to other states, it is assumed that the process will take as much time as necessary in order 

                                                                                                                                                                                                         
1 Trial is here defined as an experiment where the final outcome depends only on chance. 
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to decide whether or not the process transits to the next phase. However, when underway the transition 

to recovery or loss depends on the mission distance, which is generally directly related to time [10]. 

Other applications of Markov models have used the concept of sojourn time to model the time spent in 

each state [15]. At this stage we do not have sufficient information to model the time take for an AUV 

deployment. It is assumed that the operators take as much time as required in each state. 

A. The Markov Chain Model 

The Markov chain model of an AUV deployment process comprises eleven states (X1 to X11), 

corresponding to eleven possible phases of the deployment. The proposed Markov chain is depicted in 

Figure 1; the name of each node is abbreviated to facilitate the model description and subsequent 

analysis. Where faults or incidents can lead to loss we provide real examples, most of which have not 

been documented in the peer reviewed literature. 

The deployment process starts at the initial pre-test state at a deployment location (Dp). This is the 

vehicle embarked onto a ship, or delivered to a launch site. The vehicle is ready to be tested and the 

power is on. A test sequence is carried out, which comprises a set of visual and systems checks. If the 

tests are unsuccessful, the transition is a loop back to this state, implying fault identification and 

rectification before another test is carried out in an attempt to transition to the next state. While some 

may argue that there are prior states that should be considered, for example preparation at base, or 

selection of the operations team, we have assumed that the effects of these factors can be, and have 

been, subsumed into the statistics of the phases listed. This is a simplification, and in part, a necessary 

simplification to enable use of the Markov approach. In reality, selection of the operations team can 

have an impact during all subsequent phases, which cannot be modelled using the Markov approach 

alone. In this case a Bayesian mathematical formulation could be used for updating the transition 

probabilities in light of new observations concerning the experience of the deployment team. 

The next state is the post-test state, ready to launch (Dr). The successful act of taking the vehicle from 

its carrier frame and into the water, be it over the side of a ship or lowered from a quay, for example, 

takes the vehicle to the Overboard state (O). This may be by purpose-built or general-purpose gantry or 
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by hand for small vehicles. Problems can occur in this state necessitating recovery or they can lead to 

damage, for example, due to a fire or explosion in the energy source; although this should be a rare 

occurrence. The Markov chain model recognizes this possibility with the transition from state Dr to a 

state where the vehicle would have to be salvaged (S). From Overboard (O) the vehicle is ready for pre-

dive checks. The vehicle is now floating in the water, as it is common for AUVs to be positively 

buoyant. If the AUV passes all pre-dive checks on the surface, a command is sent to the AUV to start 

diving (Dv). If these checks are not passed, the decision may be made to recover the vehicle (R). 

Operations on the surface next to the deployment platform carry significant risk [1]. There is the 

possibility that the AUV will be lost, for example, if the AUV is caught by the vessel’s propeller, as has 

happened to a Norwegian AUV. During the Diving (Dv) phase some mechanical and communication 

tests may be carried out. New risks emerge, such as from failure of a component that has not been 

called upon until this phase, for example a stern plane actuator whose failure can force the AUV to 

perform an uncontrolled dive, a situation that has lead to temporary loss (L), as happened with 

Autosub2 AUV in the Celtic Sea, off the UK coast. The Markov chain model captures this phenomenon 

with the link Dv -> L.  During the dive (Dv) to the holding/test pattern phase (Sh) the AUV is usually 

within telemetry range, giving the engineers the opportunity, if necessary, to send the ‘abort to surface’ 

signal.  
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Fig. 1.   Markov state space model capturing the sequence of events undertaken during AUV deployment and operation. 

A directional arrow from state i to state j means that the process can move from state i to state j. 

 

The ‘abort to surface’ signal causes the vehicle to release the abort weight; this increases the 

buoyancy of the vehicle, forcing it to come to surface, where recovery is possible. The submerged, 

holding/test pattern (Sh) phase precedes the start of the mission proper.  

Once the vehicle has completed the first dive, the practice with Autosub3 is to set the vehicle in a 

holding or test pattern, while submerged, near the deployment platform while the telemetry is assessed. 

If faults are indicated, the vehicle can be recovered, but with a risk of loss as discussed earlier. All well, 

the vehicle proceeds with its mission, transitioning to an underway state (U). The subsequent states are 

either recovery (R) or loss (L). 

Based on mission experiences with AUVs by the community, the lost (L) state is either permanent, 

for example with Autosub2 under an ice shelf [19], or there is a probability that a lost vehicle may be 

salvaged (S), through a deliberate act, e.g. using an ROV [22], or the vehicle may be found (F), through 

serendipity. The latter may take place many months after the loss, as was the case in 2007 with a UK 

Royal Navy Remus100 found after 10 months at sea. The permanently lost state is shown by the link 

from L to itself. The recovery (R) may not proceed to plan as has been discussed, hence a link to Loss 

(L). Following either Salvage (S) or Found (F) the decision may be to scrap the vehicle as being beyond 

economic repair (Sc), or repair and then reuse, as happened with BAE Systems Merlin. The latter is 

captured with the links to the initial state Dp. The scrapped phase (Sc) is terminal. For each transition 

there is an associated sequence of events or conditions that must be met. A list of the conditions 

associated with each transition is presented in Table I. 
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TABLE I 

TRANSITION PROBABILITIES NOTATION AND CONDITIONS FOR THE MARKOV MODEL PRESENTED IN 
FIGURE 1. 

Notation Conditions for Transition 
p12 Pre-deployment check passed 
p21 Pre-deployment check not passed 
p23 Deployment over-side OK 
p210 Salvaged after passing deployment check 
p34 Pre-mission diving mode entered 
p37 Lost when over-side 
p38 Recovery from over-side  
p45 Pre-mission Holding Pattern entered 
p47 Lost from Diving mode 
p48 Recovery from Diving mode 
p56 Underway mission started 
p57 Lost from Holding Pattern 
p58 Recovery from Holding Pattern 
p67 Lost when underway on mission 
p68 Recovery from underway on mission 
p81 Recovery to deck OK 
p87 Lost on recovery to deck 
p77 Vehicle remains lost 
p79 Vehicle found 
p710 Vehicle salvaged 
p91 Found vehicle repaired and reused 

p1011 Salvaged vehicle scrapped 
p911 Found vehicle scrapped 
p101 Salvaged vehicle repaired and reused 

NOTE: The subscript ij signifies the succinct transition from 
state i to state j. 

The probability of the process going through a sequence of states is computed by manipulation of the 

transition matrix. The transition matrix that corresponds to the Markov chain presented in Figure 1 is 

presented in 3. Only those elements with probabilities set out in Table 1 are non-zero. The 1 for element 

p1111 signifies a terminal state. 
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B. Incorporating transition probabilities 

Having set out a topology for the Markov chain that represents the life cycle of AUV deployments, 

the next stage is to determine the transition probabilities. These could be established through hard 

evidence through the frequentist approach of logging the frequency of occurrence. However, in practice, 

this will rarely be the case and indeed may not necessarily be the best approach. Hard evidence is 

obtained easily for transition probabilities before the vehicle enters the water, such as p11, and p12. 

These are very likely to be probabilities determined overwhelmingly by the vehicle systems alone. In 

contrast, once overboard the transition probabilities are influenced by a large number of other factors. 

For example, the seamanship of the vessel’s crew, experience of the deployment team, weather and sea 

conditions, the operational environment, whether it is coastal, open ocean, under sea ice, or under ice 

shelf. Hence, there is a fundamental choice of whether to populate the matrix with hard evidence 

probabilities applicable only to the set of circumstances appertaining to each event (fault or incident) or 

whether to generalise beyond the specific case. Such a generalisation can be achieved through the 

technique of eliciting expert judgment [23] for the probabilities. It is the approach taken here.  

In a previous risk assessment exercise Brito et al. [16] developed an Autosub3 risk model based on its 

failure and incident history; a total of 63 faults were considered by a panel of experts. Ten successful 

missions were also used in their analysis. This section explains how a part of this data was used to 

populate the transition matrix 3. First, it was imperative to identify, where possible, which failures from 

this dataset were associated with which transition probabilities. We used the failure description to 

identify the phase of the mission in which the failure took place. The detailed result of our assessment is 

presented in Appendix A, and in aggregated form in Table II, where they are indicated as EJ (Group).  

The transition probability p68 is calculated based on the extended Kaplan Meier statistical estimator as 

a function of mission distance as proposed by Griffiths et al. [18]. This is in order to model missions of 

different lengths, and provides a more realistic representation of risk than a fixed probability. This 

formulation for the survival function with range r is given in 4: 
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where P(ei) is the probability judgment of loss from the experts and ni. is the failure index number. The 

P(ei) variable replaces the censor flag used by the original Kaplan Meier formulation [21]. The extended 

Kaplan Meier formulation was used for calculating the transition probability p68 and through the 

Markov condition p67. Table II presents that survival data for open water environment The calculated 

survival distribution depicted in Figure 2 was obtained using the dataset of Table II. 

TABLE II 
PROBABILITIES OF LOSS USED FOR CALCULATING TRANSITION PROBABILITY P68 USING 4. 

Index Code   Distance  
(km) 

P(ei) Index Code  Distance  
(km) 

P(ei) 

31 413 0.2 0.00000 15 391_1 31 0.02620 

30 388_1 0.5 0.01730 14 391_2 31 0.03110 

29 409_1 1.5 0.00678 13 391_3 31 0.00148 

28 396_1 4 0.01220 12 404_3 75 0.02440 

27 400 4 0.0000 11 404_4 75 0.00160 

26 422 4 0.00000 10 417 80 0.00000 

25 393_1 5 0.02610 9 419 82 0.00000 

24 415_2 6 0.04600 8 406_1 104 0.01040 

23 399 7 0.00000 7 406_2 104 0.00382 

22 414 7 0.00000 6 406_4 104 0.02250 

21 401_1 7.5 0.021800 5 403_2 140 0.00882 

20 398_1 8 0.00845 4 403_3 140 0.02350 

19 420 8 0.00000 3 407_2 204 0.03960 

18 410_1 9 0.00695 2 402_2 274 0.04650 

17 421 9 0.00000 1 402_3 274 0.02640 

16 390 10 0.00000     

NOTE: The failure index number is given in columns 1 and 5. 21 failures and 10 
successful missions are considered from when the vehicle was underway. The probability 
judgment corresponds to the linear pool aggregated judgment, EJ(Group). The probability 
judgments are for open water environment. Ten missions that were successful, with no 
failures, are also included in the calculation, P(ei) for these missions is 0. The Code 
expresses mission number and the index number of the fault on that mission, if a fault (see 
Appendix 1). 

 

The distribution shows for example that for a distance of 80km the probability of survival is 0.97 

therefore, p67 = 0.03 and p68 = 0.97. The shape of the survival distribution is similar to that obtained in 

previous analysis of Autosub3 failure history [16], which derived a statistical survival model for four 
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operating scenarios: open water, coastal, sea ice and ice shelf. Two risk models were built for each 

environment, denoted as the optimistic and pessimistic. Considering the open water scenario, for a 

mission distance of 80km, the pessimistic model gave a probability of survival of 0.962, the optimistic 

model [16] gave a probability of survival of 0.992. The transition probability from the reduced dataset 

used here is between the optimistic and pessimistic estimates of previous analyses. 
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Fig. 2.  Kaplan-Meier survival distribution. Source data is present in Table III. 

 

C. Incorporating expert judgment 

Some of the remaining transition probabilities were obtained by an expert judgment elicitation 

exercise that was conducted in private meetings with two senior Autosub3 engineers, each with more 

than 15 years AUV experience, and prior experience in assigning probabilities to support accident 

investigations [19], [20]. Their judgments were aggregated using the linear opinion pool. An equal 

weight was assigned to both experts [23], the aggregated probabilities are shown in Table III, indicated 

as EJ(McP-S). The group of experts (B-G) is formed by the authors of this paper. The first author has 

approximately 1.5 years experience in AUV risk analysis and the second author has approximately 22 

years experience in AUV design, deployment and risk assessment.  
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TABLE III 
TRANSITION PROBABILITIES FOR THE STATE SPACE MODEL 

Fro
m  
state 

Transition 
Stimuli 

To 
Stat

e 

Source data and 
related information 

Transition  
Prob. 

P11 Dp Markov condition 1-p12 Dp 
P12 Dr EJ(McP-S) 0.875 
P21 Dp EJ(McP-S) 0.055 
P23 O EJ(McP-S) 0.94 Dr 
P210 S EJ(McP-S) 0.005 
P33 O EJ(McP-S) 0.0195 
P34 Dv EJ(McP-S) 0.97 
P37 L EJ(McP-S) 0.0015 

O 

P38 R EJ(McP-S) 0.009 
P45 Sh EJ(McP-S) 0.9565 
P47 L EJ(McP-S) 0.0085 Dv 
P48 R EJ(McP-S) 0.035 
P56 U EJ(McP-S) 0.98 
P57 L EJ(McP-S) 0.001 Sh 
P58 R Markov condition 0.019 
P67 L Markov condition 1-p68 U 
P68 R EJ(Group) psurvival 
P77 L Markov condition 1-(p79 +p710) 
P79 F EJ(B-G) 0.33 L 
P710 S EJ(B-G) 0.33 
P81 Dp EJ(McP-S) 0.998 

R 
P87 L EJ(McP-S) 0.002 
P91 Dp EJ(B-G) 0.75 

F 
P911 Sc EJ(B-G) 0.25 
P101 Dp EJ(B-G) 0.7 

S 
P1011 Sc EJ(B-G) 0.3 

Sc P1111 Sc Absorbing state 1 
NOTE: The Markov property states that the sum of the probabilities 
leaving any given state must equal to unity.  If the sum of all 
transitions leaving a state is constant c, where c is lower than one, than 
the probability of the process remaining in the same state in the next 
transition is 1-c.  

IV. TEST CASE – OPEN WATER MISSION 

In this section we show how analysis of the Markov chain can address questions relevant to the risk 

quantification of the entire deployment or parts of a deployment. The results are used to identify 

possible risk mitigation activities. As a test case consider an 80km long mission in open water, with no 

risk mitigation activity carried out at the start of the mission, via the use of a monitoring distance. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) 
< 

14

 
A. Availability 

Availability is a measure of what fraction of those occasions on which a system is needed it is in 

place and working. In the Markov topology set out here, availability is the probability of the operation 

running directly from state Dp to state U, P(Dp → Dr →  O → Dv → Sh → U) = p12·p23·p34·p45·p56,  is 

0.75. As a result, the probability of not completing this sequence is 0.25. This figure is affected by a 

number of factors, such as the vehicle payload and the amount of testing prior to the start of the 

mission. Our experts took such factors in consideration when they assigned the probability transitions. 

In normal conditions the science manager would expect to have a high confidence in the success of this 

sequence of events. However, at present there is no process with the Autosub3 AUV to establish 

whether or not the probability of completing the sequence is sufficiently high to meet users’ 

expectations.  

In contrast, the US military Unmanned Air Vehicle community has set out availability targets for a 

range of vehicles, furthermore actual availability data is available [24]. These, together with the result 

for Autosub3 derived here are shown in Table IV. 

TABLE IV 
COMPARISON OF AUTOSUB3 AVAILABILITY WITH THAT OF THREE US MILITARY UAV SYSTEMS AT DIFFERENT STAGES OF THEIR 

DEVELOPMENT. 

Vehicle Requirement Actual 
Autosub3 n/a 0.75 
Predator RQ-1A (concept 
demonstrator) n/a 0.40 
Predator RQ-1B (early production) 0.80 0.93 

Pioneer RQ-2A (1990-1991) 0.93 0.74 
Pioneer RQ-2B 0.93 0.78 

Hunter RQ-5 (reliability enhanced 
1996-2001) 

0.85 0.98 

Average UAV 0.88 0.77 

 

The Autosub3 availability is slightly lower than the average of the US military UAVs listed; 

considerably below the 0.98 of the Hunter RQ-5, but almost twice that of the Predator RQ-1A when it 

was a concept demonstrator. As Autosub3 is a unique build a comparison with a concept demonstrator 

is not out of place. A reasonable availability target for a unique or low-volume build AUV would be 0.8 

based on these results, which could be achieved through analysis of fault and incident data and remedial 
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engineering work. From this analysis, the transition probability p12 is the lowest probability transition in 

the sequence Dp → Dr →  O → Dv → Sh → U, and is consequently the area most likely to result in 

improvement through a more rigorous testing process An increase of 7% in p12 would raise P(Dp → Dr 

→  O → Dv → Sh → U) to 0.80. 

B. Recovering an AUV 

Recovering the vehicle entails many risks, and is a mission phase for which some insurers require co-

insurance [1]. Understanding and quantifying risk during this phase is therefore important. Once on the 

surface and in range, in the case of Autosub3, a line from the vehicle is grappled and the vehicle 

brought closer to the vessel. Collision with the vessel is one potential risk. The first failure on Autosub3 

mission 403 gives another example of how problems can occur on recovery (Appendix I, Table VI). A 

high sea state can add complications to this phase. For a long range AUV it is not unusual for a mission 

to take 24 hours and for sea conditions to worsen during the mission.  

The Markov formalism also allows us to compute the probability of having to recover the vehicle for 

all the sequences, in actuality, there are two subsets. The first subset comprises those instances where 

there is a need to recover the vehicle given it has reached the preceding state. These are simply single 

elements from Table III, thus the probabilities of needing to recover immediately following phase: 

Overboard = 0.009; Post-dive = 0.035; Holding/test pattern = 0.019; Underway = 0.97. The low 

probability of needing to recover immediately the vehicle is put overboard is understandable, as few, if 

any, further tests will have been made at that stage. Despite the fact that a higher number of tests take 

place during the holding pattern phase, history has shown that failures tend to manifest themselves 

during the diving phase, thus there is a higher probability that the vehicle will be recovered during the 

diving phase than during holding pattern phase. Recovery is most likely after the end of a mission.  

The second subset examines the probability of needing to recover the vehicle over a span of two or 

more states, or via two or more routes. For example, in the question raised in the introduction, the 

operator is keen to know the probability of having to recover a vehicle once overboard if it is not able to 

set out on its mission. That is, what is the probability of reaching R via either of O, Dv or Sh?  
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1. Recovery from Overside? [Dp → Dr →  O → R] = 0.0074; 

2. Recovery from Dive? [Dp → Dr →  O → Dv → R] = 0.0279; 

3. Recovery from holding pattern? [Dp → Dr → O → Dv → Sh → R] = 0.0145; 

4. The probability of having to recover the vehicle following phases O, Dv or Sh is 0.0498. 

C. Surviving the deployment 

Once the vehicle is underway the probability of losing the vehicle is calculated using distance-related 

survival statistics only [7]. However, a mission comprises several non-underway phases and the benefit 

of our approach is that it provides an estimate of the probability of the vehicle surviving each phase of 

the deployment. The successful completion of a mission (failure free mission) results in an increase in 

vehicle reliability, hence the transition probabilities need to be updated. Likewise if a mission presents 

one or more failures, these failures need to be added to the risk model and the transition probabilities 

must also be updated. However, the Markov chain model here presented is static, in that it allows us to 

estimate the risk associated with one mission only. A science campaign usually entails several missions 

[16], hence the model needs to be updated every time a new mission is entered.    

A successful mission corresponds to a direct sequence Dp → Dr →  O → Dv → Sh → U→R →Dr. 

Using the Markov assumption P (Dp → Dr →  O → Dv → Sh → U→R →Dr) = p12·p23·p34 

p45·p56·p68·p81 = 0.72. That is, prior to the start of the on-board testing, the operating calling on the use 

of Autosub3 can expect a 0.72 probability of recovery after a successful mission. This is the ‘trouble-

free’ sequence. Of course, the overall probability of loss is not 1-0.72 or 0.38, as Availability (0.75) is a 

major factor. 

The probability of losing the vehicle immediately following phase: Overboard = 0.0015; Post-dive = 

0.0085; Holding/test pattern = 0.001; Underway = 0.03. 

A key question is, “What is the path that is more likely to lead to the loss of the vehicle? The 

probability for each sequence is presented below: 

1. Loss from Overside? [Dp → Dr →  O → L] = 0.00123. 

2. Loss from Dive? [Dp → Dr →  O → Dv → L] = 0.00678. 
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3. Loss from Holding? [Dp → Dr →  O → Dv → Sh → L] =0.000763. 

4. Loss from Underway? [Dp → Dr →  O → Dv → Sh → U→ L] = 0.0224 (for an 80km mission). 

Apart from when the vehicle is underway, in open water operations the most significant risk of loss is 

when the vehicle is in diving mode.  

D. Decommissioning the vehicle and estimated working life 

Scrapping the vehicle is a possibility considered by the AUV operators following the salvage or 

finding of the vehicle. Scrapping or recycling can result in additional costs and the probability of this 

happening can be estimated using the Markov approach. This state can be reached from any of seven 

starting points, Table V. 

TABLE V 
PROBABILITIES OF NEEDING TO SCRAP THE AUV GIVEN THAT THE VEHICLE WAS 

PREVIOUSLY IN STATES DR, O, DV, SH, U, L OR R. 

From state P(Scrapped) 

Dr 0.0050 

O 0.00012(S)  – 0.00015(F) 

Dv 0.00084 (S) – 0.00070 (F) 

Sh 0.000545 (S) – 0.000453 (F) 

U 0.00297 (S) – 0.00248 (F) 

L 0.099 (S) – 0.0825 (F) 

R 0.000198 (S) – 0.000165 (F) 
NOTE: The superscript (S) indicates a path following 
Salvage and superscript (F) indicates a path following 
vehicle Found. 

 

There is 0.1815 (0.099 + 0.0825) probability of having to scrap the vehicle given that the vehicle has 

been lost. This comes as no surprise. More interestingly is that even though the path [Dr -> Sc] is 

shorter than the path [U -> Sc]. The probability of having to scrap the vehicle is lower if the deployment 

is at state Dr; the probability of having to scrap the vehicle given that the deployment is at state U is 

0.00545 (0.00297 + 0.00248). 

In probability theory, Markov chains are typically studied by considering special types of Markov 

chains, these are defined according to their topology. The node state Sc (vehicle scrapped) is denoted in 

the literature as an absorbing state. This is due to the fact that it is not possible to jump from state Sc to 
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any other state, all arrows are converging to state Sc, there are no arrows leaving state Sc. A Markov 

chain that contains one or more absorbing nodes is called an absorbing Markov chain [14]. The 

probability of reaching an absorbing state will always increase with the number of transitions until the 

process is totally absorbed by this state. In practical terms, and with respect to the model presented in 

this paper, the number of transitions to total absorption is an indication of the likely working life of the 

vehicle. This estimate is presented in the fundamental matrix of the absorbing Markov chain. The 

process to follow to derive the fundamental matrix is presented in the literature [14]. The fundamental 

matrix is presented in 5, where values are approximated to the three most significant digits. 
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

















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2.4    1.1    52.3   3.4   50.5    51.5   53.8   55.5   57.9   66.2 

1.5    2.2    56.0   3.6   54.1    55.2   57.7   59.5   62.0   70.9 

2.0   1.6     75.7   4.8   72.0    73.5   76.9   79.3   82.7   94.5 

2.0   1.6     54.1   5.0   52.3    53.3   55.7   57.5   60.0   68.5 

2.0   1.6    75.0   4.8    72.5   72.9   76.2   78.6   82.0   93.7 

2.0   1.6    75.0   4.8    72.4   73.9   76.2   78.6   82.0   93.7 

2.0   1.6    74.8   4.8    72.3   73.7    77.1   78.4   81.8   93.5 

2.0   1.6    74.8   4.8    72.2   73.7   77.0   79.4   81.8   93.5 

2.0    1.6    74.7   4.8    72.1   73.6   76.9   79.3   82.7   93.4 

2.0    1.6    74.7   4.8    72.1   73.6   76.9   79.3   82.7   94.5 

N
    5. 

 

The first line in the fundamental matrix informs us that assuming that the process starts in state 1, on 

average the process would pass 94.5 times in state 1, 82.7 times in state 2, 79.3 times in state 3 and so 

on for the remaining states, before being absorbed by state Sc. In this case, using the same vehicle, with 

no maintenance or replacement of components, the vehicle would be able to carry out 72 underway 

missions before it ended up scrapped. At first, this figure may seem pessimistic, after all Autosub2 was 

lost after 216 successful missions. To assess the significance of this estimate, one should consider 

Autosub3 fault history to date. The risk model presented in this paper has been developed based on 

operational history supplied from Autosub3 missions 384 to 422. Autosub3 has completed 12 more 

missions since mission 422, bringing the total number of missions to 50 (to February 2009). Half way 

through mission 431, Autosub3 collided with the ice shelf, whilst under the Pine Island Bay Glacier, 

Antarctica. This high impact fault caused structural damage to the vehicle. Autosub3 survived mission 
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431 and managed to complete two more missions under ice shelf. However following the incident that 

occurred during mission 431, a group of experts from NOCS, with a combined experience of 55 years, 

were asked to assign a probability of losing the vehicle given that the same fault emerges under the 

same conditions. The aggregated probability judgment was 0.58; Autosub3 was fortunate to have 

survived its 47th mission, mission 431 [25]. Thus, in light of this recent event, the estimate of 72 

underway missions before being scrapped appears to be more plausible. 

 

V. DISCUSSION 

The proposed Markov model provides a useful approach for estimating the risks during phases in an 

AUV deployment. Its graphical structure injects transparency into the AUV deployment process that 

facilitates process criticism and improvement for each phase. In the motivating example presented, the 

model transition probabilities were based on expert judgments and statistical survival analysis of 

Autosub3 fault and incident history. Examples of how the model can be used to address questions 

concerning relative and absolute risk relevant to the owner, managers, and engineers have been 

presented. Analysis showed that the model produced plausible answers to all these queries. 

It would be feasible to add time as a covariate in this analysis. Time is often at a premium at sea, and 

questions over how long vehicle tests may take, or how long might recovery take after a failed 

deployment, are not uncommon. Sojourn time at each state has not been modelled here, the data simply 

did not exist.  Future work seeking to address this problem would need to draw upon more detailed 

record keeping. There is a case for a common form of structured record keeping for AUV deployments, 

informed by this type of phase topology, so that individual and comparative statistics can be obtained. 

The integration of the Markov model with distance-based statistical survival models and the use of 

such models to estimate the risk of a science mission is novel, and as shown, this approach can provide 

more detailed risk estimates.  

Verification of the absolute and relative probabilities is difficult, the first stage, though feedback of 

the results to those from whom judgments have been elicited, and subsequent revision to probability 
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estimates, was undertaken in this work. A second stage might compare the results with one AUV to the 

results from another type. For those phases where a frequentist approach would be valid, direct 

comparison of judgments and recorded frequency would be informative. Arguably, the results obtained 

with a previous Autosub3 statistical model [16] cannot be used to validate the results produced by this 

Markov chain model. Only a fraction of the failures considered previously were incorporated for the 

underway aspect of the Markov model, furthermore additional expert judgments were needed to 

populate the non-underway transition probabilities.  

Lastly, the vehicle’s configuration is likely to introduce constraints on the reliability and subsequent 

changes to mission risk. Maturity of the vehicle’s configuration will also influence mission risk. This 

phenomenon is not captured in the proposed approach. It is clear from UAV reliability analysis that risk 

may decrease markedly between a concept demonstrator and a production vehicle [24]. Future work 

should seek to model how different AUV configurations and maturity may influence the operational 

risk.  
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Appendix A 

TABLE VI 
TABLE OF MISSIONS, DISTANCES, FAULTS WITH COMMENTS AND STATE CLASSIFICATIONS 

No. Distance 
km 

Fault/incident description Transition 

384 1.5 Mission aborted (to surface) due to network failure. (Much) later tests showed general 
problem with the harnesses (bad crimp joints).  

P47 

  Loop of recovery line came out from storage slot, long enough to tangle propeller. P87 
385 15.2 Autosub headed off in an uncontrolled way, due to a side effect of the removal of the 

upwards-looking ADCP. 
P57 

386 26 GPS antenna failed at end of mission. P87 
387 27.2 Homing failed, and the vehicle headed off in an uncontrolled direction. Mission was 

stopped by acoustic command. Problem was due to (a) the uncalibrated receiver array, 
and (b) a network message (“homing lost”) being lost on the network.  

P87 

388 0.5 Aborted after 4 minutes post dive, due to network failure. Logger data showed long 
gaps, up to 60s, across all data from all nodes, suggesting logger problem. 

P67 

  Depth control showed instability. +/- 1m oscillation due to incorrect configuration gain 
setting. 

P87 

389 3 Vehicle went into homing mode, just before dive and headed north. Vehicle mission 
stopped by acoustic command.  It was fortunate that the ship-side acoustics 
configuration allowed the ship to steam at 9kt (faster rather than 6kt with the towfish) 
and catch the AUV. 

P57 

  Separately, homing mode not exited after 2 minutes, as expected. It will continue on 
last-determined heading indefinitely – a Mission Control configuration error. 

P87 

  Problem with deck side of acoustic telemetry receiver front end, unrelated to vehicle 
systems. 

P87 

391 31 ADCP down range limited to 360m, reduced accuracy of navigation. P67 
  GPS antenna flooded. No fix at end point of mission. P67 
  EM2000 swath sonar stopped logging during mission. P67 
392 32 As consequence of GPS failure on M391, AUV ended up 700m N and 250m E of 

expected end position. 
P87 

393 5 Acoustic telemetry giving poor ranges and no acoustic telemetry. P67 
394 3 Jack-in-the-box recovery float came out, wrapping its line around the propeller, 

jamming it, and stopping the mission. Caused severe problems in recovery, some 
damage to upper rudder frame, sub-frame and GPS antenna. Required boat to be 
launched. 

P87 

395 8 Jack-in-the-box line came out, wrapped around the propulsion motor and jammed. P87 
396 4 Current estimation did not work, because minimum time between fixes for current to 

be estimated had been set to 15min; leg time was only 10min. Mission stopped and 
restarted with configurable time set to 5min. 

P67 

397 4 Main lifting lines became loose, could have jammed motor. P87 
398 8 Operators ended mission prematurely, they believed the AUV was missing waypoints. 

In fact, a couple of waypoints had been positioned incorrectly. 
P67 
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TABLE VI(cont.) 

No. Distance 
km 

Fault/incident description Transition

401 7.5 Configuration mistake; ADCP up configured as down- looking ADCP causing 
navigation problems through tracking sea surface as reference. This data was very 
noisy and put vehicle navigation out by a factor of 1.5. 

P67 

  Damaged on recovery, “moderately serious” to sternplane, shaft bent. P87 
402 274 Stern Plane stuck up during attempt to dive, 2d 20h into mission. Stern plane actuator 

had flooded.   
P37 

  Abort due to network failure. Abort release could not communicate with depth 
control node for 403s. Possibly side-effect of actuator or motor problems. 

P67 

  Motor windings had resistance of 330 ohm to case. Propeller speed dropping off 
gradually during a dive 

P67 

  Only one position fix from tail mounted ARGOS transmitter. P87 
  GPS antenna damaged on recovery. P87 
403 140 Recovery light line was wrapped around the propeller on surface. Flaps covering the 

main recovery lines (and where the light line was towed) were open.  
P87 

  Took over 1 hour to get GPS fix at final waypoint. P67 
  Propeller speed showed same problem as m402. Subsequent testing of motor with 

Megger showed resistance of a few kohm between windings. 
P67 

404 75 Pre-launch, abort weight could not be loaded successfully due to distorted keeper. “If 
not spotted, could have dropped out during mission”, considered low probability of 
distortion and not checked.  

P21 

  Pre-launch, potential short circuit in motor controller that could stop motor. P21 
  Propeller speed showed same problem as on m402 and 403. P21 
  CTD drop-out of 1 hour (shorter drop-outs noted in previous missions). P67 
  M404 recovery was complicated when lifting lines and streaming line became trapped 

on the rudder (probably stuck on the Bolen where the two were attached).  Recovery 
from the situation required the trapped lifting lines grappled astern of the ship, 
attached to the gantry lines, and the caught end cut. 

P87 

  The forward sternplane was lost due to lifting line trapping between the fin and its 
flap on recovery. 

P87 

  The acoustic telemetry nose transducer was damaged due to collision with the ship. P87 
405 2.5 Fault found pre-launch, LXT tracking transducer had leaked water – replaced.  P21 
  Fault found pre-launch, starboard lower rudder and sternplane loose.  P21 
406 104 AUV ran slower than expected and speed dropped off during mission, due to motor 

problem. 
P67 

  Current spikes of 3A and voltage drops in first part of mission. P67 
  Propulsion motor failed 500V Megger on recovery on windings to case. P87 
  One battery pack out of four showed intermittent connection. P67 
  Acosutci telemetry unit gave no replies. P87 
  On surfacing first GPS fix was 1.2km out. P87 
  Spikes in indicated motor rpm P87 
407 204 Acoustic telemetry unit gave no replies at all – no tracking or telemetry. P57 
  Noise spikes on both channels of turbulence probe data. P67 
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Table VI(cont.) 
No. Distance 

km 
Fault/incident description Trans

ition 
408 302.5 Propulsion motor felt rough when turned by hand – bearings replaced before 

deployment. 
P21 

  Aborted at 50m due to overdepth as no depth mode commanded. Unless compounded 
by another problem, this would show itself immediately on first dive. 

P36 

  No telemetry from Acoustic telemetry unit. P57 
  Difficulty stopping Autosub on surface via radio command. Separate problems with the 

two WiFi access points. 
P57 

  Still spikes on motor rpm that need investigating. P57 
409 1.5 No acoustic  telemetry or transponding. LXT ship side USBL receiver had leaked 

during mission giving poor bearings to sub, replaced with spare. 
P57 

410 9 No acoustic  telemetry or transponding. P57 
411 128 No GPS fix at the end of the mission. GPS antenna bulkhead had water inside and had 

flooded. 
P87 

412 270 No GPS fix at end of mission. After next mission, GPS fixes started coming in after 
vehicle power up/power down; perhaps problem was due to initialisation with receiver 
– and not this time the antenna. 

P87 

  Problem at start for holding pattern. Holding pattern timed out due to programming 
mistake. 

P57 

415 6 Prior to dive, checks showed reduced torque on rudder actuator. Actuator replaced with 
new one - first use for this new design of actuator motor and gearbox. However, AUV 
spent most of mission “stuck” going around in circles at depth due to rudder actuator 
fault. The new actuator overheated, melting wires internally, the motor seized, and 
internal to the main pressure case, the power filter overheated. Some of the damage 
may have been caused by an excessive current limit (3A); correct setting was 0.3A. But 
this does not explain high motor current. Possible damage during testing when motor 
stalled on end stop? Compounded by wiring to motor held tightly to case with cable 
ties, and worse, covered with tape (acting as an insulator). Wires were not high 
temperature rated. 

P57 

  Three harness connectors failed due to leakage, affecting payload systems: EM2000 
tube, ADCP_down, and Seabird CTD. Despite connector problems the system worked 
without glitches and failed only when the power pins had burned completely through 
on the connector feeding power to the abort system 

P67 

  Although it worked properly at the start of the mission at a range of 1200m, the 
acoustic telemetry stopped working at the end of mission. Hence could not stop the 
mission acoustically when needed. 

P57 

416 18 Not possible to communicate with vehicle at 1180m depth; holding pattern caused a 
timeout, and AUV surfaced. Acoustic telemetry max range was 500m for digital data. 

P57 

418 15 When homing was stopped deliberately after 10 min, the AUV did not go into a “stay 
here” mode. Rather it continued on the same heading; stopped by acoustic command 
500m from shore. Cause was incorrect configuration of mission exception for homing. 
Default in campaign configuration script was not set due to inexperience with new 
configuration tools. 

P87 
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