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 1 

Abstract 2 

 3 

Soil moisture is a fundamental hydrological state variable and its spatial pattern is 4 

important for understanding hydrological processes. Determination of catchment-scale soil 5 

moisture status and distribution at intermediate scales (0.1-1 km
2
) is challenging. Primarily 6 

because multi-point measurements using sensors are often impractical, while remote sensing 7 

resolution is often too coarse. Geophysical methods, e.g. electromagnetic induction (EMI), offer 8 

potential for bridging this gap. Our objective was to test the use of time-lapse EMI surveys to 9 

separate the influences of ‗static‘ soil variables, e.g. texture, from ‗dynamic‘, e.g. soil moisture. 10 

A novel differencing approach is proposed for estimating soil moisture, subtracting the electrical 11 

conductivity (ECa) of the driest seasonal soil map from the ECa collected during subsequent 12 

wetting. By doing this, and comparing results with TDR determined soil moisture, we improve 13 

the correlation from r
2
 = 0.28 to r

2
 = 0.48. ECa measurements are observed to be correlated in 14 

time (r
2
 >0.7), but fall into two distinct groups, corresponding to times before and after the onset 15 

of stream flow, supporting the concept of preferred soil moisture states. Catchment wetness 16 

index predicts areas of convergence resulting in overland flow and stream flow. However, the 17 

spatial pattern of soil moisture does not mirror the wetness index, as others have found.  We 18 

contend that the use of time-lapse imaging provides important insight into the distribution and 19 

dynamics of catchment-scale soil moisture, but acknowledge its limitations of requiring moisture 20 

dependent contrast of ECa, which will not occur in some soils. 21 

     22 
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Introduction 1 

 2 

Soil moisture controls the structure, function and diversity of vegetation (Rodriguez-3 

Iturbe et al., 1999); it also controls the partitioning of precipitation between infiltration and 4 

runoff which in turn affects stream flow and soil erosion (Loague, 1992). There remains distinct 5 

interest in hydrology to be able to determine antecedent catchment scale soil moisture to help 6 

calibrate rainfall-runoff simulations, (e.g. Stephenson and Freeze, 1974; Wilson et al., 2005). At 7 

the sample scale the soil moisture influences both soil physical behavior, such as mechanical 8 

strength, temperature and oxygen levels, and soil biogeochemical behavior, by exerting control 9 

over microbial activity, which controls processes such as respiration, CO2 efflux, and 10 

nitrification (Schjonning et al., 2003). Patterns of soil moisture are intimately linked with the 11 

distribution of soil types and vegetation, and in turn with the landscape and topography (Wilson 12 

et al., 2005; Lin et al., 2006). Recent interest and advances in describing soil moisture have 13 

resulted in a number of recent reviews on different aspects including ecohydrology (Rodriguez-14 

Iturbe et al., 1999), climate (Seneviratne et al., 2010), vadose zone hydrology (Vereecken et al., 15 

2008), scaling (Western et al., 2002) and measurement (Robinson et al., 2008a). Much of this 16 

literature, synthesized, points to an intermediate scale measurement gap which impedes a fuller 17 

understanding of catchment processes. Due to this lack of reliable soil moisture data; Western et 18 

al. (1999) stated, ―Point values are notoriously poor in identifying spatial organization.  19 

Williams (1988) and Schmugge and Jackson (1996), among others, point out that “the apparent 20 

randomness sometimes observed for hydrologic variables is largely a consequence of using point 21 

measurements. What is needed are high-resolution observations of soil moisture patterns based 22 

on a large number of point samples.‖  23 

Determining moisture patterns and response at catchment scales (0.1-1 km
2
) is a major 24 

measurement challenge, that is often too large for point-measurement using sensors such as time 25 

domain reflectometry (TDR) (Robinson et al., 2003), but too small for discrimination using 26 

remote sensing (Engman, 1995). At small scales (<10 ha) point sensors such as TDR have been 27 

used to determine spatial patterns of soil moisture (Wraith et al., 2005; Western and Grayson, 28 

1998), however measurements can be time consuming and impractical, in hard or stony soils, or 29 

as the spatial scale increases. In addition, small support volumes (Ferré et al., 1998) tend to make 30 

measurements less appealing for catchment application; we contend that many point sensors 31 
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capture too small a sample volume of moisture measurement to be most pertinent to catchment 1 

scale hydrology. Remote sensing is often used at the sub-watershed scale (1–80 km
2
), but the 2 

resolution is too coarse for catchment scale, is surface constrained (~0-5cm) when moist, and 3 

often impractical in complex undulating terrain with a dense canopy. Obtaining accurate 4 

catchment scale soil moisture spatial estimates or at least changes in soil moisture, with 5 

sufficient temporal resolution remains both a logistical and measurement challenge (Robinson et 6 

al., 2008a). 7 

Alternative approaches to bridging this divide have been proposed, one is to use networks 8 

of sensors offering high temporal resolution with reasonable spatial coverage (Cardell-Oliver et 9 

al., 2005; Bogena et al., 2007), while another is to utilize non-invasive geophysical methods 10 

(Rubin and Hubbard, 2006). Geophysical methods have been used extensively for groundwater 11 

investigation (Dobecki and Romig, 1985), but a suite of electromagnetic methods offer real 12 

opportunity for advancing the hydrological understanding at the watershed scale (Robinson et al., 13 

2008b). Ground penetrating radar GPR, has been tested and applied successfully at the field / 14 

catchment scale (Huisman et al., 2003). However, GPR has limitations, not working well in clay 15 

or electrically conductive soils, contact issues in dense shrub, as well as requiring more 16 

sophisticated data interpretation. Electromagnetic induction (EMI), is an alternative non-invasive 17 

technique which measures bulk soil electrical conductivity (ECa) (Hendrickx and Kachanoski, 18 

2002), with a large support volume (~1 m
3
) making it particularly attractive for catchment scale 19 

studies. Although non-invasive geophysical methods are relatively fast for mobile measurements, 20 

all geophysical methods tend to require more extensive calibration than point sensors, either 21 

because of changing support volumes, or because they measure properties that are also 22 

influenced by other environmental variables. 23 

At small scales, e.g. 1D profiles, dielectric measurements such as TDR are favored over 24 

electrical conductivity measurements because they are less sensitive to texture and temperature 25 

(Friedman, 2005; Robinson et al., 2003). However, the ability of electrical measurements to 26 

capture high temporal and spatial resolution, 2-D profiles, (Michot et al., 2003, Samouelian et 27 

al., 2005) with minimum soil invasion has renewed interest in their application to hydrology. 28 

Recently researchers have begun to consider EMI's utility for determining water content, and 29 

determining soil and hill-slope hydrological processes (Kachanoski and de Jong, 1988; Sheets 30 

and Hendrickx, 1995; Sherlock and McDonnell, 2003; Huth and Poulton, 2007; Robinson et al., 31 
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2008c; Abdu et al., 2008; Tromp-van Meerveld and McDonnell, 2009; Robinson et al., 2009). A 1 

firm understanding of soil properties affecting electromagnetic field behavior is helpful in 2 

understanding when EMI can be applied, as it is not suitable for all circumstances. We have 3 

shown previously that EMI surveys are of use in imaging catchment scale soil textural spatial 4 

patterns where the salinity of the soil solution extract electrical conductivity, (ECe) is not a major 5 

contributor to the ECa (Abdu et al, 2008). In order to map texture, an electrical contrast is 6 

required with differing particle size. EMI responds to the quantity of ions in the soil, so clays that 7 

adsorb more ions on their surfaces, and have higher surface areas, compared to sands and silts 8 

give greater responses. This is exploited to determine texture, but it is determined by the clay 9 

mineralogy; soil with 2:1 smectite or illite clays tend to contrast well with silica sands, but 1:1 10 

kaolinites in general do not, given their low ion adsorption.  11 

EMI measurements combine sufficient spacing, extent and support (i.e. scale triplet, 12 

Blöschl and Grayson, 2000) to capture the small and large scale variability of soil properties 13 

across catchments. EMI-based ECa measurements have been used by researchers attempting to 14 

infer different soil properties, soil ECa is related to texture, moisture, soil water electrical 15 

conductivity (ECw), soil depth and temperature (Friedman, 2005) and has often been used in soil 16 

mapping by correlating signal response with soil variables of interest (Hendrickx and 17 

Kachanoski, 2002; Corwin and Lesch. 2003; Lesch et al., 2005). Although the measurement 18 

response varies with other variables, it does no-more-so than other landscape scale measurement 19 

techniques used for determining moisture such as, active microwave remote sensing which 20 

depends on dielectric contrast, surface roughness, layering, vegetation, soil wetness dependent 21 

support volume, temperature, and salinity etc. Careful measurement application with EMI can be 22 

used to maximize the response of some variables and minimize others. Determining the best 23 

ways to do this is an important area of EMI research. Some of the more tested applications 24 

include: soil salinity estimation (Lesch et al., 2005), estimating claypan depth (Doolittle et al., 25 

1994); inferring topsoil depth in claypan soils (Sudduth et al., 2001); producing field scale 26 

(Triantafilis and Lesch, 2005), and regional scale (Harvey and Morgan, 2009) textural maps, and 27 

delineation of soil classification zones (Vitharana et, al., 2008). All these applications to obtain 28 

‗static‘ properties tend to utilize single EMI response surfaces, snapshots of ECa. However, 29 

researchers have begun to exploit time-lapse imaging where consecutive collection the soil ECa 30 

response at different times in the same location can start to be used to differentiate between the 31 
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contributions of the constant or ‗static‘ components of the soil, like particle size distribution, 1 

from the more dynamic ones like wetting patterns (Robinson et al., 2009; Besson et al., 2010). 2 

Despite the utility of EMI data for visualizing soil spatial variability, time-lapse imaging offers 3 

the potential to go beyond pattern recognition to obtain quantitative estimates of soil moisture 4 

change. 5 

Therefore, the objectives of this research were to 1) identify soil spatial variability and 6 

wetting patterns in a catchment by collecting time-lapse EMI data, 2) to estimate catchment 7 

textural patterns, as related to soil hygroscopic water, by analyzing wet and dry ECa response and 8 

infer optimal correlation, and 3) to use an electrical model to determine moisture content from 9 

direct estimation using TDR, and contrast this with a novel time-lapse differencing calibration 10 

approach. 11 

 12 

Materials and methods 13 

 14 

Field site 15 

 Our field site was located on the Stanford University Foothills, academic reserve, which 16 

serves as a protected Mediterranean type ecological area at the base of the Santa Cruz 17 

Mountains. The reserve is a mixed oak-grass savanna on rolling hills between 60 and 140 m in 18 

elevation. Up until the 1980's the location had been grazed by cattle for the previous 50 yrs. 19 

Research indicated that the age distribution of the trees was highly skewed, and that only a small 20 

number of seedlings were surviving past their 10th year (Zebroski and McBride, 1983). By the 21 

end of the 1980's approximately half the reserve had been closed to cattle grazing including our 22 

study area. We chose an area largely unaffected by anthropogenic activity since the cessation of 23 

grazing. The woodland on the reserve is dominated by oak, including the evergreen coast live 24 

oak (Quercus agrifolia), the deciduous valley oak (Quercus lobata) and blue oak (Quercus 25 

douglasii) with some California buckeye (Aesculus californica). The savanna is located on soil 26 

types loosely classified as loams, clays and stony clays (Schwan et al., 1997).  27 

 Our field site was towards the SE corner of the reserve, in a small catchment ~ 4ha 28 

(Figure 1). The catchment drops from ~120 m at its highest elevation point to 76 m where it joins 29 

with another small catchment. The site is appealing from the soils perspective as the parent 30 

material splits the site roughly in half, with the upper portion of the catchment on basalt (Tpm, 31 
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Page Mill Basalt), and the mid to lower portion of the catchments being on 1 

sedimentary/sandstone formations (Tw, Whiskey Hill Formation; QTsc, Santa Clara Formation; 2 

Tlad, Ladera Sandstone) (Brabb et al., 2000); this results in a gradation of texture from the top of 3 

the catchment to the bottom from clay to sandy loam. No formal soil survey has been conducted 4 

on this site. However, soils were sampled and soil hygroscopic water content determined in 5 

combination with texture-by-feel. These analyses indicated the upper portion of the catchment 6 

was dominated by clay and clay loams, grading into sandy loams on the sandstone spurs, and 7 

transitioning to loams in the lower portion of the catchment, where erosion and deposition has 8 

mixed the two materials. In addition, we also mapped the location of rock outcrops using the 9 

GPS which serve to better define the location of the boundary between the basalt and the 10 

sandstone and hence the soil type boundary.   11 

 The climate of this area is Mediterranean with hot dry summers and cool wet winters 12 

with 40 cm average annual rainfall, the majority of which falls between September and April and 13 

a potential evaporation of 120 cm. Weather data was obtained from a nearby weather station, 14 

located at the Jasper Ridge reserve. Rainfall patterns during the study were typical for this area, 15 

with a dry summer followed by precipitation events increasing in frequency and intensity as the 16 

fall progressed into the winter.  17 

   18 

EMI equipment and measurement 19 

In non-saline soils the EMI signal is related to texture, moisture, solution electrical 20 

conductivity (ECe) and soil depth (Friedman, 2005). In non-saline soils we can assume that the 21 

moisture is the dynamic phase, changing with precipitation and evaporation, whereas the other 22 

properties are essentially ‗static‘. By adopting a time-lapse imaging approach we can try to tease 23 

apart the ‗static‘ and ‗dynamic‘ properties of the soil.  24 

 EMI sensors are ideally suited to obtaining measurements in rugged terrain (Abdu et al., 25 

2008). The instrument measures non-invasively while suspended over the soil (McNeill, 1980). 26 

The 1.4 m long instrument has a transmitter coil at one end and a receiver coil at the other end. 27 

Magnetic field loops are generated by the transmitter and penetrate into the soil to a depth 28 

determined by the coil spacing (Callegary et al., 2007). We used a Dualem 1-S (Dualem.com, 29 

Milton, ON, Canada) with the coils approximately 1 m apart. This means that 70% of the signal 30 

response will be integrated over a depth of 1.5 m for the coils in the vertical orientation and 0.5 31 
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m for the coils in the horizontal orientation (Abdu et al., 2007), giving the instrument a sensing 1 

depth equivalent to a pedon in terms of scale. Callegary et al. (2007) have shown that in soils 2 

with conductivity that range up to 100 mS m
-1

 the depth of exploration (DOE) is attenuated to 3 

less than 1 m, vertically, and is perhaps 40 cm for the horizontal orientation. The horizontal 4 

orientation is strongly weighted to the surface and we used this data in our research. The primary 5 

magnetic field creates current loops in the soil, which in turn induce a secondary magnetic field. 6 

The receiver coil measures both the primary and secondary magnetic fields. Therefore the ECa 7 

can be determined from the ratio of the primary and secondary magnetic fields under the 8 

assumption of low-induction numbers (McNeill, 1980). The Dualem 1-S is preferred for this 9 

style of work as it doesn‘t require manual calibration and is sensitive to low bulk electrical 10 

conductivity soils (Abdu et al., 2007).  11 

 The Dualem-1S was used to collect geo-referenced soil ECa measurements non-12 

invasively over a 6 month period between Sept 2007 and February 2008. The georeferenced ECa 13 

data was acquired using a handheld geographic information system (HGIS, StarPal Inc., Fort 14 

Collins, CO)  program installed on an Allegro handheld field computer (Juniper Systems, Logan, 15 

UT). The field computer interfaced with the Dualem and a GPS with the HGIS software 16 

managing the data acquisition of position and ECa measurement. The GPS used was a Holux 17 

GPSlim 240 (Holux Technology Inc., Hsinchu, Taiwan) with a Sirf III chip set. The advantage of 18 

this type of GPS is the sensitivity, designed for urban canyons; the GPS operates well under tree 19 

canopies, enabling spatial measurement in these savanna ecosystems. GPS data was collected in 20 

Latitude and Longitude format using the WGS84 reference, which were later converted to UTM 21 

coordinates using spreadsheet software (Dutch, 2010).   22 

We conducted 9 surveys across a 4 ha field site, over a period of six months, during 23 

which time we followed the catchments wetting after the dry Mediterranean summer. EMI 24 

survey was conducted by traversing the catchment following a contouring pattern; each survey 25 

collected about 4000 measurement points over several hours. Surveys were carried out over a 26 

range of soil water contents completely dry following summer, to soil saturation and the 27 

presence of overland flow. The instrument was carried at a height of approximately 10 cm above 28 

the ground surface during mapping.   29 

   30 

 31 
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TDR equipment and measurement 1 

 TDR has become a standard method for the measurement of soil moisture. The TDR 2 

technique (Robinson et al., 2003) was used in a mobile configuration using a Campbell TDR 100 3 

(Campbell Scientific Inc., Logan, UT). The TDR device was connected to a data logger and 4 

measurement controlled by a switch, in addition a handheld GPS with Sirf III chipset was used to 5 

collect location data for each measurement. The TDR probe used for measurement had 3 rods 6 

and was 15 cm long. It was mounted on a handle, like that of a spade, so it could be routinely 7 

inserted into the ground vertically. A practical consideration for the use of TDR in the mobile 8 

mode is the soil hardness. In dry or rocky soils measurements are not feasible for routine data 9 

collection. We found that following the dry summer the soils were too hard for routine TDR 10 

probe insertion. We had to wait until the soil wetted thoroughly, in January/February before we 11 

could make measurements. This is a real limitation for the use of handheld TDR or other 12 

insertion sensors in hard soils. Measurements were made on Feb 28, 2008 following the 13 

measurement path of the EMI survey carried out at the same time. Ninety TDR measurements 14 

were collected in the time span of about four hours, about twice the time for the EMI surveys 15 

(Figure 1). Water content was estimated using the standard Topp et al., (1980) calibration 16 

equation and ECa was determined following calibration of the probe in solutions.  17 

  18 

Soil sampling 19 

 TDR estimates water content directly from the dielectric measurement, where as ECa 20 

estimation of water content requires knowledge of the soil porosity and solution electrical 21 

conductivity. We estimated the areal mean ECe and porosity from a set of soil measurements 22 

from across the catchment. We adopted a random sampling design and collected 64 soil samples 23 

which were analyzed for solution ECw using a 2:1 dilution, ECe was estimated from this by 24 

multiplying the result by 3.25 which is interpolated from dilutions (Landon, 1991). Bulk density 25 

was measured to 20 cm using a standard volumetric auger method, with the soil samples dried at 26 

105 
o
C to determine the solid mass (Gee and Bauder, 1986). We also used these samples to 27 

determine the hygroscopic water content at 50% relative humidity as an indicator of clay content 28 

spatial distribution.       29 

 30 

Ground conductivity modeling and geostatistics 31 
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 Electrical conductivity measurements applied to the determination of ECa are reviewed in 1 

(Freeland, 1989). The ability of electrical geophysical methods to collect spatial data, such as DC 2 

resistivity and electromagnetic induction (EMI) that are minimally- or non-invasive, are leading 3 

to renewed interest in determining VWC using electrical conductivity. An important aspect of 4 

moisture retrieval from electrical methods is the need for calibration. A number of models have 5 

been presented to determine the bulk soil electrical conductivity as a function of soil parameters. 6 

Empirical models include those based on ECa measurements in rock (Archie, 1942) and those 7 

produced for saline soils (Rhoades et al., 1989). A more physically based approach was proposed 8 

by Mualem and Friedman, (1991) which was based on the water release characteristics of the 9 

soil. This resulted in a simple model requiring the ECw, moisture content and porosity to estimate 10 

the ECa. Given the small number of parameters required to determine ECa, and conversely 11 

retrieve soil moisture we adopted this model for the interpretation of our data. The model can be 12 

simplified to: 13 

 14 

5.25.1
)/( satsatwa ECEC      (1) 15 

 16 

where θsat is the saturated water content. This model reduces to θsat being raised to an exponent of 17 

1.5 for saturated soil. Equation (1) was found to describe ECa in a wide range of coarse and 18 

stable structured soils. Adding the influence of surface conductivity ECs various authors 19 

(Friedman, 2005; Nadler, 2005) have suggested a general formulation of Archie‘s law (Archie, 20 

1942) which can be extended to unsaturated soil (Telford et al., 1990), however we chose not to 21 

follow this line because there is little information on the expected values for surface 22 

conductivity, and this essentially adds further fitting parameters to the modeling.  23 

A novel aspect to our approach of applying the ECa model was to use a differencing 24 

method to obtain ECa values on which to apply the model. Soil texture variability will add a 25 

‗surface‘ conductivity component to the data to varying degrees as soil texture alters around the 26 

catchment. Rather than try to estimate this through collecting texture samples, we made an 27 

assumption that this textural variation and surface conductivity contribution could be minimized 28 

by assuming that this was equivalent to ECa in dry soil. In order to estimate the water content we 29 

therefore subtracted the interpolated measurements for the Sept 28 mapping from all other ECa 30 

response surfaces collected subsequently. These differenced ECa values were then used in 31 
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Equation 1 to estimate water content. We evaluated the results of doing this by comparing data 1 

that was differenced and data that was not with TDR estimates of water content for Feb 28, 2008.  2 

Quality assurance and quality control (QA/QC) procedures were applied to the EMI data 3 

collected. The ECa measurements were downloaded to a spreadsheet and checked for quality. In 4 

the spreadsheet the data can be plotted as a time-series to identify ECa outliers, and to remove 5 

multiple data collected at the same location while the surveyor took a break. Some outliers were 6 

identified, which were associated with metallic litter that had found its way into the catchment. 7 

By examining the GPS speed any extra measurements can be removed from the data when the 8 

mapper was stationary.  9 

Following these QA/QC procedures the data was analyzed using geostatistics to perform 10 

interpolation, and simulation of uncertainty. The ECa data collected was mostly skewed giving a 11 

lognormal appearance which is common for soils. In order to meet the underlying assumptions of 12 

kriging, that the data have a Gaussian distribution, all data were normal score transformed (NS) 13 

during analysis using SGEMS (Remy et al., 2009). More comprehensive treatment of the 14 

geostatistics can be found in Goovaerts (1997), we provide a summary of the multi-gaussian 15 

procedure here. The NS data were fitted with a semivariogram, and kriged using simple kriging 16 

on a 2m grid. Once kriged, the data were back-transformed to produce a final interpolated ECa 17 

response surface of the catchment.  18 

 Sequential Gaussian Simulation (sGs) was used to determine the spatial uncertainty of the 19 

data collected on Feb 28, 2008. In any prediction process, quantifying the uncertainty of the 20 

estimate is helpful for the comparison of the data collection methods. Kriging, which gives the 21 

minimum local error variance in the generalized least squares sense, is affected by a smoothing 22 

of the local variance of the attribute being predicted. Conditional simulation or stochastic 23 

imaging generates equally probable realizations of the property being studied in order to better 24 

quantify the uncertainty of the property at unsampled locations. Simulation focuses on honoring 25 

the data values while replicating the global statistics of the data distribution and the variogram 26 

model (Goovaerts, 1999). A more commonly used approach in environmental science 27 

applications is to predict the spatial uncertainty using sequential Gaussian simulation. We used 28 

the algorithms available in SGEMS to obtain the e-type mean and conditional variance from 100 29 

simulations. The e-type mean can be compared with the interpolated ECa or TDR measurement 30 

values obtained from kriging.   31 
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Statistical analysis of nine kriged ECa maps were conducted using correlation analysis 1 

and temporal or rank stability procedure described by Vachaud et al. (1985), to compare all the 2 

data, the dry (sept 27, Oct 4, Oct 22) and the wet (Jan 6, Jan 10, Feb 22) with the hygroscopic 3 

water content data. In this procedure the difference Δij of each individual observation Sij to the 4 

average jS for the respective sampling time j is calculated with: 5 

jijij SS    (2) 6 

And the relative difference is calculated by: 7 

j

ij

ij
S


   (3) 8 

For each sampling location an average relative difference ij  is calculated by: 9 

9

9

1





j

ij

ij



   (4) 10 

for the nine sampling campaigns as well as its standard deviation σ. The resulting values were 11 

added to the mean of the average ECa values for each mapping to provide a list of ECa values 12 

that could be compared against the hygroscopic water values.   13 

Catchment topography was determined by using the altitude measured using the GPS 14 

receiver. Five of the surveys, with consistent data, were chosen for analysis. Each dataset was 15 

interpolated using the normal score/ simple kriging approach described. The average altitude was 16 

determined for each data set; four of the data sets were then corrected to the data set with the 17 

middle ranked altitude by adding or subtracting the difference between averages. The average 18 

altitude was 98.2 m and the average standard deviation was 3.3 m; the range was 5.8 m. After 19 

correction to the mean the average standard deviation was reduced to 2.4 m between the data 20 

sets, with a maximum and minimum altitude of 125 and 67 m respectively.  21 

 22 

Soil wetness index 23 

 In modeling approaches, the spatial distribution of soil moisture is often assumed to 24 

mirror that of a terrain attribute such as the wetness index (Kirkby, 1975; Beven and Kirkby, 25 

1979; Grayson and Western 2001). Pursuant to this a number of soil wetness indices were 26 

proposed for predicting the spatial distribution of zones of soil moisture (O‘ Loughlin, 1986; 27 
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Quinn et al., 1995; Barling et al., 2004). The wetness index represents the propensity of any 1 

point in the catchment to develop saturated conditions (Beven, 2001): 2 

 3 

 wetness index = [ln(a/tan(β))]    (5) 4 

 5 

where a = the upslope area, per unit contour length, contributiong flow to a pixel; tan β = the 6 

local surface slope angle acting on a cell (taken to approximate the local hydraulic gradient under 7 

steady-state conditions). Wetness index can be determined using the DTA-ANALYSIS software 8 

described in (Beven, 2001). Pits and sinks are identified in the elevation matrix, sinks can be 9 

removed using the Automatic-Sink-Removal tool, which uses successive averaging of 10 

surrounding elevations to resolve pits.   11 

 12 

Results and discussion 13 

 14 

 Precipitation data, EMI mapping times and all the EMI ECa response surfaces are 15 

presented in Figure 2. The first light rainfall fell in September (Fig. 2A), a few days before the 16 

first EMI data collection, but the water quickly evaporated. By this stage in the year the clay soil 17 

was so dry that removal from the field to the laboratory actually increased the water content 18 

through the adsorption of hygroscopic water from the more humid laboratory atmosphere. 19 

Rainfall events increased in magnitude and frequency during the fall, but it wasn‘t until late 20 

December that the more significant storm events occurred. The first stream-flow was observed in 21 

the catchment after the rainfall on January 4
th

 and 5
th

. Flow was then maintained, and continued 22 

until after the final mapping at the end of February 2008. The soil ECa response surfaces (Fig. 23 

2B) correspond to dates indicated by the green lines on Figure 2A. Mapping in September and 24 

early October showed the least distinctive pattern, but a rainfall event in mid October (~10 mm) 25 

wetted the soil enough to see the emergence of distinct outlines following flow-paths and 26 

consistent with convergence zones; these became more pronounced with time and increasing 27 

wetting. The dominance of the clay soil in the upper portion of the catchment is indicated by the 28 

red, high ECa values; note the jump in scale after the January rainfall which satiated the soil and 29 

resulted in stream-flow generation. Figure 2C shows the histograms for the ECa data and a 30 

distinctive shift from left skewed to a bimodal distribution, between lines 6 and 7 (Fig. 2C); that 31 
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occurs at the beginning of January, consistent with the large storm event. Bimodal peaks are 1 

observable in all the histograms apart from the first two in September and early October. The 2 

bimodal peaks gradually move apart until early January, when they completely separate into two 3 

distinct distributions. The transition at the beginning of January is also marked by the reduction 4 

in correlation between the ECa response surfaces before the January wetting and after (Table 1). 5 

Table 1 indicates that ECa response surfaces prior to January 6
th

 show reasonably good 6 

correlation with each other with r
2
 values ~0.7. Correlation increases after January 1

st
 between 7 

the response surfaces to >0.9. The correlation between the wet response surfaces collected after 8 

January 1
st
 and the response surfaces for September and October is poor, indicating a distinct 9 

change in spatial pattern. The wetting event in early January appears to mark a threshold in 10 

wetting where the hydrological response of the catchment changes abruptly and stream flow 11 

appears. It was observed that once streamflow was initiated it was maintained until after the end 12 

of observations on Feb 28
th

. The change in the ECa patterns results in changes in the range of the 13 

semi-variograms (Figure 2D). In September the range was 72 m, which increased to 132 m by 14 

January 1
st
, and then 134, 157, and 115 m for the subsequent January 6

th
, 10

th
 and February 28

th
 15 

measurements. This increase in the range of the autocorrelation is consistent with the emergence 16 

of the distinctive ECa patterns on the ground. 17 

 Interpolated measurements of hygroscopic water are presented in Figure 3. Hygroscopic 18 

water content has been shown to strongly correlate (r
2
 > 0.9) with soil clay content (Petersen et 19 

al., 1996) and even though this relationship has some mineralogy dependence it still provides a 20 

good, low-cost, surrogate for soil clay percentage. The hygroscopic water content for a 2:1 Ca 21 

saturated montmorillonite, such as that present on this field site, is 0.19 g g
-1

 at a relative 22 

humidity of 50%. Which means soil clay percentage in the fine earth fraction (<2mm) is likely to 23 

vary from no clay to values of up to ~44% across the catchment, which is consistent with the 24 

hand texturing estimates for clays in the upper portion of the catchment and sandy loams in the 25 

lower. In order to identify the contribution of the soil texture to the EMI response, we correlated 26 

the hygroscopic water content with ECa values for the different dates and wetting degrees (Table 27 

1); we observed low correlation when the soil was dry and the strongest correlation (r
2
 ~0.5) 28 

when the soil was wet. We also analyzed the hygroscopic water content results with the 29 

combined ECa response surface, determined using the rank stability of all the data (r
2
 = 0.5), the 30 

first 3 dry ECa response surfaces (r
2
 = 0.24) and final 3 wet surfaces (r

2
 = 0.54), again showing 31 
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the stronger correlation of texture with wet soil. Given the consistency in the correlation, there is 1 

no case for multiple mapping being any better than a single map at field capacity for determining 2 

soil texture, primarily because the critical parameter is water content, as expected, the largest 3 

contrast in electrical response is found approaching saturation.  4 

 A comprehensive measurement campaign was conducted on February 28
th

, when the 5 

catchment was imaged using EMI and simultaneous point measurements were obtained using a 6 

mobile TDR system. Prior to January the soil had been too hard for routine TDR measurement, 7 

and it wasn‘t until the soil became softer that the EMI/TDR comparison became feasible; this is 8 

always an issue using insertion measurement techniques such as TDR. We measured volumetric 9 

water content and ECa using TDR and at the same time another surveyor measured ECa using 10 

EMI; the results are compared in Figure 4. In addition, the ECa response surfaces obtained for 11 

both measurement techniques are presented to the right in Fig 4. We observed that the spatial 12 

patterns follow trends with both techniques but TDR ECa measurements were about 3 times 13 

lower than the EMI measurements. This is consistent with the different support volumes and the 14 

expectation that the EMI will see more clay (i.e., charged surfaces, ions) because of its greater 15 

penetration into the subsurface, where the clay is expected to increase with depth. This is 16 

supported by vertical ECa EMI measurements, which measure deeper into the soil, and indicate 17 

an increase in electrical conductivity with depth.   18 

Figure 5 shows three sets of response surfaces, the upper surfaces were determined from 19 

EMI measurements whilst the lower surfaces were determined from TDR measurements. Fig 5A, 20 

shows the VWC estimated from the differencing approach (ECa Feb 28
th

 – ECa Sept 27
th

), whilst 21 

Fig. 5B is the water content estimated directly (ECa Feb 28
th

).  Parameters used in Equation 1 22 

included a porosity of 0.57 ±0.1, and an ECe = 0.1 S m
-1

 ±0.05. The areal average water content 23 

is lower for the differencing approach (0.43 m
3
 m

-3
), and more consistent with the TDR value 24 

(0.31 m
3
 m

-3
) for Fig 5C; however, simulation, used to estimate uncertainty, requires the use of 25 

the original EMI data so that the interpolated differencing approach data cannot be used in the 26 

estimate of uncertainty. The spatial patterns of VWC obtained with the TDR and EMI are similar 27 

with higher values in the upper portion of the catchment (red) and lower values in the lower 28 

portion of the catchment (blue). Results using sequential Gaussian simulation (sGs) show that the 29 

simulated EMI VWC spatial pattern (Fig 5D) corresponds with the interpolated EMI data (Fig 30 

5B); as does the simulated TDR VWC (Fig 5E) with the interpolated TDR data (Fig 5C). SGs is 31 
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then used to determine the uncertainty in terms of a standard deviation (Fig. 5F and G) and the 1 

signal to noise ratio is determined and presented (SNR: mean over the standard deviation). One 2 

initial observation is the higher structural definition to the patterns from the EMI VWC 3 

compared with TDR VWC, where the sparse TDR data results in similar general patterns but 4 

with lower definition. The TDR data tends to display a graphical ‗bulls-eye‘ effect with lower 5 

connectivity in space which is an artifact of the sparse data. Higher VWC values are estimated in 6 

the upper portion of the catchment, however, the EMI data indicate higher VWC in the mid 7 

portion of the catchment also, especially in a couple of linear features running SE to NW, 8 

perpendicular to the stream channel (also identified as zone A in Fig. 8). Investigation of these 9 

zones of higher ECa response found that well defined clay bands were running down the slopes 10 

perpendicular to the stream and were buried below ~20 cm of loamy surface soil. Hence, the 11 

smaller support of the TDR measurements didn‘t identify these features, while the larger EMI 12 

support volume did. Lower standard deviation was observed for the more exhaustive EMI 13 

measurements in Figure 5F as compared with 5G, which results in a much higher SNR for the 14 

EMI VWC than the TDR VWC in Figures 5H and 5I.  15 

Comparison of Figure 5C (TDR) and 5A (diff EMI) and Fig 5C with 5B is shown in the 16 

scatter plot in Figure 6. Direct determination of VWC (Figure 5B) using the EMI data compared 17 

with TDR VWC results in a poor correlation (r
2
=0.28) and a slope that diverges from a 1:1 line 18 

at low water contents. However, comparison of the TDR data with the differenced EMI (Figure 19 

5A) VWC shows a much stronger correlation r
2
=0.48, and a slope the same as the 1:1 line but 20 

offset to higher water contents (~0.08).  21 

Figure 7 presents the VWC estimated from the EMI differencing approach at eight 22 

different times during the period Oct. 2007- Feb. 2008, given that the VWC-ECa is non-linear, 23 

Fig. 7 is not a simple scaling of the ECa response. The patterns, and correlation analysis (Table 24 

1) indicate that moisture and texture are most highly correlated when the soil is wet, but not 25 

when it is dry, which is similar to the finding of Western et al. (2003) who found that moisture 26 

patterns tend to be random when dry and show increasing connectivity and spatial 27 

autocorrelation when wet. The patterns suggest there is reasonable uniformity in VWC across the 28 

catchment up until January, and that this changes to strong, distinct patterns from January 29 

onwards.      30 
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 Figure 8 shows the GPS determined altitude (A), the derived wetness index (Equ.5) (B), 1 

and the EMI diff determined moisture content for February 28
th

 (C). The stream path is shown as 2 

the black line on (C), and is consistent with the high values of wetness index on (B). The grey 3 

lines on the moisture content image (C) define areas of overland flow occurring in the catchment 4 

during the associated rainstorm. The black arrows to the wetness index show that these areas are 5 

consistent with zones of convergence in the upper portion of the catchment. Visual comparison 6 

of the wetness index and the VWC suggests that they do not mirror each other; the lack of any 7 

linear correlation between the two data sets confirms this. The convergence zones of the wetness 8 

index are consistent with areas of overland flow and stream flow, however, there are large 9 

proportions of the catchment that have low convergence and high soil moisture. This is 10 

particularly noticeable in zone A for instance, where the increased soil moisture was observed to 11 

occur due to subsurface clay bands, and thus was texture controlled.  12 

 13 

5. Discussion 14 

The use of geophysical techniques in soil science has provided us with a fast and cost-15 

effective way of collecting large amounts of spatially distributed information.  However, the 16 

inversion of geophysical signals into physical parameters requires a good understanding of the 17 

technique as well as knowledge of the soil properties.  Often, the combination of different 18 

sensors can contribute to constrain each other and help with parameter estimation. Speed of 19 

measurement, coverage intensity and support volume make EMI well suited to data collection at 20 

this catchment scale. The advantages and disadvantages of determining moisture using ECa are 21 

discussed elsewhere. Here, we discuss some of the patterns to emerge from this intensive data 22 

collection. 23 

 Figure 6, shows the VWC-TDR and VWC-EMI for our catchment, the regression 24 

indicated similar slope but with an offset, so that the EMI recorded higher moisture contents than 25 

the TDR. This result most likely arises due to the instruments having different support volumes, 26 

and raises an intriguing question, ―Is the difference in offset simply a calibration artifact, or is it 27 

the result of the sensors responding to moisture in different pore volumes?‖ A major challenge in 28 

hydrology is to measure and model the impact of macro-pore flow (Zehe et al., 2007; Robinson 29 

et al., 2008a). The clay soil in the upper portion of the catchment was vertic, with large cracks in 30 

the summer. The wetting served to reduce the cracks and reseal much of the surface as fall 31 
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progressed; however, auger observations during the rainfall events in January indicated that these 1 

cracks had not fully closed below the surface. This created a subsurface intra-ped network of 2 

cracks and flow paths, where the observations revealed subsurface saturated flow at a depth of 3 

~20cm. This water could be detected by the EMI which would integrate the water in cracks and 4 

large soil blocks, but not by the TDR that mostly explores the soil blocks, given the different 5 

support volumes. It raises a further question of, ―what is the appropriate value of porosity for 6 

soils like this?‖ Porosity, determined from bulk density is normally conducted on samples <1 7 

dm
3
, however, it was clear at the field site that the crack network porosity does not fully seal and 8 

that its contribution becomes important during heavy rain when lateral flows occur and stream 9 

flow is generated. This data is not sufficiently comprehensive, lacking a hydrograph, to tease 10 

apart when the crack network is, or is not, contributing to stream flow, but lateral flows were 11 

only observed at times when stream flow was operational. Though only providing anecdotal 12 

evidence, this data should encourage researchers to test whether electrical measurements, with 13 

different support volumes, can be used to differentiate between water in different pore-networks, 14 

at different scales. More-over, whether geophysical data can be utilized to determine when 15 

macro-pores might be full and active contributing to catchment response.  16 

 With reference to catchment hydrological processes, the results presented in this work 17 

indicate a transition in moisture behavior between January the 1
st
 and 6

th
 and support the concept 18 

of preferred soil moisture states as described in Grayson et al. (1997). They state that, ―The wet 19 

state is dominated by lateral water movement through both surface and subsurface paths, with 20 

catchment terrain leading to organization of wet areas along drainage lines. We denote this as 21 

nonlocal control. The dry state is dominated by vertical fluxes, with soil properties and only 22 

local terrain (areas of high convergence) influencing spatial patterns. We denote this as local 23 

control.‖ Prior to January 6
th

 there was no stream flow, nor was there any lateral water flow to be 24 

observed from auguring the soil. However, on January the 6
th

 after a large rainfall event stream 25 

flow was generated and water was observed to flow laterally in the vertic-soil crack network, as 26 

subsurface flow, in the upper portion of the catchment. Figure 2C indicates a gradual broadening 27 

of the EMI ECa histogram that switches between Jan 1
st
 and Jan 6

th
. Our interpretation is that this 28 

is consistent with a switch in moisture states from local control to non-local control. The heavy 29 

rain was observed to cause lateral and overland flow, as well as initiating stream flow. Sadly the 30 
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data set doesn‘t extend further as it would have been interesting to examine whether there was a 1 

gradual change back in the shape of the histogram, or another sudden switch as the soil dried. 2 

With reference to figure 8, our data also support the assertion, that terrain is not the only 3 

control over moisture patterns, and that the moisture patterns (Fig. 8C) do not simply mirror the 4 

wetness index (Fig. 8B). This agrees with the work presented by Wilson et al., (2005) that 5 

showed that prediction of soil moisture in their data sets was poor, based on terrain alone. They 6 

found that incorporation of residual data, which acts as a surrogate for spatially persistent 7 

patterns, potentially related to soil and vegetation type, plus an error term with the terrain data, 8 

gave the best estimate of soil moisture.  9 

 10 

Conclusions 11 

 Time-lapse imaging using EMI allowed us to observe soil wetting patterns and moisture 12 

dynamics. Moisture content determination is improved by subtracting the ECa response surface 13 

for dry soil from subsequently wetter soil ECa response surfaces, and using a model to estimate 14 

moisture content from the ECa difference. Differencing in this manner improved correlation 15 

between TDR and EMI water content estimates from  r
2
=0.28 to r

2
=0.48. Wet ECa response 16 

surfaces correlate the best with soil texture, dry images correlate poorly.  17 

 Data collected using the EMI supports the concept of preferred soil moisture states, 18 

showing a distinct switch in EMI ECa response with the initiation of lateral flows and 19 

streamflow. The findings also indicate that the soil moisture patterns do not mirror the catchment 20 

wetness index, though the wetness index does identify zones of convergence where overland 21 

flow occurred, this is in agreement with recent analysis from Australia. In addition, data 22 

indicates that the TDR and EMI, with different support volumes, explore different types of soil 23 

moisture. We conjecture that measuring soil response at specific soil water contents using EM 24 

sensors with different support volumes may allow us to differentiate between the contributions of 25 

the water retained in the matrix from the macro-pore flow.      26 
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  2 

 Sept 27  Oct 4  Oct 22  Nov 11  Dec 5  Jan 1  Jan 6   Jan 10  28 Feb  

Sept 27  1.00         

Oct 4  0.71 1.00        

Oct 22  0.76 0.73 1.00       

Nov 11  0.75 0.67 0.84 1.00      

Dec 5  0.76 0.71 0.87 0.85 1.00     

Jan 1  0.64 0.53 0.79 0.83 0.83 1.00    

Jan 6   0.52 0.43 0.68 0.71 0.70 0.87 1.00   

Jan 10  0.51 0.43 0.67 0.71 0.71 0.87 0.96 1.00  

Feb 28  0.57 0.47 0.71 0.72 0.73 0.85 0.93 0.92 1.00 

          

Hygro 0.23 0.12 0.27 0.40 0.34 0.54 0.54 0.56 0.49 

Table 1. Correlation (r
2
) between EMI determined water content response surfaces. Hygro is the 3 

hygroscopic water content g H2O g
-1

 dry soil. 4 

 5 

 6 

 7 

 8 

 9 

  10 
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Figure 1. Four ha catchment in the Stanford foothills reserve, CA. The red line indicates the 3 

catchment boundary, the orange line demarks the change from basalt rock to sandstone, and the 4 

yellow dots are sandstone outcrops. Stream channels are represented in blue. At right are the 5 

EMI measurement tracks and TDR probe insertion locations from Feb 28, 2008.   6 
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Figure 2. A) Rainfall between September 2007 and March 2008. B) kriged EMI ECa maps 3 

corresponding to green lines with dates numbered on graph A (Note change of scale for 7,8 and 4 

9), C) ECa histograms , 1-9 refer to the dates in figure D, and D) corresponding semi-variograms 5 

for each mapping date shown. 6 
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Figure 3. Hygroscopic water content of the top 20 cm of soil determined from 64 soil samples 3 

collected using a random sampling (squares); the highest value was 0.84 g H2O g
-1

 dry soil. The 4 

dark areas represent clay in the fine earth fraction (< 2 mm), whereas, the pale colors represent 5 

sand in the fine earth fraction. 6 
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Figure 4. Comparison of spatially correlated ECa determinations made with TDR and with EMI. 3 

The EMI readings are approximately three times larger, possibly due to the larger, deeper 4 

sampling volume of the EMI compared to the 10 cm sampling depth of the TDR.  5 
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Figure 5. Response surfaces for, volumetric water content (VWC) determined with EMI (top 3 

row) and TDR (bottom row). 5A is the VWC estimated from the EMI ECa value after 4 

differencing (ECa Feb 28
th

 – ECa Sept 27
th

). Fig 5B uses the raw EMI ECa data to determine 5 

VWC, whilst Fig 5C is VWC determined using the TDR. Fig 5D and E is the VWC determined 6 

using simulation, whilst Fig 5F and G is the standard deviation determined from simulation. The 7 

signal to noise ratio (SNR),Fig 5H and I, is the mean over the standard deviation(strong signal 8 

for values >1). 9 
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Figure 6. Comparison of volumetric water content (VWC) determined from i) EMI using direct 3 

estimation from raw data (EMI raw) and from ii) the differencing approach (EMI diff). 4 
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Figure 7. Evolution of volumetric water content (VWC) pattern estimates using the EMI 3 

differencing approach on eight different days during 2007 and 2008. 4 

  5 



37 
 

 1 

Figure 8. Altitude derived from GPS data, wetness index based on the altitude data, and moisture 2 

content determined using the differencing approach for Feb 28
th. 

The red and yellow points in the 3 

wetness index denote locations of topographic convergence. The black line on the soil moisture 4 

image is the stream channel and the grey lines mark the boundary of observed overland flow 5 

during this event. The arrows indicate the correspondence between the location of the overland 6 

flow and the convergence zones determined by the wetness index.   7 
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