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The SUV-6 Dissolved Nitrate Sensor 
 

Foreword 
 

The first part of this addendum is the original section of cruise report written by Meric 

Srokosz, detailing the processing of the raw SUV-6 data files on D321. No amendments have 

been made to this part of the report and it stands in its original form. The second part of the 

report details the post-cruise processing and calibration procedure. Footnotes appear in the 

first part of the report alongside statements or speculations that, following the post-cruise 

processing, require additional comment. In these cases, the footnotes refer to specific sections 

in the second part of the report. Where footnotes existed in the original text of the first part of 

the report, they remain unchanged. 

 
1. Initial Processing 
 
Meric Srokosz 
 

The SUV6 was flown on SeaSoar and the data acquired and logged through Penguin. The 

data files were numbered randomly suv6nnn.000 or suv6nnnn.000 (n.b. the corresponding 

minipack and OPC files produced by Penguin are also randomly numbered, so matching files 

to merge data is problematic). These were transferred to the directory /data32/d321/suv6 for 

further processing. The data files are structured: 

  JDAY CH1 CH2 CH3 CH4 CH5 CH6 CH7 

Where JDAY is the decimal Julian day, CH1 to CH6 are the measurements from the 6 

channels (see below), and CH7 is a duplicate of CH6. The data are logged once per second 

and every 60 seconds of data contains 45 measurements and 15 internal calibration loop 

measurements. Note that the files can start and end anywhere in this sequence of 60 

measurements. 

 

The SUV6 produces measurements in 6 UV channels (205, 220, 235, 250, 265, 280nm) and 

the nitrate measurement is made from the relative absorbance in the 220nm and 280nm 

channels. The 205nm channel is sensitive to salinity. The data were analysed using Matlab 

code provided by Ralf Prien (ex-NOC) for use during a previous cruise (MadEx, D288;  see 

Quartly, 2006). This code had been amended to fix a problem with array indexing. It was 

further amended here to change the calibration threshold from 2000 to 1400, as this seemed 

to be what was output by the instrument. The code is provided in the appendix (below). 
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When running the code it would fail if the data file did not end with a series of 3 calibration 

measurements. This was cured easily by editing out a few lines at the end of the data files to 

ensure that the last 3 lines consisted of calibration data (identified by CH1 value being greater 

than 1400). Despite these changes to the code, some files caused the Matlab code to crash 

due to an array-indexing problem. It was not possible to fix this during the cruise as it was 

unclear why this was happening (whether it was a problem with the data file or with the 

code).1 

 

A table of the files processed during the cruise is given in Table 12. Note that the files cannot 

be concatenated as programme assumes that you get measurements in batches of 60 lines (45 

data, 15 calibration) and individual files start and end at random points in the sequence (as 

noted above). 

 

 
Figure 1 Nitrate concentration (µmol/litre) against time, for data processed from file 

suv6376.000, before de-spiking. 

 

The Matlab code produced nitrate concentration as a function of Jday for each file. It also 

plotted the data (see example in Figure 1). As a first step the data that the code saved in 

Matlab format were merged with raw SeaSoar minipack data for pressure, temperature, 

                                                
1 This was later identified as a problem due to poor coding. It was fully rectified, enabling all original data files 
to be processed. Refer to section 2.1 for details.  
2 To avoid duplication, Table 1 has been moved to the second section of the report where it has been updated to 
include the files processed on our return to NOCS. 
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fluorescence and PAR. This allowed simple plots to be produced to see whether the SUV6 

was giving sensible nitrate data.3 Visual inspection of the nitrate results from the first 

SeaSoar survey suggested that it lay in the range ~4-18 µmol/litre, so spikes outside this 

range were edited out. An example of the processed data from file suv6376.000 is shown in 

Figure 2 (below). 

 

 
Figure 2 Uncalibrated temperature, fluorescence, and PAR with SUV6 nitrate (µmol/l) from 

the SeaSoar tow on Jday 219 (data from suv6376.000 and minipack353.000). Note that these 

plots are simply the ups and downs of SeaSoar plotted against time, hence their “gappy” 

nature. They also contain various “glitches” as they have not been cleaned up. 

 

 It can be seen that the SUV6 gives nitrate values that lie in a reasonable range, but the 

calibration (which was based on laboratory measurements prior to the MadEx cruise in early 

2005) needs adjusting. Surface nitrate values from water samples during the cruise lay in the 

range ~1-6 µmol/litre, while those at 400m depth lay in the range ~15-20 µmol/litre. From 

                                                
3 Used the Matlab routine nogrid_plot2d.m by Paolo Cipollini, which allows data to be plotted without first 
being gridded. 
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Figure 2 this suggested that the SUV6 could be overestimating surface values, though the 

values at depth might be o.k.4 

 

Figure 2 clearly shows that the nitrate is low in the mixed layer and that the nutricline is at 

the base of the mixed layer (as might be expected – seen by comparing nitrate and 

temperature). There is evidence that the cold core eddy traversed around Jday 219.6 is 

reflected in the nitrate distribution, and that nitrate is higher in the cold water at the surface 

above the eddy. In addition, the high fluorescence patch is associated with locally lower 

nitrate values, as might be expected if the phytoplankton were taking up nitrate.  

 

The question that the figure raises is whether there is a period at the beginning of the 

deployment when the SUV6 is adjusting to it’s surrounding and the sensor drifted (period 

affected up to around Jday 219.55). The first dip has higher nitrate values, but this could be 

due to horizontal gradients in nitrate in the water as well. It is not possible on the basis of the 

SUV6 data alone to differentiate between these causes. As a comparison, Figure 3 shows the 

results from later in the same SeaSoar tow and there is no evidence of drift in the nitrate data. 

Therefore, if the sensor was drifting initially on deployment is seems to have stopped doing 

so, presumably as it acclimatised to its surroundings. On a shorter deployment (suv6478.000) 

the SUV6 showed similar behaviour (results not shown).5 

 

Further deployments (on the second SeaSoar survey) revealed another problem; as illustrated 

in Figure 4. As well as the drift seen at the start of each of the earlier deployments, and still 

apparent here, there also appears to be a shift in the actual values of nitrate being estimated 

On the earlier deployments the range was ~4-18 µmol / litre (see Figures 2 and 3), but on the 

later deployments the range was ~8-23 µmol / litre (see Figure 4).6.  

 

                                                
4 This was the result of a cursory examination during the cruise. It was later shown through comparison with 
both the ships non-toxic underway supply and CTD measurements that the data would need calibrating to both 
surface and at-depth values. Refer to sections 2.3 and 2.4 for full details.  
5 Further examination of the data revealed that the instrument experienced a period of acclimatisation at the 
beginning of each tow, where the lamp appeared to ‘warm up’. An internal reference path in the instrument 
monitors these changes, but deficiencies in the processing code mean that it is not fully corrected for. See 
section 2.2 for details.  
6 On detailed analysis of the surface (4-5m) data, a drift was uncovered towards increasingly higher nitrate 
values with each deployment of the instrument. This required each tow to be calibrated individually to 
underway values. See section 2.3 for details.  
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Figure 3 Uncalibrated temperature, fluorescence and PAR with SUV6 nitrate (µmol/l) from 

the SeaSoar tow on Jday 220 (data from suv6347.000 and minipack324.000).  

 

The initial intention had been to calibrate the SUV6 nitrate values against the Auto analysed 

one-hourly underway nitrate samples. Unfortunately, due to the drift of the sensor during a 

deployment and the apparent shift in calibration between deployments, there were too few 

underway nitrate values to characterise this behaviour. A further option considered was to 

characterise the sensor on deck by placing it in buckets of different strength nitrate solution 

and recording data via Penguin (as is done on the SeaSoar tows). Since this would need to 

have been done at the end of each tow, due to the sensor drifts described above, it was 

impractical to carry out. Removing the SUV6 and Penguin from SeaSoar is complex. As the 

final SeaSoar tow was not completed until late in the cruise, there wasn’t sufficient time to do 

a final on deck calibration. Clearly the drift during deployments and shift in nitrate values 

between deployments identified here need to be explained and corrected for if the SUV6 is to 

be used routinely on SeaSoar. Whether these sensor characteristics can be reproduced and 

characterised in the laboratory after the cruise remains to be seen. A final point to note is that 

the nitrate values obtained here are based on only two of the six SUV6 channels. Therefore it 

may be possible to use the information in the other channels to make the necessary 

corrections. 
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Figure 4 Uncalibrated temperature, fluorescence and PAR with SUV6 nitrate (µmol/l) from 

the SeaSoar tow on Jday 230-231 (data from suv6525.000 and minipack497.000 plus 

minipack25724.000). Note change in scale for nitrate, as compare to that in Figures 2 and 3. 

 

 

2. Post-Cruise Processing and Calibration  (November 2008) 

Roz Pidcock 

 

Several issues were raised during the on-board processing requiring investigation on our 

return to NOCS.  

(i) The reasons for the indexing array problems that caused the on-board processing of two 

SUV6 data files to fail. 

(ii) The existence of apparent ‘ramp up’ periods upon deployment of the instrument where 

the data experienced an initial drift before stabilising. 

(iii) The apparent shift in calibration values between deployments, towards increasingly 

higher nitrate concentrations.   
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 Processing Failure and Data Recovery 

It was found that the matlab code failed to process two files on-board because of poor coding. 

The programme as provided was unable to distinguish between genuine data gaps and those 

created by stripping out the internal calibration periods, leading to a mismatch between the 

number of data periods and calibration periods. This was rectified in the code and the 

remaining two files were successfully processed. 

 

Table 1 below details the original files processed on board D321. It has been amended from 

the version described in the first part of this report to include the files processed on our return 

to NOCS. The total SeaSoar survey period consisted of 5 separate tows, the first two as part 

of the first grid-box survey (hereafter referred to as 1a and 1b) and the third, forth and fifth 

tows as part of the targeted second survey, (hereafter referred to as 2a, 2b and 2c). 

 

Table of raw Penguin SUV6 files and corresponding processed file numbers 
 

 
n.b. see code in appendix for information on what is in files Nitr_suv6nnn.mat and channels_suv6nnn.mat. Files 

Nitrnnn.mat contain the variables: 

time press nitr fluor Tfluor PAR temp 

 

i.e. time and nitr from the SUV6 processing merged with the uncalibrated SeaSoar Minipack data for press fluor 

Tfluor PAR temp. Minipack data interpolated on time to SUV6 time  

 * These are the files that the 

Matlab code failed to process 

whilst on board. On our 

return to NOCS the coding 

glitch was fixed and the files 

could be processed. The Nitr-

suv6nnn.mat and the 

channels_suv6nnn.mat files 

were produced by the code as 

in the other files. The 

Nitrnnn.mat files were not 

created as the merging with 
minipack data was done later 

in Pstar. 
 



 12 

Existence of ‘Ramp up’ Periods 

Having run the initial processing code on all the available SUV6 data files in Matlab, each 

one was output as an ASCII data file and read into Pstar, using a script called 

matlabconvert.m to replace the Matlab absent data value (NaN) with the Pstar absent data 

value (-999). An extra variable was also created to record the time in seconds from the 

beginning of the year. The individual files were then appended in time order. 

 

To begin calibration, SUV6 data from between 4-5m were extracted using the Pstar datpik 

routine and merged with data from auto-analysed bottle samples taken from the ship’s non-

toxic supply at hourly intervals throughout the cruise. A scatter plot of surface (4-5m) SUV6 

data for the separate tows against the underway data showed a set of reasonably straight lines 

staggered in space. This showed some potential for applying linear calibrations to the data, 

but confirmed that the calibration changed each time the instrument was deployed, recording 

increasingly higher surface concentrations with each deployment.  

 

 
Figure 5. SUV6 data plotted according to where different calibrations exist. These 

correspond to the distinct files except in tow 1b where 3 separate calibrations exist, 

overlapping the file breaks (1ba, 1bb and 1bc). 

 

A further complication revealed by the scatter plot was that even within one of the tows, (1b), 

three separate calibrations existed, which furthermore, did not correspond to the file breaks. 

These will be referred to as 1ba, 1bb and 1bc. The different offsets in each tow are dealt with 

later in this report.  
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A similar scatter plot to that described above but with the data divided up according to where 

the calibration changed, rather than simply by tow revealed a similar but cleaner succession 

of straight lines (Fig. 5). A noticeable deviation from this can be seen at the very beginning of 

each deployment during which time nitrate values started considerably lower than expected 

but then gradually recovered. This ‘ramp up’ period ranged from 3.5 hours to 7.5 hours 

between the individual files. The ramps are most obvious as an arc shape in the scatter at the 

beginning of files 2a and 2b (see Fig. 5). They do not appear in files 1bb and 1bc as these are 

within a tow, by which time the instrument had stabilised. They are masked in 1a and 2c by 

an overall drift in the data with time; this will be dealt with later in this report. 

 

Table 2. Details of how each section was treated to calibrate the data to surface 

underway data.  

 

Section Calibration Details 

1a 3.5 hrs removed from start 

Linear time drift removed 

1ba and 1bb together 3.5 hrs removed from start 

Linear time drift through both sections removed 

1bc No ramp up period 

Offset of -6.27 

2a 7 hours removed from start 

Offset of -8.33 

2b 4.5 hrs removed from start 

Offset of -9.32 

2c Linear time drift removed 

 

The SUV6 employs an internal reference path to monitor changes in the lamp spectrum over 

time. Periods of ‘ramp up’ in the NO3 data coincided with a slow curve towards a stable 

constant when the internal reference data was plotted against time (not shown). Equally, the 

internal path showed a straight line when ramp up periods were not experienced in the data. 

On close inspection of the Matlab processing code, it was found that a step to normalise the 

measured nitrate absorbance at each data point to the internal reference value was reducing 

the effect of the ramp up period, but not correcting it fully. A series of tests showed that a 
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quadratic or logarithmic function did not correct the data better than the existing linear 

function. In any case, a linear function should be the most appropriate correction to apply 

given the linear relationship between UV absorbance and nitrate concentration. This work is 

on going and will require consultation with the engineering side of the NOCS SUV6 team. 

For the time being and for the purposes of moving forward, the ‘ramp up’ periods have been 

removed from the data altogether (detailed in Table 2). The lengths of the ramp up periods 

for each tow were consistently obtained from the internal reference data, the criteria being the 

time taken to achieve a stable constant value. The calibration of data as described in the 

remainder of this report concerns only the data within the ‘good’ periods after the lamp had 

stabilised. 

 
Shifting Calibrations 

After removing the ‘ramp up’ periods, plots of surface SUV6 nitrate, discrete underway (uw) 

nitrate samples and the offset between them (SUV-uw) were created for each tow. From 

these, an average SUV-uw offset was determined for each tow. For two of the five tows, a 

simple offset could be applied to the SUV6 data to calibrate it to surface underway values. 

The SUV6 nitrate data in another three of the tows appeared to show a linear drift with time, 

which, once identified, was removed using a series of standard Pstar routines. It was observed 

that within the longest of all the tows (1b), three separate calibrations existed; seemingly a 

constant offset at each end, (1ba and 1bc), and a linear time drift in the middle section (1bb). 

However, with very few surface data points, the transition between the offset in 1ba and the 

start of the linear drift in 1bb was fairly severe. This is likely to have caused problems when 

it came to contouring the data in later stages. With this in mind and together with the fact that 

a large proportion of 1ba (3.5 hrs) had to be removed as a ‘ramp up’ period leaving very little 

data behind, another look at the data determined that a single drift could cover the ‘useable’ 

data in both 1ba and 1bb. 

 

Following their separate calibrations, SUV6 surface data from all five tows fitted a 1:1 

relationship with the underway data, (Figure 6). The individual calibrations were then applied 

to the full depth data for each section. Calibration of the SUV-6 data to surface underway 

data by the method described only involved a very small range of nitrate values, (surface 

values ~2-6 µmol/l). It was therefore necessary to check that the calibration was appropriate 

for the full depth data before accepting it. Unfortunately, when all the SUV6 nitrate data with 

the surface calibrations applied were plotted against CTD bottle nitrate data down to 450m, it 
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was clear that this was not the case. The range of nitrate concentrations over which the SUV6 

measured was significantly smaller than that for the CTD bottle samples, (see Figure 7). That 

this should be the case is perhaps not surprising given that the most recent laboratory 

calibration prior to D321 was carried out before the MadEx D288 cruise in 2006. Bearing in 

mind the apparent instability of the instrument, it is more than likely that the time lapse 

between the lab calibration and its use on our cruise render the existing calibration 

coefficients useless.  

 

 
Figure 6. Following individual calibrations to surface data, SUV-6 data from all tows fit a 

1:1 relationship with the underway data. 

 

It has been confirmed that a dedicated effort towards further development and optimisation of 

the SUV6 instrument will take place in early 2009. Important starting points will be to find 

out more about how the original calibration coefficients were achieved and to carry out a lab 

calibration ourselves to test instrument’s stability in different conditions and to attempt to 

replicate some of the characteristics experienced in the D321 dataset. A second important 

area will be to modify the processing in such a way as to make use of all six channels 

recorded by the instrument, as the current processing code does not currently maximise the 

instrument’s capabilities. Whilst there is clearly much room for development and 

improvement of the instrument for future deployments, in order to make use of the current 

dataset a second calibration of the data against the CTD data to full depth was necessary.  
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Figure 7. Surface calibrated SUV6 data plotted against CTD nitrate data down to 450m. 

SUV6 data is colour-coded by tow according to the key. Stainless steel CTDs are marked 

with filled circles, titanium casts are marked with triangles. 

 

Full Depth Calibration of SUV-6 Data  

The first step in the full-depth calibration was to ascertain the amount of scatter in the SUV6 

data covered by all 5 sections compared to the scatter in the CTD data. Scatter plots of 

surface calibrated SUV6 nitrate concentration against depth for each section were first 

overlaid on to each other, and then the data from all the tows were overlaid onto the CTD 

bottle nitrate data. The datasets fitted well at the surface, not surprisingly, but below a depth 

of ~40m the SUV6 recorded significantly lower nitrate values than observed in the CTD 

bottle samples. However, the range of the scatter in the SUV6 data was less than that in the 

CTD bottle sample data. This demonstrated the potential and justification for applying a 

nitrate-based function to fit a mean SUV6 profile to a mean CTD profile and using it to 

calibrate the rest of the SUV6 data. 

 

A small complication was that within the SUV6 scatter there appeared to be at least 3 

different overall patterns to the profiles. These were deemed to be real differences in the data, 

not artefacts of the offsetting in calibration as the shapes of the curves differed somewhat; 

one group of profiles even showing a tendency towards maximum nitrate values at ~200m 



 17 

which then decreasing between 200-450m. Only one CTD sample profile was found which 

also exhibited this shape, however. The majority of CTD sample profiles fitted in with the 

main trunk of SUV6 data that recorded a relatively constant concentration with depth below 

100m. Had there been a significant number of CTD profiles displaying each of the patterns 

seen in the SUV6 data, it may have been possible to fit each set of SUV6 profiles to 

independent mean CTD profiles. thus preserving their shape.  This, however, was not the 

case.  

 

Twenty points ranging from 450m to the surface were chosen within the SUV6 nitrate vs 

depth scatter that best represented a mean profile. It was important to include at least two or 

three points between 30-50m where the gradient in nitrate concentration was greatest. The 

same was done with the CTD sample nitrate vs depth scatter, using the same depths for the 

location of the points, and a mean profile was also determined.  Then, whilst keeping the two 

plots overlaid and taking one point at a time, the plots were shifted along the nitrate (x) axis 

until the point in the SUV6 mean profile overlaid the position of the same-depth point in the 

mean CTD profile.  

 

         
 

Figure 8. SUV6 nitrate vs CTD bottle nitrate at 20 points within the SUV6 nitrate mean 

profile, having been offset to overlay the CTD mean profile. The surface calibrated data from 

Figure 7 are included to increase the number of data points to which the trend line was fitted. 
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In this way, a pair of readings was taken for each depth point; the first was the nitrate 

concentration at the original position in the SUV6 mean profile (taken from x axis of the 

SUV6 nitrate vs depth plot). The second value was the nitrate concentration at the new 

position within the CTD scatter (taken from the x axis of the CTD nitrate vs depth plot). This 

process was repeated for each of the twenty points in the SUV6 mean profile. The pairs of 

points were then tabulated and plotted against each other, (see Figure 8).  

 

The number of data points was increased by adding in the surface calibrated SUV-6 data 

plotted against underway nitrate concentration from Figure 7.  It was found through a series 

of statistical tests using polynomial functions of increasing order that a cubic function best 

fitted the data. In view of the fact that the surface data had already been calibrated and did not 

need further adjustment, the cubic function was forced through zero so as not to produce an 

offset.  

 

The SUV6 data was thus calibrated according to the following function, where x is the SUV6 

nitrate concentration: 

 

 

y = 0.0058 x3 – 0.0237 x2 + 1.0175 x 

R2 = 0.99671 

 

 

Figure 9 shows the whole SUV-6 dataset vs depth profile following surface and depth 

calibrations. Also plotted are the CTD bottle data as before. The overlay is satisfactory and at 

this point, the SUV6 data are considered fully calibrated to a first order for scientific 

purposes.  The fully calibrated SUV6 data was then merged on time with the master SeaSoar 

file to pull in corresponding Minipack CTD parameters. The master SeaSoar file had already 

been fully calibrated with respect to temperature, salinity, oxygen (SBE 43 and Anderaa 

Optode sensors) and fluorescence (Chelsea minipak fluorometer and Turner Designs Cyclops 

fluorometer) in post-cruise processing. Dissolved nitrate could then be plotted out in 

contoured sections for each of the five tows and compared with other biogeochemical and 

physical parameters in such a fine-scale way as has not been seen before. 
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Figure 9. SUV6 data calibrated to surface and to depth plotted against CTD nitrate data 

down to 450m. SUV6 data is colour-coded by tow according to the key. Stainless steel CTDs 

are marked with circles, titanium casts are marked with triangles. 

 

                     
 

Figure 10. SUV-6 nitrate section for the dogleg tow showing cyclonic and anti-cyclonic 

components of the dipole and the central jet 
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Figure 10 shows a contoured nitrate section for the targeted dogleg tow through both eddy 

components of the dipole, (tow 2c). It clearly shows the fine-scale variability in the water 

column. Raised isonutrient surfaces characterise both eddy cores down to 400m whilst 

maximum concentrations of 12 µmol l -1 are found on the periphery of the cyclonic eddy. 

This may be evidence of small-scale nutrient injection resulting from instability processes.  

 

Together with targeted net hauls and collected water samples, on-going work continues to 

assess the biogeochemical impacts of the dipole feature. 

 
 
            

Reference 

Quartly G.D. 2006 Madgascar Experiment (MadEx), 26 Jan – 21 Feb 2005, RRS Discovery 
Cruise 288, Cruise Report No. 8, National Oceanography Centre, Southampton, UK, 
105pp. 

 
 

Appendix – Matlab code used to process SUV6 data 
% suv6dat2nitr.m - Matlab file to convert suv6 raw data to nitrate values 
% R. Prien - 27.01.2005 
 
% NB Program assumes data file to have calibration values for at least the last 
%    three rows. Edit files to ensure this. EJG 12.02.05 
 
% modified for SeaSoar SUV6 by MAS 05.08.07 
 
% data come in batches of 60 lines - 45 actual data and 15 calibration data 
% note that data file can start and end anywhere within that batch of 60 
 
clear 
close all 
 
files = [ 
'suv6516.000' % Your filename goes in here 
]; 
nrem = 3;                                 % number of points to remove at the 
flipping edges 
colors = ['m','b','c','g','y','r','k'];   % colors for channels 
symbs = ['+','.','o'];                    % symbols used 
thres = 1400;  % threshold to determine flipping - changed from 2000 to 1400 for 
SeaSoar 
calch = 1;     % channel for detection of flipping 
 
ind = find(files(1,:)=='.'); 
eval(['load ',files(1,:)]) 
eval(['I = ',files(1,1:ind-1),';']) 
eval(['clear ',files(1,1:ind-1)]) 
 
% for the files taken with Jon Campbells software the first two columns 
% are year and Julian day with fraction which gives the time 
% modified to remove year as not in SeaSoar data stream 
% SeaSoar data stream contains JDAY and 7 SUV6 channels 
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jdaytime = I(:,1); 
I = I(:,2:7);   %%<<<<<<< remove the day column 
 
% for debugging only: 
%jdaytime = 27.6 + (1:length(I))./24./3600; 
 
 
sec = (jdaytime - jdaytime(1)).*24.*3600; 
 
figure(1) % plot cal-channel raw data and detected flips 
set(gcf,'Name','raw cal chan'); 
subplot(2,1,1) 
plot(sec,I(:,calch),[num2str(colors(2))])  
tit = [files(1,:),': ','raw data, ch. ',num2str(calch)];  
title(tit) 
ylabel('I / counts'),xlabel('time / s ') 
hold on 
 
% remove nrem values next to edges 
% falling edges 
miin = find((I(1:length(I)-1,calch)>thres)&(I(2:length(I),calch)<thres)); 
ind=1:length(miin);  
plot(sec(miin(ind)+1),I(miin(ind)+1,calch),'k+') % show detected falling edge 
 subplot(2,1,2) 
 plot(diff(sec(miin(ind)+1)),'b') % show timing of detected falling edges 
 hold on 
 % remove values next to edge 
 for j=1:length(ind) 
  I(miin(ind(j))+1:miin(ind(j))+nrem(1)+1,:)=NaN; 
  sec(miin(ind(j))+1:miin(ind(j))+nrem(1)+1)=NaN; 
 end 
 ind=find(isnan(I(:,1))); 
 I(ind,:) = []; 
 ind=find(isnan(sec)); 
 sec(ind) = []; 
  
 % rising edge 
 mout = find((I(1:length(I)-1,calch)<thres)&(I(2:length(I),calch)>thres)); 
 ind=1:length(mout);  
 subplot(2,1,1) 
 plot(sec(mout(ind)+1),I(mout(ind)+1,calch),'ko') % show detected rising edge 
 subplot(2,1,2) 
 plot(diff(sec(mout(ind)+1))+0.01,'r') % show timing of rising edges 
 xlabel('flip No.'),ylabel('time / s') 
 title('Time between flips') 
 legend('falling','rising') 
 for j=1:length(ind) 
   if( (mout(ind(j))-nrem(1)+1) > 0) 
    I(mout(ind(j))-nrem(1)+1:mout(ind(j))+1,:)=NaN; 
    sec(mout(ind(j))-nrem(1)+1:mout(ind(j))+1)=NaN; 
   end 
 end 
 ind=find(isnan(I(:,1))); 
 I(ind,:) = []; 
 ind=find(isnan(sec)); 
 sec(ind) = []; 
 
 subplot(2,1,1) 
 plot(sec,I(:,calch),'m') % show the raw-data after removal of values at edges 
 
 miin = find(I(:,calch)>thres); % time values with mirror in the path 
 mout = find(I(:,calch)<thres); % time values with mirror out of path 
 
 Imin = I(miin,:);    % all values with mirror in the path (i.e. internal 
calibration) 
 Imout = I(mout,:);   % all values with mirror out of the path (i.e. measurement) 
 
 
 %% 
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 %% Fig. 2 line-graphs for the two 'flip' positions 
 %% 
 figure(2) 
 set(gcf,'PaperUnits','centimeters'); 
 set(gcf,'PaperPosition',[0 0 30 21]); 
 set(gcf,'PaperOrientation','landscape'); 
 set(gcf,'Name','raw all chan.'); 
 
 subplot(2,1,1) 
 t = sec(miin)./60;    % time in min for internal calibration values 
 h = plot(t,Imin,'-'); 
 for ii=1:6 
  set(h(ii),'Color',num2str(colors(ii))) 
 end 
 title([files(1,:),': int. path']) 
 ylabel('I / counts'),xlabel('time / min ') 
 legend('205','220','235','250','265','280') 
 grid 
 
 subplot(2,1,2) 
 t = sec(mout)./60;    % time in min for measurement values 
 h = plot(t,Imout,'-'); 
 for ii=1:6 
  set(h(ii),'Color',num2str(colors(ii))) 
 end 
 ylabel('I / counts'),xlabel('time / min ') 
 title([files(1,:),': ext. path']) 
 legend('205','220','235','250','265','280') 
 grid 
 eval(['print -dpsc ',files(1,1:length(files(1,:))-4),'_raw.ps'])  
  
  % Let's find the mean values and standard deviations for all periods (in and out) 
 % First for int. cal. position 
 t = sec(miin); % time in secs again for int. cal. position 
 ind = find( diff(t) > 10); % this find indices 28 56 84 etc. (for nrem = 3) which 
are the last indices of an interval 
 ind = [1; ind+1 ;size(t,1)+1]; % Now the indices are starts of intervals, only the 
last one is last index of series +1 
 Iminmean(length(ind)-1,6)=0; % create matrix of means 
 Iminstd(length(ind)-1,6)=0;  % and standard deviations 
 for j=1:length(ind)-1 
  Iminmean(j,1) = mean( Imin(ind(j):ind(j+1)-1,1) ); 
  Iminstd(j,1) = std(Imin(ind(j):ind(j+1)-1,1) ); 
  Iminmean(j,2) = mean( Imin(ind(j):ind(j+1)-1,2) ); 
  Iminstd(j,2) = std(Imin(ind(j):ind(j+1)-1,2) ); 
  Iminmean(j,3) = mean( Imin(ind(j):ind(j+1)-1,3) ); 
  Iminstd(j,3) = std(Imin(ind(j):ind(j+1)-1,3) ); 
  Iminmean(j,4) = mean( Imin(ind(j):ind(j+1)-1,4) ); 
  Iminstd(j,4) = std(Imin(ind(j):ind(j+1)-1,4) ); 
  Iminmean(j,5) = mean( Imin(ind(j):ind(j+1)-1,5) ); 
  Iminstd(j,5) = std(Imin(ind(j):ind(j+1)-1,5) ); 
  Iminmean(j,6) = mean( Imin(ind(j):ind(j+1)-1,6) ); 
  Iminstd(j,6) = std(Imin(ind(j):ind(j+1)-1,6) ); 
  tminmean(j) = mean( t(ind(j):ind(j+1)-1) );  
 end 
 
 % Second for the measurement position: 
 t = sec(mout); % time in secs again 
 ind = find( diff(t) > 8); % this finds the last indices of an interval 
 ind = [1; ind+1 ;size(t,1)+1]; % Now the indices are starts of intervals, only 
last one is last index of series 
  
 Imoutmean(length(ind)-1,6)=0; % create matrix of means 
 Imoutstd(length(ind)-1,6)=0; % and standard deviations 
 Imoutrelstd(length(ind)-1,6)=0; 
 Imoutrel(size(t,1),6) = 0; % create matrix of ext. path values normalized with 
following int. path interval 
 Imoutrelmean(size(t,1),6) = 0; 
 for j=1:length(ind)-1 
  Imoutmean(j,1) = mean( Imout(ind(j):ind(j+1)-1,1) ); 
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  Imoutrel(ind(j):ind(j+1)-1,1) = Imout(ind(j):ind(j+1)-1,1)./Iminmean(j,1); 
  Imoutrelmean(j,1) = mean( Imoutrel(ind(j):ind(j+1)-1,1)); 
  Imoutstd(j,1) = std( Imout(ind(j):ind(j+1)-1,1)); 
  Imoutrelstd(j,1) = std( Imoutrel(ind(j):ind(j+1)-1,1)); 
  Imoutmean(j,2) = mean( Imout(ind(j):ind(j+1)-1,2) ); 
  Imoutrel(ind(j):ind(j+1)-1,2) = Imout(ind(j):ind(j+1)-1,2)./Iminmean(j,2); 
  Imoutrelmean(j,2) = mean( Imoutrel(ind(j):ind(j+1)-1,2)); 
  Imoutstd(j,2) = std( Imout(ind(j):ind(j+1)-1,2)); 
  Imoutrelstd(j,2) = std( Imoutrel(ind(j):ind(j+1)-1,2)); 
  Imoutmean(j,3) = mean( Imout(ind(j):ind(j+1)-1,3) ); 
  Imoutrel(ind(j):ind(j+1)-1,3) = Imout(ind(j):ind(j+1)-1,3)./Iminmean(j,3); 
  Imoutrelmean(j,3) = mean( Imoutrel(ind(j):ind(j+1)-1,3)); 
  Imoutstd(j,3) = std( Imout(ind(j):ind(j+1)-1,3)); 
  Imoutrelstd(j,3) = std( Imoutrel(ind(j):ind(j+1)-1,3));   
  Imoutmean(j,4) = mean( Imout(ind(j):ind(j+1)-1,4) ); 
  Imoutrel(ind(j):ind(j+1)-1,4) = Imout(ind(j):ind(j+1)-1,4)./Iminmean(j,4); 
  Imoutrelmean(j,4) = mean( Imoutrel(ind(j):ind(j+1)-1,4)); 
  Imoutstd(j,4) = std( Imout(ind(j):ind(j+1)-1,4)); 
  Imoutrelstd(j,4) = std( Imoutrel(ind(j):ind(j+1)-1,4)); 
  Imoutmean(j,5) = mean( Imout(ind(j):ind(j+1)-1,5) ); 
  Imoutrel(ind(j):ind(j+1)-1,5) = Imout(ind(j):ind(j+1)-1,5)./Iminmean(j,5); 
  Imoutrelmean(j,5) = mean( Imoutrel(ind(j):ind(j+1)-1,5)); 
  Imoutstd(j,5) = std( Imout(ind(j):ind(j+1)-1,5)); 
  Imoutrelstd(j,5) = std( Imoutrel(ind(j):ind(j+1)-1,5)); 
  Imoutmean(j,6) = mean( Imout(ind(j):ind(j+1)-1,6) ); 
  Imoutrel(ind(j):ind(j+1)-1,6) = Imout(ind(j):ind(j+1)-1,6)./Iminmean(j,6); 
  Imoutrelmean(j,6) = mean( Imoutrel(ind(j):ind(j+1)-1,6)); 
  Imoutstd(j,6) = std( Imout(ind(j):ind(j+1)-1,6)); 
  Imoutrelstd(j,6) = std( Imoutrel(ind(j):ind(j+1)-1,6));   
  tmoutmean(j) = mean( t(ind(j):ind(j+1)-1) );  
 end 
 
 %% 
 %% Fig.4:  ext. path values normalized with following int. path interval 
 %% 
 figure(4) 
 set(gcf,'PaperUnits','centimeters'); 
 set(gcf,'PaperPosition',[0 0 30 21]); 
 set(gcf,'PaperOrientation','landscape'); 
 set(gcf,'Name','normalized ext. path'); 
 
 t = sec(mout)./60;    % time in min for mirror out values 
 h = plot(t,Imoutrel,'-'); 
 for ii=1:6 
  set(h(ii),'Color',num2str(colors(ii))) 
 end 
 ylabel('I_{ext} / I_{int}'),xlabel('time / min ') 
 title([files(1,:),': ext. path, calibration in LNS']) 
 legend('205','220','235','250','265','280') 
 grid 
 eval(['print -dpsc ',files(1,1:length(files(1,:))-4),'_extnorm.ps'])  
  
  
 %% 
 %% Fig.5:  means and standard deviation as error bars for each interval 
 %% 
 figure(5) 
 set(gcf,'PaperUnits','centimeters'); 
 set(gcf,'PaperPosition',[0 0 30 21]); 
 set(gcf,'PaperOrientation','landscape'); 
 set(gcf,'Name','means + std dev'); 
 
 % first for int. path (upper panel) 
 subplot(2,1,1) 
 hold on 
 [dum tminmat] = meshgrid(1:6,tminmean); 
 h = errorbar(tminmat./60,Iminmean,Iminstd); 
 for ii=1:6 
     set(h(ii),'Color',num2str(colors(ii))) 
 end 
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 legend('205','220','235','250','265','280') 
 grid 
 ylabel('mean {I(\lambda)} / counts'),xlabel('time / min') 
 title([files(1,:),': int. path']) 
 ax = axis; 
 ax(1)=0; 
 axis(ax); 
  
 % then for ext. path (lower panel) 
 subplot(2,1,2) 
 [dum tmoutmat] = meshgrid(1:6,tmoutmean); 
 hold on 
 h = errorbar(tmoutmat./60,Imoutmean,Imoutstd); 
 for ii=1:6 
  set(h(ii),'Color',num2str(colors(ii))) 
 end 
 legend('205','220','235','250','265','280') 
 ax = axis; 
 ax(1)=0; 
 axis(ax); 
  
 grid 
 ylabel('mean {I(\lambda)} / counts'),xlabel('time / min') 
 title([files(1,:),': ext. path']) 
 eval(['print -dpsc ',files(1,1:length(files(1,:))-4),'_means.ps'])  
 
% if(length(tmoutmat)>length(tminmat)) 
%     tmoutmat(length(tmoutmat),:) = []; 
%     Imoutmean(length(Imoutmean),:) = []; 
%     Imoutstd(length(Imoutstd),:) = []; 
% end 
% if(length(tminmat)>length(tmoutmat)) 
%     tminmat(length(tminmat),:) = []; 
%     Iminmean(length(Iminmean),:) = []; 
%     Iminstd(length(Iminstd),:) = []; 
% end 
 
% from the lab calibration: 
Ioff1 = 1000 .* [0.73723096989466   0.93689932661418   2.47702213544662   
2.32764682034082   2.74370449575342]; 
Ioff2 = [1.04467450289282   0.33928188910878   0.82393639046140   0.78263023349615   
0.92605517522418]; 
p2 = [ 38.20596460696951 -13.78382751978668]; 
 
 
ab2 = -log((Imoutrel(:,2)./Imoutrel(:,6)-Ioff2(2))); %absorbance of 220 nm channel 
  
figure(9) 
 set(gcf,'PaperUnits','centimeters'); 
 set(gcf,'PaperPosition',[0 2 21 25]); 
 set(gcf,'PaperOrientation','portrait'); 
 set(gcf,'Name','conc. appl. cal.'); 
  
%save time as jday 
timereal=(sec(mout)/(60*60*24))+jdaytime(1); 
 
h = plot(sec(mout)./60,polyval(p2,ab2),'b'); 
title(['Concentration calculated from calibration (220 nm channel)'],'FontSize',14) 
xlabel('time / min','FontSize',14),ylabel('concentration / \mu mol l^{-
1}','FontSize',14) 
set(gca,'FontSize',14) 
grid 
 
figure(10) 
h = plot(timereal,polyval(p2,ab2),'b'); 
title(['Concentration calculated from calibration (220 nm channel)'],'FontSize',14) 
xlabel('time / Jday','FontSize',14),ylabel('concentration / \mu mol l^{-
1}','FontSize',14) 
set(gca,'FontSize',14) 
grid  
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eval(['print -dpsc ',files(1,1:length(files(1,:))-4),'_linregbc.ps']) 
 
 
%save 6 channel data 
eval(['channels_',files(1,1:length(files(1,:))-4),'=[timereal Imoutrel];']) 
eval(['save channels_',files(1,1:length(files(1,:))-4)]); 
 
 
% save nitrate values 
eval(['Nitr_',files(1,1:length(files(1,:))-4),'= [timereal polyval(p2,ab2)];']) 
eval(['save Nitr_',files(1,1:length(files(1,:))-4)]); 
 
 


