

S Dadson<sup>1</sup>, N Gedney<sup>2</sup>, <u>G Hayman<sup>1</sup></u>, E Blyth<sup>1</sup>, D Clark<sup>1</sup>, C Taylor<sup>1</sup>, C Prigent<sup>3</sup>

<sup>1</sup> Centre for Ecology and Hydrology (UK); <sup>2</sup> Met Office Hadley Centre (UK); <sup>3</sup> CNRS/Estellus (F)

### 19<sup>th</sup> September 2011



# **Scope and Acknowledgements**

# Scope

- Background
- Boreal wetlands and ALANIS Methane
- Tropical wetlands
- Future activities







#### Acknowledgements

- European Space Agency
- ALANIS Methane project partners (TU Wien, Bremen)
- ileaps

- CH<sub>4</sub> second most important greenhouse gas after CO<sub>2</sub>
- Wetlands are largest natural source but there are large uncertainties
- Subject of recent papers (e.g., Bloom et al., 2010; Ringeval et al., 2010; Bousquet et al., 2011)

| Approach             | Northern/Bogs            | Tropical/Swamps         | Total              |
|----------------------|--------------------------|-------------------------|--------------------|
| Flux extrapolation   | 31–48 <sup>a</sup>       | 49-80                   | 80-115             |
|                      | avg = 38 (37%)           | avg = 65 (63%)          | sum of avgs = 103  |
|                      |                          |                         | n = 4              |
| Process modeling     | 20–72 <sup>0</sup>       | 41-133                  | 92-156             |
|                      | avg = 44 (31%)           | avg = 90 (64%)          | sum of avgs = 134  |
|                      |                          |                         | n = 8 (bogs); 5    |
|                      |                          |                         | (swamps)           |
| Inverse modeling     | 21–47                    | 81-206                  | 145-237            |
|                      | avg = 36 (20%)           | avg = 144 (78%)         | sum of avgs = 180  |
|                      |                          |                         | n = 6              |
| Current best guess   | 24-72                    | 81-206                  | 170.3              |
| (process and inverse | avg = 42.7 (25%)         | avg = 127.6 (75%)       | range = 105–278 by |
| modeling since 2004) | std. dev. = 16.6; n = 10 | std. dev. = 44.0; n = 8 | summing minima and |
|                      |                          |                         | maxima             |

#### Table 2-5. Summary of Estimated Wetland CH<sub>4</sub> Fluxes by Technique (Tg CH<sub>4</sub>/Year)

For flux extrapolation, temperate emissions are split equally between bogs and swamps. Values in parentheses indicate percentage contribution to wetland total emissions.

<sup>b</sup> Walter et al. (2001) estimates excluded.

US EPA, 2010

- Wetland inundation (in Africa) exerts a strong control on fluxes of heat and water at the land surface
- Climate change projections show a 78% increase in methane emissions from x2 CO<sub>2</sub>, with both feedbacks and uncertainties greatest in the tropics (Shindell et al., 2004, GRL; IPCC, 2007)



Background

Boreal Wetlands

### **Distribution of wetlands**



- Wetland inundation product of Prigent et al.
- Major wetland areas identified (Ob River, Amazon basin, North of Canada, India...)
- Areas of inundation show realistic structures at large scale
- No discrimination between natural wetlands, rice paddies and small lakes



Background

**Boreal Wetlands** 

## **Background – Methane and wetlands**

- CH<sub>4</sub> wetland emissions by diffusion across the soil or water interface, by ebullition (bubbling), and by plant-mediated transport
- Parameters for modelling at large scales:
  - Soil temperature (→ soil microbial activity)
  - Water table depth (→ defines the CH<sub>4</sub>generating region
  - carbon content of the decomposable substrate
- Linked to changes in:
  - precipitation, permafrost dynamics, vegetation cover, and topography



Background



Methane Oxygen (CH₄)  $(O_2)$ Rice plant  $(CH_d)$  $(CH_{d})$ Ebullition Diffusi on Water  $(CH_{d})$ 0, Decomposition of soil organic matter CO, (CH Oxidation

#### Source: http://www.riceweb.org/reserch/Res.issmethane.htm

# **JULES - Joint UK Land Environment Simulator**

Process-based model of carbon, energy and water exchange between atmosphere and land surface

#### CEH lead institute for development of JULES



# JULES – Modelling methane emissions from wetlands

- Gedney et al [2003, 2004] parameterisations of large-scale hydrology and wetland biogeochemistry
- Modelled wetland fraction is based on soil moisture saturation
- Current version has no overbank inundation
- Can be used in different configurations:
  - a. Point/Offline
  - b. Gridded/Offline
  - c. Coupled into atmospheric chemistry model

 $F_{CH4}^{w} = k_{CH4}^{*} f_{w}^{*} C_{s}^{*} Q_{10}^{(T_{soil})^{(T_{soil}^{-T_{0}})/10}}$ 

F<sup>w</sup><sub>CH4</sub> = methane flux from wetlands

k<sub>CH4</sub> = scaling factor

- f<sub>w</sub> = wetland fraction
- C<sub>s</sub> = "substrate": fixed soil carbon content
- **Q**<sub>10</sub> = temperature sensitivity

#### Radiation



#### http://www.jchmr.org/jules/

Centre for Ecology & Hydrology Natural environment research council

Background

**Boreal Wetlands** 

frican Wetlands

### **ESA ALANIS Methane**

- Producing EO products relevant to large-scale land surface modelling
- Presentation on ALANIS Methane (Bartsch, Wednesday)



Background

Boreal Wetlands

#### **ESA ALANIS Methane – Areas of interest**

#### Focus on Northern Eurasia, 2007-2008



# JULES – Comparison with EO products for Ob river

**Boreal Wetlands** 

- Standard version of JULES
- Model run to 1.0° x 1.0° global grid for 1975-2010 using CRU-NCEP driving met data
- Time series at point of high inundation (66.5° E, 66.5° N)
  - Blue EO 'wetland' fraction (Prigent)
  - Orange EO 'wetland' fraction (TU Wien)
  - Green JULES 'wetland' fraction
  - Red JULES CH<sub>4</sub> emission flux
  - Black Sciamachy column CH<sub>4</sub>





Afr

Background

# JULES – Comparison with EO products for Niger Inland Delta

- Standard version of JULES
- Model run to 1.0° x 1.0° global grid for 1975-2010 using CRU-NCEP driving met data
- EO products reprocessed to same output grid as JULES
- Time series as average over Niger river basin
  - Green EO 'wetland' fraction (Prigent)
  - Black JULES 'wetland' fraction
- Underestimates magnitude of inundation and suggestion that the model does not dry out







# JULES – Comparison with EO products for Niger Inland Delta

- Standard version of JULES
- Model run to 1.0° x 1.0° global grid for 1975-2010 using CRU-NCEP driving met data
- EO products reprocessed to same output grid as JULES
- Time series at point (~4° W, ~14° N)
  - Blue EO 'wetland' fraction (Prigent)
  - Orange EO 'wetland' fraction (TU Wien)
  - Green JULES 'wetland' fraction
  - Red JULES CH<sub>4</sub> emission flux
  - Black Sciamachy column CH<sub>4</sub>



Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL





GrADS: COLA/IGES

2011-09-16-14:52

### New flow routing and overbank inundation scheme for JULES



Background

Boreal Wetlands

#### **Global Applications: Major Rivers**



- Use of gridded spatial data reduces the need to calibrate the model for each catchment
- Generic modelling capability -> Hadley Centre Regional Model (PRECIS)
- Joint project with Hadley Centre to evaluate river flows in new AR5 model (HadGEM)



Background

4×10

3×10<sup>6</sup>

2×10

1×10

Discharge, Q,, [m<sup>3</sup>s<sup>-1</sup>]

**Boreal Wetlands** 

**African Wetlands** 

### Land-atmosphere feedbacks

#### **Niger Inland Delta, MALI**





Background

**Boreal Wetlands** 

#### Modelled river flows and evaporation using new scheme



- Area of greatest inundation follows topographic low;
- Inundation drives water vapour flux and temperature anomaly;
- Seasonal flooding provides up to 50 percent of water vapour to atmosphere.

Dadson et al., (2010). Journal of Geophysical Research, 115, D23114.

Background

Centre for

Ecology & Hydrology

NATURAL ENVIRONMENT RESEARCH COUNCIL

Boreal Wetlands

African Wetlands

### **Modelled and observed flows**

Centre for

Ecology & Hydrology

NATURAL ENVIRONMENT RESEARCH COUNCIL



- Timing of flows accurately reproduced by the model;
- ECMWF forcing gives 31% underestimate of flow (limited penetration inland of W. African Monsoon)  $R^2 = 0.79$ ;
- TRMM-corrected forcing gives 41% overestimate of flow  $R^2 = 0.70$ .

Dadson et al., (2010). Journal of Geophysical Research, 115, D23114.



## Modelled and observed inundation



- Satellite observations of inundation fraction from Prigent *et al.*, 2007 (passive & active microwave, near infra-red);
- ECMWF forcing gives better match with timing R<sup>2</sup> = 0.79, but peak inundation is 29 % lower than observed;
- TRMM forcing gives better peak inundation, but timing is worse.



Centre for

Ecology & Hydrology

NATURAL ENVIRONMENT RESEARCH COUNCIL

Dadson et al., (2010). Journal of Geophysical Research, 115, D23114.

Boreal Wetlands

#### **Future work**

- Boreal wetlands (ALANIS Methane)
  - Development, application and evaluation of JULES in different configurations, including as LSM in HADGEM3 climate model
  - Generation and dissemination of products
  - Ongoing interaction with iLEAPS community
- African wetlands
  - Extend and test inundation model on other African wetlands (Lake Chad, Sudd, Okavango)

# Benchmarking of wetlands in land surface models (GEWEX-GLISS)



Background

**Boreal Wetlands** 

African Wetlands

#### **Summary**

- Wetlands are the largest natural source of methane but the emission estimates have large uncertainties
- Boreal wetlands
  - ALANIS methane project developing novel EO products relevant for land surface modelling
  - The standard version of JULES does not represent the area of inundation of boreal wetlands well
- African wetlands
  - Overbank inundation scheme developed for Niger Inland Delta
  - Will be extended and tested on other wetlands in Africa (and globally)



Background

**Boreal Wetlands** 

## **Related presentations and posters**

- Integrating Earth observation data and a land-surface model to better understand high northern latitude phenology by R Ellis [Oral: Next presentation]
- Novel Earth Observation Products to Characterise Wetland Extent and Methane Dynamics: the ESA ALANIS-methane Project by G Hayman, E Blyth, D Clark, <u>A Bartsch</u>, S Schlaffer, C Prigent, F Aires, M Buchwitz, J Burrows, O Schneising, F O'Connor and N Gedney [Oral Presentation - Wednesday]
- Land-atmosphere feedbacks in a semi-arid environment: what we've learnt from AMMA by C Taylor [Oral Presentation Thursday]
- Variability and long-term trends of carbon dioxide and methane columnaveraged mole fractions retrieved from SCIAMACHY onboard ENVISAT by O Schneising, M Buchwitz, M Reuter, J Heymann, H Bovensmann and J Burrows [Poster presentation]
- Active microwave satellite data in support of methane modeling at high latitudes. A Bartsch, S Schlaffer, C Paulik, D Sabel, V Naeimi, G Hayman, W Wagner [Poster presentation]

