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Abstract 
 
Legacy data in the form of soil maps, which often have typical property measurements 
associated with each polygon, can be an important source of information for digital soil 
mapping (DSM). Methods of disaggregating such information and using it for 
quantitative estimation of soil properties by methods such as regression kriging (RK) are 
needed. Several disaggregation processes have been investigated; preferred methods 
include those which include consideration of scorpan factors and those which are mass 
preserving (pycnophylactic) making transitions between different scales of investigation 
more theoretically sound. Area to Point Kriging (AtoP kriging) is pycnophylactic and 
here we investigate its merits for disaggregating legacy data from soil polygon maps.  
Area to Point Regression Kriging (AtoP RK) which incorporates ancillary data into the 
disaggregation process was also applied. The AtoP kriging and AtoP RK approaches do 
not involve collection of new soil measurements and are compared with disaggregation 
by simple rasterization. Of the disaggregation methods investigated, AtoP RK gave the 
most accurate predictions of soil organic carbon (SOC) concentrations (smaller mean 
absolute errors (MAEs) of cross-validation) for disaggregation of soil polygon data 
across the whole of Northern Ireland. 
 
The legacy soil polygon data disaggregated by AtoP kriging and simple rasterization 
were used in a RK framework for estimating soil organic carbon (SOC) concentrations 
across the whole of Northern Ireland, using soil sample data from the Tellus survey of 
Northern Ireland and with other covariates (altitude and airborne radiometric potassium). 
This allowed direct comparison with previous analysis of the Tellus survey data. 
Incorporating the legacy data, whether from simple rasterization of the polygons or AtoP 
kriging, substantially reduced the MAEs of RK compared with previous analyses of the 
Tellus data. However, using legacy data disaggregated by AtoP kriging in RK resulted in 
a greater reduction in MAEs. A jack-knife procedure was also performed to determine a 
suitable number of additional soil samples that would need to be collected for RK of SOC 
for the whole of Northern Ireland depending on the availability of ancillary data. We 
recommend i) if only legacy soil map data are available, they should be disaggregated 
using AtoP kriging, ii) if ancillary data are also available legacy data should be 
disaggregated using AtoP RK and iii) if new soil measurements are available in addition 
to ancillary and legacy soil map data, the legacy soil map data should be first 
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disaggregated using AtoP kriging and these data used along with ancillary data as the 
fixed effects for RK of the new soil measurements. 
 
Keywords: Digital soil mapping, Legacy soil data, Area to Point kriging, Regression 
kriging, Soil organic carbon, Disaggregation 
 
 
 
1. Introduction 
In traditional soil survey, surveyors use their knowledge of soil forming factors combined 
with aerial photographs and field-based soil observations to delineate soil classes as 
polygons on a map. Typical soil profiles of these classes are often described and 
published as a memoir which may include values of key soil properties at various depths. 
This traditional approach gives no indication of variability in these soil properties within 
or between classes and it has no statistical basis which can lead to bias (Carré et al. 
2007a). In the last 10-15 years the need for raster based digital soil maps has been 
emphasized and a digital soil mapping (DSM) approach has been developed (McBratney 
et al. 2003). Such maps have pixels of different size depending on the scale of interest 
and have values of key soil properties, such as soil organic carbon (SOC) concentration,  
available at several depths (McBratney et al. 2003). More specifically, DSM has been 
defined as the creation and population of spatial soil information by the use of field and 
laboratory observational methods coupled with spatial and non-spatial soil inference 
systems (Lagacherie and McBratney, 2007; Carré et al. 2007b). 
 
Polygon maps representing soil classes at various levels of national or international 
classification systems exist in many locations. Effective methods are required for the 
disaggregation and incorporation of such a wealth of ‘legacy soil data’ into DSM at 
national and regional scales. Appropriate use of this historical data could ensure that 
additional sampling effort associated with modern digital soil mapping is minimized. De 
Bruin et al. (1999) and Eagleson et al. (1999) proposed approaches that use hierarchical 
spatial reasoning for disaggregation of soil polygons. Bui and Moran (2001) investigated 
some such methods empirically along with other methods for spatial disaggregation of 
soil polygon maps in the Murray-Darling basin, Australia.  
 
The theoretical merits of several forms of spatial disaggregation were investigated by 
McBratney (1998); the author suggested transfer functions and pycnophylactic 
interpolation should be applied. Mass preservation in pycnophylactic methods (Tobler, 
1979) means that the mass or values over all the finer pixels contained within a polygon 
is preserved; in other words the average of the values in the finer pixels gives the polygon 
value. McBratney (1998) noted that the mass preservation property of pycnophylactic 
splines is a useful feature for disaggregating soil data as it could make transitions 
between scales in DSM more sensible. This could mean that intense sampling at each 
scale is not essential. Mass preservation is also a feature of the recently developed 
geostatistical approach of Area to Point Kriging (Kyriakidis, 2004). The typical centroid-
based approach to kriging from areas to points assumes that the spatial support of units is 
constant (Goovaerts, 2006). Hence it is not appropriate for use with polygon data of 



varying shape and size (Gotway and Young, 2002). The advantage of AtoP kriging is that 
it incorporates the variable size and shape of polygons in variogram deconvolution and 
kriging. Recently, Goovaerts (2010, 2011) used AtoP and regression kriging (RK) to 
incorporate both point field measurements and areal data (calibration of geological map) 
in the spatial interpolation of heavy metals in the Swiss Jura. Sensitivity analysis 
indicated that these new kriging procedures improve prediction over ordinary kriging and 
traditional RK based on the assumption that the local mean is constant within each 
mapping unit. To our knowledge, the advantages associated with AtoP kriging have not 
been used for disaggregating legacy soil maps and for optimizing DSM or compared to 
current state-of-the-art methods in DSM.  
 
Current DSM methods in more data-rich settings include RK (McBratney et al. 2003) to 
map variation in important soil properties such as organic carbon based on ancillary data. 
Soil organic carbon is arguably one of the most important soil properties due to the 
benefits it confers such as enhancing soil structure through aggregation, improved water 
holding and cation-exchange capacities and also acting as a store of terrestrial carbon.  In 
a recent study, two types of ancillary data (altitude and airborne radiometric 
measurements of potassium) were shown to be effective for improved mapping of soil 
organic carbon across all of Northern Ireland within a RK framework (Rawlins et al., 
2009). However, the authors did not incorporate disaggregated legacy data into their 
procedure. 
 
In this study we use Area to Point (AtoP) kriging to disaggregate soil organic carbon 
(SOC) data from a polygon map and compare it with disaggregation by simple 
rasterization of the same data. We also compare these methods with an AtoP regression 
kriging (AtoP RK) which includes some hierarchical spatial reasoning in the 
disaggregation process (Liu et al., 2008; Yoo and Kyriakidis, 2009). In this approach, 
ancillary data are used to inform on within-class variation in key scorpan factors 
(McBratney et al. 2003) such as relief and parent material, i.e. they provide a local mean 
and the residuals are AtoP kriged. The errors involved with each disaggregation approach 
are investigated. We then use the same regression models and data as Rawlins et al. 
(2009), but we add legacy map SOC data disaggregated by simple rasterization (Polygon 
SOC) and AtoP kriging (AtoP SOC) as extra fixed effects in RK. This two-step approach 
(Liu et al. 2008) to incorporating legacy data into RK was used to allow direct 
comparison with the results of Rawlins et al. (2009), however, there is no guarantee that 
the pycnophylactic or mass preserving property of AtoP kriging is preserved with a two-
step AtoP RK procedure. Goovaerts (2010, 2011) introduced an approach where point 
and areal data are incorporated in one-step (i.e. one kriging system solved) instead of the 
two-step approaches (AtoP kriging followed by RK kriging) used here. Although this 
methodology, coined Area-And-Point (AAP) kriging, is theoretically more efficient than 
a two-step approach, and is pycnophylactic, it is not currently available in commercial 
software.  
 
The errors associated with incorporating Polygon SOC and AtoP SOC into RK using the 
six models of Rawlins et al. (2009) are investigated and a suitable number of samples for 
mapping SOC across Northern Ireland based on the available covariates is suggested. We 



comment on the benefits for DSM of disaggregating data from legacy soil polygon maps 
using simple rasterization, AtoP kriging and AtoP RK and incorporating the former two 
types of disaggregated legacy data into RK. 
 
 
 
2. Geostatistical Theory 
 
2.1. Area to Point Kriging 
Consider the problem of estimating the value of a soil property z at any location us within 
a study area A from a set of B areal data {z(vβ); β=1,…,B}. These areal or legacy soil 
polygon map data are typically measured on spatial supports (mapping units) vβ of 
various size and shape. Area-to-Point (AtoP) kriging can be viewed as the counterpart of 
block kriging in that point estimates )(*

sAtoPz u
 
are obtained as the following linear 

combination of areal (block) measurements: 
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where K is typically smaller than the total number of areal data B; for example (K-1) is 
the number of blocks adjacent to the block vβ  where the point estimation is conducted. 
The kriging weights are the solution of the following ordinary kriging system: 
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where µ(us) is the Lagrange multiplier. Like in traditional block kriging, the block-to-
point covariances ),( skvC u are approximated by the average of the point support 
covariance C(h) computed between the location us and a set of  Pk points discretizing the 
block vk (Figure 1a). A similar procedure is used for the block-to-block covariances 

( ) ( ){ }'' ,Cov),( kkkk vZvZvvC =  and involves averaging C(h) computed between any two 
points discretizing the blocks vk and 'kv  (Figure 1b). A key property of the AtoP kriging 
estimator is its coherency or pycnophylactic property: the aggregation of the Pβ point 
estimates within any given entity vβ returns the areal datum z(vβ): 
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To satisfy this constraint, the same K areal data must be used for prediction at each of the 
Pβ  discretizing point us. Uncertainty about the areal data can be incorporated into the 
kriging system by adding a noise variance term to the diagonal elements of the kriging 
matrix (i.e. block-to-block covariances), leading to the filtering of that areal noise during 
the disaggregation procedure. This is similar to the Poisson or binomial AtoP kriging 



approaches introduced by Goovaerts (2010) where the areal data are mortality rates that 
might be unstable and for which the pycnophylactic property is not desirable. 
 
By analogy with ordinary kriging, the AtoP kriging variance associated with estimate (1) 
is computed as: 
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where C(0) is the variance of the point process or sill of the point support variogram 
model (see Section 2.2). 
 
2.2. Variogram deconvolution 
The estimation of the block-to-block and block-to-point covariance terms in the kriging 
system (Equation 2) requires knowledge of the point support covariance C(h) or point 
support variogram model γ(h). Since only areal or polygon data are available, one must 
proceed in two steps: 1) compute and model the variogram of the areal data, and             
2) deconvolute the block-support model to derive the point support variogram. In this 
paper, the point-support variogram model was inferred using the iterative deconvolution 
procedure of Goovaerts (2008) that seeks the point-support model that, once regularized, 
is the closest to the model fitted to the areal data.  
 
This procedure is illustrated graphically in Figure 2a. The experimental variogram of the 
legacy soil polygon map (areal) data is computed (black dashed line) and then modelled 
by a weighted least squares fitting procedure (black solid line). A candidate point support 
or deconvoluted model is then chosen (solid grey line) and this is regularized using 
Equation (21) in Goovaerts (2008). The regularized model (black dotted line) is then 
compared to the model fitted to the experimental variogram of the areal or polygon data. 
Based on the differences between the regularized model and the areal model, the optimal 
point support model is rescaled and provides a new candidate model for the next 
iteration. The deconvoluted model which when regularized is closest to the model for the 
areal data is used for AtoP kriging. This deconvolution procedure is unlike conventional 
deconvolution methods – developed for regular mining blocks – because it takes into 
account the irregular shape and size of areal units (Kerry et al. 2010). 
 
2.3. Area to Point Regression Kriging 
The disaggregation of legacy data using the AtoP estimator (Equation 1) accounts only 
for the geometric properties of the different blocks vβ . Mapping the variability within 
each block vβ is likely to improve if ancillary data correlated with the soil property z (e.g. 
elevation or remotely sensed data) are available at a finer scale. We consider here the 
situation where these ancillary data are known at all N nodes of the interpolation grid and 
to simplify equations we present the case of a single secondary variable y. Let {y(us); 
s=1,…,N} denote the grid of ancillary data and {y(vβ); β=1,…,B} be their average value 
within the B blocks vβ.  A straightforward way to incorporate these ancillary data is to use 
them to derive the local mean m of the soil property z using a regression model:  m*(vβ) = 
f[y(vβ)], then conduct AtoP kriging on the residuals. The RK estimate is written as 
follows: 
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Where the local mean m*(us) is computed as a function of the ancillary data at that 
location: m*(us) = f[y(us)]. In this paper we used the same regression model f(.) for both 
areal and point data, under the implicit assumption that the model is linear. The weights 
λk assigned to the K neighbouring areal data are the solution of the following simple 
kriging system: 
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 where the block-to-block covariances { }  )( ),(Cov),( '' kkkkR vRvRvvC = are derived from 
the point-support covariance of the residual random function R(u)=Z(u)-m*(u) using the 
discretization procedure described in Figure 2a. 
 
 
2.4 Incorporation of Soil Map Polygon Data into Regression Kriging 
Consider the situation where legacy data {z(vβ); β=1,…,B} are supplemented by a set of 
field measurements of the soil property z of interest {z(uα); α=1,…,n}. In this paper, the 
two sets of data were combined using the following regression kriging estimate: 
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The local means m*(u) and m*(uα) are identified either with the AtoP kriging estimated 
(AtoP SOC), legacy data disaggregated by AtoP kriging (Equation 1) at these locations or 
with the value of the legacy data at these locations disaggregated by simple rasterization 
(Polygon SOC, i.e. assuming that the local mean is constant within the mapping units). In 
other words, soil map legacy data (either AtoP SOC or Polygon SOC) are used to derive 
the spatial distribution of the local means of field data, and the variation in field data that 
is not explained by soil map legacy data (i.e. residuals) is then interpolated using kriging. 
The weights λα assigned to the n(u) neighbouring residuals are the solution of the 
following simple kriging system: 
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where CR(h) is the covariance of the residual random function R(u)=Z(u)-m*(u). 
Assuming the independence between the local mean and the residual random function, 
the prediction variance for estimate (7) can be computed as the sum of the estimation 
variance for the local mean and the residual kriging variance:   
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The variance )(2 umσ is the AtoP kriging variance (Equation 4) or the prediction variance 
for that unit’s local mean, depending on whether the local means are identified by 



disaggregation with the AtoP kriging (AtoP SOC) (Equation 1) or simple rasterization of 
the areal legacy data (Polygon SOC). 
 
As mentioned in the introduction, the regression kriging estimate is not optimal in that it 
is computed in two steps: 1) estimation of the local mean, and 2) kriging of residuals. 
This allowed direct comparison with the work of Rawlins et al. (2009), but unlike the 
one-step approach introduced in Goovaerts (2011), there is no guarantee than the 
regression kriging estimates still fulfill the coherency or pycnophylactic property of the 
original AtoP estimates. In addition, the regression kriging variance tends to exceed the 
kriging variance of Goovaert’s (2011) AAP kriging estimator. 
 
3. Materials and Methods 
3.1. Soil Sampling 
The soil sampling was undertaken between July 2004 and March 2006 comprising the 
collection of a sample of topsoil from a site in every other square kilometre of the Irish 
National Grid, by simple random selection within each square, subject to the avoidance 
of roads, tracks, railways, urban areas and other seriously disturbed ground. This was part 
of the Tellus survey of Northern Ireland http://www.bgs.ac.uk/gsni/tellus/.There were 
6862 sample sites in total. At each site soil was taken with a hand auger from between 
depths of 5 and 20 cm from five holes at the corners and centre of a square with a side of 
length 20 m and combined to form a bulked sample. All soil samples were air-dried in a 
dedicated temperature controlled oven at 30º C for between 2 and 3 days, disaggregated 
and sieved to less than 2 mm. From each a 50-g sub-sample was ground in an agate 
planetary ball mill. Loss on ignition (450ºC) was determined for the air-dried 
disaggregated fraction. These values were multiplied by 0.58 to give percent SOC 
equivalents. Replicate analyses were done to ensure accuracy and repeatability of results. 
The differences between replicate analyses were small. The SOC values from these 6862 
soil sample data from the Tellus survey had a positively skewed distribution (Figure 2d) 
with a skew of 1.99 which was reduced to 0.94 upon log transformation. When these 
Tellus soil sample data were used in regression kriging logSOC was used. The SOC 
values from the Tellus survey points are shown in log form in Figure 3a to enable visual 
distinction given the large range of SOC values in Northern Ireland. A prediction set of 
3000 samples was selected randomly and the other samples (n=3862) were used for 
validation. 
 
3.2. Legacy Soil Map 
A 1:250,000 digital map (courtesy of the Agricultural, Food and Biosciences Institute of 
Northern Ireland; AFBINI) of soil associations (polygons) and associated typical percent 
SOC concentrations was used here as legacy soil data. This soil map and associated 
memoir (Cruikshank, 1997) resulted from the first full survey of the soils of Northern 
Ireland completed by the Department of Agriculture and Rural Development (DARD) 
between 1988 and 1997. In this survey, the soils of Northern Ireland were systematically 
sampled on a regular 5 km grid. The soils were described, analysed and classified into 
soil series. Soil profiles were characterized from each major soil series in the 
agriculturally-important areas (areas below 200 m) and the physical and chemical 
properties of these profiles were determined. The survey identified 308 distinct soil 



series, the locations of which were published as a 1:50,000 scale soil series maps. The 
1:250,000 polygon map is a generalization for the 1:50,000 maps. The soil carbon values 
provided for the soil associations in the 1:250,000 map are from 0-30 cm depth and are 
typical values for the soil association in that polygon rather than actual values recorded 
within that polygon. The log transformed % SOC concentrations associated with this map 
are shown in Figure 3b. The 1:250,000 scale map was used in this analysis over the 
1:50,000 scale maps as it was thought a more appropriate scale when considering the 
whole of northern Ireland, and SOC percentages for peat areas were not included for the 
1:50,000 maps. 
 
According to Cruickshank (1997) the proportions of the dominant soil types in Northern 
Ireland comprise 54% gleys, 24% rankers and peats and 16% freely drained soils, with 
minor soil types accounting for the other 6%. The dominance of gleyed soils and peats 
reflect the wet climate of Northern Ireland (mean annual precipitation of around 1 m) 
which in combination with a varied topography results in a wide range of SOC contents 
across the study area. The SOC concentrations associated with the 1:250,000 polygon 
map (Figure 2b and Figure 3b) were disaggregated first by simple rasterizing (500 m 
pixels) to give what we subsequently refer to as Polygon SOC, where all pixels within a 
polygon received the same SOC concentration. They were also disaggregated using AtoP 
kriging and AtoP RK, the theory of which is described above and procedures for 
calculating which are described below. 
 
3.3. Ancillary data 
Two ancillary datasets were available for use as covariates (Rawlins et al., 2009). The 
first was airborne radiometric K (%) for the whole of Northern Ireland collected as part 
of the Tellus airborne geophysical survey in 2005 and 2006 (Figure 3f). The flight lines 
were spaced 200 m apart and the spacing between measurements along the flight line was 
between 60 and 70 m yielding around 1.2 million values; the detector was an 
Exploranium GR820 256 channel gamma spectrometer. Data were processed to correct 
for aircraft and cosmic background radiation, aircraft altitude and spectral interactions. 
The second covariate was altitude from a Digital Elevation Model (Figure 3e) which was 
available at 50 m resolution based on airborne, photogrammetric acquisition (Ordnance 
Survey of Northern Ireland’s ® data). We used a GIS spatial join procedure to associate 
each soil sampling observation with the values of its nearest airborne radiometric K (%) 
survey observation and its altitude in metres. 
 
In data-rich scenarios such as Northern Ireland, ancillary data, recent soil measurements 
and disaggregated legacy soil data can be used together to predict soil organic carbon 
using RK. Only those ancillary data with a strong spatial correlation with SOC values, 
and for which there were sound theoretical reasons for this correlation, were considered 
as suitable covariates. Prior to RK, the correlations between SOC and the various 
ancillary data were calculated and the theoretical basis for them identified.  
 
Gamma-ray attenuation and soil moisture typically show strong spatial correlation and 
this can be extended to SOC because it accumulates in wet or waterlogged soil. Figure 3f 
shows the spatial variation in radiometric K whilst the distribution of log SOC from the 



Tellus survey is shown in Figure 3a; their Pearson correlation coefficient (r) is -0.67. 
There is also typically a spatial correlation between SOC and altitude; precipitation tends 
to increase and temperature decrease with increasing altitude. Both of these factors aid 
the accumulation of SOC because mineralization decreases with temperature and soils 
which are waterlogged for more of the year have slower rates of soil carbon 
decomposition. Figure 3e shows the variation in altitude compared to log SOC from the 
Tellus survey (Figure 3a); the Pearson correlation coefficient (r) between altitude and 
logSOC is 0.60. The Pearson correlation (r) between the Polygon SOC values (rasterized) 
and the Tellus SOC concentrations was 0.61. The polygon map SOC values were also 
disaggregated by AtoP kriging as described in Section 2.1 and 3.4. Figure 3c shows the 
log of the AtoP SOC values to allow comparison to log SOC from the Tellus survey 
(Figure 3a) and the Pearson correlation (r) between these values was 0.68 showing that 
there is some correspondence between the legacy soil map SOC and recent soil survey 
data and that relationship is strengthened when legacy data are disaggregated using AtoP 
kriging (AtoP SOC) instead of being assumed constant within each mapping unit 
(Polygon SOC). 
 
3.4. Geostatistical analysis 
3.4.1. Disaggregation of soil polygon data using AtoP Kriging and AtoP Regression 
Kriging 
Geostatistical disaggregation of the soil Polygon SOC data was done using two methods 
available in the software SpaceStat (BioMedware Inc, 2011): AtoP Kriging (hereafter 
called AtoP) and AtoP RK. Both methods use only the soil polygon data and do not 
require any new soil sample data, however, the latter method uses appropriate ancillary 
data to inform on the within polygon variation in SOC. 
 
The frequency distribution of untransformed SOC concentrations from the legacy soil 
polygon map (Figure 2b) is somewhat different to that of the Tellus soil sample data 
(Figure 2d) and did not particularly benefit from a log transform as did the Tellus soil 
sample data. The legacy soil polygon map SOC values relate to soil types; mineral soils 
with low SOC (mean SOC, 4.8 %), organo-mineral soils (mean SOC, 14.3 %) and 
organic soils (mean SOC, 44.8 %). Therefore, we computed the variogram for the legacy 
soil map areal or polygon data from class residuals of these three broad groups (Figure 
2c). The large outliers in the distribution of class residuals (Figure 2c) suggests that some 
soils in the legacy map have been mis-classified. A model was fitted to this variogram of 
the class residuals and deconvoluted as described above. We then applied AtoP kriging to 
the polygon class residuals to estimate their values at the Tellus soil sample locations. 
The variogram deconvolution and AtoP kriging of the class residuals were undertaken 
using the SpaceStat TM software (BioMedware, Michigan). We then added the class mean 
from the soil group to these residuals to give Area to Point kriged SOC which we 
subsequently refer to as AtoP SOC. The mean absolute errors (MAEs) between AtoP 
SOC and the measured SOC values at the Tellus soil sample locations were calculated as 
were the mean errors (MEs), mean squared deviation ratios (MSDRs) and median 
squared deviation ratios (MeSDRs). The main focus in each corss-validation study 
mentioned below is on the MAEs, but the latter cross-validation statistics were computed 



to check that the data were unbiased (ME) and that an appropriate model had been used 
(i.e.MSDR close to 1 or MeSDR close to 0.455).. 
 
A similar procedure was followed for AtoP RK. First, linear regression was performed in 
which the Polygon SOC values were the dependent variable whilst the independent 
variables were altitude, radiometric K and squared radiometric K that were averaged 
within each polygon. This combination of independent variables was generally optimum 
from the analyses published by Rawlins et al. (2009) and these variables are related to the 
scorpan factors relief and parent material (see explanations of correlations above) making 
them particularly appropriate theoretically for disaggregating soil polygon information. 
The residuals from regression were then used to compute the areal support variogram 
which was deconvoluted as above. Area to Point kriging was then applied to the 
regression residuals to estimate their values at the Tellus soil sampling locations using the 
deconvoluted variogram. These residuals were then added to the SOC estimates obtained 
by applying the areal regression model to the same independent variables available at the 
Tellus soil sampling locations. The MAEs between the AtoP RK SOC estimates and 
those measured at the Tellus soil sample points were calculated.  
 
3.4.2. Incorporating Disaggregated Soil Polygon Map data into Regression Kriging 
Once soil polygon data were disaggregated using either simple rasterization (Polygon 
SOC) or AtoP kriging (AtoP SOC), they could be used as a fixed effect in estimating 
SOC concentrations by RK of new soil sample data from the Tellus survey. Rawlins et al. 
(2009) used RK to incorporate altitude and radiometric K in various combinations into 
the estimation of SOC. The six models (referred to subsequently as Models 1-6) used by 
Rawlins et al. (2009) are summarized in Table 1. Here we added the Polygon SOC values 
and the AtoP SOC values as extra fixed effects in each of the six models used by Rawlins 
et al. (2009). In each case, the logSOC values for the prediction set of 3000 of Tellus soil 
survey data were used as the dependent variable to compute the regression models. The 
residuals from these models were kriged to the 3862 validation sites and were added to 
regressed values at each location then backtransformed. The MAEs associated with each 
model based on these separate prediction and validation sets were then calculated. 
 
3.4.3. Jack-knife procedure 
A jack-knife procedure was undertaken to investigate the impact of the interpolation 
algorithm and sample size on the prediction errors. One hundred repeated random 
selections of sample subsets of size 100, 200, 300 … 2000 were created from the original 
6862 Tellus soil data. The 100 random subsets were used for prediction to the remaining 
Tellus soil survey locations using RK with Models 1-6 (see Table 1), and Models 1-6 
plus Polygon SOC or AtoP SOC. As above, MAEs were calculated to determine the 
relative magnitudes of estimation error.   
 
4. Results and Discussion 
4.1. Disaggregation of Legacy Soil Polygon Map Data 
Table 2 shows the MAEs based on disaggregation of the SOC data from the legacy soil 
polygon map. When all soil types are considered, simple disaggregation (Polygon SOC) 
has slightly smaller MAEs than AtoP SOC. However, while the MAEs are similar for 



mineral and peat soils for AtoP SOC and Polygon SOC (around 4 and 18 %, 
respectively), the AtoP disaggregation method has substantially smaller MAEs (13.0 %) 
for organo-mineral soils than the Polygon SOC approach (15.2%). The lowest MAEs in 
each soil class were those for AtoP RK where ancillary data (altitude and radiometric K) 
account for within polygon variation of soil SOC suggesting that such data related to 
scorpan factors add value to the disaggregation approach.  
 
Simple rasterization of the polygon map produces sharper boundaries in SOC content 
between soil types and assumes there is no variation in SOC concentration within a given 
soil class. Although sharp boundaries occur between some soil types, there is always 
some variation within soil types. Also, it is more common for changes between soil types 
to be gradual rather than sharp. This is reflected in the AtoP approach which accounts for 
the spatial configuration of the soil polygons and the underlying trends in the spatial 
distribution of SOC within and between soil classes. Differences in the MAEs suggest 
that there are regions, particularly for organo-mineral soils where the AtoP kriging may 
be more appropriate than simple rasterization as a disaggregation procedure. 
 
Table 2 shows that AtoP RK produces the lowest MAEs of all disaggregation methods 
for all soils and all soil types. This shows that if data from a polygon map are to be 
disaggregated without use of any extra soil sample information, incorporating ancillary 
data that relate to soil-forming factors can bring significant benefits. Incorporating 
ancillary data that are related to soil-forming or scorpan factors (McBratney et al. 2003) 
into the disaggregation of soil legacy data is more theoretically sound than simple 
rasterization or AtoP kriging alone, however, when the simpler two-step AtoP RK 
procedure is used as here, the pycnophylactic property can be lost.  
 
These results show that where current soil data are scarce and funding is not available for 
new soil survey, the disaggregation of data from legacy soil maps is a cost-effective 
alternative strategy for DSM. This disaggregation of legacy soil maps relies on the soil 
polygons with or without quantitative ancillary data which are relatively inexpensive to 
collect but provide some indication of within polygon variations of soil properties. No 
new soil measurements need to be collected for such disaggregation approaches.  
 
4.2. Incorporation of Disaggregated Legacy Soil Polygon Map Data into Regression 
Kriging 
When new soil data are available, it is expected that incorporation of disaggregated 
legacy data with ancillary data in RK of the new soil data will be more fruitful than 
merely using a polygon map and ancillary data to disaggregate the polygon data. Using 
3000 Tellus soil sample data for prediction and 3862 for validation, Table 3 shows the 
MAEs for RK with and without AtoP SOC and Polygon SOC. Of the other cross-
validation statistics (not shown), the MEs were close to zero showing no real bias in the 
data. Some MSDR values were close to one, however, given that some soils were mis-
classified as peat and the MSDR is the ratio of the squared errors to the kriging variance, 
these large errors dominated the squared errors and produced some large MSDR values. 
In such cases a MeSDR close to 0.455 provides a better evaluation of whether an 
appropriate model has been used. The MeSDRs were close to 0.455.  



Table 3 shows that when all soil types are considered, incorporating Polygon SOC into 
each model reduces the MAEs, and inclusion of AtoP SOC reduces the MAEs further. 
This is also the case for peat soils. The patterns are less consistent for mineral and 
organo-mineral soils, the reduction in MAE is smaller when Polygon SOC and AtoP SOC 
are included in RK for some models, but not for others. However, even when MAEs do 
not show a distinct benefit from incorporation of Polygon SOC and AtoP SOC in RK, the 
values are very similar to those when they are not incorporated. When certain 
combinations of altitude and radiometric K data are used, the advantage of including 
Polygon SOC and AtoP SOC values decreases. The best combinations of ancillary data 
(lowest MAEs) for each of the three soil types and all soils (Table 3) were those in Model 
4 (constant plus K plus K2) and Model 6 (constant plus altitude plus K plus K2). It should 
be noted that in Table 3 the MAE for all soils for Model 6 is greater than each of the three 
individual soil types because for all soils it was assumed that the mean is constant 
whereas for the individual soils the mean was only constant within areas of the same 
broad soil class. 
 
If the MAEs from cross-validation of RK (Table 3) which were computed using 3000 soil 
data are compared with those from mere disaggregation of legacy soil data from the 
polygon map by AtoP RK (Table 2; i.e no new soil sample data), the MAEs of the latter 
are similar to the former for all soil types (around 4 %), but are about double those of the 
former for individual soil types (Table 3).  
 
4.3. Jack-knife analysis 
The cross-validation results above were based on a single, random prediction subset of 
Tellus data from 3000 locations. The results demonstrated that it is worthwhile including 
disaggregated polygon data into RK of SOC. The benefits of a jack-knife procedure, 
which involves repeatedly selecting random subsets of various size are that it  provides a 
better overall indication of the value of: 1) incorporating disaggregated legacy soil 
polygon map data into RK and, 2) which models produce more accurate estimates. Figure 
4 shows the MAE jack-knife results for models 1-6 for all soil types plotted on the same 
scale. The MEs (not shown) were close to zero showing no bias except for very small 
sample sizes (<30) and MEs were also an order of magnitude lower for sample sizes 
≥300. As for with the results documented in section 4.2, depending on the random nature 
of whether mis-classified samples were included in the jack-knife procedure for a given 
sample size or not, the MSDRs were sometimes but not always close to one. The 
MeSDRs were close to 0.455 and gave a better indication of whether a suitable model 
had been used for RK.  
 
In Figure 4, the MAEs are somewhat smaller at all sample sizes when  Polygon SOC is 
included, but there is a more marked reduction in MAEs when AtoP SOC is incorporated 
into RK. The MAEs are smallest, generally for Models 4 and 6 (around 4 %). Figure 5 
also shows, for mineral soil types, that MAEs are smaller at all sample sizes when 
Polygon SOC is included and smaller still when AtoP SOC is included in RK. The only 
exception to this is for sample sizes greater than about 1000 for models 4 and 6, but 
MAEs are generally smallest for model 6 (around 1.6 %). For organo-mineral soils 
(Figure 6), the patterns are reversed for models 3 and 4 with MAEs being largest at all 



sample sizes when AtoP SOC is included in RK and smallest when compared to the 
approach adopted by Rawlins et al.. However, the MAEs are smallest (around 2.8 %), 
especially for small sample sizes for Model 6. For peat soils (Figure 7) the advantage of 
incorporating Polygon SOC and AtoP SOC into RK is the most marked of any of the soil 
types; Model 4 has the lowest MAEs overall (around 3 %). Figure 7 also shows the 
largest differences between MAEs when comparing the different approaches (Rawlins et 
al., Polygon SOC and AtoP SOC) when compared with Figures 4-6. This, and the 
relatively small MAEs that were obtained for peat soils when AtoP SOC was 
incorporated into models 4 and 6, clearly indicate that in Northern Ireland where there is 
a large variation in SOC concentrations one of the major benefits of legacy data is that it 
identifies the distribution of peat. This is particularly the case when legacy data is 
disaggregated using AtoP kriging. 
 
The MAE values for the best performing models (4 and 6) from the jack-knife procedure 
are similar to those reported from cross-validation in Table 3, but they show that they are 
more consistent in general than suggested by cross-validation alone, and that beyond a 
certain point collecting additional soil samples at other locations provides little benefit in 
terms of reducing MAEs. 
 
Overall, model 6 had the lowest MAEs (Figures 4-7) so we chose to examine these 
results in greater detail (Figure 8). They show that incorporating Polygon SOC into RK 
leads to a small reduction in MAE, about 0.05 and 0.1 % reductions for all soil types and 
peat, respectively. However, for mineral and organo-mineral soils, incorporating Polygon 
SOC has little effect for sample sizes less than 1200. However, including AtoP SOC in 
RK reduced MAEs by 0.35 – 0.4% on average for all soils and peat and by about 0.03-
0.05% for mineral and organo-mineral soils. Figure 8 and Figure 4 show that a suitable 
sample size for RK when incorporating AtoP SOC data is around 300 where the curve 
levels out and there is not a great advantage in terms of reducing MAE of collecting more 
samples. In many areas, airborne radiometric survey data are unavailable for DSM, whilst 
altitude data is usually available at some resolution, so we examined in greater detail the 
results for Model 2 in which only altitude is included as a covariate (Figure 9). The 
advantage of incorporating AtoP SOC data over Polygon SOC in RKs is clear and very 
marked for all soil types and sample sizes. For AtoP SOC, MAEs are reduced by about 1 
% for all soil types whereas for the Polygon SOC, MAEs are only reduced by about 0.2 
% compared with Rawlins et al’s models. These reductions in MAEs are at least double 
the MAE reductions reported above for Model 6. Figure 9 also shows that if only altitude 
data were available as a covariate, around 600 measurements of SOC concentration 
would be suitable given where the curve levels out; 300 more than was the case for when 
radiometric K data were included. However, without radiometric K data (Model 2), the 
MAEs are consistently larger compared to when it is included as a covariate (Model 6). 
 
The results of the jack-knife procedure show the consistent improvement of MAEs when 
Polygon SOC and AtoP SOC are incorporated into regression kriging and they show that 
it is better to incorporate legacy soil data as AtoP SOC than Polygon SOC. Using more 
ancillary data can reduce the number of soil samples that need to be collected for RK. 
Practitioners may need to evaluate the relative costs and benefits of collecting extra soil 



samples versus including extra ancillary data. Certainly, if the legacy data being used are 
old or lacking specific information on methodology, the benefits of collecting extra soil 
samples as opposed to ancillary data are clear. 
 
5. Conclusions 
Our analysis shows that for disaggregating legacy SOC data from a polygon map, an 
AtoP RK approach is more effective than simple rasterization. An AtoP RK approach is 
theoretically sound because it allows for within class variability, spatial autocorrelation 
and scorpan factors as represented by ancillary data. In the case of estimating SOC 
concentrations across Northern Ireland, the AtoP RK approach does not require the 
collection and use of new soil measurements, but could produce overall MAEs that are 
similar to those in which 3000 new soil SOC measurements which were distributed 
throughout the study area are included. The cross-validation and jack-knife results show 
that incorporating AtoP SOC into RK where some new soil samples are required in 
addition to legacy data is desirable to reduce errors further, especially for mineral and 
organo-mineral soil types. Nevertheless, the jack-knife results suggest that between 300 
and 600 new soil measurements would be optimal depending on the availability of 
ancillary data for the study area. Incorporating Polygon SOC into RK with various 
numbers of spatially distributed soil measurements reduces errors at all sample sizes and 
for most models. Using AtoP SOC reduces MAEs further for Northern Ireland.  
 
These results clearly show that legacy data is useful and should not be disregarded in 
DSM approaches, and that there are differences in the performance of methods for 
disaggregating legacy data in DSM. Nevertheless, some important cautionary notes 
should be made and some additional research conducted before these methods are widely 
employed with a wide range of soil properties and in vastly different pedological settings.  
 
The legacy soil data used here were collected between 1988 and 1997, and at similar soil 
depths to new soil data, and are thus likely to be more useful than older legacy data or 
data that have been collected at markedly different depths. This is especially the case for 
properties like SOC which can change over time and markedly with depth. The temporal 
aspect is likely to be less of an issue with more permanent soil properties like soil texture, 
but differences in the methods of determining soil texture between legacy data and new 
sample data may also reduce the usefulness of legacy data. The current research has 
shown the usefulness of the AtoP approach for disaggregating legacy data and then 
incorporating it into RK, but many locations do not have such a wide range of SOC 
values within small areas and this approach needs to be tested in areas with far less 
variability in SOC and in areas with older legacy data. Also the two-step approach used 
in this study does not ensure that the pycnophylactic property of AtoP kriging is 
preserved. We did this to allow direct comparison with previous analysis of the Tellus 
data, but recommended that practitioners use the one-step approach outlined by 
Goovaerts (2011) when appropriate software becomes available if the pycnophylactic 
property is very important to their study. The AtoP approach is clearly most useful for 
DSM in a data-rich scenario where current soil survey data, ancillary data and legacy data 
are available, but this research highlights the relative magnitude of the errors associated 
with scenarios when less data is available. Therefore these approaches should be 



adaptable to situations where less data is available to give a first rough estimate of how 
SOC varies in the area and perhaps inform future sampling protocols. 
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Table 1. Fixed effects for the six models applied by Rawlins et al. (2009)  
 
Model Fixed effects  

1 Constant (i.e. the mean) 
2 Constant plus altitude 
3 Constant plus K 
4 Constant plus K plus K2 
5 Constant plus altitude plus K 
6 Constant plus altitude plus K plus K2 

 
 
Table 2. Mean absolute errors (MAEs) for different methods of disaggregating SOC 
polygon data (soil polygon data used for prediction and Tellus validation data n=3862 
used for validation). 

 MAE 
Disaggregation method All soils Mineral soils Organo-

mineral soils 
Peat soils 

Polygon SOC 6.81 4.16 15.20 17.16 
AtoP SOC 7.44 4.99 13.03 17.92 
AtoP RK SOC 4.72 2.82   7.99 13.31 
AtoP KED SOC 7.24 4.32 15.83 22.37 
 
 
Table 3. Mean absolute errors (MAEs) from cross-validation of regression kriging for      
a) Rawlins et al. (2009) models 1-6, b) Rawlins et al. models 1-6 plus polygon SOC, and 
c) Rawlins et al. models 1-6 plus AtoP SOC (Tellus data n=3000 used for prediction and 
Tellus data n=3862 used for validation) .  

  
Model 

1 
Model 

2 
Model 

3 
Model 

4 
Model 

5 
Model 

6 
All  (a) Rawlins et al. 6.46 6.08 4.43 3.86 4.53 4.02 
soils (b) + Polygon SOC 6.13 5.94 4.32 3.82 4.43 3.96 
 (c) + AtoP SOC 5.60 5.37 4.11 3.66 4.18 3.77 
Mineral (a) Rawlins et al. 1.93 1.85 1.62 1.57 1.61 1.57 
soils (b) + Polygon SOC 1.88 1.82 1.62 1.56 1.60 1.56 
 (c) + AtoP SOC 1.81 1.75 1.62 1.58 1.59 1.57 
Organo- (a) Rawlins et al. 3.32 3.40 2.66 2.64 2.86 2.69 
mineral  (b) + Polygon SOC 3.35 3.35 2.72 2.65 2.82 2.68 
soils (c) + AtoP SOC 3.43 3.27 2.86 2.81 2.78 2.70 
Peat (a) Rawlins et al. 4.35 4.20 3.58 3.15 3.62 3.30 
soils (b) + Polygon SOC 4.21 4.17 3.46 3.11 3.56 3.25 
 (c) + AtoP SOC 3.89 3.90 3.19 2.82 3.36 3.04 

 



Figure 1.  (a) Representation of the discretization procedure used to estimate: (a) Block-
to-point and (b) Block-to-Block covariances as the average of point-to-point covariances. 
 
Figure 2. (a) Variogram deconvolution procedure shown with experimental variogram 
(dashed black line) and model for soil polygon map data (solid black line), deconvoluted 
variogram model (point support, solid grey line) and theoretically regularized variogram 
model (dashed grey line). Histograms of (b) organic carbon for legacy soil polygon map 
data, (c) organic carbon soil class residuals for legacy soil polygon map data and (d) 
organic carbon from samples (n=6862) in the Tellus survey. 
 
 
Figure 3. The distribution of measured and estimated SOC data and covariates across 
Northern Ireland: (a) Tellus survey measured log SOC (n=6862), (b) Polygon map log 
SOC, (c) Area to Point (AtoP) kriged logSOC, (d) the key for Log SOC in a-c,  
(e) altitude (m) and (f) airborne radiometric K (%).  
 
Figure 4. Jack-knife results for all soil types for models 1-6 (M1-M6) 
 
Figure 5. Jack-knife results for mineral soil types for models 1-6 (M1-M6). 
 
Figure 6. Jack-knife results for organo-mineral soil types for models 1-6 (M1-M6) 
 
Figure 7. Jack-knife results for peat soils for models 1-6 (M1-M6) 
 
Figure 8. Jack-knife results for model 6 for all soil types 
 
Figure 9. Jack-knife results for model 2 for all soil types 
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Figure 2. (a) Variogram deconvolution procedure shown with experimental variogram 
(dashed black line) and model for soil polygon map data (solid black line), deconvoluted 
variogram model (point support, solid grey line) and theoretically regularized variogram 
model (dashed grey line). Histograms of (b) organic carbon for legacy soil polygon map 
data, (c) organic carbon soil class residuals for legacy soil polygon map data and  
(d) organic carbon from samples (n=6862) in the Tellus survey. 
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SOC, (c) Area to Point (AtoP) kriged logSOC, (d) the key for Log SOC in a-c,  
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Figure 3. The distribution of measured and estimated SOC data and covariates across 
Northern Ireland: (a) Tellus survey measured log SOC (n=6862), (b) Polygon map log 
SOC, (c) Area to Point (AtoP) kriged logSOC, (d) the key for Log SOC in a-c, altitude 
and radiometric K, (e) altitude (m) and (f) airborne radiometric K (%).  
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Figure 4. Jack-knife results for all soil types for models 1-6 (M1-M6) 
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Figure 5. Jack-knife results for mineral soil types for models 1-6 (M1-M6). 
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Figure 6. Jack-knife results for organo-mineral soil types for models 1-6 (M1-M6) 
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Figure 7. Jack-knife results for peat soils for models 1-6 (M1-M6) 
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Figure 8. Jack-knife results for model 6 for all soil types 
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Figure 9. Jack-knife results for model 2 for all soil types 
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