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Abstract

Groundwater flooding has moved up the policy-makers’ agenda as a result of the

United Kingdom experiencing extensive groundwater flooding in winter 2000/

2001. However, there is a lack of appropriate methods and data to support

groundwater flood risk assessment. The implications for flood risk assessment of

groundwater flooding are outlined using a study of the Chalk aquifer underlying

the Pang and Lambourn catchments in Berkshire, UK. Groundwater flooding in

the Chalk results from the water table reaching the land surface and producing

long-duration surface flows (weeks to months), causing significant disruption to

transport infrastructure and households. By analyzing existing data with a farmers’

survey, it was found that groundwater flooding consists of a combination of

intermittent stream discharge and anomalous springflow. This work shows that

there is a significant challenge involved in drawing together data and under-

standing of groundwater flooding, which includes vital local knowledge, reason-

able risk assessment procedures and deterministic modelling.

Introduction

Groundwater flooding is poorly understood, often confused

with surface water flooding, and has not been widely recog-

nised as a problem, either in the United Kingdom or

internationally. The UK Government’s Department for the

Environment and Rural Affairs (Defra, 2004) defined

groundwater flooding as: ‘flooding caused when water levels

in the ground rise up above the natural surface, it will often

occur when accumulated rainfall over a long period of weeks

or months is significantly above normal. Groundwater flood-

ing is most likely to occur in low-lying areas underlain by

permeable strata.’ However, this is a simplification and does

not include groundwater interaction with underground

structures such as cellars and basements, and tunnels. Exam-

ples of the latter include those used for transport purposes,

such as the London Underground network.

It is suggested that the following provides a more

complete description. Groundwater flooding occurs due to

water table rise. This is characterised by one or more of the

following:

Type 1 – Extreme high intensity and/or long duration

rainfall,

Type 2 – Groundwater flow in alluvial deposits by-passing

river channel flood defences,

Type 3 – Cessation of groundwater abstraction for Public

Water Supply or mine dewatering, e.g. London Basin and

other urban areas, and

Type 4 – Underground structures creating barriers to

groundwater flow.

Groundwater flooding can result in surface water pond-

ing, intermittent stream flow or the anomalous activation of

springs, as well as flooding of cellars, basements and

other subsurface infrastructure, and damage to foundations.

Unlike overbank fluvial flooding, groundwater floods

tend to be long-lasting, typically of the order of weeks or

months.

Examples in the United Kingdom of the second type of

flooding include the flood events in south Oxford in 1997

(Macdonald et al., 2007, 2008a); and Pilmuir in Scotland in

1997 (MacDonald et al., 2008a, b). However, while all of the

above mechanisms can result in significant flooding, it is the

intense or long duration rainfall that is currently believed to

be the most important source of UK groundwater flood risk

(Jacobs, 2004), and is the main focus of this paper.
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Groundwater flooding of this type has a long history in

the United Kingdom and as defined above has been recog-

nised within communities for a number of decades. For

example, there is documentary evidence of groundwater

flooding in the 1930s (McMahon, 2000), and, in areas where

communities were aware of the phenomenon, house build-

ing practices were adapted to accommodate this (e.g. Morris

et al., 2007). However, only in recent years has it been

considered an important hazard by government agencies

(e.g. Defra, 2004; Jacobs, 2004; Pitt, 2008), an importance

prompted by several significant flood events. In the 1990s

groundwater flooding came into sharp focus with the flood-

ing of the city of Chichester in winter 1993/1994 (Taylor,

1994), which resulted in significant disruption to the trans-

port network, closing a major trunk road (the A27), and

flooding homes and businesses. Concerns were reinforced

by extensive flooding of Chalk catchments in SE England in

the Autumn/Winter of 2000/2001. Near Henley, Berkshire,

floods generated during the winter of 2000/2001 affected the

basement and ground floors of houses until June, when

remedial work was undertaken (Robinson et al., 2001; other

examples of the flooding of homes, including cellars and

basements are Oxford in 1997, Macdonald et al., 2007).

Significant disruption was caused by closing roads (e.g. the

A338 in Berkshire 2000/2001; Robinson et al., 2001) and

railways (e.g. London-Brighton line in November 2000;

Binnie Black and Veatch, 2001). The cost and disruption

caused by groundwater flooding, while not as much nation-

ally as fluvial or marine flooding, can still be significant. For

example, the estimated cost of the relatively localised

2000 Brighton groundwater flooding was d800 000, exclud-

ing the cost of the railway closure (Binnie Black and Veatch,

2001).

Flooding in the Pang and Lambourn catchments in

Berkshire during the winter of 2000/2001 is the main focus

of this paper, and is discussed in detail below. The 2000/2001

flood was paralleled in Chalk catchments in north-west

France. In the Somme catchment, large areas were flooded

for several months by groundwater. This was studied as part

of the EU FLOOD1 project (Adams et al., 2008), which

included the Brighton area. Various efforts to model the

flood have been made (e.g. Pinault et al., 2005; Korkmaz

et al., 2009) and recently Habets et al. (2010) published a

comparison of four models to reproduce flood conditions in

2000/2001. This comparison showed that the models all

overestimated the heads during and after flooding. This was

attributed to an overly simplistic representation of the flow

processes in the deep unsaturated zone. These studies show

that the flooding in the Somme during the winter of 2000/

2001 was characterised by an increase in the quantity of the

overflow rather than by a spreading of the flooded areas.

Outside the United Kingdom and north-west France,

there have been a number of groundwater events recorded

in Europe and the Americas. The south Galway area of

southern Ireland saw extensive flooding in the late 1980s and

early/mid 1990s (Peach et al., 1997; Johnston and Peach,

1998; Lees et al., 1998). This was due to the overtopping of

turloughs, which are lakes fed or drained by karst ground-

water systems. Groundwater flooding has also been ob-

served in the permeable sediments in the Danube flood

plain. An example of groundwater flooding circumventing

flood defences has been reported in Hungary (Vekerdy and

Meijerink, 1998). In the United States, groundwater flood-

ing has been recognised by the United States Geological

Survey (USGS) as occurring in glacial deposits in Washing-

ton state during the winters of 1993/1994 (Visocky, 1995)

and 1996/1997 (USGS, 2000), where flooded depressions

resulted in road closures. Groundwater flooding in the

winter of 1993/1994 resulted in the production of 100-year

return period groundwater flood risk maps (Visocky, 1995).

An attempt was also made to undertake groundwater flood

risk mapping in southern France (Najib et al., 2008). This

work assessed groundwater flooding in karst systems using

estimates of flood return periods based on groundwater

hydrographs. Marechal et al. (2008), using an empirical

transfer function modelling approach, proposed that thresh-

olds of cumulative 25-day rainfall could be used to predict

the occurrence of groundwater flooding in karst systems.

UK policy context

Before the Making Space for Water initiative, Defra commis-

sioned a study to determine the extent of groundwater

flooding (Jacobs, 2004). This study concluded that the

Chalk aquifers of south and east England demonstrated the

most important manifestation of groundwater flooding in

England. This study developed predictive Groundwater

Emergence Maps based on the proximity of groundwater

levels to the ground surface in a winter hydrologically

similar to 2000/2001. This study was followed by a specific

report on the Chalk aquifers (Jacobs, 2006).

The UK flood events of summer 2007 (Marsh and

Hannaford, 2007) and their impacts on infrastructure

resulted in the British government commissioning a review

(Pitt, 2008). The Pitt review examined all aspects of surface

flooding, and significantly, recommended that the Environ-

ment Agency of England and Wales (EA) should take a

national responsibility for all flood risk, including ground-

water flooding (Pitt, 2008). Following this recommenda-

tion, the EA published an assessment of flood risk for

England and Wales (Environment Agency, 2009). Anoma-

lous groundwater flows and levels are recognised as a cause

of flooding, but no specific recommendations are made to

incorporate this understanding into flood risk management.

However, the EA commissioned a project in 2009 to develop

tools to evaluate groundwater flood risk. Through the Flood
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and Water Management Act 2010, Local Authorities (LAs)

now have the responsibility for groundwater flooding as it is

perceived as a local issue. LAs have to keep a register of

incidents as well as develop a local flood risk strategy.

The EU floods directive (2007/60/EC), which promotes

the consideration of groundwater flooding, has recently

come into force. This directive promotes the use of a risk-

based framework for all types of flooding, and adds further

pressure on the regulators to understand the hazards and

risks associated with groundwater flooding. The EU floods

directive, which is enshrined in the Flood Risk Regulations

2009, stipulates that groundwater flood risk maps be pro-

duced by 2013. Possible solutions have been proposed such

as Cobby et al. (2009), who suggest that the Groundwater

Emergence Map work developed by Morris et al. (2007) be

used to provide preliminary flood risk assessments to fulfil

this requirement. National groundwater flood susceptibility

maps have been produced by the BGS (Jackson, 2004;

McKenzie et al., 2007) for clear water flooding, alluvial

groundwater flooding and anomalous spring flow.

Therefore, the policy agenda in the United Kingdom and

the EU aims to address groundwater flooding, with a

commitment to groundwater flood risk assessment and

groundwater flood forecasting. However, there remain a

number of outstanding technical challenges that are still to

be overcome to achieve these goals. Not least among these is

a lack of data and physical understanding of past ground-

water flood events. Hence this paper demonstrates the

importance of taking groundwater into account when con-

sidering total flood risk, using historical flooding of the

catchments of the River Pang and Lambourn, Berkshire, as

an example.

Study area

The neighbouring Pang and Lambourn catchments are

located to the west of Reading in Berkshire (Figure 1). The

River Pang is a tributary of the River Thames and the River

Lambourn is a tributary of the River Kennet, which in turn

flows into the Thames. Land-use is predominantly rural for

both catchments, the majority being grassland, with some

forested areas. Rainfall varies with topography, with annual

averages of 692 mm for the Pang catchment, 731 mm for the

Lambourn catchment, and a maximum of 743 mm asso-

ciated with the high ground the north and west of the

catchments for the period 1968 to 1997 (Wheater et al.,

2007). The catchments predominantly overlie the Chalk

aquifer. Despite the importance of the Chalk as a major UK

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Figure 1 Main features in the Pang and Lambourn catchments.
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aquifer, knowledge of the subsurface movement of ground-

water under extreme conditions of drought and flood is

poor. Groundwater flows are complex; catchments vary

seasonally and are ill-defined, karst features are locally

important, and groundwater-fed streams demonstrate con-

siderable seasonality in their flow regimes.

Hydrogeology

A comprehensive summary of the current conceptual under-

standing of the hydrogeology of the Pang and Lambourn

catchments is found in Wheater et al. (2007). These catch-

ments have been extensively studied for a number of decades

(e.g. Owen and Robinson, 1978) and recently formed part of

a UK national research programme, Lowland Catchment

Research (LOCAR), and were extensively instrumented and

studied (see, e.g. Wheater et al., 2006). The Chalk is the

major aquifer within the region and serves as a collector

and distributor of recharge from rainfall, which can be

transmitted either to the two tributary river systems or as

groundwater flow towards the River Thames. The Chalk is

overlain by Palaeogene age deposits, which include the

Lambeth Group and Bagshot Beds (Figure 2) which are

variably permeable. The London Clay Formation, which

outcrops in the south-east of the region, is relatively

impermeable and acts as an aquiclude. This restricts

groundwater recharge to the Palaeogene deposits and the

Chalk aquifer beneath but promotes surface run-off onto

the Lambeth Group and Chalk to the north, which can then

infiltrate to the groundwater table. Recharge from the base

of the soil zone is spatially and temporally variable depend-

ing on a number of factors such as rainfall, evaporation,

land-use, plant and soil type. Rainfall is spatially variable

depending on weather systems as well as orographic effects.

Recharge processes through the deep Chalk unsaturated

zone are complex and nonlinear, comprising a combination

of relatively slow, highly attenuated transmission of infiltrat-

ing rainfall through the Chalk matrix, and very rapid
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Figure 2 Geology underlying the Pang and Lambourn catchments.
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preferential recharge of high intensity rainfall through the

fracture network (Ireson et al., 2009a, b, 2010). Superficial

deposits, of Quaternary age, including alluvial deposits,

glacial sand and gravels and river terrace deposits occur in

the river valleys and can behave either as linear aquifers

(Wheater et al., 2007), allowing surface water and ground-

water to interact freely, or provide poorly permeable barriers

to flow.

Saturated groundwater flow in the Chalk occurs predo-

minantly through fractures and it is thought that in this

region most groundwater flow occurs in the zone of water

table fluctuation and the upper 50 m or so of the saturated

zone (Robinson, 1976; Wheater et al., 2007). Groundwater

flow is focussed in valleys due to the enhanced weathering

and fracturing associated with these topographic features

(Allen et al., 1997; MacDonald et al., 1998). This enhanced

weathering leads to spatially variable hydraulic properties

with transmissivity being an order of magnitude higher in

the river valleys than in the interfluves. Groundwater flow

directions are controlled by base levels provided by the

major river valleys of the Thames and the Kennet, but are

also influenced by abstraction within the London Basin to

the south-east and scarp slope springs to the north and

north-west of the region. This simple flow regime is

complicated by karstic flows exemplified by the Blue Pool

springs at Stanford Dingley, flow rates to which have been

measured at several kilometres per day (Banks et al., 1995;

Maurice et al., 2006). These and other karstic features are

associated with the lower parts of the catchments whereas

groundwater flooding is associated with anomalous flow in

the upper regions of the catchments.

The Chalk aquifer has a major, often dominant influence

on the river systems that it underlies. For example, a typical

Chalk stream has a seasonal, baseflow-dominated hydro-

graph, reflecting the water table dynamics of the aquifer

which it drains (winter recharge and a progressive water

table decline through summer and autumn). The baseflow

index in the River Pang is 86% for flow at the Pangbourn

gauging station and is 97% for the River Lambourn at Shaw

(Griffiths et al., 2006; see Figure 1). There is limited surface

or near-surface run-off, unless it is generated over relatively

impermeable deposits overlying the Chalk, and hence the

stormflow component of streamflow response may repre-

sent as little as 2% of the incident rainfall, appearing as noise

superimposed on the seasonal hydrograph. The streamflow

source migrates seasonally, moving up the catchment in

winter and retreating during summer; under drought con-

ditions (or due to over-abstraction), flow may cease over

significant lengths of channel. This intermittent nature of

these Chalk streams, called bourne behaviour, is enhanced

during extreme events. In droughts the streams become

shorter and in groundwater flooding events they become

longer.

River--aquifer interactions

To understand groundwater flooding properly, the bourne

behaviour of Chalk streams must be appreciated. Because

one of the manifestations of groundwater flooding is the

increase in flowing length of the stream system, this must be

characterised. In the Pang and Lambourn catchments, there

are extensive data sets for stream gauging both from the

LOCAR projects (Griffiths et al., 2006) and other previous

work (Bradford, 2002; Grapes et al., 2005), which demon-

strate the high baseflow of the rivers. Data for the River

Lambourn show that flow accretes continuously, but non-

uniformly, along its length, and that dry valleys are impor-

tant in contributing groundwater flows to the river,

appearing as step changes in the flow accretion curve. Data

for the River Pang indicate that the middle section loses

water to the Chalk, and that there are seasonal variations in

behaviour, with significant baseflow in the summer being

provided by the Blue Pool, which is the largest of a number

of springs in the catchments. Other springs are associated

with some of the smaller streams and rivers. A conceptual

model of the catchment behaviour is provided by Wheater

et al. (2007).

The groundwater flood events of
2000/2001 and 2002/2003

Introduction

The most significant recent groundwater flooding event

occurred during the winter of 2000/2001 (see Figure 3). This

event, typical of other Chalk catchments in south-east

England, closed roads and flooded cellars for a number of

weeks and months. The results of the flooding were recorded

by a walk-over survey by the Environment Agency (Robin-

son et al., 2001) and by an aerial survey in the River Pang

catchment (Finch et al., 2004). These data are ‘snap-shots’ of

the flooding that occurred and do not give the duration of

flooding. A less severe event occurred in the winter of 2002/

2003. There are fewer data for the spatial extent of the 2002/

2003 flooding (e.g. Environment Agency, 2003). While it is

obvious that both events had a significant impact, a detailed

hydrological and hydrogeological study has not been under-

taken of both events. A brief summary of selected data sets

are provided in the following sections to illustrate current

understanding.

Meteorological conditions

The widespread flooding that occurred in 2000/2001 was, at

the time, the most severe in the region since 1947 (Marsh

and Dale, 2002). Total rainfall in England and Wales over the

period September 2000 to April 2001 was 166% of the long-

term average (Marsh and Dale, 2002), and, based on
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Environment Agency data, it is estimated that in the Thames

region (south-east England) the period October 2000 to

April 2001 received the highest 7-month rainfall total since

1885 (Morris et al., 2007). However, rainfalls within this

period over shorter time scales (daily to monthly) were

unexceptional. Defra (2001) found that 1-day rainfall ex-

tremes during this period were ‘not the type of rainfall

extremes’ that caused the flooding. ‘Flood-producing’ rain-

fall had longer durations, and they reported that the 90-day

total rainfall during October–December 2000 was the most

extreme on record in England and Wales. Similar findings

were reported for the Somme catchment in north-east

France by Pinault et al. (2005), who attributed the unprece-

dented groundwater flooding in 2000/2001 to the accumu-

lated wetness over 2 years, explained by the long-term

rainfall behaviour.

The two most recent groundwater floods in the Pang

catchment, are the most severe (2000/2001) and second most

severe (2002/2003) in a record dating back to 1962. A 45-year

record (1962–2007) of daily rainfall data from a rain gauge

located at Wallingford, Berkshire (SU 617896, about 5 km to

the north of the Pang catchment) was used to investigate

meterological conditions on groundwater flooding. This was

the nearest raingauge which provided a long-enough record

for this analysis. Effective rainfall (ER) was calculated as

rainfall minus evapo-transpiration (i.e. ignoring run-off and

interception). Run-off is a very small proportion of rainfall in

Chalk catchments and is ignored for the purposes of investi-

gating groundwater flow. Daily evapo-transpiration was

estimated from monthly MORECs actual evaporation data

(Hough and Jones, 1997), for the MORECs grid cell 159,

using linear interpolation in time. By simply examining the

time series of daily ER (Figure 4) it is apparent that there are

no exceptional daily ER totals associated with either flood

event (consistent with DEFRA, 2001). To consider the impact

of longer duration rainfall totals, time series of n day

accumulated ER totals can be plotted [where total ER on day

x is the sum of ER on days x� (n� 1) to x]. In addition, the n

day maximum event during each flood is ranked from the

entire 45 year data set (Figure 4).

For durations of 2 months or less, both rainfall totals (not

plotted) and ER totals (Figure 4) for each flood event were

not the largest on record, in general becoming less extreme

as the duration is reduced. For the 100 day (approx. 3

month) total, the 2002/2003 event was the most extreme

event on record, though the 2000/2001 event was very

similar, and both were significantly larger than the next

largest total. For durations greater than 100 days, the 2000/

2001 event was the most extreme, becoming much

larger than the 2002/2003 event at longer durations (e.g.

yearly).

These results suggest that the catchment has a time scale

of about 3 months where around 100 mm of ER per month

(i.e. 300 mm in total) is needed to bring the water table up to

elevations sufficient to initiate groundwater flooding.

Further, high levels of effective rain after this ‘wet up’ period

then contribute to the length and severity of the flooding.

Hence in 2002/2003, the water levels receded fairly rapidly

(after about 2 months, Figure 4), while in 2000/2001 where

high ER continued after the initiation of flooding, high

water levels and associated flooding were maintained for

about 8 months.
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Figure 3 Photographs illustrating the extent of the 2000/2001 floods.
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Duration of spring response

In order to form a complete picture of the flooding related

to the 2000/2001 and 2002/2003 flooding events, a ques-

tionnaire was sent to farmers within the River Pang and

Lambourn catchments. In all, 300 questionnaires were sent

out, which consisted of one page with tick box answers and a

map of the area including their farm. The farmers were

selected with the help of the National Farmers Union and

the questionnaire was sent to 75% of the farmers in the area.

The questionnaire focussed on identifying the extent and

duration of the flood events by requesting the respondents

to sketch the flooding that occurred on their property on the

map provided. A total of 300 questionnaires were sent out

and over 90 replies were received. From these responses,

follow-up visits were arranged to enable a representative

sample of farmers who had farms within the River Pang and

Lambourn catchments to be interviewed. Fifteen visits were

arranged with farmers whose land covered a range of slope

(scarp, dip) as well as a range of Chalk and Palaeogene-

covered areas.

The survey identified the importance of springs in con-

tributing to groundwater flooding, especially in the upper

part of the catchments. Spring systems were identified in the

upper Lambourn, Pang and also in the Aldbourne, which is

a tributary of the River Kennet. These springs flow in wet

winters, typically between February and March or February

to May (see Figure 5). For the winters of 2000/2001 and

2002/2003 the springflow started earlier (i.e. December) and

continued flowing for longer (in the upper Pang until the

following December).

Groundwater level response

Comparison of the groundwater hydrographs in the Pang

and Lambourn catchments helps understand the response to

recharge. A number of hydrographs have been produced for

both catchments plotted for the water year 2000/2001 and

2002/2003 (i.e. 1 October to 30 September). To enable a

suitable comparison with normal conditions, groundwater

hydrographs for the year 1979/1980 (total annual ER this

year was ranked 20th from 45 years of data) have been

selected as typical. Figure 6 shows the 2000/2001 recession

continuing until mid-October, followed by a sharp rise then

the groundwater levels stabilising, albeit exhibiting three

peaks. These peaks are thought to correspond to recharge

events. Once the recharge season is over, the groundwater

levels begin to fall (recession) in mid-April 2001. The 2002/

2003 hydrographs shows a rise slightly later (around mid-

November) peaking at a lower level, but importantly the

recession starts much earlier in mid-January. The rise in the

groundwater hydrographs for the average year (1979/1980)

starts in mid-January and peaks at the end of April. As

would be expected, the peaks of the hydrograph during

1979/1980 are much lower than for the maximum
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Figure 4 Flood producing effective rainfall in the Pang catchment.
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groundwater levels during the flood events (2000/2001 and

2002/2003).

One of the more interesting aspects of comparing the

2000/2001 hydrographs with 1979/1980 is that groundwater

levels are very similar at the start of the water year for the

hydrographs in the River Lambourn catchment. For the

Compton borehole, where extensive flooding occurred in

the Pang catchment, the antecedent water levels before

flooding were significantly higher than average, as reported

by Finch et al. (2004). However, given that flooding also

occurred in areas with unexceptional antecedent water levels

(i.e. Malthouse and the Lambourn catchment boreholes), it

seems more likely that the timing and volume of recharge

were a more important control on flooding than the

antecedent water levels. Marsh and Dale (2002) show the

soil moisture deficit was very low at the end summer 2000

and state that the recharge season started 6–8 weeks earlier

and continued for up to 24 weeks, which is consistent with

the responses in Figure 6.

Groundwater contours

Figure 7 shows the groundwater contours for August

2000, November 2000, January 2001 and May 2001. These

contours show the development of two groundwater

mounds: the first, identified by the 140 m contour, develops

in the upper part of the Lambourn catchment, the second is

characterised by the 120 m contour. From August 2000 to

November 2000 both contours move westwards as ground-

water levels recede. From November 2000 to January 2001

both sets of contours move eastwards and form two mounds

at the upper part of the River Lambourn and Pang catch-

ments. These mounds persist until May 2001.

Examining the position of the 120 and 140 m contours

shows the relationship of the groundwater contours with

respect to the flooded dry valleys. The 140 m contour

intercepts the dry valley of the Aldbourne and the upper

part of the River Lambourn. The 120 m contour intercepts

the flooded dry valleys along the River Lambourn, the

Winterbourne and the upper part of the River Pang. There

appears to be a crescent-shaped ‘front’ in both the River

Pang and Lambourn catchments that intercepts the topo-

graphic lows and results in groundwater flooding.

Figure 8 shows the groundwater contours for November

2002, December 2002, April 2003 and May 2003. The

contours remain static until November 2002, before moving

eastwards and a groundwater mound develops in the upper

part of the Pang and Lambourn. These mounds persist until
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Figure 5 Extent of flooding combined with farmers’ survey results.

J Flood Risk Management (2011) 1–13c� 2011 The Authors
Journal of Flood Risk Management c� 2011 The Chartered Institution of Water and Environmental Management

8 Hughes et al.

JFRM 1095

(B
W

U
K

 J
FR

M
 1

09
5 

W
eb

pd
f:

=
03

/3
0/

20
11

 1
2:

49
:1

6 
39

40
34

2 
B

yt
es

 1
3 

PA
G

E
S 

n 
op

er
at

or
=

) 
3/

30
/2

01
1 

12
:4

9:
34

 P
M



April 2003, which is earlier in the year than in the 2000/2001

groundwater contours.

Discussion

Groundwater flooding poses a problem for flood risk

assessment using traditional methods, due to the complex

spatio-temporal nature of flooding and the mechanisms by

which flooding is caused. A case study of historical Chalk

groundwater flooding in the Pang and Lambourn catch-

ments was used to illustrate response. In the upper parts of

the catchments, normally dry valleys flow as groundwater

levels rise, exhibiting intermittent (bourne) behaviour. This

is the main cause of groundwater flooding. However, as

well as dry valleys flowing in the upper parts of the

catchments, groundwater flooding can result from existing

springs flowing either more frequently or for a longer

period, or the emergence of ‘new’ spring sources, i.e. springs

that may flow only during rare flood events. Both of these

mechanisms have to be taken into account if the potential

extent of flooding is to be mapped.

Improving the assessment of flood risk

As discussed above, the main issues regarding the successful

understanding, simulation and forecasting of groundwater

flooding are threefold: availability of data to define the

spatial extent and timing of groundwater flooding, avail-

ability of suitable risk assessment tools and methods of

forecasting the spatial extent of groundwater flooding.

There is a significant issue concerning data availability

because groundwater flooding usually occurs outside the
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Figure 6 Rainfall combined with groundwater hydrographs.
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area normally covered by the installed hydrometric net-

works, for example, in the Chalk, in normally dry valleys.

The methods by which data collection can be facilitated

include aerial surveys (e.g. Finch et al., 2004), field surveys

including photography, and temporary flow measurement

(e.g. Macdonald et al., 2007). All these measures depend on

rapid response and require the development of contingency

plans as well as the accessibility of the flooded areas by foot

or vehicles. This is a significant issue where roads are

blocked by flood waters.

In order to better assess flood risk, groundwater flooding

processes need to be simulated in flood-risk models. Thus it

is necessary to include appropriate groundwater modelling

in flood risk assessment methodologies. Achieving this

aim presents considerable challenges in both process under-

standing and modelling methodologies. In addition to the

need for a suitably fine temporal and spatial representation

of the processes, a set of methodological problems occur

which cannot be solved using proprietary ground-

water models. Firstly, simulation of groundwater emergence

requires accurate representation of surface elevations within

the groundwater model, a feature which is generally not

included in proprietary groundwater models. This requires

high vertical resolution data, and raises issues of grid-scale

representation. Secondly, the emergence of groundwater

occurs in normally dry valleys in a low run-off environment,

and to a lesser extent from springs in the upper part of the

catchment. This extends the drainage network considerably

by processes that are not normally simulated. Therefore,

consideration has to be given to potential flow paths in

model definition and set-up. Thirdly, recharge processes are

spatially variable, exhibit high nonlinearity of response, and

are not represented appropriately in standard models.

Fourthly, stream-aquifer interactions are spatially complex.

Current algorithms are simplistic, and detailed definition

requires extensive field investigation. Ongoing research

under the UK Flood Risk from Extreme Events (FREE)

programme is addressing these challenges, but a compre-

hensive risk assessment tool remains a challenge for the

future.
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Figure 7 Groundwater contours for 2000/2001.
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Forecasting of groundwater flooding is also important,

especially under conditions of climate change. Although in

principle, complex distributed groundwater models could

be used for forecasting, simpler modelling approaches can

provide a cheap and effective flood warning system. Such

models benefit from computational efficiency and ease of

setup and use. Because groundwater flooding occurs after a

combination of antecedent conditions for soil moisture

deficit and early and sustained winter rainfall, early warning

can be provided if there is an understanding of the current

groundwater conditions in combination with a range of

possible rainfall scenarios. The UK’s Environment Agency

uses such an approach to forecast when groundwater levels

may exceed some ‘trigger’ level, associated with past flood-

ing. An example for the Brighton area has been developed by

Adams et al. (2010). Such methods could potentially be

improved by looking at ER, rather than just rainfall, and by

considering a range of ‘flood producing’ durations. These

point methods can provide a good indication of the like-

lihood of groundwater flooding, but do not indicate where

the flooding will take place, and also have limited applica-

tion in areas where little is known about historic flood

events.

To develop these simple, point methods further Fulton

(2009) and Fulton and Jackson (2010) have proposed a

method for predicting the groundwater surface over the

whole catchment. A number of point models are used to

simulate individual groundwater hydrographs. Using meth-

ods to characterise all of the groundwater hydrographs in

the Pang and Lambourn catchments, the number of simple

models required can be reduced by an order of magnitude.

Using spatial interpolation, the groundwater surface can be

estimated for any time. This groundwater surface can be

compared with the ground surface and groundwater flood

maps can be created. This approach appears promising as a

rapidly deployable risk assessment tool. However, it requires

sufficient numbers of well-placed observation boreholes

within the catchment to characterise the flooding. More-

over, like other simple modelling approaches, it is limited to

predictions within the range of historic observations.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Figure 8 Groundwater contours for 2002/2003.
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Despite the advances in understanding groundwater

flooding in the Pang and Lambourn catchments reported

in this paper, there remain three challenges to the under-

standing and simulation of groundwater flooding: data

availability, incorporation of the simulation of groundwater

flows into a flood risk framework and the forecasting of

groundwater flooding. While research programmes such as

the NERC-funded FREE programme are helping to address

these issues (Rees et al., 2009; Wheater et al., 2010), there

remains much work to do in terms of ensuring that ground-

water flooding is routinely incorporated into flood risk

assessments.
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