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 17 

Abstract 18 

 19 

The amount of plant-available nitrogen (N) in soil is an important indicator of eutrophication of semi-20 
natural habitats, but previous studies have shown contrasting effects of N deposition on mineralisable 21 
N in different habitats. The stock of readily mineralisable N (Nrm) was measured in 665 locations 22 
across Britain from a range of intensively and extensively managed habitats, allowing N availability 23 
to be studied in relation to soil and vegetation type, and also to variation in climate and in reactive N 24 
deposition from the atmosphere. Mineralisable N contents were correlated with deposition in 25 
extensively managed habitats but not in intensively managed habitats. The following statements apply 26 
only to extensively managed habitats. All habitats showed a similar increase in Nrm with N deposition. 27 
However, soil characteristics affected the relationship, and soil carbon content in particular was a 28 
major control on mineralisation. The Nrm stock increased more with N deposition in organic than in 29 
mineral soils. The nitrate proportion of Nrm also increased with N deposition but, conversely, this 30 
increase was greater in mineral than in organic soils. The measurements could be used as indicators of 31 
eutrophication, e.g. deposition rates of over 20 kg N ha-1 y-1 are associated with nitrate proportions of 32 
> 41% in a mineral soil (2% carbon), and with Nrm stocks of over 4.8 kg N ha-1 in an organic soil (55 33 
% carbon). Both Nrm and nitrate proportion increased with mean annual temperature of the sampling 34 
location, despite consistent incubation temperature, suggesting that increasing temperatures are likely 35 
to increase the eutrophying effects of N pollution on semi-natural ecosystems. 36 
 37 

Keywords: deposition; eutrophication; mineralization; nitrate; nutrient; pollution; production 38 



3 
 

 39 

1. Introduction 40 

 41 

The progressive eutrophication of terrestrial ecosystems by reactive nitrogen (N) from fertilisers and 42 

atmospheric pollution has been implicated in widespread changes in productivity (Hungate et al., 43 

2003), losses of biodiversity (Phoenix et al., 2006; Bobbink et al., 2010) and declines in water quality 44 

(Magee, 1982). There is strong evidence that floristic change towards more eutrophic assemblages is 45 

occurring (Braithwaite et al., 2006; Maskell et al., 2010), but these changes have not been easy to 46 

ascribe to N pollution, in part due to lack of clear evidence that the availability of N in soil has 47 

increased. Studies of effects of N deposition rate on soil mineralisable N have shown inconsistent 48 

effects in similar habitats (e.g. Rao et al., 2009; Vourlitis et al., 2007). We used a simple measure of 49 

soil mineralisable N to investigate patterns of N availability across Britain, in different soil and habitat 50 

types, and related these patterns to rates of atmospheric N deposition. 51 

 52 

Large amounts of available or readily-mineralisable N in soil reflect increased plant exposure to 53 

mineral N, which is likely to increase productivity in many terrestrial habitats (LeBauer and Treseder, 54 

2008). This increased productivity is beneficial for ecosystem services such as agricultural or forest 55 

production, and is likely to increase net carbon (C) storage, at least in the short term (Wamelink et al., 56 

2009). However, increased productivity in semi-natural habitats is likely to decrease ground-level 57 

light-availability and lead to the loss of low-growing plants and associated invertebrate species 58 

(Bobbink et al., 2010; Hautier et al., 2009; Wallisdevries and Van Swaay, 2006), reducing 59 

biodiversity value at a landscape scale. Such changes will be more pronounced where N is the main 60 

limiting factor, for example in higher-precipitation regions (Lee et al., 2010). Large proportions of 61 

nitrate in mineralisable N are also associated with floristic change (Diekmann and Falkengren-Grerup, 62 

1998). Increased mineral N contents, particularly when combined with high rates of nitrification, are 63 

also likely to increase N leaching and reduce downstream water quality (Gundersen et al., 2006). 64 

Measurements of N availability are therefore useful for several areas of research and policy. 65 
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Predictions made by mechanistic models of C and N cycling used at ecosystem and global scales need 66 

to be tested against measures of medium-term N fluxes (Finzi et al., 2011; Magid et al., 1997). 67 

Agronomic researchers require measures of N availability to predict productivity (Ros et al., 2011). In 68 

semi-natural systems, niche occupancy models that predict likely species occurrence in relation to 69 

changing environmental factors (Latour and Reiling, 1993; Smart et al., 2010; Sverdrup et al., 2007) 70 

sometimes require abiotic indicators of eutrophication; such models are used to inform pollution 71 

abatement policy such as the Convention on Long-Range Transboundary Air Pollution (de Vries et 72 

al., 2010).  73 

 74 

Plant-available N is not straightforward to define or measure, and is thus a major source of uncertainty 75 

in current ecosystem models (Wamelink et al., 2002). Soil total C / N ratio has been used as an 76 

indicator of N availability, as it provides some indication of the degree to which the capacity of an 77 

ecosystem to absorb excess N has been exhausted (Gundersen et al., 1998). However, variation in the 78 

reactive proportion of soil N means that this ratio has limited capacity to predict the onset of N 79 

leaching (Rowe et al., 2006). Direct measurements of soluble N in lysimeters or by KCl extraction 80 

provide a snapshot measurement of plant-available N, but such measurements are inherently variable 81 

due to short-term variations in the rate of efflux (leaching and uptake) from the soluble pool. 82 

Measurements of potentially mineralisable N seem likely to be more robust indicators of N 83 

availability (Ros et al., 2011), for reasons explained below. 84 

 85 

Mineralisation is the conversion of organic residues into mineral forms, initially to ammonium, and 86 

then when conditions allow nitrification, to nitrate. The rate of mineralisation of N and the total stock 87 

of mineralisable N in soil are likely to be affected by factors such as soil pH, temperature, moisture, 88 

stocks of C and N, and the recalicitrance of this organic matter. In a study of 31 widely differing soils 89 

incubated under standard conditions, the stock of potentially mineralisable N was found to be highly 90 

variable, although the proportion of this stock that was mineralised per week was similar (Stanford 91 

and Smith, 1972). Studies on single soil types have shown that incubation temperature exerts greater 92 

control over N mineralisation than water content, over ranges from 10 to 25 oC and from –30 to –1700 93 
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kPa (Sierra, 1997), and that increasing pH leads to decreased ammonification, but an increase in 94 

nitrification (Pietri and Brookes, 2008). However, while incubation temperature effects on soil 95 

organic matter mineralisation have been widely studied (von Lutzow  and Kogel-Knabner, 2009), 96 

effects of the typical temperature of the sampling location are less well understood.  97 

 98 

Plants are able to take up N even from soils with no net mineralisation flux (Dyck et al., 1987), since 99 

they can intercept available N before it can be re-immobilised (Schimel and Bennett, 2004). Net 100 

mineralisation measurements therefore probably underestimate plant-available N, at least in low-N 101 

systems. Gross mineralisation fluxes can be measured using isotopic dilution or by adsorption onto 102 

strong ion-exchange resins, but these measurements probably overestimate plant-available N (Fierer 103 

et al., 2001). Soluble organic forms of N may also be produced during the decomposition of organic 104 

matter, and may themselves be significant sources of N for plant nutrition (Chapin et al., 1993; Hill et 105 

al., 2011; Schimel and Chapin, 1996). Plant growth can also decrease or more commonly increase 106 

mineralisation, with plant cultivation changing mineralisation rates to 70 – 500 % of rates in controls 107 

without plants (Kuzyakov, 2002). This implies that there can be no definitive measure of plant-108 

available N, but net mineralisation measurements remain useful to distinguish soils across a range of 109 

N availability (Schimel and Bennett, 2004). Net mineralisation flux has most commonly been 110 

measured by comparing the amounts of extractable nitrate and ammonium before and after a period of 111 

incubation, using paired soil samples (e.g. Keeney, 1980; Waring and Bremner, 1964). Disturbance 112 

can change mineralisation and immobilisation rates, so in situ or intact core methods are preferred 113 

(Raison et al., 1987). As well as introducing some error due to analysis of two spatially separated 114 

cores, the paired core method for measuring net mineralisation may be unsuitable when cores cannot 115 

be transferred rapidly to the laboratory under controlled conditions, since mineralisation in transit is 116 

likely to lead to large variation in mineral N contents on arrival at the laboratory. In the current study 117 

we therefore used a single-extraction method, in which soils were flushed through before incubation 118 

with approximately four pore-volumes of an artificial rain solution, to remove any accumulation of 119 

mineral N during transit. Mineralisable N measured using this method helped explain the occurrence 120 

of plant species in associated plots, predicting a component of the variation in mean Ellenberg “N” 121 
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score (Ellenberg, 1974) that was largely orthogonal to soil properties such as pH, moisture content 122 

and total N/C ratio (Rowe et al., 2011). 123 

 124 

Different plant species may be adapted to use oxidised, reduced or dissolved organic N (Miller and 125 

Bowman, 2003). Dissolved organic N uptake may become less prevalent and nitrate uptake more 126 

prevalent in more productive systems (Nordin et al., 2001), perhaps because competitively superior 127 

species are able to take up whichever is currently the most abundant form (Ashton et al., 2010). The 128 

availability of nitrate may be more important than total available N for explaining species occurrence 129 

(Andrianarisoa et al., 2009; Bengtson et al., 2006; Wilson et al., 2005). Soil nitrate concentrations 130 

tend to increase with N enrichment (Corre et al., 2007), perhaps because nitrate immobilisation is 131 

inhibited by greater ammonium concentrations (Bradley, 2001). High nitrate concentrations are also 132 

associated with greater N leaching losses (MacDonald et al., 2002). 133 

 134 

The effects of atmospheric N deposition on N mineralisation rates have been studied in selected 135 

ecosystems, with varying results. In a study of sixteen sites in Californian deserts, N deposition was 136 

found to be correlated with soil total C and total N, but mineralisation rates were unrelated to N 137 

deposition  (Rao et al., 2009). However, a similar study of semiarid Californian shrublands found that 138 

N mineralisation increased linearly with N deposition rate (Vourlitis et al., 2007). Observed 139 

relationships between mineralisable N and N deposition were positive in southern Swedish deciduous 140 

forests (Falkengren-Grerup et al., 1998), Appalachian deciduous forests (Boggs et al., 2005) and pine 141 

stands in Nanchang, China (Chen et al., 2010); negative in sugar maple stands in Ontario (Watmough, 142 

2010); unrelated in pine stands in Alberta (Laxton et al., 2010); and unimodal for spruce stands across 143 

Germany (Corre et al., 2007). A study of forest plots across the northeastern US showed a positive 144 

relationship between mineralisable N and N deposition in maple stands, but no relationship in beech 145 

stands (Lovett and Rueth, 1999). This variation suggests the need for more studies in which the same 146 

survey and analytical techniques are used across different habitats, to clarify whether there are indeed 147 

differences in responses to N deposition, and to explore potential reasons for these differences (Nave 148 

et al., 2009).  149 
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 150 

The aim of the current study was to examine variation in soil net N mineralisation and net nitrification 151 

across a range of British habitats in relation to soil properties, habitat type, temperature of the 152 

sampling site, and the gradient of N deposition, to address the hypothesis that increased N deposition 153 

leads to increases in available N and in the nitrate proportion of this available N.  154 

 155 

2. Methods 156 

 157 

Soil cores for analysis were taken in summer 2007 during the UK Countryside Survey, a large 158 

stratified random survey of 1 km2 squares across Britain, i.e. England, Wales and Scotland (Firbank et 159 

al., 2003). The stratification is based on 32 land use classes, each sampled using eight squares, giving 160 

a total of 256 squares. The survey has been repeated five times since 1978, and has expanded, but the 161 

current study was restricted to the original set of squares for which there is a long history of repeat 162 

measurements. Samples for mineralisable N were taken from three of the five randomly located main 163 

plots in each square. Access to some sites was restricted, however, and of the planned 768 analyses 164 

only 665 were carried out, from plots located within 237 of the squares. In the Countryside Survey, 165 

the squares were mapped in terms of “Broad Habitat” on the basis of floristic and structural 166 

characteristics (Maskell et al., 2008), meaning that each sample could be related to a specific Broad 167 

Habitat (Table 1).  168 

  169 
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 170 

 171 

Table 1. Number of mineralisable nitrogen analyses carried out per Broad Habitat. I = habitat assumed 172 

to be intensively managed; E = habitat assumed to be extensively managed. 173 

Broad Habitat  N    Broad Habitat  N 

Improved Grassland (I)  149    Fen, Marsh and Swamp (E)  12 

Arable and Horticulture (I)  148    Bracken (E)  6 

Bog (E)  78    Urban (E)  4 

Neutral Grassland (I)  76    Littoral Sediment (E)  3 

Acid Grassland (E)  56    Calcareous Grass (E)  2 

Coniferous Woodland (E)  48    Supralittoral Rock (E)  2 

Dwarf Shrub Heath (E)  42    Supralittoral Sediment (E)  2 

Broadleaf, Mixed and Yew Woodland (E)  37       

 174 

 175 

Coarse litter was removed before sampling, and soil cores were taken by pressing a 5 cm diameter by 176 

15 cm long plastic pipe into the soil until the end was level with the soil surface. The plastic tube was 177 

carefully extracted, and cores were returned to the laboratory by normal post, taking 1-5 days. Cores 178 

were kept at 4 oC for a further 1-5 days until sufficient cores had been received for an analytical batch. 179 

Mineralisable N analyses were carried out after first flushing out soil solution by laying the core 180 

horizontally on a perforated rack and repeatedly spraying with a dilute salts solution, then incubating 181 

for 28 days at 10 oC, by extracting mineral N from the incubated core using 1M KCl. This procedure 182 

was designed to reduce variability in initial mineral N concentrations due to pre-sampling rain events 183 

and uncertain conditions during transfer to the lab, and was described in detail in Rowe et al. (2011), 184 

except that the flushing solution was based on concentrations of major ions except ammonium and 185 

nitrate in average UK rain in 2007 as estimated using the FRAME model (Rognvald Smith, CEH 186 

Edinburgh, pers com.). These concentrations were: 17.6 μeq Ca2+ L-1; 30.1 μeq Mg2+ L-1; 125 μeq Na+ 187 
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L-1; 140 μeq Cl- L-1 and 57.2 μeq SO4
2- L-1, resulting in a solution with a pH of approximately 4.6. The 188 

total net mineral N production during the incubation (Nrm) was expressed as kg N ha-1 in the top 15 189 

cm of soil, using bulk density measurements made on soil cores taken from adjacent locations. This 190 

unit was chosen for two reasons. Firstly, the rate of mineralisation of N in a given sample declines 191 

with time (Stanford and Smith, 1972), so a single measurement cannot be used to calculate flux 192 

during shorter or longer periods of time, but is better viewed as an indicator of the stock of readily 193 

mineralisable N. Secondly, since soils vary widely in their organic C content, expressing 194 

mineralisable N concentrations per g soil or per g organic matter gives the impression of high 195 

availability on mineral or organic soils, respectively. The stock of available N in the top 15 cm of soil, 196 

by contrast, is a measure of N availability within the plant rooting zone that is comparable across a 197 

variety of habitats. 198 

 199 

Nitrification was calculated as the net nitrate production during the incubation, and was expressed as a 200 

proportion of Nrm rather than as a total amount, to separate this signal from that of the overall quantity 201 

of mineralisable N. After incubation, a subsample was analysed for total C content by mass loss on 202 

ignition (375 oC for 16 hours) using a ratio of 0.55, which was the mean ratio of elementally analysed 203 

C to loss-on-ignition in the main Countryside Survey dataset (Emmett et al., 2010). Soil pH was 204 

measured in samples from adjacent soil cores, in a slurry of 10 g fresh soil with 25 ml de-ionised 205 

water. Soil moisture content was measured gravimetrically in samples from adjacent soil cores and 206 

expressed as % of fresh weight. 207 

 208 

Estimates of atmospheric N deposition fluxes were obtained using the CBED model (Smith et al., 209 

2000), which predicts fluxes based on atmospheric concentrations, fertiliser application rates, and the 210 

interception characteristics of vegetation. Deposition estimates for woodland were used for woodland 211 

habitats, and deposition estimates for open moorland were used for all other habitats. Effects of N 212 

deposition were not examined within habitats as defined the Countryside Survey (Maskell et al., 213 

2008) that were considered to be intensively managed (Improved grassland, Neutral grassland, and 214 

Arable), but only within extensively managed habitats where little or no N fertiliser is likely to have 215 
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been applied and where more than 10 analyses were carried out, i.e., for samples from: Broadleaf, 216 

mixed and yew woodland; Coniferous woodland; Acid grassland; Dwarf Shrub Heath, Fen, marsh and 217 

swamp, and Bog. Mean annual temperature for each Countryside Survey square was estimated as the 218 

average of monthly average air temperatures in the years preceding the survey, 2001-2006 (Met 219 

Office, 2009).  220 

 221 

Correlations between variables were analysed using Spearman’s rank-correlation test. Linear mixed-222 

effects models were fitted to Nrm stock and nitrate proportion data by maximum likelihood (ML) using 223 

the lme procedure of R (Pinheiro & Bates 2004; R Development Core Team, 2007). The Countryside 224 

Survey square was included as a random effect. Effects of Broad Habitat and N deposition rate on Nrm 225 

stock and nitrate proportion were examined by fitting these two explanatory variables and the 226 

interaction between them as fixed effects. Effects of continuous variables (N deposition, annual mean 227 

temperature, soil C content and soil pH) on Nrm stock and nitrate proportion were examined by fitting 228 

these variables and interactions among them as fixed effects. In both cases, a maximal model 229 

including all interactions was fitted, and terms were then removed in ascending order of influence on 230 

model likelihood, until further simplification caused an increase in Akaike’s information criterion 231 

(AIC). To reduce heteroscedasticity, stock data were log transformed before analysis, first adding half 232 

the detection limit to zero values, and nitrate proportion was logit transformed, first adding half the 233 

detection limit to zero values and subtracting half the detection limit from values of one. Nitrate 234 

proportions could not be calculated for samples with no detectable Nrm. Back-transformed means and 235 

standard errors are presented.  236 

 237 

3. Results 238 

 239 

3.1  Mineralisable N stock and nitrate proportion 240 

 241 
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The log-average Nrm stock measured across all British soils was 8.8 kg ha-1 in 0-15 cm depth soil. The 242 

distribution of Nrm by Broad Habitat is shown in Figure 1a. The measurement clearly distinguished 243 

habitats that are considered fertile and productive from those considered unproductive, although 244 

variability was greater for the ‘Broadleaf, mixed and yew woodland’ and ‘Fen, marsh and swamp’ 245 

habitats, both of which can occur on a wide range of soil types in Britain. The intensively managed 246 

habitats ‘Arable and Horticulture’ and ‘Improved Grassland’ had consistently large Nrm stocks, and 247 

Bog and ‘Dwarf shrub heath’ had consistently small stocks. 248 

 249 

The mean proportion of nitrate in Nrm across all British soils was 0.52 g NO3-N g-1 total mineralisable 250 

N, and there was considerable variation in nitrate proportion among Broad Habitats (Figure 1b). The 251 

greatest proportion of nitrate was in the Arable and Horticulture habitat, and there were small nitrate 252 

proportions in less fertile habitats such as Bog, Acid Grassland and Dwarf Shrub Heath. 253 

 254 

  255 
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 256 

Figure 1: Mean (+/- one standard error) values for: a) stock of total readily-mineralisable nitrogen (kg 257 

N ha-1); and b) nitrate proportion of total readily-mineralisable nitrogen, in the top 15 cm of soil in 258 

different Broad Habitats across Britain: Broadleaf = Broadleaf, mixed and yew woodland; Conifer = 259 

Coniferous woodland; Arable = Arable and horticulture; Improved grassland; Neutral grassland; Acid 260 

grassland; Heath = Dwarf shrub heath; Marsh = Fen, marsh and swamp; Bog. 261 

 a) 262 

 263 

 b)  264 

 265 
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3.2 Factors affecting mineralisable N 266 

 267 

Correlation analysis in extensively managed habitats showed a close association between Nrm and N 268 

deposition (Table 2a). The stock of Nrm was also strongly correlated with soil C content, moisture 269 

content at sampling, and mean annual temperature. Significant correlations also illustrated spatial 270 

associations, for example between higher temperatures towards the south of Britain and greater N 271 

deposition rates and lower soil C contents. The proportion of nitrate in mineralisable N was positively 272 

correlated with N deposition rate, mean annual temperature and soil pH, and negatively correlated 273 

with soil moisture and C contents. Within intensively managed habitats, Nrm was not correlated with 274 

N deposition rate (Table 2b). Neither Nrm nor nitrate proportion were correlated with mean annual 275 

temperature in intensively managed habitats. The Nrm stock in intensively managed habitats was also 276 

not correlated with intrinsic soil properties, but nitrate proportion still tended to be greater with 277 

greater Nrm. Nitrate proportion in intensively managed habitats also increased with N deposition rate 278 

and soil pH, and decreased with greater soil moisture and C contents. Since soil C content was very 279 

strongly associated with soil moisture in both extensively managed and intensively managed habitats 280 

(Spearman’s rho = 0.881 and 0.811, respectively), and soil C content was expected to have a more 281 

direct effect on Nrm, soil moisture was left out of subsequent regression analyses. 282 

 283 

  284 
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 285 

Table 2.  Spearman’s rank correlation coefficients among readily-mineralisable N (Nrm), proportion 286 

nitrate in mineralisable N (pNO3), N deposition (Ndep), soil total carbon (Ctot), soil moisture, soil pH 287 

and mean annual temperature (Temp), in: a) extensively managed habitats (N = 290); and b) 288 

intensively managed habitats (N = 375). *** = P < 0.001; ** = P < 0.01; * = P < 0.05; ns = P > 0.05. 289 

 Nrm pNO3 Ndep Ctot Moisture pH 

a) extensively managed habitats 

pNO3 0.296***      

Ndep 0.604*** 0.280***     

Ctot -0.502*** -0.402*** -0.489***    

Moisture -0.613*** -0.390*** -0.577*** 0.881***   

pH 0.110 ns 0.214*** -0.087ns -0.426*** -0.273***  

Temp 0.477*** 0.327*** 0.741*** -0.475*** -0.482*** -0.024 ns 

b) intensively managed habitats 

pNO3 0.259***      

Ndep 0.001 ns -0.148**     

Ctot 0.016 ns -0.298*** 0.117*    

Moisture -0.093 ns -0.380*** 0.118* 0.811***   

pH -0.054 ns 0.274*** 0.071 ns -0.395*** -0.405***  

Temp 0.000 ns 0.045 ns 0.246*** -0.041 ns -0.053 ns 0.240*** 

 290 

 291 

 292 

Within extensively managed habitats, there was an increase in the stock of Nrm with more N 293 

deposition (P < 0.001; Figure 2). Neither the intercept nor the slope of the fitted relationship differed 294 

among habitats (P > 0.05). The nitrate proportion in Nrm also increased with total N deposition (P < 295 

0.001), and there were significant differences among habitats in the intercept (P < 0.05), but not the 296 

slope (P > 0.05) of this relationship (Figure 3).  297 
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 298 

 299 

Figure 2. Response of total readily-mineralisable N stock to total N deposition. 300 

 301 

 302 

  303 



16 
 

 304 

Figure 3. Responses of the proportion of nitrate in total readily-mineralisable N stock to total N 305 

deposition in selected extensively managed Broad Habitats: Broadleaf = Broadleaf, mixed and yew 306 

woodland; Conifer = Coniferous Woodland; Acid Grass = Acid Grassland; Heath = Dwarf Shrub 307 

Heath; Marsh = Fen, Marsh and Swamp; Bog = Bog. Lines are from a linear mixed model fit to logit-308 

transformed data, with different intercepts for different Broad Habitats. 309 

 310 

 311 

Potential explanatory variables for variation in Nrm were analysed for the subset of plots from 312 

extensively managed habitats that were included in the current study. The extensive Broad Habitats 313 

differed in their mean soil C content (P < 0.001; Figure 4a), soil pH (P < 0.001; Figure 4b), soil 314 

moisture content at sampling (P < 0.001; Figure 4c), N deposition rate (P < 0.001; Figure 4d) and 315 

annual mean temperature (P < 0.001; Figure 4e). The best model for Nrm based on continuous 316 

measurements (rather than habitat category) is given in Table 3, and illustrated in Figure 5. The main 317 

explanatory factors for Nrm were soil C (P < 0.001), mean annual temperature (P < 0.001), and N 318 

deposition (P < 0.001). Interactions between soil C and N deposition (P = 0.062; Figure 6a) and 319 

between soil C and soil pH (P = 0.252; Figure 6b) were retained in the model, since removal of these 320 

terms increased AIC. The nitrate proportion of Nrm was best predicted (Table 4) by soil C (P < 0.001), 321 

mean annual temperature (P < 0.001), and interactions between soil C and total N deposition (P < 322 

0.05; Figure 7a) and between soil C and mean annual temperature (P < 0.05; Figure 7b).  323 
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 324 

 325 

Figure 4. Soil properties, N deposition and temperature for plots from extensively-managed broad 326 

habitats included in the current study: a) soil total carbon content; b) soil pH; c) soil moisture content; 327 

d) total N deposition; and e) mean annual air temperature. Broadleaf = Broadleaf, mixed and yew 328 

woodland; Conifer = Coniferous Woodland; Acid Grass = Acid Grassland; Heath = Dwarf Shrub 329 

Heath; Marsh = Fen, Marsh and Swamp; Bog = Bog. 330 

         a)     b)             c)   331 

  332 

            d)    e) 333 
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 338 

Table 3. ANOVA table for fixed effects in a linear mixed-effects model predicting log10(readily-339 

mineralisable N, kg ha-1 in 0-15 cm soil) in extensively managed habitats, from soil total carbon  340 

content (Ctot, g C 100 g-1 dry soil), soil pH, nitrogen deposition rate (Ndep, kg ha-1 y-1) and mean annual 341 

temperature (Temperature, oC). F- and p- values computed for Type I (sequential) sums-of-squares; 342 

numDF = numerator degrees of freedom, denDF = denominator degrees of freedom. 343 

 Value numDF denDF F-value p-value 

Intercept -0.135 1 141 244.3 <0.001 

Ctot -0.0329 1 141 45.9 <0.001 

Soil pH 0.0214 1 141 2.7 0.100 

Temperature 0.0574 1 123 18.0 <0.001 

Ndep 0.0155 1 141 16.0 <0.001 

Soil pH : Ctot 0.00477 1 141 1.3 0.252 

Ndep: Ctot 0.000396 1 141 3.5 0.062 

 344 

 345 

 346 

  347 
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 348 

Table 4. ANOVA table for fixed effects in a linear mixed-effects model predicting logit(proportion 349 

nitrate in mineralisable N) in extensively managed habitats, from soil total carbon content (Ctot, g C 350 

100 g-1 dry soil), nitrogen deposition rate (Ndep) and mean annual temperature (Temperature, oC). F- 351 

and p- values computed for Type I (sequential) sums-of-squares; numDF = numerator degrees of 352 

freedom, denDF = denominator degrees of freedom. 353 

 Value numDF denDF F-value p-value 

Intercept -9.24 1 130 50.8 <0.001 

Ctot  0.0546 1 130 29.5 <0.001 

Temperature 0.747 1 121 12.7 <0.001 

Ndep 0.101 1 130 0.6 0.452 

Ctot : Temperature -0.00376 1 130 5.8 0.018 

Ctot : Ndep -0.00361 1 130 6.4 0.013 

 354 
 355 

  356 
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 357 

Figure 5. Comparison of observed total readily-mineralisable N stock with within-group fitted values 358 

from a mixed-effects model with fixed effects: log10(total readily-mineralisable N stock + 0.07, kg N 359 

ha-1 y-1) =  –0.135 – 0.0329 × soil C (%) + 0.0213 × soil pH + 0.0574 × mean annual temperature (oC) 360 

+ 0.0155 × total N deposition (kg N ha-1 y-1) + 0.00477 × soil C × soil pH + 0.000396 × total N 361 

deposition × soil C, and Countryside Survey 1 km2 square as a random effect. 362 

 363 
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 366 

Figure 6. Fitted models for readily-mineralisable N stock in extensively managed habitats, in relation 367 

to:  a) soil total carbon, and total nitrogen deposition, at the mean values for pH (4.82) and annual 368 

mean temperature (9.1 oC) within the dataset; and b) soil total carbon and soil pH at the mean values 369 

for total nitrogen deposition (16.9 kg N ha-1 y-1) and mean annual temperature within the dataset. 370 

         a)      b) 371 
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 374 

Figure 7. Fitted models for nitrate proportion of mineralisable N in extensively managed habitats, in 375 

relation to: a) soil total carbon and total nitrogen deposition, at the mean value for annual mean 376 

temperature (9.1 oC) within the dataset; and b) soil total carbon and temperature, at the mean value for 377 

total nitrogen deposition (16.9 kg N ha-1 y-1) within the dataset . 378 

         a)      b) 379 

  380 

 381 

 382 

 383 

 384 

4. Discussion 385 

 386 

The variation among habitats in mineralisable N that was revealed in the current study is consistent 387 

with the picture of greater N availability and a greater proportion of nitrate in more intensively 388 

managed agricultural habitats, due to inherent soil properties, climatic differences and/or direct effects 389 

of more intensive management. However, Nrm stocks in extensively managed habitats were of 390 

comparable magnitude, particularly in the woodland and ‘Fen, Marsh and Swamp’ habitats. There 391 

was considerable variability in both Nrm stock and nitrate proportion within individual habitats. While 392 

extensively managed habitats differed significantly in their relationships between N deposition and 393 
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Nrm (Figure 2) and between N deposition and nitrate proportion (Figure 3), much unexplained 394 

variance remained in these relationships.  395 

 396 

The continuous environmental variables examined in the study were considerably more useful than 397 

categorical differences among habitats for explaining variation in Nrm. In extensively managed 398 

habitats in the current study, variation in Nrm was clearly related to soil characteristics, but was 399 

strongly affected by N deposition rate. The Nrm stock increased with total N deposition, and there was 400 

an interaction with soil C content. Increasing N deposition also increased Nrm in more mineral soils, 401 

but in completely organic soils was associated with a greater increase in Nrm across the observed range 402 

of N deposition. Larger values of Nrm were also associated with greater sampling location 403 

temperature, implying that any increase in mean annual temperature is likely to increase N 404 

availability, whether directly or by increasing the proportion of plant species with rapid growth rates 405 

and more decomposable litter. Nitrate proportions were also greater in soils from warmer locations. A 406 

significant negative interaction with soil C content suggests that temperature effects on nitrate 407 

proportion will be more pronounced in more mineral soils.  408 

 409 

In a meta-analysis of experimental N addition studies in north temperate forest, Nave et al. (2009) 410 

found no differences between mineral and organic horizons in the response of mineralisable N to N 411 

deposition, but did find differences in this response between different biogeographical regions, and 412 

highlighted the importance of the proportions of recalcitrant and labile pools in soil organic matter. In 413 

contrast to the current study, Booth et al. (2005) found in a meta-analysis covering a wide range of 414 

ecosystems that mineralisable N was correlated with substrate concentrations of organic matter. The 415 

negative correlation of Nrm with soil total C found in the current study may differ because many of the 416 

soils had large organic matter contents (mean C content for the extensively managed habitats included 417 

was 27%). The greater effect of N deposition flux on N availability in organic soils than in more 418 

mineral soils shown in the current study may be because a larger proportion of the organic matter is 419 

recalcitrant in the very organic soils that were included. In soils from a temperature gradient in the 420 

Great Plains region, Barrett and Burke (2000) found that while C mineralisation increased with soil 421 
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organic matter content, gross N immobilisation also increased; a similar result to that found in the 422 

current study. While the overall effect of increasing soil C content was a decrease in mineralisable N 423 

stock in our study, an interaction between C content and N deposition rate suggests that this N 424 

immobilisation flux may become saturated under chronically elevated N deposition. However, Hartley 425 

and Mitchell (2005) found that experimental N additions increased mineralisable N more in a more 426 

mineral soil (20% organic matter) than in a more organic soil (70% organic matter). This suggests that 427 

there may be differences between effects observed after short-term additions and after chronic high N 428 

deposition rates. 429 

 430 

Several explanations are possible for the greater increase in Nrm with N deposition rate in more 431 

organic soils. Proposed effects of increased N deposition include productivity stimulation (LeBauer 432 

and Treseder, 2008) and inhibition of litter decomposition, at least on sites that are not greatly N-433 

limited (Craine et al., 2007; Knorr et al., 2005), either of which might increase the stock of readily-434 

mineralisable organic matter. Productivity stimulation by N may have been greater in more organic 435 

soils that are generally less water-limited than mineral soils.  436 

 437 

The proportion of nitrate in Nrm was strongly affected by soil C content and N deposition rate, and 438 

was only large in soils with low C content and a large rate of N deposition. Nitrification is affected by 439 

aeration (Sahrawat, 2008), and the texture of the soil on fine scales (e.g. clay, silt and sand fractions, 440 

or the degree of humification of organic matter) and medium scales (e.g. porosity and aggregation) 441 

undoubtedly affected the diffusion of air into the soil core during the incubation. However, both 442 

organic and mineral soils can vary considerably in aggregation development and porosity, and hence 443 

the increase in nitrate proportion with decreasing organic matter content (where there is a large rate of 444 

N deposition) may not be related to effects of soil structure. The large-scale spatial pattern of nitrate 445 

proportion suggests little influence of soil texture, which varies at a smaller scale. Nitrification has 446 

been found in previous studies to be correlated with total N mineralised (Booth et al., 2005) and with 447 

soil pH (Andrianarisoa et al., 2009; Sahrawat, 2008; Ste-Marie and Pare, 1999). We also found 448 

evidence of correlation between nitrate proportion and both total Nrm and soil pH (P < 0.001 for both 449 
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correlations, in extensively and intensively managed habitats; Table 2). Nitrification rates may also 450 

indicate the size of the nitrifying bacteria population, and hence greater nitrate proportions may be 451 

related to a history of elevated N inputs. The strong increase in nitrate proportion with N deposition in 452 

more mineral soils suggests that N deposition has increased nitrifier activity in these soils, whereas 453 

factors such as limited aeration may have prevented an increase in nitrifiers in more organic soils.  454 

 455 

The Nrm measurement reflects an amount of N that was insoluble at the start of the study but was 456 

readily mineralised during the incubation. The net N mineralisation during an equivalent period under 457 

field conditions would likely have been different, due to differences in disturbance, temperature, 458 

aeration, interactions with plant roots, and other factors. The measurement nevertheless provides some 459 

indication of the rate of N release from soil organic matter into the soil solution, whence it may be 460 

available for plant uptake, or may be leached. Chen et al. (2006) found that gross N mineralisation 461 

remained elevated 14 years after cessation of N additions, despite recovery of mineral N 462 

concentrations and leaching rates. Although large amounts of N in readily-mineralisable organic 463 

matter are not as immediate a cause for concern (in semi-natural systems susceptible to 464 

eutrophication) as are large mineral N concentrations in soil solution, they reflect a pool of N that is 465 

likely to lead to long-term increases in plant production and/or increased leaching of mineral N. 466 

 467 

5. Conclusions 468 

 469 

In extensively managed habitats, mineralisable N stock and nitrate proportion of mineral N were both 470 

strongly influenced by N deposition rate, and by interactions with soil C content. Habitats varied in 471 

mean mineralisable N stock, but did not show evidence of differential effects of N deposition, perhaps 472 

due to variation in soil type within each habitat. The effect of N deposition on mineralisable N stock 473 

was more apparent in more organic soils, whereas the effect on nitrate proportion was more apparent 474 

in more mineral soils. With the proviso that responses also depend on soil C content and site 475 

temperature, the study supports the use of both mineralisable N and nitrate proportion as indicators of 476 
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ecosystem eutrophication due to N pollution. The increase in mineralisable N stock with temperature 477 

implies that climate change and N deposition are likely to have synergistic effects, accelerating the 478 

change of semi-natural habitats to a more eutrophic state. 479 

 480 
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