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The geological history of the Isle of Wight: an overview of the ‘diamond in 

Britain’s geological crown’  

 

Abstract  

 

The geology of the Isle of Wight has attracted both the amateur and professional 

geologist alike for well over two centuries. It presents a cornucopia of things 

geological and offers a window into the fascinating story of the geological history and 

landscape development of southern England, as well as an important teaching 

resource for all levels of study from primary education through to academic research.  

 

This paper provides a geological framework and a summary of the history of research 

as context for the papers in this issue can be placed. Inevitably, it can only offer a 

précis of the huge amount of information available, but it is hoped will also give 

added impetus to further investigation of the literature or, indeed, new research.  

 

The island offers a field workshop for topics such as lithostratigraphy, sequence 

stratigraphy, tectonics and climate change; studies that are becoming ever more 

international in their influence. There are 15 Sites of Special Scientific Interest 

designated because of their geological importance and a number of these are 

internationally significant.  

 

After a brief discussion on the concealed geology, this paper concentrates on an 

outline of the near-surface geology on the coast and inland, and introduces a different 

view on the structure of the Cretaceous and Palaeogene strata. The enigmatic 

Quaternary deposits are discussed particularly with reference to the development of 

the Solent River, human occupation and climate change.  

 

Peter Hopson* 

British Geological Survey, Sir Kingsley Dunham Centre, Keyworth, Nottinghamshire 

NG12 5GG, United Kingdom 

*Tel.: +44 (0) 115 9363174  

E-mail address: pmhop@bgs.ac.uk 

 

1. Introduction 

 

This Special Issue of the Proceedings of the Geologists‘ Association (PGA) provides 

results arising from the British Geological Survey‘s Isle of Wight Integrated Project. 

This project, commenced in September 2007 and is due for completion in March of 

2012, is funded from a number of programmes within the Survey‘s National 

Capability remit to improve the understanding and distribution of the near-surface 

geology, creating representational models of the 3D structure and providing the 

essential framework information for use by the geological community operating in 

this classic area of British geology. 

 

The project outputs are principally aimed at users such as academia, local authorities 

and statutory bodies, but also at the large number of ‗geo-tourists‘ that are such an 

important part of the island‘s economy. The principal outputs will be in the form of a 

new 1:50 000 scale Geological Map Special Sheet and a Sheet Explanation booklet, 

*Manuscript
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each illustrating the surface and sub-surface geology, as well as papers in journals 

such as those included in this volume of the PGA. 

 

 

This overview is split into four sections. This introduction provides a brief historical 

perspective of geological investigations on the island. The second part places the 

island in the context of the structural development of the southern part of England 

through geological time. Section three provides an outline of the geological units 

encountered both in the subcrop and at surface. The fourth section briefly touches on 

our interaction with the island‘s rocks. In each section the references quoted are by no 

means exhaustive but point the reader to the large estate of geological knowledge 

available for the island.  

 

The articles in this issue range from descriptive texts illuminating the structural 

development of this part of southern England; aspects of the islands stratigraphy; the 

engineering geology and hence land-sliding characteristics of some of the formations 

exposed. It further includes short notes illustrating other topics such as the 

biostratigraphy of individual units, building stones, the use of geology in 

archaeological studies and the growing importance of geo-diversity studies. The 

individual articles add significantly to the understanding of the island‘s geology, 

provide additional key references closely tied to the subjects discussed and will 

engender some further debate. Each of these articles is highlighted at the appropriate 

place in this overview.  

 

The Isle of Wight (Fig. 1), the largest in England (384 km
2
), has long been regarded 

as one of the most significant of the classic areas of British geology. It has been a 

‗mecca‘ for geological studies since the early 1800s. This interest has spawned an 

industry of competing geo-tourist guides and pamphlets. Many of the earliest are no 

more than descriptions of leisurely tours, locations to visit, as well as describing 

selected views and geomorphological features. All of them offer something of a social 

commentary of their times, for example in Mill (1832), Ware (1871) and the Ward 

Lock and Co. series - ‗Illustrated Guide to the Isle of Wight‘ - first published in 1880 

and almost annually thereafter until the 1970s. Many, however, carry the reader 

through the spectacularly exposed rocks on the coast and their inland occurrences in 

great detail. Pre-eminent amongst these are perhaps Englefield (1816) and Mantell 

(1847, 1851, 1854; editions that also carry one of the earliest published geological 

maps, see Fig. 2), and in terms of volume of publications, the many-editioned 

Brannon‘s Pictures of the Isle of Wight (e.g. 1848) [also see Vectis Scenery by the 

same author] and numerous other titles that he printed and published from his home in 

Wootton Common on the island. There are, in addition, many other notable tour 

guides and geological reviews, for example:  Nelson (1859), Wilkins (1859), 

Venables (1860), Norman (1887), Colenutt (in Morey, 1909), Clinch (1921), Hughes 

(1922) to name just some of the more readable.  

 

Of course, there were many Victorian geological treatises of perhaps greater worth to 

the student of geology, such as the Memoirs of the Geological Survey (Forbes, 1856; 

Bristow, 1862; Reid and Strahan, 1889; and White 1921) and many articles in the then 

fledgling scientific publications such as the Journal of the Geological Society (e.g. 

Prestwich, 1846; Fitton, 1847; Webster, 1814 [in the Transactions]), Geological 
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Magazine (e.g. Jukes-Browne, 1877; Reid, 1887) and the Proceedings of the 

Geologist‘s‘ Association (e.g. Rowe, 1908).  

 

 

 
 

Fig. 1. The outline topography, principal towns and locations of geological interest on 

the Isle of Wight. 
Deep Boreholes: 1. Norton 1, SZ38NW18 [SZ 34006 89098];  2. Wilmingham 1, SZS38NE9 [SZ 

36620 87790];  3. Bouldnor Copse 1, SZ39SE1 [SZ 38537 90179];  4. Sandhills 1, SZ49SE3 [SZ 

45700 90850];  5. Sandhills 2, SZ48NE55 [SZ 46129 89850];  6. Cowes 1 (Bottom Copse), SZ59SW17 

[SZ 50036 94161];  7. Arreton 1, SZ58NW2 [SZS 53070 85640];  8. Arreton 2, SZ58NW1 [SZ 53200 

85800];  9. Chessell 1, SZ48NW11 [SZ 40571 85581]. 

 

The island is, and has been, very popular for geological field excursions to satisfy all 

levels of academic attainment from primary and secondary school levels through to 

academic research studies. Indeed this long-term interest is illustrated by the 

numerous field meetings run by the Geologists‘ Association. Excursion reports, 

describing various aspects of the geology in the Isle of Wight, were published at 

regular intervals within the Proceedings up to the present day (1864 [reported in the 

Geological and Natural History Reportory for 1866], 1882, 1892, 1896, 1906, 1919, 

1933, 1948, 1954, 1957, 1962, 1964, 1971, 1974, 1979, 1994). The Geologists‘ 

Association also published a Guide (No.25) on the geology of ―The Isle of Wight‖ 

(Curry and Wright, 1958) that was subsequently revised (Curry et al., 1966; 1972; 

Daley and Insole, 1984) before being reissued, later, as Guide No.60 (Insole, Daley 

and Gale, 1998). The Association also featured the island in its 50
th

 Jubilee Volume 

(Herries, 1909), wherein a comprehensive review of the complete geological 

succession was given. In addition, there are a great number field guides written for 

professional organisations dedicated to various aspects of the islands geology, for 

example Wach and Ruffell, (1991) and Briant et al. (2009) to name just two; a large 

number of PhD theses (e.g. Daley, 1969; Swiecicki, 1980; Laurie, 2006 and many 

more) and, of course, perhaps the largest number of learned papers for any area of the 
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British Isles of this size. The bibliography within the 5
th

 impression of White‘s 

Memoir (1994) is extensive, but by no means comprehensive, given the upsurge in 

interest in the island‘s geology within both PhD theses and papers since the 1980s. 

Many newer references and the revised terminology for the Chalk and the Lower 

Cretaceous strata on the island, used throughout the issue, are contained in two 

research reports of the British Geological Survey (Hopson, 2005; Hopson et al., 2008) 

that can be downloaded free from the BGS website at 

http://www.bgs.ac.uk/downloads/browse.cfm?sec=1&cat=2 . The rock descriptions 

used in the articles herein generally conform to those defined in Volume 3 

(Sedimentary Rocks) of the Rock Classification Scheme at 

http://www.bgs.ac.uk/downloads/browse.cfm?sec=1&cat=1 and is also free for 

download.  

 

 

 
 

Fig. 2. One of the earliest geological maps of the Isle of Wight taken from Mantell 

(1847), originally published in 1846 by Henry G Bohn of London. 

 

With the exception of the Jurassic strata (proven at depth in hydrocarbon exploration 

boreholes) the island is a microcosm of the later Mesozoic and Cenozoic strata that 

are found widely across south-eastern England. This succession is laid bare in 

spectacular sea-cliffs, stretching for a total of 98 km, that provide essential viewing 

for both the amateur and professional geologist. Indeed it is true to say that the cliff 

sections around the island have been the focus of the greater part of the geological 

study to the detriment of the description of some equally illuminating inland sections 

and outcrops. These coastal cliffs provide significant outcrops of the terrestrial 

Wealden strata with its contained sauropod remains (e.g. Martill and Naish, 2001); 

they provided some of the earliest comprehensive descriptions, by eminent geologists 

(e.g. Fitton, 1847), of the change from terrestrial to fully marine deposition (e.g. 

Wach and Ruffell, 1991) within the Lower Cretaceous and near vertical exposures of 

the Chalk succession (e.g. Mortimore et al., 2001) represented in the south of 

England. The Chalk, of course, forms the central topographic spine of the island, 

http://www.bgs.ac.uk/downloads/browse.cfm?sec=1&cat=2
http://www.bgs.ac.uk/downloads/browse.cfm?sec=1&cat=1
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provides the ‗backbone‘ of this geological diamond (Fig. 3) and is a very visible 

manifestation of part of the structural development of the island. The northern part of 

the island comprises the most complete Palaeogene succession in northwest Europe 

(e.g. Forbes, 1856; King, 2006). It includes many type sections within the coastal 

exposures, including the internationally renowned sections at Alum Bay and 

Whitecliff Bay (e.g. Curry 1954, 1957) at the western and eastern ends of the island, 

respectively. The geology of the island has been imaged in many ways (e.g. 

photography, aerial photography, seismic surveys) since the earliest years of 

investigation, each providing a new insight into the make-up of the island. Most 

recently, the spectacular low-flying HiRes airborne survey has provided new sets of 

data that add significant detail to earlier national surveys. Three papers, White and 

Beamish (2011)(high-resolution magnetic survey), Beamish and White (2011a) 

(electrical conductivity), Beamish and White (2011b)(radiometric) provide 

preliminary insights into the analysis of this data, with each dataset being tested 

against the modern geological field surveying conducted during the Isle of Wight 

Project. Overlying these bedrock strata is an enigmatic patchy spread of Quaternary 

superficial deposits that hold keys to unlock our understanding of the ancient Solent 

River, a river/estuarine/marine system that has formed a significant feature in the 

landscape for at least the last 600,000 years (Bates and Briant, 2009). This Quaternary 

sequence, here on the island, in the immediate offshore and more widely on the 

mainland, carries a signature of numerous cold/warm climate cycles, widely 

fluctuating sea-levels and some of the earliest glimpses of the hominid occupation of 

the British Isles.  

 

The full bedrock succession known from the island is illustrated in Fig. 6 a and b and 

Fig.8.  

 

 
Fig. 3. The topography of the Isle of Wight as demonstrated in a shaded relief digital 

terrain model.  
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This image has been created from the NEXTMap Britain Elevation dataset and has been produced by 

exaggerating the terrain by a factor of two. A colour ramp has then been applied, areas are coloured 

according to height values. Sea level is light blue, low heights of around 10 to 20 meters are coloured 

light green, the colour ramp then passes though dark green, yellows and browns. The maximum heights 

(c. 250m) are coloured white. 

 

 

The attitude of the strata, that make up the steeply dipping central spine of the island, 

are testimony to the significant tectonic event (the Alpine Orogeny) that formed the 

many east – west  mountain chains within southern Europe around 23-14 million 

years ago (Ziegler, 1981, 1990). These Isle of Wight features (Underhill and Paterson, 

1998; Evans et al., 2011) are in themselves a reversal of extensional tectonic events 

that created the Wessex Basin during the preceding Mesozoic (Stoneley, 1982; 

Chadwick, 1986, 1993). This Wessex basin story itself has its origins within the 

Palaeozoic and carries a history of continental collision and division that offers an 

insight into the development of the major continental masses through time. 

 

In summary, this is quite a story for such a small piece of the English landscape. 

 

2. Structure and basin development 

 

Structurally, the Isle of Wight falls within the Wessex Basin (Stoneley, 1982; 

Chadwick, 1986, 1993) which extends over most of southern England, south of the 

London Platform and Mendip Hills (Fig. 4). This sedimentary basin preserves a thick 

succession of Permian/Triassic to Cretaceous rocks and is underlain at great depth by 

Palaeozoic strata in the Variscan Foldbelt (see Fig. 4 and 5) (Penn et al., 1987). 

 

 

 
Fig. 4. The structural setting of the Isle of Wight within the broader Wessex Basin 

(inset), and a generalised view of the surface structures based on the currently 

available geological map. 
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The Palaeozoic (or Variscan) basement preserves an imprint of deep-seated structures 

that were initiated when the continental masses of Gondwana and Laurentia 

(Laurussia) collided (i.e. the Variscan Orogeny) to create the supercontinent of 

Pangea (Holdsworth et al., 2006). This period of deformation culminated at about 299 

Ma at the end of the Carboniferous period. As a consequence of this collision the 

rocks of the Variscan Basement were weakly metamorphosed and are cut by several 

major, shallow southward-verging, northward-compressing thrust zones and north-

west-oriented wrench faults that have been identified principally from seismic 

reflection data. These thrusts form an important feature in the subsequent tectonic 

development of the region. 

 

A major period of stability, erosion and, eventually, continental red-bed deposition 

ensued through the Permian into the Triassic period; subsequent to which, the first 

stages of the break-up of the supercontinent of Pangea commenced within the Jurassic 

period. In the southern England (Wessex) region the break-up process was effectively 

related to the opening (extension) of the Central Atlantic Ocean between the 

supercontinents of Laurasia and a dividing southern continent (South America and 

Africa plates). During the Cretaceous period, the break-up of Laurasia into the North 

American and Eurasia continental masses resulted in further extension as the early 

North Atlantic Ocean opened from the south (Holdsworth et al., 2006). This Jurassic-

Cretaceous crustal extension was accommodated on faults developed above the 

Variscan basement thrusts as a series of generally southward-throwing normal faults, 

creating half-graben-like structures (Chadwick, 1986; Penn et al., 1987). The largest 

of these faults divide the Wessex Basin into a series of sub-basins and within this 

district the Weald and Channel sub-basins are separated by the Hampshire–Dieppe 

High (also known as the Cranborne–Fordingbridge High) (Fig. 4 inset). This high is 

effectively represented by the northern part of the Isle of Wight and the immediately 

adjacent mainland; the northern boundary of the high lies along the Portsdown–

Middleton faults on the mainland, with the southern margin represented by the 

monoclinal structures (Purbeck – Wight Structure) that form the spine of the island.  

 

The early development of half-graben structures in the southwest of the Wessex Basin 

(the Dorset ‗sub‘-Basin), outside of the area described herein, preserves thick Permian 

red-bed facies strata. Further extension developed these half-graben structures 

towards the northeast and younger Triassic red-bed facies strata are preserved more 

widely beneath southern England and the Isle of Wight (Ruffell and Shelton, 2000 

and references therein).  

 

As basin extension continued into the Jurassic (200-145 Ma), coupled with a 

progressive, but cyclical, rises in relative sea-level, marine successions were 

developed widely within the Wessex Basin as the greater accommodation space 

became available. This extension continued throughout the Early Cretaceous (145-

99.6 Ma) although an early phase of low relative sea-level resulted in terrestrial 

deposition (the Wealden Group) prior to a return to marine deposition. Throughout 

this long period of extension, the intervening structural highs and some of the larger 

extensional faults became more influential on sedimentation. Stratigraphical units 

suffered thickness attenuation or even severe erosion, at various times, depending on 

the relative sea-level, the degree of movement on individual faults and the 

accommodation space available. By the Early Cretaceous separate successions were 

developed within the Weald and Channel sub-basins (see for example Chadwick, 
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1986; Penn et al., 1987; Gale, 2000a; Hopson et al., 2008) and onlap, particularly onto 

the London Platform and the Hampshire – Dieppe High, can be demonstrated within 

the Wealden, Lower Greensand, Gault and Upper Greensand successions of the 

Lower Cretaceous. 

 

A further period of regional subsidence, but apparently with considerably less fault 

movement, and a sustained relative sea-level rise within the Late Cretaceous [99.6-65 

Ma] resulted in the highest relative sea level in Earth‘s history. This high sea-level, 

coupled with a greenhouse earth, saw a relatively uniform and thick Chalk Group 

deposited widely in this region and across the continental shelf areas adjacent to the 

ever-widening North Atlantic (see Gale, 2000b and references therein). Although it 

must be stated that there is a growing weight of evidence (e.g. Mortimore and 

Pomerol, 1997; Evans and Hopson, 2000; Evans et al., 2003, and references therein) 

to show that some variations in chalk lithology and thickness within the Chalk Group 

can be attributed to further tectonic influence and not just to eustacy as previously 

supposed. Global sea-level fall at the end of the Cretaceous resulted in erosion of 

parts of the uppermost Chalk and the development of a pre-Cenozoic unconformity. 

This was effectively the end of the Wessex Basin as a major structural/depositional 

unit. However, structural disharmonies preserved in the succession within the Wessex 

Basin continued to influence sedimentation and tectonics through to the present day. 

 

Marine and fluviatile deposition in Paleocene to Oligocene times, on the shallow 

margin of a geographically more limited, shallow, subsiding Palaeogene (59-23 Ma) 

or ‗Tertiary‘ North Sea Basin (King, 2006), was followed by the onset of a 

compressive tectonic regime during the early- to mid-Miocene (Alpine Orogeny, c. 

23-14 Ma). There is evidence that Palaeogene compression as a precursor to this main 

event did initiate the Isle of Wight structural uplift as exemplified for example in Gale 

et al. (1999) and Newell and Evans,(2011). This major compressional event 

effectively reversed the sense of movement on the major bounding faults of the older 

Wessex Basin resulting in the structural inversion of earlier basins and highs. 

Compression was for this region essentially from the southeast, a direction at a slight 

angle to the preserved structures of the Wessex Basin. This slight obliquity of the 

maximum convergence forces to the existing Wessex Basin fault structures led to 

differential movement along each of these major faults. These pressures also perhaps 

emphasised the north-west – orientated wrench faulting inherent in the underlying 

strata and there is evidence of block and ‗scissor‘ faulting particularly associated with 

the most significant structures (e.g. the Isle of Wight structure).  

 

The Alpine compression event effectively separated the London and Hampshire 

Palaeogene basins onshore in southern England. The event created the reverse-faulted 

monoclinal structures best exemplified by the Hog‘s Back in Surrey (and its westward 

extension south of the London Platform) and the Purbeck – Wight structure (that 

extends westward through the Isle of Wight into the Ballard Down and Isle of 

Purbeck structure) (King, 2006). Between these two obvious structures, the 

compression also formed a series of regularly-spaced, roughly east – west-trending 

strongly asymmetric anticlines and synclines that are somewhat less striking 

topographically. The northern margin of the Wessex Basin is the London Platform a 

long term feature founded on the stable block of the East Midlands Microcraton. 

Maximum uplift during the Alpine Orogeny, exemplified by the Weald Anticline, is 

estimated at about 1500m (Simpson et al., 1989). 
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The structure of the island (Fig. 4) is most spectacularly represented by the vertical 

Chalk features at the eastern (Culver Down/Whitecliff Bay) and the western end of 

the island (Scratchell‘s Bay/the Needles/Alum Bay). These represent a continuation of 

the Purbeck – Wight structure that on the island, is termed the Isle of Wight 

Monocline. This is effectively two en-echelon monoclinal features (the Brighstone 

and Sandown strongly asymmetric anticlines, often referred to as variously 

monoclines, structures, or flexures in the literature) separated by a flatter-lying chalk 

downland, central to the island, that is now regarded as a classic fault ramp area 

(Evans, et al., 2011; Mortimore, 2011b). The monoclinal structures have been 

regarded as simple, if extreme, examples of folding (at least extreme in terms of 

southern England). The observations of the BGS team and a reinterpretation of the 

available seismic data has indicated that the two monoclines of Sandown and 

Brighstone are not simple structures; they are now reinterpreted as ‗failed‘ 

monoclines with significant reverse faulting on the northern limb. A new 

interpretation and evolution of the Isle of Wight Monocline structure is given by 

Evans, et al. (2011). 

 

3. An outline of the lithostratigraphy of the Island 
 

3.1. Concealed geology 

 

There are nine deep boreholes (Cowes 1, Sandhills 1 and 2, Norton, Wilmingham, 

Chessell 1, Arreton 1 and 2, and Bouldnor Copse) that prove the strata concealed at 

depth beneath the island (see Fig. 1 for location of these boreholes, and Fig. 6a). Each 

was drilled in the hope of finding a hydrocarbon reservoir similar to that at Wytch 

Farm to the west. Whilst some showed hydrocarbon traces none proved sufficiently 

productive to develop further. However, each provides vital clues to the nature of the 

strata at depth and together they demonstrate the differences between the preserved 

sequences on the Hampshire-Dieppe High and the Channel Basin and offer an insight 

into the development of the structure itself and the timing of oil migration. Of the nine 

wells, seven are north of the Isle of Wight structure and only Arreton 1 and 2 are 

south of the structure. 

 

The nature of the Palaeozoic basement is revealed in six of these boreholes that 

penetrate Devonian strata. Purplish red to red claystone, siltstone and fine-grained 

sandstones preserved in five of these, north of the monoclinal structure, and Arreton 

No.2 proving purplish ortho-quartzite to the south. All are weakly metamorphosed. 

None of the sequences have, so far, yielded reliable dates but comparison of the 

lithologies encountered with other dated successions at outcrop and in boreholes 

indicates a Devonian age. The map of Smith (1985) considers the island to be 

underlain in the north by undivided Devonian with the area south of the structure 

interpreted as Devonian to Carboniferous in age. Known occurrences of 

Carboniferous rock in the region are the Culm Basin of Devon, the Ferques Inlier in 

the Pas de Calais in northern France, and at depth elsewhere in south-east England 

(e.g. the Kent Coalfield). There is, however, no direct evidence of rocks of 

Carboniferous age being present beneath the island and to the south of the island 

commercial hydrocarbon wells also only prove Devonian strata (Hamblin et al., 1992) 
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A succession of Triassic strata overlies the Devonian in the deep boreholes. These 

occurrences represent the easternmost margins of the thicker Triassic successions 

found in the Wytch Farm hydrocarbon reservoir and Dorset Basin to the west.  The 

thickest and stratigraphically most complete development of the Triassic, and thick 

Permian strata within the Wessex Basin, is seen on the coast between Torbay and 

Sidmouth (Edwards et al. 1999 and 2004). 

 

The paper by White and Beamish (2011) compares the UK baseline magnetic dataset 

with that obtained from the spectacular low-level HiRES air-borne survey during 

September 2008. The reinterpretation of that survey and older data, beneath the 

southern extremity of the island and within the offshore area some distance  to the 

south, indicates that significant magnetic bodies originally thought to be between 2 

and 5 km depth (and therefore within the Variscan basement succession), may well be 

higher within the sedimentary pile. This interpretation suggests that such bodies are 

within Permian(?) to Triassic strata and at shallower depths of about 1 km. They may 

therefore be equivalent to the ‗Exeter Volcanics‘ of Permian age in the Dorset Basin 

(Knill, 1969; Cornwall et al., 1990). 

 

The depth to the pre-Permian basement across the island is indicated in Fig. 5, based 

on Smith (1985).  

 

Seven of the nine deepest wells prove Triassic strata and up to 450 m is known 

Representatives of the Sherwood Sandstone Group, Mercia Mudstone Group and the 

Penarth Group are all present in varying thicknesses. Very earliest Triassic strata are 

known in offshore boreholes to the west and southwest of the island, and are equated 

to the Aylesbeare Mudstone Formation of Dorset/Devon. The Triassic represents a 

long period of arid continental red-bed deposition over a low-relief desert plain. Early 

fluviatile sandstone-dominated successions characterised by the Sherwood Sandstone 

Group give way upwards to clay- and silt-dominated strata of the Mercia Mudstone 

Group (MMG). The MMG represents deposition in distal alluvial and playa-lake 

environments with thin sandstones representing a variety of channel and crevasse 

splay deposits (Hounslow and Ruffell, 2006). The close of the Triassic saw the 

widespread Rheatian transgression above the basal surface of which the Penarth 

Group is represented in this area by a relatively thin, limestone-dominated, shallow 

marine succession. Worldwide this boundary marks one of the five major extinction 

events in Earth‘s history 
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Fig. 5. The depth to the pre-Permian basement beneath the Isle of Wight (modified 

from Smith (1985) (red contours in hundreds of metres). Thickness contours for the 

Sherwood Sandstone Group and the Mercia Mudstone and Penarth groups are 

indicated by lines in blue (modified from Hamblin et al., 1992). 

 

A representative full succession (Fig. 6a) of the buried Jurassic strata was proven in 

the Arreton wells south of the Hampshire – Dieppe High where 1438 m of strata 

(Arreton No.2) is encountered. A further 100 m attributed to the Purbeck Group, that 

includes the Jurassic/Cretaceous boundary, is proven in this borehole beneath a full 

Wealden succession. To the north, over the Hampshire – Dieppe High itself, the  
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Fig. 6a.The concealed bedrock strata encountered beneath the Isle of Wight.  

 

 

Aptian/Albian Lower Greensand unconformity cuts out or oversteps the Wealden 

Group, which was perhaps never deposited over the high, and cuts down deeply 

through the Jurassic succession such that the Monks Bay Sandstone Formation (see 

Hopson et al., 2011) rests with some discordance on the Cornbrash Formation. Local 

stratal thicknesses suggest that up to 716 m of Jurassic strata are absent in the Cowes 

borehole.  
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Lithostratigraphical units can be closely correlated with the successions at depth 

across the Wessex Basin and at outcrop in Dorset and the Cotswolds. The Jurassic 

succession of limestones, lime-mudstones and mudstones demonstrates a return to 

fully marine conditions following the red-bed deposition of the Triassic. For the most 

part sedimentation rates throughout the Jurassic kept pace with the rising sea-level 

and the new accommodation space made available during the extensional phases of 

the Wessex Basin. The palaeoenvironment was maintained in broad shallow shelf sea 

platforms. Notwithstanding this general uniformity of deposition there is some 

marked thickening of individual stratal packages across some of the extensional faults 

within the basin demonstrating that the timing of movement was not uniform basin-

wide (Penn et al., 1987 and references therein). The Purbeck Group, that spans the 

Jurassic/Cretaceous boundary, is characterised by shallow lagoonal limestones, shell 

detrital limestones and palaeosols together with significant anhydrite beds indicating 

the gradual change of palaeoenvironment towards peritidal and terrestrial deposition 

of the Wealden Group as relative sea-level fell during the earliest Cretaceous. 

 

3.2. Lower Cretaceous 

 

The full thickness (620 m) of the Wealden Group (Fig. 6a) is present in the Arreton 

borholes but only the upper third is represented at outcrop along the spectacular 

southwest coast, with even less of the succession visible north of the seawall within 

Sandown Bay. The group is divided into two formations. The Wessex Formation and 

the Vectis Formation as defined by Daley and Stewart (1979) to replace the terms 

Wealden Marls and Wealden Shales, respectively, adopted in the earlier survey 

memoirs.  

 

The Wessex Formation has no formal subdivision on the island (Fig.6b), and it is not 

fully exposed, although a number of named beds (principally the dividing sandstone 

units) are described from the continuous coastal section in Compton Bay and 

Brighstone Bay (Daley and Stewart, 1979; Stewart, 1981a, b; Insole and Hutt, 1994). 

The type section of the formation is at Bacon Hole and Mupe Bay on the coast in 

Dorset to the west. The formation, as seen on the island, is considered to be deposited 

in freshwater and floodplain environments, characterised by a Mediterranean-type 

climate, with high-sinuosity rivers (note that the extensive braided rivers of this 

region at the present time are maily a consequence of human activity reducing the 

vegetation cover, and are not typical of ‗natural river activity‘ of Mediterranean 

regions), ephemeral ponds and lakes that suffered significant major flooding events 

and dessication. Flood events are represented by the more widespread sandstone beds 

within the succession. 

 

The continued exposure of the group into Brighstone Bay on the southwest coast of 

the island provides the type section (west from Atherfield Point) for the Vectis 

Formation. Its constituent three members are defined (from the base, these are the 

Cowleaze Chine, Barnes High and Shepherd‘s Chine members) and can be easily 

traced on this coastline (Daley and Stewart, 1979; Stewart, 1981b; Stewart et al., 

1991; Wach and Ruffell, 1991). The Vectis Formation shows considerably more 

evidence than the preceding Wessex Formation of very shallow lacustrine or lagoonal 

deposition with fluctuating salinities. Although mainly freshwater, interbeds 

representing short-lived marine incursions occur commonly towards the top of the 

succession, providing an early glimpse of the return to fully marine conditions within 
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the overlying Lower Greensand Group. This changing environment and the Ostracoda 

present, that in this case span this Barremian/Aptian boundary, is discussed in 

Wilkinson (2011a). The group, particularly the Wessex Formation, is internationally 

famous for its included saurian remains including some forms unknown from 

anywhere else in the world (Martill and Naish, 2001; Insole and Hutt, 1994).  

 

 

 
 

Fig. 6b. The Cretaceous strata at outcrop in the Isle of Wight.  

 

The Lower Greensand Group (Fig. 6b) has its own terminology, at formation level 

and below, developed for the exposures on the island and repeated in part to the west 

in Dorset. The original classification of the group was by Fitton (1847) who divided 

the ‗Lower Greensand‘ into a large number of beds and ‗groups‘ that he amalgamated 

into six ‗divisions‘. That scheme was simplified in later survey memoirs (Bristow, 

1862; Reid and Strahan, 1889; White, 1921) where the four units of Atherfield Clay, 

Ferruginous Sands, Sandrock and Carstone were defined by reference to the units of 
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Fitton. It must be noted that the southwest coast that formed the type sections for 

Fitton‘s classification suffers rapid coastal erosion and the original sections are no 

longer present. The current exposures are between 70 and 100 m further inland. The 

best descriptions of the succession, as currently seen, are summarised, from various 

authors (see below), in the GA guide No. 60 by Insole et al. (1998) whilst the 

biostratigraphy of the group is described for the island, and correlated more widely, in 

Casey (1961). The four units have been given formal formation status but the 

Carstone Formation has subsequently been renamed the Monk‘s Bay Sandstone 

Formation (Hopson et al. 2008; and formally defined in Hopson et al., 2011) from its 

parastratotype on the island.  The group represents a return to marine conditions 

following the major early Aptian transgression (Simpson, 1985; Wach and Ruffell, 

1991; Dike, 1972a, b) and overall the palaeoenvironment represents deposition in 

mainly shallow seas with increasingly strong tidal influences through time. The 

shallow shelf seas with slow sedimentation rates and storm-scouring are characteristic 

of the Atherfield Clay Formation. The Ferruginous Sands Formation demonstrates 

deposition over an ever-more shallowing shelf with coastal sand-waves and troughs 

together with localised omission surfaces and common firm-ground development. 

Further regression during the deposition of the Sandrock Formation is characterised 

by estuarine conditions cross-cut by sub-tidal channels. A further period of erosion 

followed quickly by transgression that deposited the iron-rich coarse sandstones of the 

Monk‘s Bay Sandstone Formation represents, essentially, the basal member of the 

Albian transgression.  

 

 The Selborne Group (Fig. 6b) is the formal term adopted by the BGS (Hopson et al., 

2008) to include the Mid and Late Albian strata throughout southern England, and 

reintroduces the concept of Jukes-Browne and Hill (1900) of a Selbornian Stage 

(Selbornian Beds in White, 1921) albeit modified with the epithet, group, as the 

lithological counterpart. On the island the group is represented by the Gault 

Formation and the Upper Greensand Formation. Traditionally across much of 

southern England the boundary between the two has been considered as indistinct and 

the unsatisfactory term Passage Beds has been utilised widely for a variable thickness 

is sandy clays intermediate between the Gault and Upper Greensand. On the Isle of 

Wight these intermediate beds are considered as the lower part of the Upper 

Greensand Formation (unit A of Jukes-Browne and Hill, 1900). Comparison of the 

group with successions on the mainland in Wiltshire and Dorset and around the 

western closure of the Weald Anticline, as described for example in Bristow et al. 

(1995, 1999) and  Hopson et al. (2001), demonstrate distinct similarities with the 

succession on the island. The group is fully marine in origin with the Gault 

representing mid- or outer-shelf deposition and the Upper Greensand representing 

eastward-prograding shallower-water deposition. At this time the influence of the 

Hampshire – Dieppe High waned as relative sea-levels rose once more and fully 

representative, though thinner over the high, successions of the group are found at 

outcrop across the southern part of the island and at depth in the north of the island. 

Aspects of the foraminiferal biostratigraphy of this succession and the basal part of 

the overlying Chalk Group derived from examination of core and samples from the 

Ventnor No 2 borehole are discussed in Wilkinson and Hopson (2011). 

 

The Gault is generally sandier than its equivalents described from around the Weald 

and is considered to have been the result of slow sedimentation below wave base at 

water depths of about 100 to 200 m. The succession at Redcliff has been recently 
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described by Gale et al. (1996) adding detail to the geographically more widespread 

descriptions of the formation, including those known from elsewhere on the island, in 

Owen (1971).  The Upper Greensand is variable and the current geological map of the 

island depicts an unnamed chert-rich unit towards the top of the succession that 

essentially corresponds to a unit E (within units A to F) as defined in Jukes-Browne 

and Hill (1900). The formation is regarded as forming within shallow offshore shelf 

and lower shoreface zones related to a prograding shoreline. The group has a 

significant influence on the landscape and built environment over the southern part of 

the island with the Gault often providing a significant plane on which many landslides 

are initiated, hence its old local name of ‗blue slipper‘ (discussed in Jenkins et al., 

2011) and parts of the Upper Greensand being utilised as the most significant locally 

derived building stone on the Island (Lott, 2011). 

 

3.3. Upper Cretaceous 

 

The Late Cretaceous is frequently described as a greenhouse world. It is characterised 

by high global temperatures, high concentrations of atmospheric carbon dioxide and 

high relative sea levels with little evidence of polar ice caps. Temperatures and sea-

level peaked during the late Campanian and a chalk sea was established from Ireland 

through to Kazakhstan. Land masses were distant and terrestrial input very limited 

such that pure white biogenic micritic limestone (chalk) was deposited over wide 

areas in seas considered to be, generally, up to 200 m deep. A indication of this 

greenhouse world and its effect on the Chalk biota is reflected upon in Wilkinson 

(2011b) in describing periodic ‗blooms‘ of the calcareous micro fossil Pithonellid 

through the White Chalk Subgroup .  The foraminiferal biozonation utilised by BGS, 

as surveys have progressed since the early 1990s over southern England, is published 

in its entirety (Wilkinson, 2011c) for the first time in a major journal.  

 

The Chalk Group (Fig. 6b, Fig. 7) and can probably be said to be the lasting view of 

Isle of Wight geology held by many of the visitors to the island, with the steeply 

dipping chalk cliffs of Culver Down in the east and the spectacular, internationally 

famous and much photographed Needles promontory to the west. These cliffs are of 

course the most significant manifestations of the Purbeck – Wight Structure in 

southern England. Culver Down forms the headland from Sandown Bay northward 

through to Whitecliff Bay (the Whitecliff GCR site of Mortimore et al., 2001) and 

provides the finest continuous section of the group (traversable with great care at the 

lowest spring tides) in southern England. The much described succession can be 

matched with equally spectacular cliffs between Beachy Head and Brighton on the 

mainland (see Mortimore, 1986; Mortimore et al., 2001 and references therein) and 

provide a key to lithostratigraphical correlation of the group. The Culver Down 

section is mirrored in the west of the island from Compton Bay through to Alum Bay. 

This western section is continuous for over 8 km, but is impossible to visit over large 

parts (most notably below the long stretch of Tennyson Down to West High Down), 

at even the lowest tides. In the far west, at the Needles promontory, it is possible to 

visit the higher part of the Chalk succession by boat to Scratchell‘s Bay and this is 

described in Hopson et al. (2011). The paper provides, for the first time, a full 

lithostratigraphical log of this important section that has been the subject of numerous 

PhD theses, as indeed has the Culver Down headland, each characterising a particular 

aspect of the chalk succession (e.g. Montgomery, 1994; Swiecicki, 1980). 
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Whilst the seminal works of Jukes-Browne and Hill (1903, 1904) and of Rowe (1908) 

had formed the basis for the description of the chalk for decades, and provide a great 

deal of important detail, the upsurge in interest in Chalk lithostratigraphy across 

southern England particularly within the 1980s (e.g. Mortimore 1979, 1986; 

Robinson, 1986) has led to a comprehensive reappraisal of the Chalk Group (e.g. 

Rawson et al, 2001; Hopson, 2005; Mortimore 2011a). This reappraisal can be can 

readily be applied to the Isle of Wight (Mortimore et al., 2001: Mortimore, 2011b; 

Farrant et al., in press) developing earlier works such as that by Hancock (1975), 

Jefferies (1963) and Kennedy (1969). The development of Chalk terminology is 

illustrated in Fig. 7. 

 

The Culver Down /Whitecliff section and that around the Needles have provided 

internationally important reference sections for the study of various aspects of the 

Chalk Group. Particular attention has been paid to biostratigraphy (Hart et al., 1987, 

1989; Prince et al., 1999, 2008) as well as, for example, the PhD thesis of Swiecicki 

(1980) mentioned above; geochemistry (Jarvis et al., 2001); carbon and oxygen 

 

 
 

Fig. 7. The Chalk Group terminology for the Southern Chalk Province 

 

isotope studies (Jarvis et al., 2006; Jenkyns et al., 1994); sequence stratigraphy (Gale 

1996; Grant et al., 1999);  magneto-stratigraphy (Montgomery, 1994); studies of 

Milankovitch cyclicity (Gale,1990; Ditchfield, 1990); and global stage-boundary 

correlation (Gale et al., 1995). 

 

The finer division of the Chalk Group has permitted a greater degree of certainty in 

respect of the structure of the island and more widely on the mainland (e.g. Mortimore 

and Pomerol, 1991, 1997). Evidence for considerably more faulting cross-cutting and 

parallel to the chalk outcrop (see Evans et al., 2011), has been identified during the 

survey. These substantiate those identified in articles by Nowell (1987, 1995) and 
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Mortimore (2011b), but with additional faults identified during the recent survey. This 

structural control of outcrop is further demonstrated when making geomorphological 

interpretations of the subtle crest-orientation changes (that mimic the underlying bed 

strike) along the steeply dipping ridges to the east and west of the island.  

 

3.4. Palaeogene 

 

There is a significant unconformity, representing a time-gap of about 15 million years, 

between the youngest known Chalk on the island and the basal beds of the overlying 

Reading Formation. It is assumed that chalk deposition continued from the late 

Campanian (the youngest Portsdown Chalk Formation is perhaps c.72 Ma on the 

Island) up until at least the youngest Maastrichtian as there is evidence of chalk of this 

age being present beneath the English Channel (Hamblin, 1992). It is still unclear as 

to whether chalk sedimentation continued into the Danian in this area (as in the North 

Sea Basin) as the Channel Basin was affected by minor episodes of ‗early-Alpine‘ 

inversion at this time as precursors to the major inversion in the mid-Miocene.  This 

may well be the time when erosion of the chalk was initiated in this region. Evidence 

for assuming the area of the Isle of Wight being land for a short time is provided by 

the basin-wide peneplanation of the Chalk and progressive overstep of the Reading 

Formation over younger chalk (e.g. on the Isle of Wight 25 m of the Portsdown Chalk 

is missing from the Culver Down succession whilst it is present in Alum Bay); the 

major sea-level fall in the early Thanetian; and the absence of sediments 

representative of the early and much of the late, Paleocene. The evidence for the 

Cretaceous/Tertiary (K/T) boundary events at around 65.5 Ma is entirely absent from 

England and Wales so we have no sediments in which to study another one of the 

major extinction events in Earth‘s history. The greenhouse climate continued into the 

Paleocene and through into the mid-Eocene, with a marked thermal maxima identified 

at the Paleocene- Eocene boundary (the PETM). From the beginning of the Mid-

Eocene the climate began to cool through to the Terminal Eocene Cooling Event (the 

TEE) marked by the Eocene/Oligocene boundary. All of these major climatic events 

can be studied in the rocks exposed on the Isle of Wight. 

 

The outcrop and exposures of the Palaeogene of the Isle of Wight offer the most 

extensive and complete succession (Fig. 8) available in the UK and is a principal site 

for investigation in northwest Europe. The strata represent about 20 million years of 

deposition covering the Paleocene to early Oligocene in the western margins of a 

basin that extended into the North Sea, but at times may have been connected to the 

southwest with the North Atlantic. The succession on the island is characterised by 

strata laid down on the margins of a shallow sea in a fluctuating transgressive/ 

regressive cyclic regime that has resulted in complications in the lateral correlation of 

strata over the width of the island. 
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Fig. 8. The Palaeogene strata at outcrop on the Isle of Wight. 

 

 

The rocks contain evidence of many environments from shallow marine, beach, tidal 

flat, coastal marsh and lagoon, estuary, river and lake reflecting the relative position 

of the fluctuating shoreline through time. The succession has been described and 

interpreted at length within the literature with the texts of Daley and Edwards (1974, 
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1990), Edwards and Freshney (1987), Insole and Daley (1985), King (1981), and  

Plint (1982, 1983) being most prominent. These are summarised in the GA Guide to 

the Isle of Wight (No.60) by Insole et al. (1998). The Tertiary strata are 

comprehensively described in King (2006) and the new edition of the Tertiary Special 

Report of the Geological Society ( King, in press). Again ‗early-Alpine‘ inversion 

may well have affected the successions of the Palaeogene in terms of local emergence 

and erosion adjacent to the Isle of Wight Structure. From the mid-Eocene one such 

minor uplift and erosion event adjacent to the Sandown Pericline is discussed by Gale 

et al. (1999), but further evidence is presented by Newell and Evans (2011) for a 

younger inversion event that affected the Headon Hill Formation in the northwest of 

the Island. 

 

A short note on the association of Nummulites variolarius and an ostracod assemblage 

from near Newport by Wilkinson and Farrant (2011d) emphasises the important of 

micro biostratigraphy in the correlation and environmental interpretation throughout 

the Palaeogene exposed on the island. 

 

3.5. Quaternary 

 

The cover of Quaternary superficial deposits on the Isle of Wight is enigmatic being 

an incomplete succession, with a patchy distribution and with few reliable dates 

available to researchers until recently. The outcrops on the Isle of Wight have 

received scant investigation and the succession of events is only really discernable by 

reference to the more extensive deposits on the adjacent mainland to the north. There 

is considerable debate as to the age of the units and direct correlations still carry 

considerable doubt. Notwithstanding this, the island has some important sites that 

help to unravel the story of the island‘s Quaternary history, their contribution to the 

Solent River story and the British Quaternary stratigraphy as a whole. A broad 

interpretation of the classification of the succession and its relationship to the more 

widespread Solent River deposits on the mainland is summarised on Fig. 9. This 

interpretation is likely to form the basis of the classification shown on the new Special 

Geological Sheet, due to be published in 2012, that will carry considerably more 

detailed outcrop patterns and a more appropriate interpretation of the superficial 

deposits. An outline appraisal, as seen from the perspective achieved during the recent 

survey, is presented here, incorporating current knowledge and based also on a simple 

appreciation of relative elevation, the lithology of the deposits and their artefact 

content (Fig. 10). Even this outline, briefly expanded upon below, will be open to 

considerable debate and it to be hoped that the Isle of Wight Quaternary succession 

may receive more attention following the publication of the new map. 

 

The general concept of terrace aggradation as propounded in the works of Bridgland 

(1994, 1995, 1996) provides a clear method of development for each terrace cycle and 

points to a complex relationship of fluviatile deposits and environments through cold, 

temperate and back into cold climatic cycles. A complication, only briefly touched 

upon in the ‗Bridgland model‘, is the interplay of periglacial remobilisation and slope 

deposition particularly during the down-cutting events as the rivers respond to relative 

land uplift. All falling base levels appear to be complicated with both incision, until 

the sediments transported from the upper part of the catchment arrive, and then 

aggradation as the stack of sediment is built-up in the lower part of the catchment. 

This is a period in each cycle during which exposed slopes are in their most unstable  
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Fig. 9. The outline of the Quaternary succession on the Isle of Wight and it‘s 

relationship to the Solent River story. Left hand columns derived from Lugowski and 

Ogg (2011) without revision (note the younger Devensian  and younger Ipswichian 

boundaries are slightly too old). 
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condition and periglacial (active layer) processes are at their most active. This issue 

particularly seems to be reflected in the deposits encountered on the Isle of Wight. A 

further complication is related to the position of the Isle of Wight within the Solent 

River system in respect to its contemporary estuarine and marine deposits. At times of 

sea-level highstand the lower-level parts of the Isle of Wight and the Sussex Coastal 

Plain were inundated; whilst at periods of lowstand deep trenches and fluviatile 

aggregation were the norm offshore (e.g. Antoine et al., 2003).  

  

 

 
 

Fig. 10. Outcrops of the Quaternary strata on the Isle of Wight derived from the 

currently available digital dataset with an interpretation of the relative correlation. 

 

The island contains a wide range of Pleistocene and Holocene deposits that were 

classified simply on the 1976 published map, and the discussion below utilises these 

terms for simplicity. Clearly the designation of these, particularly those of the Plateau 

Gravel, Marine Gravel and Gravel Terraces are an oversimplification and they are 

now considered as river terrace deposits (undifferentiated) within the current digital 

map dataset (DiGMap 50) to reflect the dominant depositional process. This is an 

obvious simplification if topographic height, alone, is considered. The recent survey 

has demonstrated, even within individual outcrops that the history of deposition is 
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difficult to unravel. With, in many cases, original and sometimes in themselves 

complex cross-cutting fluvial deposits being either partially or completely remobilised 

during one or more gelifluction events.   

 

Three sites, Priory Bay, Great Pan Farm and Bleak Down can be regarded of national 

importance because of the abundant Palaeolithic human-made artefacts derived from 

them. The deposits at Priory Bay, Great Pan Farm, Bembridge Raised Beach and 

Steyne Wood provide relative dates that act as a framework within which the relative 

age and context of other deposits can be placed. 

 

Clay-with-flints 

 

The oldest deposit on the island is the ‗Angular Flint Gravel of the Downs‘ (White, 

1921) that is essentially a local facies of the Clay-with-flints (Hodgson et al., 1967, 

and references therein) as seen on the mainland (the term Clay-with-flints will be 

applied to the new geological sheet).  It is assumed to have a similar mode of 

formation over an extended period in the late Neogene and early Pleistocene, and, as a 

consequence, it was probably formed through a number of climatic phases. The Clay-

with-flints sensu stricto (Hodgson et al., 1967) is a residual rubified stony clay deposit 

created by the modification of the original Palaeogene cover and progressive 

dissolution of the underlying Chalk. The basal surface of the deposit approximates to 

the sub-Palaeogene unconformity but this is much modified by dissolution of the 

underlying Chalk with karstic features in evidence in most exposures. There is 

evidence from the new survey that relatively in-situ Palaeogene sediments, generally 

completely concealed by the Clay-with-flints,  may well be preserved in solution 

features on this sub-Palaeogene surface (one example was cleared and logged during 

the survey from a shallow exposure on Brighstone Down [SZ 431 849]). 

 

Part of the deposit has been re-mobilised in cold phases during the late Neogene and 

early Pleistocene and this has been described by others (Hodgson et al., 1967) as 

Clay-with-flints sensu lato. It shares many characteristics with Clay-with-flints sensu 

stricto but is found at levels adjacent to or below the sub-Palaeogene surface and the 

contained flints are predominantly angular rather than nodular. This re-mobilised unit 

may include cryoturbated, aeolian sand units, as observed on the mainland (e.g. 

Frenchen et al. 2003,  Hopson, 1995), and perhaps by their presence allude to 

correlation with more extensive Early Pleistocene wind-blown deposits that are a 

feature of coeval successions on the continent.  In addition, further remobilisation, as 

the landscape was denuded throughout the Pleistocene, has developed an ‗apron‘ of 

angular gravelly, sandy clays at lower topographical levels. These late-stage 

remobilised materials are generally preserved on steeper slopes below the base level 

of the Clay-with-flints and were considered as separate slope deposits during the new 

survey.  They are considered to be predominantly periglacial in origin and may also 

have a poly-phase development.  

 

Plateau Gravel and Marine Gravel 

 

On the mainland to the north the term Plateau Gravels was originally applied to the 

‗staircase‘ of deposits within the New Forest and adjacent to Southampton Water. 

These are all now considered as fluvial aggradations of an extensive Solent River 

Catchment that drained much of the western and central Hampshire Basin and into 
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east Dorset (see Bates and Briant, 2009 and references therein) over a considerable 

time period. The main confluent stream (proto-Solent) drained eastward and migrated 

southward over time, presumably reworking much of the south-bank aggradations of 

each terrace cycle. This stream graded to very variable contemporary sea-levels that 

range is from 46 m or more below to about 40 m above current sea-level during the 

more extreme climatic oscillations. Of course, it is likely that the down-cutting and re-

grading of each terrace cycle may be ‗incomplete‘ being overtaken by the next 

climatic cycle before the streams could remobilise the previous terrace aggradations. 

This is perhaps most true in the headwater areas of each successive proto-Solent 

stream. 

 

The Plateau Gravel and Marine Gravel outcrops present along the northeast coast of 

the Isle of Wight (including the Priory Bay site described below), are also now 

considered as terrace aggradations within the lower reaches of a proto-Solent River 

catchment e.g. Wenban-Smith et al. (2009) with some authors suggesting that they 

also include contemporaneous beach gravels at their eastern end.  

 

The topographically higher Plateau Gravel outcrops shown on the currently available 

geological sheet and their relationship to the northeast coast deposits and the Gravel 

Terraces, have received scant investigation since the compilation of the currently 

published map and  memoir (White, 1921). They have been considered either as, older 

and topographically higher proto-Solent River terrace aggradations, or are the result 

of deposition by northward-flowing south-bank tributaries of that major stream. Some 

isolated outcrops designated as Plateau Gravel were discussed in terms of different 

origins such as the ‗coombe out-washes‘ around Calbourne (White 1921, p. 158). 

Some may equally be mass movement slope deposits derived from a range of original 

in situ deposits or even remnants of far-travelled landslide debris. In the older 

literature, and reiterated in the memoir (White, 1921), there is great play made of the 

northward fall in the gradient of these patches of the Plateau Gravel and this was 

interpreted as indicating their derivation as higher-gradient south bank proto-Solent 

river confluent streams.  

 

It must be said that the designation of a terrace order to these deposits based solely on 

gradient, and by implication their chronology, is not readily achievable without 

considerable more investigation. This is due to their very patchy nature, the lack of 

significant exposure, and the lack or extreme paucity of ‗datable‘ artefacts, faunas and 

floras. Significantly the Solent Basin does not have the benefit of extra-basin ‗exotic‘ 

clast influxes such as is seen in the Thames Basin that can act as a marker in the 

succession of terrace deposits. In addition, as already pointed out for the Clay-with-

flints, the Plateau Gravel outcrops are each associated with significant spreads of re-

mobilised material. These carry the original well-bedded fluviatile sands and gravels 

to lower topographic levels as sheets of relatively structureless material. Indeed, these 

sheets of mass-flow deposits, where they spread over a significant height range, may 

well disguise topographically distinct terrace aggradations or platforms. This is 

demonstrated for example in the paper by Farrant et al. (herein) describing the high-

level (c. 70-100 m OD) gravels at St George‘s Down. 

 

The descriptions of the deposits at Priory Bay (Wenban-Smith et al., 2009), at a much 

lower topographical level (c. 29 m OD) than those on St George‘s Down, also 

demonstrates polyphase fluvial deposition and in this case contemporary hominin 
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occupation, as well as interbedded, poly-phase mass flow material. The presence of 

artefacts (see Loader, 2001, Fig. 7.3 and Fig. 7.5) and the availability of OSL dating 

at this site provide keys to the age of the complex deposit that is placed between MIS 

11 and 9 (367 ka to 216 ka) and by crude comparison with the western Solent River 

being equivalent to the Old Milton to Beckton Farm terrace successions (see 

Bridgland et al., 2010). Based on the preponderance of artefacts the deposit may also 

be in part equivalent in part to the artefact-rich Taddiford Terrace (Terrace 7). The 

complex of deposits at Priory Bay provides a baseline to help interpret those deposits 

at a higher level (including conjoined gravelly spreads up to 50 m OD inland from 

Priory Bay itself) and indicate that the very highest deposits throughout the island are 

likely to be early Middle Pleistocene (i.e. older than the Anglian) or even Early 

Pleistocene in age.  

 

The Steyne Wood Clay (Holyoak and Preece, 1983: Preece and Scourse, 1987; Preece 

et al., 1990) at the eastern end of the island at Bembridge at about 40 m OD is equated 

with the Goodwood-Slindon Raised Beach of youngest Cromerian Complex age (MIS 

13). It has been observed (Wenban-Smith et al., 2009) that the abraded artefacts in the 

lowest stratigraphical levels at Priory Bay may be derived from the conjoined deposits 

that rise to 50 m OD immediately inland. On the basis of height alone these ‗50 m‘ 

deposits are considered contemporaneous with or older than the Steyne Wood Clay. 

Thus it is hypothesised that the in-situ gravels on the platform north-westward 

towards Cowes and at the height of up to 50 m OD may also be of the same age. It has 

long been noted that these outcrops of Plateau Gravel/Marine Gravel contain an 

interbedded sand unit that was regarded as marine in derivation though completely 

devoid of shell.  It was equated to the ―Portsdown-Goodwood range of raised 

beaches‖ (White, 1921), i.e. the Goodwood-Slindon Raised Beach of modern 

literature. It is believed that the presence of this sand unit and ‗beach-pebble‘ 

occurrences were originally used on the geological map to differentiate these outcrops 

into Plateau Gravel and Marine Gravel. However, this sand was observed, during the 

recent survey, further to the west in temporary excavations in the outcrop around 

Palmer‘s Farm, Wootton [SZ 536 925] and field evidence shows that it is also present 

around Cowes (it is mentioned at Ruffins Copse [SZ 482 941] west of the Medina in 

the memoir (White, 1921)).  Thus the extended occurrence of this sand unit to the 

west demonstrates the irrelevance of the original differentiation on the map. Since the 

Goodwood-Slindon Raised Beach is equated to MIS 13 by e.g. Bridgland et al. (2004) 

this suggests a correlation of this group of outcrops at 50 m OD to the post-Old 

Milton Gravel to Mount Pleasant Gravel terrace interval in the western Solent Valley 

and between Terrace 9 and 10 in the east Solent Valley. 

 

Above this ‘50 m platform‘ there are outcrops of Plateau Gravel at higher levels (55 

to 60, 70 to 80 m OD) north of the central Chalk spine of the island. These are 

depicted on the currently available map and their presence has been confirmed during 

the recent survey at Hemstead, around Parkhurst and to the east of Newport. These all 

show evidence of bedded fluvial gravels, but each is now known to be associated with 

a variable ‗apron‘ of mass flow material that frequently disguises the true base-level 

of the fluvial component(s) or indeed may have re-mobilised such components 

completely. It is presumed that the fluvial element of these outcrops can be related to 

proto-Solent terrace deposition (either within the main stream itself or within 

southbank tributaries draining into it) and must therefore, by comparison to the Priory 

Bay site, be attributable to one of the higher-level terraces on the mainland and thus of 
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pre-MIS 13 age and potentially equitable to the Tiptoe to Whitefield Hill terrace 

aggradations of the western Solent River.  

 

The complex of deposits around St George‘s Down and northward from Downend 

comprise in-situ fluvial gravels at around 100 m OD and long periglacial ‗tails‘ 

spreading down interfluves to the north to levels of 70 and 60 m OD respectively 

(Farrant et al., 2011). The fluvial gravels have long been considered as being part of a 

very early proto-Medina, i.e. a south bank tributary of the proto-Solent. It is difficult 

to date the in-situ, high-level fluvial part of the St George‘s Down gravels as there is 

little evidence of a northward gradient suggesting a potential confluent height with the 

contemporary proto-Solent River. Thus a correlation of the high-level fluvial deposits 

(100 m OD+) within the St. George‘s Down Gravels with a western Solent Terrace 

succession cannot be achieved with any confidence at present. However, since none 

of the in-situ gravels within this higher-level St George‘s Down deposit have 

produced artefacts this single line of evidence suggests they are older than the gravels 

on the northeast coast and by analogy to the mainland must therefore equate to 

terraces tentatively assigned to MIS stages 14 and older. Similarly, the associated 

periglacial deposits are also devoid of artefacts but in this case the deposits are 

considered to have a very long history of development as the landscape was denuded 

to successively lower levels and potentially represent periglacial deposition during a 

number of cold climate phases. 

 

Three other principal spreads of Plateau Gravel are known from the surveys at 

Headon Hill in the west, at Bleak Down associated with the River Medina headwaters 

and to the south east of the Eastern Yar.  

 

The Headon Hill outcrop is quite isolated and descriptions from it (White, 1921; 

Warren, 1900) have been interpreted as being a ―fan of rock-waste‖ (i.e. a ‗head 

deposit‘) derived from former higher ground to the south but the recent survey regards 

the deposit as of fluvial origin. The base level of this complex of fluvial deposits is at 

around 90 to 100 m OD. There are no artefacts known from the original 

investigations, but Wenban-Smith and Loader (2007) note a single flake in their 

Appendix 1. Despite the single flint flake discovered at this site the deposit must be of 

considerable antiquity but any correlation more widely would be speculative. 

 

The Bleak Down outcrop has long been regarded as a high level (a base level of about 

80 m to 70 m OD) northward-flowing proto-Medina terrace aggradation and is also 

noted for its high content of artefacts. The gravels were described in Poole (1934) and 

he recognised a ‗higher terrace‘ and a ‗lower terrace‘ both with complex internal 

architectures, as well as determining that the artefacts were of considerable variety, 

state of preservation and type. Wenban-Smith and Loader (2007) consider that the 

deposit may be as old as pre-Anglian in age and this would imply that the deposits at 

the highest level on St George‘s Down are of even greater antiquity. Quite how these 

gravels fit within the Quaternary story is difficult to judge and a natural correlation on 

the basis of the high content of rolled and in situ artefacts to the ‗Priory Bay 

Complex‘ on the northeast coast would seem possible although highly speculative.  

 

The Plateau Gravels delimited to the south and east of the Eastern Yar at levels 

between 60 and 20 m OD, may be considered, simply, as the higher-level terrace 

aggradations of a larger proto-Yar stream system and are likely to contain significant 
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amounts of material derived directly from the southern downs. On the basis of height 

alone they must all post date the in situ Bleak Down deposits. Thus the speculative 

correlation of Bleak Down with Priory Bay would place these Eastern Yar terraces at 

post MIS 9 or much younger (?MIS 6) and lower levels topographically may therefore 

potentially be equivalent to the Bembridge Storm Beach deposits that have an OSL 

date of 182ka (MIS  6-7b) at a site on the Foreland (Wenban-Smith et al., 2005). The 

overlying organic silt at this site provides an earliest Ipswichian MIS 5e OSL date of 

129ka. 

 

Terrace Gravels 

 

The gravelly spreads in close association with the present day Medina, Eastern Yar 

and Western Yar valleys are designated as Gravel Terraces on the current map. In 

many cases the deposits are very thin but cover wide areas and are closely associated 

with topographical platforms which also carry remobilised material. Various terrace 

levels can be differentiated on height above the adjacent streams, but a numbered 

scheme relative to height applied island-wide would seem inappropriate for these 

widely dispersed outcrops that relate to different streams each draining to a potentially 

significantly different base-level. The Gravel Terraces differentiated on the current 

map include those at Great Pan Farm within Newport and recent studies here 

demonstrate three terrace levels between 5 and 22 m above the adjacent floodplain. 

The lowest terrace level has produced bout coupé handaxes and Levalloisian material 

(Poole, 1924) whilst OSL dating of the middle of the three terraces identified here 

(11-14 m above floodplain level) suggests a date of 50Ka BP, placing that deposit in 

the Middle Devensian (Oxford Archaeology, 2005).  

 

Alluvial and estuarine deposits 

 

The alluvial deposits associated with the present streams are all considered as of 

Holocene age and represent an infill of drowned valleys that were cut down to a Late 

Devensian sea-level lowstand below current sea level. Boreholes in the Eastern Yar 

succession beneath Brading Marshes near Yarbridge, completed during the survey but 

as yet unreported upon, demonstrated a succession of alluvial and estuarine silts with 

significant peat units resting on a chalky flint gravel and in situ Chalk. The deepest 

borehole proved an un-bottomed 13 metres but a series of boreholes 2km farther 

inland proved at least 15 m of deposit resting on bedrock. Initial dating results from 

peat in the boreholes at Yarbridge give 
14

C dates from 7140 BP to about 4120BP. 

These results accord reasonably with infill-chronologies of other coastal alluvial sites 

on the mainland and with those envisaged for the Western Yar (Devoy, 1987). 

 

4. People and Geology. 

 

Humans have interacted with the land we live on for many thousands of years, but it 

is only since widespread agricultural practices became established, and most 

significantly since the industrialisation of our economies, that we have had significant 

disharmonious impacts on the landscapes or where the natural systems of the land 

have acted to limit our ambition. Underpinning this interaction is the geology beneath 

our feet. Our greatest demands on the Isle of Wight landscape come from agriculture, 

the increasing demand for water supply, the need to protect the coastal regions or at 

least know what mitigation is effective, the natural resources we can exploit, the 
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landslide hazard that is so prevalent on this island and the impact of tourism 

(including geo-tourism). Four papers in this issue provide overviews on aspects of our 

action and reaction in respect of the island‘s geology. Booth and Brayson (2011) 

discuss aspects of geodiversity and geoconservation; whilst Lott (2011) describes the 

use of natural building stones that provide the vernacular character of different parts 

of the island. Jenkins et al. (2011) provides an overview of the landslide hazard across 

the island and emphasises the cause and effects of landslides away from the much 

studied ‗Undercliff‘ along the southeast coast. Tasker et al. (2011) uses geological 

knowledge to determine the likely provenance of tesserae found at the Brading 

Roman Villa and point to a very early use and possible industry based on the locally 

available tectonised Chalk. 

 

How do we react to our landscape? Much of it is driven by policy-makers under the 

guise of ‗planning‘ in its broadest sense. Specifically for the Isle of Wight, a large part 

has been designated as an Area of Outstanding Natural Beauty (AONB) and there are 

additionally many smaller areas considered as Sites of Special Scientific Interest 

(SSSI) for both biological (37 sites) and geological (15 sites) reasons. Increasingly 

there is pressure to designate offshore areas with some form of protection.  Infra-

structure development is tightly regulated by the IoW Council, particularly where the 

extensive land-sliding has proved to be so destructive to the built environment, but 

also to protect the major landscape heritage that makes the island so popular as a 

tourist destination. 

 

Two passages in the Ward Lock Illustrated Guide Book to the Isle of Wight for 1920 

show why the island is so popular to both the humble tourist and those who seek to 

study geology and they attest to the importance of this little geological diamond: 

 

―As a resort of those who make holiday, the Isle of Wight is an embarrassment. Its 

attractions are so numerous and diverse that the visitor pauses on the shore to weigh 

the merits of half-a-dozen famous spots‖ (attributed to an anonymous daily newspaper 

writer).  

 

 ―An acquaintance, however slight, with the principles of geology cannot fail to add to 

the interest and enjoyment of a visit to the Isle of Wight. A former president of the 

Geological Society (unnamed) remarked that the island ‗might have been cut out by 

nature for a geological model illustrative of the phenomena of stratification‘. 

Advanced students will hardly expect to find in a book of this character any very 

learned or elaborate disquisition and we must content ourselves with referring them to 

A short account of the Geology of the Isle of Wight by H J Osborne White, an 

excellent memoir issued by the Geological Survey.‖ 

 

The new Geological Special Sheet and its companion descriptive texts will also 

satisfy the student of geology and bring our appreciation of the wealth of information 

very much into the present day. It is to be hoped that these items will also appeal and 

inspire the interested tourist at the same time.  
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Full Figure Captions 

 

Fig. 1. The outline topography, principal towns and locations of geological interest on 

the Isle of Wight. 
Deep Wells: 1. Norton 1, SZ38NW18 [SZ 34006 89098];  2. Wilmingham 1, SZS38NE9 [SZ 36620 

87790];  3. Bouldnor Copse 1, SZ39SE1 [SZ 38537 90179];  4. Sandhills 1, SZ49SE3 [SZ 45700 

90850];  5. Sandhills 2, SZ48NE55 [SZ 46129 89850];  6. Cowes 1 (Bottom Copse), SZ59SW17 [SZ 

50036 94161];  7. Arreton 1, SZ58NW2 [SZS 53070 85640];  8. Arreton 2, SZ58NW1 [SZ 53200 

85800];  9. Chessell 1, SZ48NW11 [SZ 40571 85581]. 

 

Fig. 2. One of the earliest geological maps of the Isle of Wight taken from Mantell 

(1847), originally published in 1846 by Henry G Bohn of London. 

 

Fig. 3. The topography of the Isle of Wight as demonstrated in a shaded relief digital 

terrain model.  
This image has been created from the NEXTMap Britain Elevation dataset and has been produced by 

exaggerating the terrain by a factor of two. A colour ramp has then been applied, areas are coloured 

according to height values. Sea level is light blue, low heights of around 10 to 20 meters are coloured 

light green, the colour ramp then passes though dark green, yellows and browns. The maximum heights 

(c. 250m) are coloured white. 

 

Fig.4. The structural setting of the Isle of Wight within the broader Wessex Basin 

(inset), and a generalised view of the surface structures based on the currently 

available geological map. 

 

Fig. 5. The depth to the pre-Permian basement beneath the Isle of Wight (modified 

from Smith (1985) (red contours in hundreds of metres). Thickness contours for the 

Sherwood Sandstone Group and the Mercia Mudstone and Penarth groups are 

indicated by lines in blue (modified from Hamblin, et al., 1992). 

  

Fig. 6a. The concealed bedrock strata encountered beneath the Isle of Wight. 

 

Fig. 6b. The Cretaceous strata at outcrop in the Isle of Wight.  

 

Fig. 7. The Chalk Group terminology for the Southern Chalk Province. 

 

Fig. 8. The Palaeogene strata at outcrop on the Isle of Wight. 

 

Fig. 9. The outline of the Quaternary succession on the Island and its relationship to 

the Solent River story. Left hand columns derived from Lugowski and Ogg (2011). 

 

Fig. 10. Outcrops of the Quaternary strata on the Isle of Wight derived from the 

currently available digital dataset with an interpretation of the relative correlation. 
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Late stage development and remobilisation of Clay-with-flints. 

Origin of the deposit is within various climatic events during the 

Neogene and Early Pleistocene
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