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The Axmouth to Lyme Regis Undercliffs National Nature Reserve in east Devon includes the most famous mass-movement feature
in Britain, the Bindon Landslide of Christmas Day 1839. Tens of millions of tonnes of rock, older landslide debris and beach
deposits were pushed forward when a large mass of Cretaceous rocks became detached from the 120 m-high cliffs and slid
seaward. Fissures appeared in the cliff top on the 23rd December and culminated in the main movement during the night of the
25-26th December. The event attracted large numbers of sightseers from all over southern England. Fortunately for geology, these
included the pioneer geologists the reverends William Buckland and William Conybeare who lived in the area, and a local surveyor
William Dawson. They, together with Buckland’s artistically gifted wife Mary, produced detailed geological descriptions, plans,
views and sections of the landslide within a few weeks of its occurrence. Their published account is commonly quoted as the
first detailed description of the mechanism of a large landslide. Later authors have queried their conclusions, but none of these
accounts paid such detailed attention to the role of the geology in the failure mechanism. Recent geological surveys have
confirmed that the description by the Bucklands, Conybeare and Dawson is an outstanding example of observation and analysis,
and that their interpretation of the mechanism, although incomplete, was superior to that of any subsequent account. Recently
available aerial photographic and multibeam-sonar data has shown that an important factor missing from all previous
interpretations are faults that run beneath and subparallel to the structures in the landslide.
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INTRODUCTION

The Axmouth to Lyme Regis Undercliffs National Nature
Reserve (NNR) in east Devon comprises a complex of
overlapping small (hundreds of tonnes) to large (millions of
tonnes) landslides' that stretch for a distance of 10 kilometres to
form a topographically diverse coastal strip 100 to 800 m wide
(Figure 1). At its western end, the Bindon Landslide that
commenced on 25th December 1839 was one of the more
recent large movements within the reserve. The movements

took place over a period of several days and attracted much
local attention, one result of which is that there are
contemporary accounts of the succession of events. The most
detailed and comprehensive of these (Conybeare et al., 1840) is
that by the local pioneer geologists the reverends William
Buckland and William Conybeare together with a local
engineer/surveyor William Dawson and Buckland’s artistically
talented wife (Figure 2).

'Most of the large, complex mass-movement structures in Britain have traditionally been referred to as landslips (e.g. on BGS maps).
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Figure 1. Geographical sketch map of the Axmouth to Lyme Regis Undercliffs National Nature Reserve (NNR) showing the relationship of
the Bindon Landslide complex to the other principal landslide complexes.
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1839 Bindon Landslide failure mechanism

Figure 2. The Chasm and Goat Island, view west, drawn a few days after the landslide by Mrs Mary Buckland in December 1839 (Plate
Vin Conybeare et al., 1840).

On December 23rd, fissures were noted in fields adjacent to
the back face of a ¢. 300 m-wide landslide complex, which at
that time separated farmed land from the sea. Deeper fissuring
in the early hours of the 25th December resulted in the
evacuation of two cottages, and culminated in the main
movement during the night of the 25-26th December. An intact
mass of Cretaceous rocks, Upper Greensand Formation overlain
by Chalk Group, up to 150 x 500 m in area and an estimated
70 m thick, continued to move seaward during the 206th
December pushing the older landslide debris in front of it. The
former cliff line was moved forward, and an extensive new
offshore reef of Cretaceous debris was created with a natural
harbour on its landward side. The event became nationally
famous and attracted large numbers of sightseers, artists and
authors. It even inspired the composition of a quadrille (Arber,
1940). The graben that had formed between the in situ cliffs
and the detached slab (which soon became known as The
Chasm and Goat Island respectively) and the slab itself attracted
particular attention. The Chasm was especially popular with
artists and photographers. Pitts (1974), in a review of historical
documents relating to the landslide, reproduced a selection of
sketches, watercolours and photographs made between 1840
and 1949. Winter corn that had remained undamaged on Goat
Island was ceremonially harvested the following August by
local village maidens dressed as attendants of Ceres, the Roman
Goddess of the Harvest (Arber, 1940).

Conybeare et al. (1840) produced descriptions, plans, views
and sections of the landslide within a few weeks of its
occurrence. Their descriptive account is more complete and
detailed than any contemporary or earlier account of a major
landslide and was the first to comprehensively analyse the
mechanism.  The first part of their account describes the
geological and geomorphological setting and includes the
important observation that prior to the landslide the sea cliffs
were comprised of masses of Cretaceous rocks that had resulted
from earlier landslides. The second part provides an hour-by-

hour account of the movements based on the first-hand
experiences of local farm workers and coastguards who were
in the landslide area at the time of the movements. The third
and forth parts describe the onshore (The Chasm and Goat
Island) and offshore (elevated and submarine reefs) results of
the movements respectively. The accompanying “Ten Plates”
provide accurate pictures of the principal features, including an
oblique aerial view of the whole landslide (Figure 3) and a
conjectural geological cross section through the central part.
This last includes the principal geological features that
contributed to the landslide, including an accurate geological
succession and a low seaward dip in the Cretaceous rocks. Few
subsequent descriptions of the landslide paid as much attention
to the stratigraphy and geological structure, as a result of which
some are demonstrably wrong.

GEOLOGICAL SETTING

The geology of the Bindon Landslide complex and adjacent
areas comprises an almost unbroken succession of late Triassic
and early Jurassic rocks with a low (¢. 03°) easterly dip, overlain
with marked unconformity by almost horizontal Cretaceous
rocks. The outcrop of the Triassic and Jurassic rocks is cut
by numerous small faults (mostly <10 m throw) that trend
approximately E-W, most of which do not affect the Cretaceous
rocks.  Two larger N-S trending faults with westerly
downthrows cause the outcrop of the latest Triassic and earliest
Jurassic rocks to be repeated at Charton Bay and Pinhay Bay
(Figure 1). As a result of the faulting, the exposures in the
intertidal area adjacent to the 1839 landslide show marked
variations in the beds that underlie the unconformity over
a distance of tens of metres, ranging from the Blue Anchor
Formation to the Charmouth Mudstone Formation.
The geology of the western part of the NNR is summarised in
Figure 4 and the susceptibility to landslide of the component
formations when weathered is summarised in Table 1.
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Figure 3. Artistic oblique aerial view and cross sections (redrawn here) of the 1839 Bindon Landslide made shortly after the failure by

William Conybeare (part of Plate II of Conybeare et al., 1840).
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Figure 4. Geological sketch map of the western part of the NNR and the adjacent inland area showing the positions of localities referred to

in the text. See Figure 9 for the geology of the offshore area.

The Triassic rocks at outcrop in the sea cliffs and in the
intertidal area adjacent to the 1839 landslide are largely
composed of relatively strong rocks that, even when weathered,
do not give rise to shear failures. The principal exception is the
pyritic Westbury Mudstone Formation which rapidly weathers
to weak clay that gives rise to shallow-seated landslides and
mudflows. Jurassic rocks are well exposed in the cliffs and
foreshores in, and adjacent to, the NNR where their stratigraphy
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is well documented (Edwards and Gallois, 2004). At the base
of the succession, the Blue Lias Formation forms a stable
foundation composed of thinly interbedded mudstones and
limestones.  Above this, the mudstones of the Charmouth
Mudstone Formation can be divided into two main lithological
types. Thinly interbedded and interlaminated clay-mineral-rich
and organic-rich mudstones that weather to weak fissile
mudstones (‘paper shales’) and clays, and calcareous



1839 Bindon Landslide failure mechanism

System Group, Formation (Fm.) Predominant unweathered Susceptibility to
(thickness m) lithology landslide
Quaternary | Clay-with-flints (0 to 15) clayey, stony sand low
Head Deposits (0 to 5) clayey, stony sand low
Cretaceous | Chalk Group (0 to 70) limestone none
Upper Greensand Fm. (50 to 55) sandstone and calcarenite high at base
Gault Fm. (0 to 2) mudstone ubiquitous
Jurassic Charmouth Mudstone Fm. (0 to 50) | mudstone with few limestone beds | low to high
Blue Lias Fm. (0 to 28) limestone and mudstone none to low
Triassic White Lias Fm. (8 ) limestone none
Cotham Formation Fm. (2.5) mudstone with thin limestone beds | low
Westbury Mudstone Fm. (6 ) mudstone high
Blue Anchor Fm. (30) mudstone and siltstone low to moderate
Sidmouth Mudstone Fm. (40) mudstone and siltstone low

Table 1. Susceptibility to landslide (excluding rock falls and toppling failures) of the deposits that crop out in the Axmouth to Lyme Regis

Undercliffs NNR.

mudstones with widely spaced nodules and beds of muddy
limestone.  The principal failure surfaces occur in fissile-
weathering mudstones a little above each of the more laterally
persistent limestone beds in the Shales-with-Beef and Black Ven
Marl members (Gallois, 2008).

The Cretaceous succession in the NNR comprises three
lithologically distinct parts, mudstones, weak sandstones, and
strong sandstones and calcarenites. The Gault thins rapidly
westwards from ¢. 2 m thick at Lyme Regis, where it comprises
montmorillonite-rich mudstones that readily weather to weak
swelling clays. Its distribution in east Devon may be patchy
and related to faults that were active at the time of its
deposition. The farthest west that it has been observed is in
landslide debris at Humble Point [SY 306 899] (Jukes-Browne
and Hill, 1900) where it is still visible on the foreshore. The
Upper Greensand is divided into the Foxmould comprised of
weakly calcareously cemented sandstones that contain one or
more thin (mostly <100 mm thick) beds of mudstone in its
lowest part. Where unweathered, the overlying Whitecliff Chert
and Bindon Sandstone consist of strong calcareous sandstones
and calcarenites that give rise to vertical and near-vertical cliffs
along much of the east Devon coast where they are mostly
capped by the Chalk.

The tectonic history of east Devon is complex, with evidence
of repeated fault movements and associated folding that can be
traced from the late Carboniferous (¢. 300 Ma) to the Miocene
(c. 15 Ma). Seismic-reflection surveys in the inland area have
revealed several N-S trending major faults in the pre-Permian
basement rocks (Edwards and Gallois, 2004, figure 6). These
are represented in the Triassic and Jurassic rocks by belts of
faulting 100 m to 500 m wide in which synthetic and antithetic
faults are mostly sub-parallel to a basement fracture. A second
trend, roughly E-W and parallel to the principal Variscan
structural fabric of South West England, is represented by a few
fault belts. These are more numerous in the offshore area
where they are related to the opening of the English Channel
in the Permian. Three of these fault belts in the nearshore
area between the Axe Valley and Lyme Regis (Figure 1)
have influenced the rates of erosion of the coastline and
presumably played an important, but still poorly understood,
role in the development of the landslide complexes in the
Undercliffs NNR.

1839 BINDON LANDSLIDE

Taken together the “Ten Plates” and accompanying script of
the Conybeare et al. (1840) account provide a comprehensive
description of the geomorphology and more notable landscape
features a few days after the landslide occurred. They include
descriptions of the stratigraphy, the nature and content of the
collapsed onshore and offshore materials, the formation and
denudation of short-lived rock pillars and lagoons, measured
cross sections, estimates of the quantities of material involved,
and drawings of the new offshore reefs and The Chasm (e.g.
Figure 2). This last was 122 m wide at its widest and up to
64 m deep before it became partially filled with collapsed
debris. Plate 1I of Conybeare et al. (1840) comprises
geologically annotated ‘before and after’ views of the landslide
from the sea. The ‘before’ views conform to what is known
about the topography prior to the landslide, but it is not clear
to what extent they are conjectural or based on earlier material.

The features recorded by Conybeare et al. (1840) which they
considered were important to an understanding of the
mechanism of the failure were:

(i) An upper layer of porous rock. They identified this as the
highly permeable upper part of the Upper Greensand (now
Whitecliff Chert and Bindon Sand members) and the Chalk with
numerous open joints and gravel-filled solution pipes that
allowed rapid access to rainwater.

(i) An intermediate layer of loose sand. This is the weakly
calcareously cemented Foxmould Member which becomes
decalcified at outcrop and beneath the Whitecliff Chert in the
zone of past and present-day water-table fluctuation.

(iii) An argillaceous bed impervious to water. They presumed
this to be the mudstones of the Lias Group: the Gault Formation
had not at that time been recognised west of Lyme Regis.

(iv) A seaward dip in the Cretaceous rocks. This is most
pronounced in the central part of the landslide where
Conybeare et al. (1840) estimated the base of the Cretaceous to
dip south at ¢. 03° (Figure 6). Comparison of the calculated in
situ position of the unconformity in Bindon to Dowlands Cliffs
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Formation Member Predominant lithology
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Figure 5. Generalised vertical section for the strata that crop out in

and adjacent to the 1839 Bindon Landslide.
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with its observed position in the sea cliffs between Haven Cliff
and The Slabs, shows a maximum height difference of 45 to
50 m along a N-S section across Goat Island. Conybeare et al.
(1840) interpreted this as a steady seaward dip, but suggested
that part of the difference might be due to a fault with a
seaward downthrow of up to 15 m that was concealed beneath
the landslide debris.

(v) With two minor exceptions, the landslide only involved
Cretaceous rocks. Goat Island, the landslide debris between
the ‘island’” and the coast, and the newly formed cliffs, pinnacles
and offshore reefs were all composed of Upper Greensand and
Chalk. The exceptions that they recorded were two small
outcrops (tens of metres across) of Lias in the intertidal area
near Culverhole Point that appeared to have been disturbed by
the landslide. The beds in the larger of these [SY 275 893] had
post-landslide dips of 40° to 70° close to the cliff, but were
horizontal at low-water mark. Recent surveys have shown that
these beds (Shales-with-Beef) crop out in a narrow (up to 20 m
wide) E-W trending fault zone with variable dips. The
disturbance could be related to the bulldozer effect of a large
mass of landslide debris being pushed forward over, and into,
the weak Jurassic mudstones. Alternatively, the anomalous dips
may be tectonic or tectonic dips that were modified by the
landslide.

(vi) A period of high rainfall in the latter part of the year. Arber
(1940), quoting contemporary sources, stated that the rainfall
between June 1839 and the time of the landslide the rain had
been “almost continuous and twice as beavy as usual”, and
Roberts (1840) noted an “abnormally” high rainfall of 15.59
inches (396 mm) during the same period. The Meteorological
Office database holds continuous instrumented precipitation
records for England and Wales from 1766 to the present day
(245 years), but only from 1873 to the present day for SW
England. The England and Wales rainfall figures for the second
half of 1839 confirm that it was an unusually wet period. The
‘summer’ (June to August) rainfall (351 mm) was the eighth
highest on record and the ‘autumn’ (September to November)
rainfall (358 mm) was the 27th highest. This suggests that
Roberts (1840) may have been quoting the England and Wales
data, but only for a three-month period. A major landslide
occurred at the western end of the Whitlands Landslide
complex, ¢. 2 km east of the Bindon Landslide, in February
1840 during the same wet period. Conybeare et al. (1840)
described the mechanism as a repetition of the Bindon
phenomenon, but on a smaller scale.

Prior to 1839, the coastal strip between Lyme Regis and The
River Axe outfall except for ¢. 300 m at the western end,
consisted of landslide complexes composed of Upper
Greensand and Chalk (De la Beche, 1822, plate VIII). The area
that was to become Goat Island is shown as part of a
promontory on the First Series Ordnance Survey map (1835)
and on a contemporary estate map as a promontory flanked by
the back scars of earlier landslides. Comparison of the rates of
retreat of the back faces of the landslides in the western part of
the NNR, based on maps and air photographs, shows little
change in the Bindon to Dowlands area since the time of the
1839 failure (Figure 7). Later failures larger than a few thousand
tonnes have been confined to the Haven Landslide complex.
The best documented of these was the collapse of a 250 m-long
section of Haven Cliff in 1932 that extended the Haven
Landslide complex to the Axe outfall (Figure 1).
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1839 BINDON LANDSLIDE MECHANISM

Conybeare et al. (1840) proposed mechanism

When comparing the mechanism of the 1839 Bindon
Landslide to that of other large landslides on the south coast
(Isle of Portland, Isle of Wight, Folkestone etc), Conybeare
et al. (1840) identified three geological factors as affording “the
most favourable circumstances” for foundering. These were (in
modern terminology) an upper layer comprised of a highly
porous reservoir rock, a middle layer of loose sand, and an
argillaceous lower layer that would act as an aquiclude. It was
already known from De la Beche (1839) that the principal
failure surfaces in the major landslides on the Dorset coast were
in the Gault. However, Conybeare et al. (1840) observed that
the formation was absent at Bindon and that the basal bed of
the Cretaceous, at outcrop [SY 273 894] 500 m W of Culverhole
Point, consisted of argillaceous sandstone. They therefore
proposed a mechanism in which, during prolonged periods of
unusually high rainfall, water ponded up in the lower part of
the Foxmould and caused it to turn into a “mass of quicksand”.
They envisaged that this was leached away by springs at
outcrop with the result that the superincumbent rock was
undermined. The whole mass (Goat Island) then moved
seaward over the fluidised sand and pushed the terraces of
Cretaceous debris that had been formed by earlier landslides
forward to create a new cliff line. At the seaward edge, the
Cretaceous debris that had formed the old sea cliff was pushed
across the underlying Triassic and Jurassic rocks to form
offshore reefs.

Subsequent proposed mechanisms

Some of the more important alternative explanations of the
mechanism, those that appear to have been based on additional
field observations, were summarised by Pitts (1981). Most
subsequent authors have accepted parts of the Conybeare et al.

(1840) explanation, but have rejected liquefaction of the
Foxmould as the principal cause. Several of these accounts cite
evidence in support of their suggested hypothesis that is based
on events that were near contemporaneous with, but not part
of the main failure, and some that occurred many years after the
failure. The problem of combining evidence from different
events that may have different mechanisms is not confined to
the Bindon Landslide, but is widespread in landslide studies. It
results from the failure of current landslide classifications to
differentiate primary and secondary processes in what are
usually complex interactions that take place over periods of
time that can vary from minutes to hundreds of years.

The most commonly used landslide classification world-wide
is that of Varnes (1978; modified by Cruden and Varnes, 1996)
in which the materials involved are classified as rock, debris or
earth, and the landslide mechanisms are divided into falls,
slides, flows and complex. Tt is of little practical use for
analytical or risk-assessment purposes when applied to
landslides in the Undercliffs NNR, for two principal reasons.
First, it places too much emphasis on post-landslide landforms
at the expense of the pre-landslide condition and the geological
stratigraphy and structure. Second, it does not differentiate
between in situ and ex situ materials, nor between
unweathered, partially weathered and deeply weathered
materials. The definition of rock includes in situ and ex situ
materials that are classified as rocks or soils in the geotechnical
sense, and their weathered ex situ derivatives. Debris includes
a wide range of in situ and ex situ materials including weakly
consolidated primary materials such as glacial tills (diamictites),
and accumulations of weathered materials. The term earth has
no geologically or geotechnically defined meaning in the UK.
Its principal component seems, from its usage in published
descriptions of landslides, to be a fine-grained variety of
‘debris’.

A more practical classification is to divide landslides into
three types, primary, secondary and tertiary, based on the
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Figure 7. Geographical changes in the extents of the Haven and Bindon Landslide complexes between 1835 and 1947.

nature and geotechnical properties of the unweathered and
weathered materials involved in the landslide.  Primary
landslides are defined here as failures in previously undisturbed
strata. They include rotational and translational failures in weak
or weathered rocks, and rock-block and toppling failures in
fractured rocks. In the Undercliffs NNR, primary failures range
in size from large, infrequent (<1 per century) events such as
the 1839 Bindon Landslide to small (a few kg), frequent (several
per week) rock falls from the sea cliffs. Secondary landslides
include rock falls, rotational and translational failures, and
debris flows that form part of the degradation process of
potentially unstable rock faces and slopes that have resulted
from primary failures. Examples in the 1839 Bindon Landslide
include the collapse of the rock pillars into The Chasm and
rotational failures along its back face. Tertiary landslides
comprise mud/sand/debris flows and rock falls that involve
mechanically and/or chemically weathered materials within the
landslide complex and in the back faces of the landslides. The
largest of this type in recent years was a collapse of part of the
surface layers of the Chalk face on the south side of Goat Island
in 2001 shortly after the wettest winter on record. At the
eastern end of the NNR, they include active mudflows in the
Ware Landslide complex that are derived from deeply
weathered Charmouth Mudstone Formation.

One of the earliest alternative explanations for the
mechanism of the 1839 landslide was that by Jukes-Browne and
Hill (1900, figure 62) who suggested that the seaward dipping
Cretaceous rocks might have slid forward across the Rhaetic
Beds. They presumably envisaged a planar failure surface in
the Westbury Mudstone Formation beneath the strong
limestones of the White Lias Formation. Arber (1940) reiterated
the Conybeare et al. (1840) explanation and suggested that all
the major landslides on the Devon-Dorset coast between Beer
and Charmouth were connected with the unconformity at the
base of the Cretaceous succession, as originally envisaged by
De la Beche (1822), without identifying a specific failure
surface.

Ward (1945) was the first to suggest, by analogy with the
Folkestone Warren Landslide in Kent, that the principal
mechanism for the 1839 Bindon Landslide was a rotational
failure in the Gault. This was modified by MacFadyen (1971)
who proposed a deep (up to 100 m below sea level)
semicircular failure surface in the Mercia Mudstone Group,
notwithstanding the absence of any rotational failures in the
Mercia Mudstone Group in the 8 km of almost continuous
Mercia Mudstone cliffs between Beer and Sidmouth. Arber
(1973) subsequently accepted Ward’s (1945) interpretation after
noting the presence of several rotational landslides in the NNR,
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notably at Charton Bay. They and McFadyen (1971) cited as
evidence the back-tilted masses of Cretaceous rocks on the
north side of The Chasm (figures 2 and 6). These are
interpreted here as secondary landslides that occurred as a
consequence of the primary failure. They could not have
formed until The Chasm was sufficiently open to accommodate
them. Their depiction in Mary Buckland’s drawing, completed
within a few days of the initial failure, suggests that they may
have formed whilst Goat Island was still moving. Examples of
back-tilted blocks quoted by Arber (1973) in the Whitlands
Landslide complex resulted from minor failures that occurred
over 100 years after the primary landslide with which they are
associated.

The most detailed 20th Century analysis of the mechanism of
the 1839 landslide was that of Pitts and Brunsden (1987). They
recorded a shear surface in the Westbury Mudstone Formation
at beach level 500 m W of Culverhole Point [SY 273 894]
(referred to as Culverhole Point in their account) and concluded
that the principal failure surface in the 1839 landslide was in the
Westbury Mudstone Formation. They also noted shear failures
in the same formation at Charton Bay [SY 273 894]. At both
localities these are small (tens of metres across), shallow-seated,
secondary failures that cause back-tilting in the overlying White
Lias, but do not affect younger strata. With the exception of the
small area of disturbed Shales-with-Beef in the intertidal area
near Culverhole Point referred to above, all the onshore and
offshore debris produced in the 1839 landslide was derived
from the Upper Greensand and Chalk. It does not include the
limestones of the White Lias and Blue Lias that would have
been present in large quantities if the failure surface had been
in the Westbury Mudstone Formation.

In recent years the Westbury Mudstone outcrop recorded by
Pitts and Brunsden (1987) has been concealed beneath beach
gravels. At the top of the beach, a northward dipping (at 20°)
block of White Lias rests against i situ White Lias that is
unconformably overlain by the basal argillaceous sandstone
(decalcified here) of the Foxmould (Gallois, 2007a, figure 8).
The sandstone is separated from landslide material composed
of Upper Greensand debris by a polished and slickensided
shear surface coated with plastic clay (Figure 8). The field
evidence suggests that the failure surface is at the base of a
post-1839 secondary landslide that formed seaward of Goat
Island. The sheared clay is at a similar stratigraphical level to
thin (<100 mm thick) beds of smectite-rich mudstone (Jeans,
20006) in the lowest 1 to 2 m of the Foxmould Member. These
have been the principal failure surfaces in large coastal
landslides between Beer and Sidmouth where the Upper
Greensand rests unconformably on stable Mercia Mudstone



Group. In each case, a shear failure in a mudstone during or
shortly after a prolonged period of wet weather caused
waterlogged sands in the partially decalcified lower Foxmould
to collapse and undermine the overlying beds.  These
combined with the sand to produce a matrix-supported debris
flow. Where the failure surface was high in the cliffs, as in the
2006 landslide at Salcombe Regis (Gallois, 2007b), the flows
descended rapidly and transported large blocks (>50 tonnes) of
Upper Greensand up to 150 m into the sea. Where the failure
surface was close to sea level, as in the 1795 Hooken Landslide
(Mortimore et al., 2001), large intact masses of Upper
Greensand and Chalk moved seaward over a period of several
days. Fodal (1994) has shown that in this type of flow slide the
development of pressure waves at the base of the flow reduces
the basal drag and allows long run-out landslides to develop.
A possible contributing factor to the 1839 failure that was not
considered by Conybeare et al. (1840) was coastal erosion.
Arber (1940) noted that there had been large storms in the
months before the 1839 landslide and Pitts and Brunsden (1987)
suggested that a contributing factor to the failure was high
tides (culminating in a spring tide on December 23rd) that
removed beach material which had acted as a toe weight that
stabilised earlier landslides. Tt is difficult to confirm or disprove
this suggestion. Prior to the landslide, the southern edge of
the stable land was separated from high-water mark by a
¢. 150 m-wide strip of landslide debris (Figure 7). De la Beche
(1822) depicted this section of the coast as a line of cliffs that
Conybeare et al. (1840) described as wall-like and 15 m to over
30 m high. The comparable present-day cliffs at Culverhole
Point are fronted by a wide apron of boulders, ‘cowstones’
derived from the Foxmould and large blocks of calcarenite

landslide
debris

poorly stratified wet yellowish brown sand
with common clasts of chert and sandstone

failure surface {polished and slickensided surface overlain by

a few mm of plastic dark grey clay

greyish brown, highly bioturbated clayey
fine-grained sand with burrow linings of

dark grey clay and with small clasts of Mercia
Mudstone

metres
1.0+

greyish brown, highly bioturbated clayey
fine-grained sand with lenses of dark grey clay
0.8 and a few small red and green mudstone clasts
in situ
Foxmould

Member pale brown, fine-grained sand with 20% dark

grey, pyritic clay concentrated in burrows

0.6
pale brown sand as below with 30 to 40% dark
grey, pyritic clay in lenticular streaks; clay
streak at base

pale brown, fine-grained sand with 10% dark
grey, pyritic clay concentrated in well-defined
burrow linings

rapid passag

dark grey sandy clay with White Lias pebbles
and angular clasts of red and green mudstone;
highly bioturbated with rotted calcitic shells
including oysters,

basal 50 mm crowded with ironstone pellets

and small pebbles of quartzite and phosphate

unconformity: irregular, highly bored surface

0.24

I

in situ f
White Lias I I I I r’| I I I
Formation | (DO (D IV O |

dense, white, fine-grained limestone

Figure 8. Detail of the in situ Upper Greensand succession, the
basal Cretaceous unconformity, and the failure surface at the base
of a post-1839 landslide exposed 500 m west of Culverbole Point.

1839 Bindon Landslide failure mechanism

derived from the Whitecliff Chert and Bindon Sandstone. At the
present time the principal failures in these cliffs are infrequent
small rock falls (mostly <100 tonnes), and the rate of retreat of
the cliff line is low in comparison with other parts of the east
Devon coast. Pitts (1983) recorded rates of retreat of 1.0 m to
1.5 m per annum for this part of the coast during the period
1905 to 1958. It is unlikely, therefore, that sufficient material
would have been removed by one or more storms to destabilise
the large volume of debris between the cliff line and the stable
land.

Although there are first-hand accounts of ‘liquefied’
Foxmould sand squirting out of the ground in active landslides
in the Undercliffs NNR (e.g. Arber, 1940), Pitts and Brunsden
(1987) doubted that such a dense material as unweathered
Foxmould of the type that crops out in the cliffs at Culverhole
Point could be liquefied. Brunsden (2002) subsequently
concluded that although liquefaction of the Foxmould occurred
in the 1839 Bindon Landslide, it was not the primary cause of
the failure. This conclusion has been confirmed by more recent
observations which have shown that all the major failures on
the east Devon coast that involved large quantities of
Foxmould-derived sand were initiated by a shear failure in a
mudstone.

A geological factor which is absent from all previous
accounts of the 1839 landslide, but which may have made an
important contribution to the failure mechanism, is faulting.
This omission was partly due to the scarcity of field evidence,
and partly to the common assumption that disturbances in strata
exposed in the cliffs and intertidal areas adjacent to the NNR
resulted from landslide activity (e.g. Page, 2002, figure3). Aerial
photographs commissioned by Natural England and taken at
times when the sea was calm and clear combined with a
multibeam-sonar survey commissioned by the Channel Coast
Observatory have revealed complex geological structures in the
shallow subtidal area. They include E-W trending fault belts
between the Axe Valley and Lyme Regis that are sub-parallel
to the coastline and to the principal landslide structures in
the NNR (Figure 1). The offshore area adjacent to the 1839
Bindon Landslide contains numerous faults that separate zones
of fractured and folded Triassic and Jurassic rocks (Figure 9).
One of these faults (A in Figure 9) is exposed [SY 265 890] in
the sea cliff where it runs almost parallel to the face. A second
fault (B in Figure 9), which cuts out part of the Blue Anchor
Formation, was formerly exposed 550 m W of Culverhole Point
(H. B. Woodward MS, 1884). Most of the E-W trending faults
in this and other offshore fault belts on the east Devon coast are
normal and related to the post Variscan opening of the English
Channel and Western Approaches.

SUMMARY AND CONCLUSIONS

The Conybeare et al. (1840) description of the 1839 landslide
is an accurate and comprehensive account based on detailed
cartographic and geological field surveys, and a knowledge of
the local geology. All except one of their conclusions with
respect to the mechanism of the landslide failure have been
proved by subsequent research to be correct. They concluded
that the initial failure was at or close above the base of the
Cretaceous Upper Greensand, and that it resulted in a
translational slab slide (Goat Island) that pushed Cretaceous
debris from older landslides forward and into the sea. Later
interpretations which concluded that the principal failure
occurred along a rotational shear surface in the Mercia
Mudstone Group or Gault, or along a translational shear in the
Westbury Mudstone are not supported by the field evidence.
The rotational failures quoted as evidence of these alternative
mechanisms are interpreted here as secondary failures that
were consequential upon, not precursors of, the initial failure.

The Conybeare et al. (1840) conclusions that the seaward dip
of the basal Cretaceous unconformity and a prolonged period
of unusually heavy rain that resulted in high pore pressures in
the permeable Upper Greensand and Chalk were important
contributing factors have been confirmed by later authors.
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Figure 9. Geological sketch map of the intertidal and shallow subtidal areas between the outfall of the River Axe and Culverbole Point based
on orthographically rectified air photographs commissioned by Natural England and multibeam-sonar images commissioned by the

Channel Coast Observatory (www.channelcoast.org).

However, their conclusion that the principal failure resulted
from liquefaction of the lower part of the Foxmould has not
been confirmed. More recent landslides on the east Devon
coast that have involved the collapse of a similar Cretaceous
succession to that at Bindon have been shown to have failed on
thin (<100 mm thick) beds of montmorillonite-rich mudstone in
the lowest 1 m to 2 m of the Foxmould.

The possible role of faulting in thel859 Bindon Landslide
mechanism has not previously been considered in detail.
Conybeare et al. (1840) suggested that part of the apparent
seaward dip and stepped nature of the outcrop of the
Cretaceous beds (Figure 6) might, in part, be explained by
faulting. Pitts (1974) referred to an unpublished report which
suggested that The Chasm might have formed along the line of
a fault. There is no published field evidence to support these
suggestions, but it is now known that several E-W trending
faults pass beneath the landslides in the NNR. These juxtapose
weaker and stronger, and more and less permeable strata, and
are likely to have contributed to local failures within individual
landslides.

ACKNOWLEDGEMENTS

This account is based in part on a description of the geology
of the Undercliffs NNR that was jointly funded by Natural
England and the East Devon-Dorset Coast World Heritage Team
under the direction of Mr Tom Sunderland. The author is
grateful to Richard Edwards for his comments on the first draft
of this account, and to the West of England Studies Library for
copies of the “Ten Plates” of Conybeare et al., 1840.

REFERENCES

ARBER, M.A. 1940. The coastal landslides of South-East Devon. Proceedings of
the Geologists’ Association, 51, 257-271.

ARBER, M.A. 1973. Landslides near Lyme Regis. Proceedings of the Geologists’
Association, 84, 121-133.

BRUNSDEN, D. 2002. Geomorphological roulette for engineers and planners:

some insights into an old game. Quarterly Journal of Engineering Geology
and Hydrogeology, 35, 101-142.

196

CONYBEARE, W.D., DAWSON, W., BUCKLAND, M. and BUCKLAND, W. 1840.
Ten Plates, comprising a plan, sections, and views, representing the changes
produced on the Coast of East Devon, between Axmouth and Lyme Regis, by
the Subsidence of the Land and Elevation of the bottom of the Sea, on the 26th
December, 1839, and 3rd February, 1840. Oblong, London.

CRUDEN, D.M. and VARNES, D.J. 1996. Landslide types and processes. Special
Report 247: Landslides: investigation and mitigation. Transportation Research
Board, Washington DC.

DE La BECHE, H.T. 1822. Remarks on the geology of south coast of England
from Bridport Harbour, Dorset, to Babbacombe Bay, Devon. Transactions of
the Geological Society, London, Series 2, 1, 40-47.

DE LA BECHE, H. 1839. Report on the geology of Cornwall, Devon and West
Somerset. Memoir of the Geological Survey of Great Britain. HMSO, London.

EDWARDS, R.A. and GALLOIS, R.W. 2004. The geology of the Sidmouth district:
a brief description of Sheet 326 and 340 Sidmouth. Sheet Explanation of the
British Geological Survey. British Geological Survey, Keyworth.

FODAL, M.A. 1994. Landslides riding on basal pressure waves. Continuum

Mechanics and Thermodynamics, 6, 61-79.

GALLOIS, RW. 2007a. The stratigraphy of the Penarth Group (Late Triassic) of
the East Devon coast. Geoscience in south-west England, 11, 287-297.

GALLOIS, RW. 2007b. A recent landslide on the east Devon coast, UK.
Quaternary Journal of Engineering Geology and Hydrogeology, 40, 29-34.

GALLOIS, R.W. 2008. Geological controls on the failure mechanisms within the
Black Ven-Spittles landslide complex, Lyme Regis, Dorset. Geoscience in
south-west England, 12, 9-14.

JEANS, C.V. 2006. Clay mineralogy of the Cretaceous strata of the British Isles:
onshore and offshore. In: JEANS, C.V. and MERRIMAN, R]J. (Eds) Clay
minerals in onshore and offshore strata of the British Isles. Mineralogical
Society, London, 47-150.

JUKES-BROWNE, AJ. and HILL, W. 1900. 7he Cretaceous rocks of Britain.
1, The Gault and Upper Greensand of England. Memoir of the Geological
Survey of Great Britain. HMSO, London.

MACFADYEN, W.A. 1971.
Butterworths, London.

Geological highlights of the West Country.

MORTIMORE, R.N., WOOD, CJ. and GALLOIS, RW. 2001. British Upper
Cretaceous Stratigraphy. Geological Conservation Review Series, No. 24.
Peterborough, Joint Nature Conservation Committee.



PAGE, K.N. 2002. A review of the ammonite faunas and standard zonation of the
Hettangian and Lower Sinemurian succession (Lower Jurassic) of the east
Devon coast (south west England). Geoscience in south-west England, 10,
293-308.

PITTS, J. 1974. The Bindon Landslip of 1839. Proceedings of the Dorset Natural
History and Archaeological Society, 95, 18-29.

PITTS, J. 1981. An historical survey of the landslips of the Axmouth-Lyme Regis
Undercliffs, Devon.  Proceedings of the Dorset Natural History and
Archaeological Society, 103, 101-106.

PITTS, J. 1983. The recent evolution of the landsliding in the Axmouth - Lyme
Regis undercliffs National Nature Reserve. Proceedings of the Dorset Natural
History and Archaeological Society, 105, 119-125.

PITTS, J. and BRUNSDEN, D. 1987. A reconsideration of the Bindon Landslide of
1839. Proceedings of the Geologists” Association, 98, 1-18.

ROBERTS, G. 1840. An account of the mighty landslip of Dowlands and Bindon,
near Lyme Regis, 25th December, 1839. Daniel Dunster, Lyme Regis.

VARNES, D J. 1978. Slope movement types and processes. Special Report 176:
Landslides: Analysis and Control. Transportation Research Board,
Washington DC.

WARD, W.H. 1945. The stability of natural slopes. Geographical Journal, 105,
170-191.

1839 Bindon Landslide failure mechanism

197



