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Abstract 17 

1. Grasslands are diverse and extensive but are declining in extent in some parts of the 18 

globe. Grassland invertebrates can be numerically abundant and are crucial to ecosystem 19 

functioning through their roles in herbivory, nutrient cycling and pollination. Most European 20 

grasslands are modified through agricultural practices. Indeed semi-natural grasslands, 21 

which often host the most diverse invertebrate assemblages, have suffered catastrophic 22 

losses over the last century. 23 



2. Much research exists on grassland management, mainly from Europe, ranging from 24 

identifying optimum management of high-quality grasslands through to assessing measures 25 

to enhance low-quality grasslands, though most such projects focus solely on the plant 26 

assemblage. Monitoring that has been carried out on invertebrates indicates a varied 27 

response with invertebrate assemblages often being limited by such factors as lack of 28 

habitat connectivity, inappropriate cutting regime and the particular plant species used in 29 

enhancement projects. 30 

3. There is a need to promote grassland management that recognises and addresses these 31 

key factors whilst also carrying out research into how best to combine the multiple 32 

ecosystem services and human benefits that are associated with grasslands. 33 

 34 
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 37 

Introduction 38 

Grasslands represent a diverse biotope that ranges from natural self-sustaining systems to 39 

those that are entirely artificially created. They cover approximately 40% of the world’s land 40 

surface (excluding Greenland and Antarctica) (White et al., 2000), and provide a wide range 41 

of goods and ecosystem services, but are primarily seen as highly significant as a resource 42 

for agricultural production (Balvanera et al., 2006; Jauker et al., 2009; van Eekeren et al., 43 

2010). In some areas there have been significant declines in grassland extent. For example, 44 

the extent of all lowland grasslands (permanent pasture, rough grazings and leys) in 45 

England and Wales fell from 7.8M ha in the 1930s to 4.8M ha (a 38% decline) in the 1980s 46 

(Fuller, 1987) whilst in member states of the European Union, grassland extent declined by 47 

12.8% from 1990 to 2003 (FAO, 2006). The decline has been especially acute for semi-48 



natural grasslands. For example, only 3% of the area in existence in England and Wales in 49 

the 1930s survived to the 1980s (Fuller, 1987) and just 3.6% of Europe’s grasslands lie 50 

within protected areas (White et al., 2000). In the absence of wild large herbivores, most 51 

grassland areas have been maintained by farming and thus ecologists must work with land 52 

managers and policy makers to ensure the maintenance of biologically-rich and functioning 53 

grassland ecosystems (Pärtel et al., 2005). 54 

Terrestrial arthropods are integral to the full functioning of grassland ecosystems through 55 

numerous roles such as herbivory, nutrient cycling and pollination (e.g. Losey & Vaughn, 56 

2006). Furthermore they form a diverse, though often neglected, component of grassland 57 

biodiversity. They are often numerically abundant with populations and assemblages that 58 

can respond rapidly to perturbation and can thus be especially useful as indicators in studies 59 

of grassland condition (e.g. Hollier et al., 2005; Korosi et al., in press). Recent thinking about 60 

managing natural resources has shifted away from a species-centred approach to one 61 

looking at the roles that component parts play in the functioning of whole ecosystems (e.g. 62 

Balmford & Bond, 2005). From an invertebrate ecology point of view, this approach has 63 

started to focus attention on such factors as functional roles played by invertebrates and the 64 

impacts of management and other perturbations on invertebrate assemblages (e.g. 65 

Biedermann et al., 2005). Research on the role of invertebrates within ecosystem functioning 66 

and ecosystem services is, though, still in its infancy (Didham et al., 2010; Seppelt et al., 67 

2011). 68 

As diverse as grasslands are, so is management aimed at maintaining them. There remain 69 

significant knowledge gaps in that much of the research into management does not explicitly 70 

consider the requirements of invertebrates. For example, high-quality natural or semi-natural 71 

grasslands, typically in Europe those that have not been subject to nutrient input, have seen 72 

considerable research into appropriate vegetation management. Calcareous grasslands are 73 

now widely recognised for their biodiversity value, as they host some of Europe’s most 74 

species-rich plant and insect assemblages (van Swaay, 2002; WallisDeVries et al., 2002). 75 



Much of the remaining area of this grassland type is under conservation management and 76 

the restoration of former chalk grassland now represents a key mechanism for increasing 77 

their area. Such management usually focuses on the plant assemblages but success in 78 

terms of the reassembly of invertebrates has been limited (Mortimer et al., 2002; Woodcock 79 

et al., 2010a). 80 

Of course most European grasslands are modified, primarily by agricultural practices (e.g. 81 

Stoate et al., 2009). Even modified grasslands, though, have the potential to support 82 

important assemblages or populations of rarer species (e.g. Alexander, 2003; Littlewood & 83 

Stewart, 2011) as well as assemblages that can be important food resources for higher 84 

trophic levels such as birds (Vickery et al., 2001). A greater understanding of how such 85 

assemblages relate to grassland structural characteristics would be beneficial in terms of 86 

maintaining and enhancing population sizes of many species, (e.g. Helden et al., 2010; 87 

Trivellone et al., in press). In recent years, land management policy has reflected increased 88 

interest in reversing the impacts of agricultural intensification. This may range from reversing 89 

biodiversity loss in less intensively managed grasslands by preventing over-grazing 90 

(Redpath et al., 2010), to encouraging appropriate incentives for preventing the 91 

abandonment of traditional management (Stoate et al., 2009). Furthermore, there has been 92 

interest in landscape conservation and restoration to maintain habitat heterogeneity and 93 

connectivity in the light of research showing that patch isolation can be detrimental not just to 94 

the range of species occurring, but also to ecosystem services such as pollination success 95 

(Goverde et al., 2002) and natural pest control (Steffan-Dewenter & Tscharntke, 2002). 96 

This short review and the Special Issue that it introduces aims to explore and develop the 97 

key themes identified above. The papers that follow stem from a symposium on grassland 98 

insect conservation held as part of the European Congress of Conservation Biology in 99 

Prague in 2009 together with other highly relevant contributions. These papers aim to raise 100 

the profile of grassland invertebrates within conservation science by showing the sensitivity 101 

of invertebrates to perturbation, their importance for demonstrating grassland condition and 102 



functioning, and how knowledge of their fundamental ecology can contribute to the practical 103 

management of various grassland types. 104 

 105 

Management of existing grasslands 106 

Typically, the primary aim of invertebrate conservation within existing grasslands is to 107 

maintain species richness while retaining any rare or local species, although these aims may 108 

sometimes conflict with each another. Invertebrate diversity is often, but not invariably, 109 

strongly correlated with plant diversity (Schaffers et al., 2008). Partly this may be simply due 110 

to plant and invertebrate species each responding to the same extrinsic driver such as 111 

temperature or wetness. For phytophagous species in particular, though, dependence on 112 

specific host plants may result in a strong link between plant and invertebrate assemblages 113 

(Woodcock et al., 2010b).On the other hand, though, the architectural structure of the sward 114 

is important for both zoophagous and phytophagous species, such that short swards 115 

generally contain a lower abundance and reduced diversity of insects compared to taller 116 

ones (Dennis et al., 1998; Morris, 2000). This relationship is underpinned by both the greater 117 

biomass of structurally complex swards as well as the greater range of niches available for 118 

invertebrates. Certain invertebrate groups are known to be strongly vertically stratified (e.g. 119 

Auchenorrhyncha; Andrzejewska, 1965; Brown et al., 1992) or dependent upon the physical 120 

architecture of the vegetation (e.g. Araneae; Gibson et al., 1992), whilst removal of tall 121 

flowering structures in particular, reduces the diversity of pollinators, seed feeders, gallers 122 

and other insects that exploit flowers and associated stems (Volkl et al., 1993; Woodcock et 123 

al., 2009). The relationship between sward structure and invertebrate populations may, 124 

though, be less straightforward as sward height may be a proxy for a further driver. For 125 

example, in this issue, Dittrich & Helden (in press) show how populations of phytophagous 126 

and predatory invertebrates can be enhanced in taller sward islets where the driver (for the 127 



phytophagous species at least) appears to be a higher nutrient content of the taller 128 

vegetation. 129 

Conservation management of grasslands typically aims to arrest the natural succession to 130 

scrub and woodland by grazing, cutting or, more rarely, burning; the objective being to check 131 

the spread of fast-growing competitive plant species and to maintain low system fertility by 132 

removing biomass (e.g. Swengel, 2001; Watkinson & Ormerod, 2001). Much research has 133 

been focused on how these management operations can be fine-tuned to promote diversity 134 

by varying their intensity, frequency, duration, seasonality and in the case of grazing, by 135 

using different species or breeds of domesticated herbivore (Watkinson & Ormerod, 2001). 136 

All of these have subtly different effects on the species composition and structure of the 137 

vegetation, and thereby on the associated invertebrates, although the details vary between 138 

functional and taxonomic groups (e.g. Morris, 2000). In general, low-intensity grazing is 139 

preferable to cutting because it is gradual rather than sudden, thus allowing insects to 140 

escape (Humbert et al., 2009), grazers tend to feed on the fast-growing more palatable 141 

plants which may need to be suppressed, and their trampling and local fertilization through 142 

deposition of dung and urine promotes heterogeneity in the sward (Dennis et al., 1998; 143 

Helden et al., 2010). Grazing and browsing by wild vertebrate herbivores, such as rabbits, 144 

can have additional or separate effects to domestic herbivores which may further influence 145 

the constituent invertebrate assemblage (Fisher Barham & Stewart, 2005). 146 

The greater abundance and diversity of invertebrates in taller grasslands often brings 147 

invertebrate conservation into conflict with the objective of preserving plant diversity (e.g. 148 

Kruess & Tscharntke, 2002). In some cases, the use of heavier grazing animals to promote 149 

micro-topographic heterogeneity, and patches of bare ground for invertebrates, is 150 

incompatible with the requirements of delicate plant species such as orchids (e.g. Tamis et 151 

al., 2009; Hutchings, 2010). Inevitably with so many species involved, each with their own 152 

particular micro-habitat requirements, any one management prescription will favour certain 153 

invertebrate taxonomic groups over others (e.g. Morris, 1978). Even within relatively 154 



narrowly-defined groupings, there will be wide differences in responses to management. For 155 

example, grassland butterflies range widely in mean sward height preference from <2 to >30 156 

cm (NCC, 1986). Faced with the challenge of maintaining a large number of species with 157 

widely differing habitat requirements, often within a relatively small area, one solution is to 158 

impose small-scale rotational management to generate a mosaic of different grassland 159 

heights, ages and successional stages, thus producing maximal heterogeneity at a variety of 160 

scales (Pöyry et al., 2004). 161 

 162 

Re-creation of grasslands 163 

There is general agreement that the de novo re-creation of grasslands that resemble 164 

species-rich assemblages that are highly prized by conservationists will take a very long time 165 

indeed, perhaps hundreds of years (Hutchings & Stewart, 2002). Simple abandonment of 166 

arable land is unlikely to set natural succession on a trajectory to species-rich grassland 167 

because of the high nutrient residues, especially of phosphorus, and the absence of 168 

appropriate plant propagules (Bakker & Berendse, 1999; Pywell et al., 2002). Attempts to 169 

manage the path of plant succession have shown that only very heavy grazing will achieve a 170 

community that starts to resemble ancient species-rich grassland (Gibson & Brown, 1992), a 171 

result that is reflected by certain invertebrate groups (Gibson et al., 1992). A major limitation 172 

to the success of such re-creation attempts is dispersal of the target species into the area, 173 

rare species in particular tending to be poor dispersers (Batary et al., 2007; Knop et al., 174 

2011). In the case of plants, attempts have been made to overcome this by sowing seed 175 

mixtures, strewing hay or inserting plant plugs to establish an appropriate assemblage of 176 

species (e.g. Bakker & Berendse, 1999; Pywell et al., 2002). Indeed, as demonstrated by 177 

Woodcock et al. (in press) in this issue through an example where ex-arable land was being 178 

managed to recreate species-rich lowland hay meadow, the introduction of target plants can 179 

prove crucial to facilitating reassembly of phytophagous beetle species. While such 180 



management practices are potentially economical to undertake for plants, though, dispersal 181 

limitation may restrict  resultant invertebrate populations and overcoming this is likely to be 182 

both hard and costly to implement. In the majority of cases colonisation will be by natural 183 

immigration only and thus it is likely that targeting restoration sites within landscapes with 184 

existing large areas of species rich grassland will help colonising invertebrates overcome 185 

dispersal limitation (Woodcock et al., 2010a). As the order in which species arrive during 186 

restoration (so called priority effects) may have important long-term implications for 187 

community structure, long-term restoration success may be strongly affected by the 188 

availability of source populations of colonising invertebrates (Young et al., 2005). 189 

For the most part, and particularly in the case of phytophagous invertebrates, the 190 

establishment of species in such experiments is often determined by the restoration success 191 

of plants. This is seen, for example, in Hemiptera (Morris, 1990), Coleoptera (Mortimer et al., 192 

2002), and Lepidoptera (Maccherini et al., 2009) although often the invertebrate 193 

communities of restored grasslands represent only a component of the target species-rich 194 

grassland communities. 195 

 196 

Enhancement of low quality grasslands 197 

While the biodiversity benefits of grassland restoration may be potentially large, as a 198 

conservation measure it is typically costly, complicated and time consuming to implement 199 

(Bakker & Berendse, 1999; Willems, 2001; Walker et al., 2004). The associated expense 200 

means that uptake may be restricted to sites that meet specific minimum habitat 201 

requirements, as occurs in the case of grassland restoration sites within the UK agri-202 

environmental schemes that are geared towards more biodiverse sites (Natural England, 203 

2008). For this reason large areas of grassland that are unsuitable for restoration remain 204 

floristically species poor and structurally homogenous, and as such are of low biodiversity 205 

value for invertebrates (Morris, 2000; Potts et al., 2009; Woodcock et al., 2009). 206 



 The diversification of low-quality grassland can be difficult because few germination sites 207 

exist in a closed sward, limiting the capacity of new species to invade, and seedlings suffer 208 

intense competition from pre-established plants (Edwards et al., 2007). Intense grazing or 209 

scarification of the sward may help to break up the vegetation to enable new species to 210 

colonise, a technique that would also favour certain invertebrate groups (Woodcock et al., 211 

2008). Such grasslands may, though, be suitable for more modest enhancement 212 

management, which aims to increase the levels of biodiversity associated with existing 213 

habitats of low conservation value, without attempting to replicate a specific community as 214 

would occur in restoration as described above. In Europe, such enhancement is often 215 

implemented as a result of agri-environment schemes which aim to compensate farmers for 216 

modest changes to their management practices (Young et al., 2005). Following in this issue 217 

are two such examples of how invertebrate populations can be enhanced in agriculturally 218 

productive landscapes. Firstly Cole et al. (in press) demonstrate how fencing off waterways 219 

in intensively-managed grasslands to exclude livestock can promote habitat heterogeneity 220 

and hence invertebrate populations, even in relatively narrow buffer strips. Secondly 221 

Trivellone et al. (in press) provide evidence that low-intensity management, in particular 222 

infrequent cutting and low pesticide use, can promote invertebrate biodiversity of grasslands 223 

and associated habitats within vineyards. 224 

Management associated with grassland enhancement is often straightforward and the 225 

intended goals of such practices may be diverse, although they are rarely, if ever, centred on 226 

invertebrates. In addition, such management is not normally intended to benefit rare or 227 

threatened species directly, although by creating stepping stones and corridors across the 228 

landscape it can promote population persistence in higher quality grassland habitats (Van 229 

Geert et al., 2010). In England, for example, five grassland enhancement options exist for 230 

lowland grasslands under the entry-level agri-environmental scheme, each representing 231 

simple management changes to existing improved grassland management, such as reduced 232 

fertiliser input (< 50 kg/ha/year N) or mixed stocking of cattle and sheep (DEFRA, 2005).  233 



It is questionable whether the benefits accrued for invertebrates as a result of these 234 

management options will result in large scale biodiversity gains (Pywell et al., 2010). In many 235 

cases the aims of these schemes focus on increasing the overall biomass of invertebrates to 236 

provide food resources for higher trophic levels, such as farmland birds (Vickery et al., 2001; 237 

DEFRA, 2005). This is often achieved by introducing variation in the architectural structure of 238 

the sward and can be done by two means. Firstly, heterogeneous grazing management 239 

promotes the development of tussock grasses that are vital for many invertebrates (Bayram 240 

& Luff, 1993; Dennis et al., 1998; Morris, 2000). Secondly, temporal variation across 241 

landscape management can contribute to the maintenance of invertebrate diversity. For 242 

example, varying the timing of grass cutting can reduce the impacts on invertebrates of what 243 

might otherwise be a catastrophic loss of sward structure (Morris, 2000; Humbert et al., 244 

2009). 245 

In some grasslands, maintenance of, or simple changes to, existing management, such as in 246 

cutting, grazing and fertiliser regimes, can have a large positive effect on the biodiversity 247 

value of these habitats (Dennis et al., 1997; Dennis et al., 2004. In this issue, for example, 248 

Littlewood et al. (in press) describe grazing impacts on Auchenorrhyncha assemblages in 249 

upland rough grassland and show that maintaining a grazing intensity mosaic, including 250 

ungrazed areas can substantially enhance abundance and diversity. Likewise for Hemiptera 251 

as a whole, Korosi et al. (in press) demonstrate that vegetation height is the primary driver of 252 

assemblages and that variations in sward height produced by different cattle-grazing 253 

regimes helps to maintain diverse assemblages.  Low-key grassland management changes 254 

may have only limited success in increasing floristic diversity in agriculturally improved 255 

grasslands, particularly where there is a high level of residual fertility, resulting in competition 256 

for space within the sward (Woodcock et al., 2007; Potts et al., 2009; Woodcock et al., 257 

2009). Under these circumstances the establishment of forbs within the sward normally 258 

requires some form of direct introduction of target species. As plants differ considerably in 259 

the numbers of invertebrate species associated with them, there is considerable scope for 260 



enhancing existing grasslands by sowing a few well-selected species. In particular, the 261 

introduction of commercially available plants that are both known to support a high diversity 262 

of phytophagous invertebrates as well as being competitive enough to be able to persist in 263 

improved grass swards has the potential to provide dramatic benefits for invertebrates 264 

(Koricheva et al., 2000; Mortimer et al., 2006; Potts et al., 2009; Pywell et al., 2010). This 265 

can be achieved at comparatively low cost relative to restoration management and may be 266 

suitable for the enhancement of existing floristically species poor swards (Mortimer et al., 267 

2006; Pywell et al., 2010; Woodcock et al., in press). To this end, one technique that has 268 

shown great promise is the introduction of hemiparasitic plants to check the growth of the 269 

more vigorous plant species, facilitate the establishment and survival of introduced forbs and 270 

thereby promote greater diversity. For example, Rhinanthus minor is hemiparasitic on 271 

grasses and is now widely proposed as a tool for the diversification of grasslands (Pywell et 272 

al., 2004). Recent evidence indicates a positive effect on abundance and diversity of 273 

invertebrate herbivores and predators, indicating a community-wide response (Hartley, John, 274 

Massey, Stewart & Press, unpublished data). 275 

 276 

Influence of the landscape matrix 277 

Management of grassland and its impact on insect populations is usually approached at a 278 

site scale with the role of the surrounding matrix until recently only rarely considered. For 279 

conservation of especially rare species it may be necessary to carry out habitat management 280 

at a very specific site or colony (e.g. Young & Barbour, 2004) though  isolated insect 281 

populations in habitat that remains apparently suitable may be at increased risk of extinction 282 

(e.g. Tscharntke et al., 2002; Goulson et al., 2008). The role of the surrounding landscape in 283 

regulating or structuring insect assemblages is, however, being gradually recognised and 284 

indeed, at the assemblage level, may explain more of the variation between sites than do 285 

finer scale habitat characteristics (e.g. Marini et al., in press). 286 



This issue shows in particular how the landscape matrix interacts with species mobility in 287 

determining species distributions and assemblage make-up. For example Pokluda et al. (in 288 

press) provide an example of landscape-scale variation in habitat usage by a rare ground 289 

beetle with, in this case, forest habitats potentially providing a complete barrier to movement. 290 

Developing this theme, Wamser et al. (in press)  demonstrate that trait-specific effects, such 291 

as dispersal-ability, determine how the landscape influences different elements of carabid 292 

biodiversity and thus demonstrate that habitat corridors may assist movement of species 293 

which are less able to disperse across barrier to habitat patches. Likewise Marini et al. (in 294 

press) shows that species mobility strongly influences species- turnover between 295 

Orthopteran populations and that assemblages may be enhanced by increased connectivity 296 

of meadows at the landscape scale. 297 

Features of the landscape matrix may affect grassland insects in a number of ways. Physical 298 

landscape influences on invertebrates may be linked to protection from the elements, such 299 

as the preference shown by some butterflies for meadows benefiting from the sheltering 300 

effect of adjacent woodland (e.g. Marini et al., 2009), or may be more directly related to 301 

movement within the landscape (e.g. Jauker et al. 2009). Resource-related influences may 302 

be linked to the need for connectivity of habitat patches in situations in which food availability 303 

is unpredictable (Johst et al., 2006). Many species, especially those with specialised habitat 304 

requirements, exist to a greater or lesser extent in a metapopulation structure with smaller or 305 

marginal sites requiring occasional recolonisation from source colonies and with a higher 306 

proportion of unoccupied patches in a more fragmented landscape (e.g. Batary et al., 2007; 307 

Brückmann et al., 2010 ). 308 

The way in which aspects of the landscape matrix impact on invertebrate populations varies 309 

between different species or assemblages. For numerous groups, e.g. Auchenorrhyncha 310 

(Littlewood et al., 2009) and Lepidoptera (Ries & Debinski, 2001), generalist species have 311 

been shown to disperse further than specialist species and so they are likely to respond to 312 

the landscape on a larger scale (Batary et al., 2007; Oliver et al., 2010). This can have 313 



implications for stability of populations. Thus, a heterogeneous landscape, in which a range 314 

of resources and microclimates can help buffer against perturbation, may promote greater 315 

stability in populations of generalist species than specialists (Oliver et al., 2010). There are 316 

other patterns that are consistent across more than one insect group. For example, the size 317 

and relative isolation of grassland habitat patches may be more significant limiting factors for 318 

predatory insects. This was shown by Stoner & Joern (2004) who demonstrated that 319 

Coccinellidae find it difficult to re-colonise after local extinction, while Zabel & Tscharntke 320 

(1998) showed that a range of predatory Heteroptera and Coleoptera were more affected by 321 

habitat isolation than were herbivores. Indeed patch connectivity in complex landscapes is 322 

recommended as a means of ensuring maximum efficiency of predator populations for pest-323 

control purposes in agricultural grasslands (Tscharntke et al., 2007). 324 

Given the influence of the landscape matrix it may be presumed that grassland restoration 325 

and enhancement would have the greatest impact on insect populations at sites where it 326 

increases connectivity with other patches (Woodcock et al., 2010b; Knop et al., 2011). 327 

Defining optimum minimum distances and identifying patches between which individuals 328 

have moved is, though, very difficult. Movement of individual insects along habitat corridors 329 

or recolonisation of experimentally created habitat patches can be monitored on a small 330 

scale (e.g. Söderström & Hedblom, 2007; Littlewood et al., 2009), whilst gene-flow can be 331 

assessed between isolated populations over greater distances (e.g. Darvill et al., 2006).In 332 

such cases, though, findings are likely to be so species and site-specific as to preclude any 333 

useful general recommendations. Instead more general messages, perhaps based on re-334 

instating ecosystem services, must be sought and promoted. 335 

 336 

Concluding remarks 337 

The biodiversity of grassland invertebrates helps to maintain numerous ecosystem services 338 

(Sutcliffe et al., 2003; Woodcock et al., 2010b; Knop et al., 2011), plays a crucial role in the 339 



structure of competitive interactions between plants (Rand, 2003), can underpin grassland 340 

restoration (De Deyn et al., 2003) and provides food for higher trophic levels (Vickery et al., 341 

2001). In addition, the conservation of at least some invertebrates carries high societal 342 

value, although this is often limited to charismatic species such as the butterflies (Fleishman 343 

& Murphy, 2009). How we manage this biodiversity typically falls somewhere along a 344 

spectrum, ranging from relatively cheap (per unit area) low level changes in management 345 

applied at large spatial scales (Jeanneret et al., 2003; Schweiger et al., 2005; Woodcock et 346 

al., 2009), to expensive and targeted management regimes that benefit a few species at a 347 

particular site (Thomas, 1991). Changing patterns of land use, climatic variation and the 348 

need to provide food security means that the pressures on grassland biodiversity are only 349 

likely to increase over the coming decades (Stoate, 2009). For this reason, it is likely to 350 

become increasingly important to incorporate invertebrate biodiversity into the more general 351 

concept of multifunctional grasslands (Kemp & Michalk, 2007). Under such a premise, the 352 

conservation of grasslands as a whole, including that of invertebrates, will have to be 353 

presented to society within a wider package of benefits that include food production and 354 

quality, climate change amelioration, revitalising crop lands, protecting water quality and 355 

cultural heritage value (Kemp & Michalk, 2007; Stoate et al., 2009). If a long-term goal of 356 

maintaining invertebrate biodiversity in grasslands is to be achieved, then future research 357 

will need increasingly to consider how management will benefit not just the immediate 358 

conservation goals of a particular taxon, but also these wider objectives that are important to 359 

society as a whole.  360 
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