
• AR CHIVE:

•

PLEASEDONOTDESTROY
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Institute of
Hydrology

!"Th,t3
t9c;

•
•••

•
•

Natural Environment Research Council

••••••••••••••••••••••••••••••••••

•
•
•
•

InstituteofHydrology
•
•
•

CProgrammingLanguage•
TrainingCourse•

• by
RichardAlexander

(HydrologySoftwareSection)

•

•

•

•
Natural Environmental Research Council 1995

Institute of Hydrology
Maclean Building

Wallingford OXIO 8BB

United Kingdom

Telephone +44 (0)1491 838800

Facsimile +44 (0)1491 692424

MAY 1995

•
COPYRIGHT

This document is copyright and may not be reproduced by any method, translated,

transmitted, or stored in a data retrieval system without prior written consent of the

Institute of Hydrology

DISCLAIMER
•

While every effort is made to ensure accuracy, the Natural Environmental Research

Council and the Institute of Hydrology cannot be held responsible for errors and

omissions which may lead to the loss of data or the calculation of incorrect results.

TRADEMARKS

All tradenames and trademarks are acknowledged

• Course Content

FORWARD 6

1 INTRODUCTION 7

1.1What is C 7

1.2 Why learn C? 7

1.3 Summary 7

•
2 FUNDAMENTALSOFC PROGRAMS 7

•
2.1 Tutorial introduction 7

2.1.1 Learning thc form of a C program 7
2.1.2 Declaring variables 8
2.1.3 Arithmetic expressions 8
2.1.4 Designing program flow and control 9
2.1.5 Defining and using functions 9
2.1.6 Using standard terminal I/0 functions 10

•
2.2 Fundamental types 11

2.2.1 Integer typcs, short long, unsigned II
2.2.2 Character types 11
2.2.3 Single and double precision floating point numbers 11
2.2.4 Storage classes- auto (default), static, coast 11
2.2.5 Variable naming conventions 12
2.2.6 Constants 13

1110 2.2.7 Initialisation 14

2.3 Operators 15
2.3.1 Numcric Operators 15
2.3.2 Relational Operators 15
2.3.3 Assignmcnt operators 16
2.3.4 Increment and Decrement Operators 16
2.3.5 Bitwise operations 17
2.3.6 Type Conversions 18

2.4 Conditional program execution 18
2.4.1 if, else statement 18
2.4.2 switch, case,default 19

2.5 Loops and iteration 20
2.5.1 while loop 20
2.5.2 for loop 20

3 FUNCTIONSAND PROGRAMSTRUCTURE 21
•

3.1 Functions 21•
3

•

3.1.1 Declaring functions 21
3.1.2 Function Return Values 22
3.1.3 Recursive Functions 23
3.1.4 Command line argument 24
3.1.5 Variable length arguments 24

3.2 Program Structure 25
3.2.1 Scope rules 25
3.2.2 Block structure 26
3.2.3 Header files 26
3.2.4 Comments!! 28
3.2.5 Defensive Programming 29

4 ARRAYS, STRUCTURES AND POINTERS 30

4.1 Arrays 30
4.1.1 Declaring and accessing 30
4.1.2 Arrays of characters 31
4.1.3 Multidimensional 32
4.1.4 Passing as arguments 32

4. 2 Pointers 34
4.2.1 Purpose 34
4.2.2 Declaration 34
4.2.3 Operations 34
4.2.4 NULL Pointer 35
4.2.5 Passing as arguments 35
4.2.6 Dynamic memory allocation 35
4.2.7 Function pointers 36

4. 3 Structures 36
4.3.1 Purpose 36
4.3.2 Declaring and assigning 36
4.3.3 Typedef 37

4.4 Unions 38
4.4.1 Purpose 38
4.4.2 Declaring and assigning 38

5 STANDARD LIBRARIES 39

5.1 Input Output 39
5.1.1 Standard110and Streams 39
5.1.2 Formatted Output 39
5.1.3 Formatted Input 40
5.1.4 File Access 41

5. 2 String functions 42

5.2.1 Using 42

6 COMPILING UNDER UNIX 43

7 COMMON MISTAKES IN C 43

4

•
•

8BIBLIOGRAPHY 45
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

5•

Forward
•

These notes are aimed at scientists, with some experience of procedural programming,
wishing to move to the C language.

•
Although many existing texts describe the syntax and semantics of the language, few
deal with the application of the language to well written software. These note are
intended to demonstrate the use of recognised structured techniques applied to the C
language.

•
The notes cover all aspects of the language except for those which areconsidered to
lead to poor structure. They began with a overview of the language and return to
cover aspects in more detail. They also cover aspects such as documentation of
programs, control flow and functional decomposition.

The language described is that defined in the ANSI standard. For more details on
specific parts of the standard the reader is recommend to read "The C Programming
Language" by Kernighan and Ritchie.

•
•
•

1 Introduction•
1.1 Whatis C

C is a procedural computer programming language. The ANSI standard provides a
machine independent and unambiguous definition of the language.

C was originally designed for the development of the UNIX operating system.

1.2 WhylearnC?

•
C is a very popular language. It is well supported with ANSI standard compilers
available for most machines (including free ones) and a wide variety of supporting

tools. Because of its wide spread use there is also large amount of source code
available and documentation on the language.

•
The language supports many of the features associated with modern languages.
These include pointers, dynamic memory allocation, recursion and structures and it is
also free format

•

C is a fairly low level language, the code can be easily converted to fast efficient code
This however has the side effect of little run-time error checking.

•
The syntax of the language features economy of expression Careful attention must be

paid to ensuring that code remains structured and readable.

C forms the basis of C-H- which is a powerful object-oriented language

1.3 Summary
•

The main reason for learning C is because of it wide use and support
•

2 FundamentalsofCPrograms
•

2.1 Tutorialintroduction
•

2.1.1 Learning the form of a C program

The most basic program in any programming language is usually referred to as the
'Hello World' program and consists of outputting text to the screen. In C this takes

the form of:

•
#include <stdio.h>

411 void main()

IP printf("Hello World\n");

•

7

•

;

The first line of code includes a header file. The header file describes functions which
the programmer wishes to use. Standard libraries are indicated by including the name
in angle brackets e. This tells the compiler to look for the library in a specific
location. User defined libraries are enclosed in quotes e.g. "tes t.h".

The library stdio.h contains input and output functions, types and macros.

All C programs have a main o function. This is called when the program is first run.
By default this returns an integer value, the void indicates that we do not wish to
return a value

The curly brackets show the start and end of the function. The code is placed in
between these brackets.

•
printf is a library function which is used for output to the screen. The \n represents
a new line character. The semicolon at the end of the line indicates the end of the
statement.

cis a free format language, statements may be split over several lines if desirable.
•

Source files in C have the extension . c . The above program would therefore be
saved in a file called hello.c for example

• 2.1.2 Declaringvariables

Variables are used as a place to store data. C contains built in data types for storing
numbers and strings. Complicated data types can be built up using arrays and
structures.

Variables must be declared before use. Local variables are declared at the top of a
block of code. Global variables are declared at the top of a file. A declaration

specifies a type and contains one or more variables of that type.

•
Primitive types are: int, float, double, char.

ID
int i; /* integer number */

ID float fl,f2; /* floating point number *1
double dl; I* floating point number, double precision */

41
char cA, cB; /* single character */

Arrays are indexcd lists of values of the same type.

A string is an array of characters:

char ac(20]; /* An array of twenty characters */
int an(l00); /* An array of one hundred integers 'I

IP
2.1.3 Arithmetic expressions

411

IP

•
C contains built in operators for manipulating numeric variables. These include
operators for addition, subtraction, multiplication and division. The assignment

operator is a single - character

int nCelcuis;
int nFahr;

10
nFahr = 55;
nCelcius = (5 • (nFahr-32)) / 9;

N.B. The order of the operators. Since integer arithmetic is used, it is important that
the multiplication is performed first otherwise values may be lost dueto rounding
errors.

2.1.4 Designing program flow and control

C contains a number of components for controlling the flow of a program within a
function. The most fiundamental are the while loop and the i f condition.

The while loop causes a program to repeat a block of code whilst a condition is true.

• while (nCelcius > 30)

• printf("Its too hot!");
nCelcius = Getremperature();

C also contains a for loop, this is however just a variation of a while loop.

•
An if condition causes a program to execute a piece of code once if a condition is true
and may contain an else clause which is executed if the condition was not true.

if (nCelcius > 30)

printf("ts too hot";
) else if (nCelcius < 10)

printf("its too cold");
) else
)

printf("Its just right!");

IP
2.1.5 Defining and using functions

A function provides a way of breaking a program down into smaller processing units.

•
The function prototype defines the external interface of the function

•
int Power(int nNumber, int nPower);

It consists of a name, a return value of a specified type and arguments of specified
types.

The function implementation contains the actual body of the function.

•

9

•

41

IP

IP
int Power(int nNumber, nPower)

Simple function to calculate nNumber to the power nPower
Nb. This can only handle whole, positive powers

.1

int Power(int nNumber, int nPower)

•
int i;
int nResult = 1;

for (i = 0; i < nPower; i++)
f

nResult *= nNumber;
IP);

return nResult;

The function call consists of a number of parameters passed to the arguments of the
IP function. The value of a function is its return value.

int nPower = Power(3,3);

• 2.1.6 Usingstandardterminal1/0 functions

C has standard functions for outputting data to files and thc screen and retrieving data
from files and the keyboard.

•
The most common of these are the printf andscanf family of functions.

printf outputs formatted text to the screen.
•

int n = 5;
printf("The value is %i\n",n); /* Outputs "The value is 5" */

The first argument to printf specifies the format. si indicates where the next
argument's value should be inserted and that it is an integer.

•

4, scanf retrieves text from the keyboard.

ID float fValue;
printf("Input value: ");
scanf("%f",aftralue);
printf("Square is: %f\n",fValue*fValue);

In this case the format specifier indicates that the first value input should be converted
to a floating point value. The ampersand in front of the 'Value indicates that the value
is to be returned.. [Pass by address, see 4.2.5]

•
Similar functions exist from reading and writing to files and strings

•

ID 10

•

FILE *pFile = fopen("test","w");
fprintf(pFile,"Hello\n");
fclose(pFile);

2.2 Fundamental types

2.2.1 Integer types, short long, unsigned

The accuracy of these types is implementation dependant. For integers the accuracy
determines the range of values they can hold.

Types may be qualified to indicate if they are unsigned or double precision The
default is signed.

unsigned int u; /4,0 to */
unsigned char c;

short int nl;
short n2;
int n3;
long int 11;
long 12;

I*
/*
I.
I*
I.

at least 16 bits */
same as short int */
short int <= int <= long int */
at least 32 bits */
same as long int */

2.2.2 Character types

A character is a single byte, capable of holding one character in the local character set.

char cTest = '2';

In C, character constants are written in single quotes

2.2.3 Single and double precision floating point numbers

A floating point variable stores a real number.

float is a single precision floating point number
double is a double precision floating point number
long double is an extra precision floating point number

float fValue;
double dValue;
long double ldValue;

N.B. A floating point number on a workstation may be held to a greater precision than
on a PC. The accuracy for the compiler is defined in limits . h and float.h.

long double ld;

2.2.4 Storage classes- auto (default), static, const

I I

10 Chksideftincfionsdeclarafionsare suhc i.e. they are creged when the prognimris firg

10
run and exist unfit it ends. Placings tat ic in front of such a variableor function
prevents access to it from outside the file it is declared in.

10
/* Global declaration, cannot be accessed outside file */

10 static int _nValue;

10
static int LocalFunction();

10
Placing extern in front of a global variable name means that the declarationis defined
elsewhere. Variables are often declared as extern in header files anddeclared in source
files,

extern int _nValue;

10 Inside a function or block, variablesare automatic by default. Theyare created when
the function or block is entered and are discarded upon exit. Declaringa variabk as
static inside a block means that it retains its value between calls to the function. LE.
only one copy odsts.

•
int Random()

Returns a pseudo random number

int Random()

static int nRandom;

nRandom *= 13977;
nRandom += 8294;

return nRandom;
);

Nb. The meaning of static varies dependingon where it is applied. Expficithideclaring
an automatic variable (i.e, one insidea function) as static causes it to mtain its
value. Explidtly declaring a suhc variable (i.e. one outside a functkm)as static

prevents access to it from other files.

The quahfier const can be apphed to the dedarauon of anyvariable to indicate that its
value will not be changed. For an array, the const qualifier specifiesthat the elements
will not be altered.

const double dE = 2.71828182845905;
const char sMsg[) = "warning: ";

•
2.2.5 Variable naming conventions

Derivative of the Hungarian namingconvention
•

Using prefixes on variable names to indicate their type makes code considerablyeasier
to understand. It also makes thinkingup variable names much easier!

12

•

•
•

TYPE PREFIX DECLARATION

integer (16 bit) n im

integer (32 bit) I long

unsigned integer u unsigned int
floating point number f float

double precision floating point d double
number
character c char

string s char []

boolean b int
pointer p *
index i im

array a
[]

•
It is convention in C to have variable names in small letters with a capital letter starting
each word.

int nRiverLocationID;
char sOperatorName(20);•
2.2.6 Constants

The type of a constant is determined as follows:

•
Numbers without a decimal place are assumed to be of type integer:
1234 im

Numbers with decimal places are of type double:
123.4 double

A u or an 1 appended to the number indicates unsigned and/or long
An f indicates the number is single precision floating point

•
125.61 is a long double

Hexadecimal numbers are preceded by Ox

OxFFFF

Character constant are in single quotes

•

13

•

int* pnTree; /* Pointer to an integer */
char sRiver[MAXLEN]; /* Array of characters */

When naming variables try and make them as meaningful as possible without making
them excessively long so they become cumbersome or so abbreviated that they
becoming meaningless acronyms.

'z'

String constants are in double quotes

"Nello\n";

These have a null character appended to the end, so the above string would require
seven bytes to store -HELLO being five, one for the new line character and one for
the null character. A function to retrieve the length of the string would however return
six.

Therefore "e and 'z' are two different things.

The escape characters in C are:

•
\ a (bell) \ \ backslash

II v3backspace \ ? question mark

\ f formfeed \ • single quote

\n newline \ " double quote

\ r carriage return \ o null character
\ t. horizontal tab \ 000 octal number

5 \v vertical tab \ xhti hex number

III enumerations

These are a list of constant integer values which are assigned names:

• enum boolean (FALSE,TRUE);

By default enumerations start at zero so FALSE would be 0 and TRUE I.

•
enum months (JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT,
NOV, DEC);

This would allow JAN to be used in place of the number 1 making code much more
meaningful.

if (nMonth == JAN)

nDays = 31;I;
These are usually placed at the top of a source file.

2.2.7 Initialisation

A variable may be initialised in its declaration

• static double fPI = 3.1415927;
int nValue = 5;

•

14

•

•
Variables are initialised when they are created. Therefore static variables inside a
function are initialised once only when the program is first run. Automatic variables
are initialised each time the function is called.

•
A variable does not have to be initialised. Static variables are initialised to zero.
The value of an uninitialised automatic variable is undefined It is therefore good
practice to initialise variables.

•

2.3 Operators

2.3.1 Numeric Operators

C supports the following numerical operators:

Binary operators:

•
+ addition
- subtraction

multiplication
/ division
%modulus (remainder!)

Precedence rules are as for mathematics:

41

41

41

•

int nA = 7;
int nB = 12;
int nC;

5+2'7 ==19;
nC = nA • nB;

/* TRUE 4 /

When using constants in mathematical equations it is often preferable to define them at
the top of a file

41 #define PI 3.1415927

41 int GetArea(float fRadius)

return PI fRadius * fRadius;
);

41
2.3.2 Relational Operators

•

Relational operators are used to determine if conditions are true or false. Nb. In C the
equality operator is ==

•
It is a common mistake to use the assignment operator in the place of the equality
operator.

•
Relational operators return I if successful and 0 if unsuccessful.

•

Other operators include the:
inequality operator =
greater than >
less than <
less than or equal to <=
greater than or equal to >=

Several conditions may be combined together using logical operators:
is& logical AND

I I logical OR
logical NOT

if (a <= b && b != 0)

•
1

Care should be made not to confuse these with the bitwise operators.

Nb. That floating point numbers should never be compared directly for equality. This
is because rounding errors may have occurred in calculations. It is standard to
compare their difference to a fixed value.

IP #definePRECISION0.00001

if (fabs(fl-f2)< PRECISION)

•

2.3.3 Assignment operators

•
An assignment causes the variable on the left hand side of the argument to take the
value on the right hand side

a =•
Assignment can be made between variables which are both numeric, both pointers or
both structures [See 2.3.6 for type conversion rules]

The assignment operator may be combined with binary operators.

ID n = n • 5; /4 Equivalentfunctionality*/
n •= 5;

ID
C contains many such abbreviations of syntax, it is important however to make sure
that the code still remains readable.

2.3.4 Increment and Decrement Operators

The increment operator increases the value of the operand by one

16

•
•

int n = 5;
n++;
/* n now has the value 6 */

The operator may be prefix or postfix. If it is prefix then the value is increment first,
then used. Otherwise it is used and then incremented.

•

int n = 5;
a = n++; /* a is set to 5, n becomes 6 */

int n = 5;
a = ++n; /* n become 6, n is set to 6 */

As this can lead to confusion it is often best to avoid this feature.
•

The decrement operator works likewise.

n--;

2.3.5 Bitwise operations

Bitwise operators work on char, int and long values, signed or unsigned.

•
The operators are:•
& bitwise AND
I bitwise OR

bitwise exclusive OR
« left shift
>> right shift
- one's complement

•

For example the binary value 01101101 ANDed with
00001111 would return

00001101

The main use of this is for setting and identifying the state of individual bytes
•

#define SHOW_BORDER Ox0001

40 lidefine SHOW_TITLE 0x0002
Yclefine SHOW_LEGEND 0x0004
Ifclefine SHOW_THICKLINES Ox0008
Ildefine SHOW PATTERNEDLINES Ox0010

1- Create flag '1/

wFlag = SHOW_BORDER I SHOW_TITLE I SHOW_LEGEND;

/- Check for flag */

if (wFlag & SHOW_TITLE)

t....../

17

2.3.6 Type Conversions

When an operator has operands of different types, they are convened to a common
type. Automatic conversions are those that convert data without lossof data.

int n = 5;
double d = n; /* Conversion int to double */

A cast can be used to explicitly convert a value from one type to another. This feature
can be abused and should therefore be used with caution

double d = 5.6;
int n = (int)d; /* n = 5 */

Nb. The cast doesn't change the value of the argument it is applied to

2.4 Conditional program execution

2.4.1 if, else statement

An if statement tests the parenthesised condition, and if the condition is true (non-
zero), executes the following statement. An if statement may have an optional else

statement which is executed if the condition is false (zero).

/* Allocate memory */

np = (int *)malloc(size);

/* If memory allocated successfully then set first value */

if (np != NULL)

*np = 5;
else

printf("Unable to allocate memory\n");

f statements may be nested:

if (condition)

else if (condition)

else

if (condition)

if (condition)

else

18

The parenthesis after if statements are not compulsory but without them nested
statements may be ambiguous

2.4.2 switch, case, default

The switch statement testswhether an expressionmatchesone of a number of
constant integer values.

enum (TYPE_TSGRAPH, TYPE_TSTABLE, TYPE DPGRAPH);

/* */

switch (iType)
{

case TYPE TSGRAPH :

DrawTSGraph();
break;

1

case TYPE TSTABLE :

DrawTSTable();
break;

case TYPE DPGRAPH :

DrawDPGraph();
break;

1

default :

printf("Type not supported\n");
1;

The default operation is executed if no match is found

The break statement causes the program to leave the switch loop after the match is
found otherwise the default statement would always be executed aswell as any match

More than one case may be matched to a statement:

switch (cInput)

case '(2t: case 'X' :

bExitProgram = TRUE;
break;

1

19

•

•

2.5Loopsanditeration
•

2.5.1 while loop

A whi e statement implements a conditional loop. There are two forms of the while
loop.

•
The first tests the condition before the loop is first entered, if the condition is true then
the loop is entered. It is re-tested when the body of the loop has executed. If true the
body is re-executed. This continues until the test becomes false.

•
POSITION pos = GetHeadPosition(list);
while (pos != NULL)

value = GetNext(list, pos);
1;

•
The alternative is the do-while loop. In this case the condition is first tested after the
loop has been executed once [This is equivalent to repeat until in BASIC].

do

statements;
/while (condition)

2.5.2 for loop
•

Conventionally the for loop is used to repeat a loop a predetermined number of times
with an index.

IP
int i;
for (i = 0; i < 100; i++)
1

ID statements;

•
This cause the loop to be repeated 100 times. The value of 'i will be start at 0 and be
incremented each time the loop is executed On the last iteration of the loop it will
have the value 99. The value of i will be 100 upon exiting the loop

•

The for loop continues whilst the condition is true. A commonmistake is to test for
the end condition.

•
To increment in stages of 2, i++ would be replaced with i += 2

The following for and while statements are equivalent.
•

for (initialise; condition; statement)
411

I. ./
ID

initialise;
while(condition)

IP

20

1-..../
statement;

•
Although for loops may be used for purposes other than predetermined increments, it
is usually more readable to use a while loop.

3 FunctionsandProgramStructure

3.1 Functions

3.1.1 Declaring functions

A function provides a convenient way to encapsulate some computation. In other
words they hide the implementation of a process replacing it with a description of what
is to be done.

A C function is based on a mathematical function. It has parameters and a return
value.

f(x) = x2

f(5)

•
[Nb. However that C is an imperative language. Functions in C are not pure functions,
they can have side effects they can change values outside the scope of the function.
Also the values of variables inside the function can change]

•

The standard function pow(double x, double y) returns the value of x to the
power y We are not interested in how it is implemented, just how to use it. This is
defined in the standard library math.h

dValue = pow(5,3);

The following example shows a typical function implementation:

typedef int BOOL;
enum (FALSE, TRUE);
enum (JAN=1,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC);
int anMonthLen[] = (0,31,28,31,30,31,30,31,31,30,31,30,31);

40

int IsDateValid(int nYear, int nMonth, int nDay)

* Function for testing the validity of date arguments.

* Returns 1 if the date is valid e.g. 22/1/1995 and 0 if it is
invalid e.g. 29/2/1981

ID
*/

int IsDateValid(int nYear, int nMonth, int nDay)

•

21

•

•
•

BOOL bValid = TRUE;

/* Ensure the month number is between 1 and 12 */

if(nMonth < JAN II nMonth > DEC)

bValid = FALSE;

•
/* If the month is February calculate the number of days in the

IO . month for this year */ '

II if(bValid a& nMonth == FEB)
(

II if (IsLeapYear(nYear))
(

anMonthLen(2) = 29;
) else

anMonthLen(2) = 28;
1

/.Ensure that the day number does not exceed the maximum number
4 of days in the month */

if(bValid && nDay < 1 II nDay > _anMonthLen[nMonth])

bValid = FALSE;
) else
f

bValid = TRUE;

return bValid;

. int IsLeapYear(int nYear)

. Returns non-zero if the given year is a leap year, zero otherwise

•
BOOL IsLeapYear(int nYear)

41
return !(nYear % 4) a& ((nYear % 100) II (!(nYear % 400)));

1;

Functions are also used to provide a way of reducing repetitions of similar pieces of
code. If a program performs the same or similar function in more than one place in a
program then using a function can reduce the repetition.

3.1.2 Function Return Values

The value of a function is its return value. It is often a good idea to return 1 if

successful and o if unsuccessful. These.can be defined to TRUE and FALSE.
•

•

22

•

10

enum {FALSE, TRUE);

This will allow the return value to be checked using boolean operations:

10 if (bPrinter && IsPrint())

10 printf("printed successfully");

10
A program should always have a single return statement at the bottom of the function.
This will make the code easier to follow and ensure that any files that are opened or
memory allocated are released at the end.

This can be achieved by setting a boolean flag at the start of the function to TRUE. If
an error occurs in the function the flag is set to FALSE and no more processing occurs.
The de-initialisation functions are still called at the end. The boolcan value is then
returned.

int IsReadFile()

int bOK = TRUE;

/* Open file */

FILE* pFile = fopen("filename","r");

if (pFile == NULL)

60K = FALSE;

/* Process data */

if (60K)

IP

/* Tidy up •/

if (pFile != NULL)

ID
fclose(pFile);

110
return 60K;
1;

•
Nb. The test that the file was opened successfully before a call is made to close it.

3.1.3 Recursive Functions

Recursion is a very powerful facility which allows something to be defined in terms of

itself In C a function may call itself directly or indirectly.

int factorial(int n)

if (n > 0)

•

23

•

•
•

return factorial(n-1);

10)else

return 1;

•
This is particularly useful for certain structures which are recursive in their definition
such as lists and trees.

3.1.4 Command line argument

When calling a C program from the command line, it is possible to append arguments
after it. For example the command cd (change directory) takes the name of the
directory as an argument

•
In C, the functions main retrieves two optional parameters, the first being the number
of command line arguments, the second being an array of pointers to the arguments.
The first argument, number zero, is the name of the program itself, therefore there will
always be at least one argument.

main(int nArgCount, char *apsArgs())

char sFileName[MAXFILELENGTH];
int handle;
char ch;

GetFileName(sFileName);

) else

strcpy(filename,apsArgs[1));
);

•
/* */

;

3.1.5 Variable length arguments

When declaring functions it is possible to append three full stops ... as the last
argument to allow any number of arguments for the function.

This is used in standard library functions such as printf and scanf

/* Declaration*/

int fprintf(FILE* stream, const char *format, ...);

24

•

/* If no file name is supplied is supplied then request the user for
.one otherwise use the argument supplied

1
ID

if (nArgCount == 1)

ID

•

/* Call to functions"/

fprintf(pFile,"%s",sName);

Although apparently usefid this suffers from the problem of no type checking and
should be avoided if at all possible.

[This means that it is possible to inadvertently access memory outside the current
scope without warning]

3.2 Program Structure

3.2.1 Scope rules
10

The functions and external variables that make up a C program may split over several
files.

The scope of a name is the part of the program within which the namecan be used.
For the purposes of good program structure, the scope of names should be restricted
as far as possible. This is because the greater the availability of a function or variable,
the more complex the potential interactions between different parts of the program.

•
[Object-oriented languages such as C++, are built around the concept of encapsulation
of data and fiinctions - i.e limiting scope]

The scope rules are as follows:

•
The scope of an external variable [i.e. one outside a function] lasts from the point at
which it is declared to the end of the file.

If an external variable is defined in a different source file or it is to be referred to before
it is defined then an extern declaration must be made. This states that a variable of this
type and name is declared elsewhere.

•
externint_nuserID;

•
Variables declared inside a block cannot be seen outside.

•
int func()

•
int nValue;

•

External variables and fimctions declared as static may not be accessed from outside
the file in which they are declared.

•
Functions ire global unless they are declared as static.

staticint LocalFunction();
•

40 25

•

•

•

[See 2.2.4]

3.2.2 Block structure

A block defines a section of code, it usually follows a control statement e.g. for,if,

while or a function.

Using spaces instead of tabs, resolves problem of changing editors, three spaces
indentation is recommended

Align matching braces vertically and with start of control statement

if (/•	 */)

while (/*....*/)

Avoid a single line following a control statement. It is a common mistake to add
another line and forget to add the braces.

• for (int i = 0; i < 5; an(i++1=0); I* AVOID*/

for (int i =0; i < 5; i++) /*AVOID*/
an(i++];

•
for (int i = 0; i < 5; i++) Pe OKAY*/

•
an(i) = 0;

•

Variables may be declared as local to a block.

3.2.3 Header files

These files contain information which is to be shared by several source files. Their
name is usually appended with an 'h e.g. "test.h". They contain function prototypes
for functions which are declared in one source file and used in an another. Data

structures may be declared in a header file. Also shared constant defintions are
declared in header files. Global variables are also declared

•

[Variables must be declared as extern otherwise if the header file is included by
more than source file then the same variable would be defined by more than one place].

•
Header files are included into a source file using a #includecommand.

•
lanclude"test.h"

•
This should be thought of as the statement itinclude"test.h" being replaced by the
contents of the file test. h at compile time.

•

•

26

•

Copyright (c) 1992 Institute of Hydrology

Project
File
Author
Date

Abstract

: SWIPS•
: SWIPS.H
: Richard Alexander
: 26th December 1992

Main Include file for SWIPS.

#ifndef SWIPS H
#define —SWIPS—H—_ _ _

#include <windows.h>

/* Declared in SWP INIT.0

extern char _far szSysPath[];
extern char _far szSysIni[];

/* Declared in SWIPS.0
4 /

extern HANDLE hAccel;
extern HWND hWndMDIClient;
extern HWND hInst;
extern ffWNDhWndMain;

/* Help types
*/

#define HLP_NEWPROJECT 0
#define HLP_OPENPROJECT 1
#define HLP_IMPORT 2
#define HLP EXPORT 3_

/4 Initialisation file */

/* resource handle of accelerators */
/4 handle of MDI Client window */
/4 Program instance */
/* Handle of main window */

/4 Global initialisation functions
•

int InitialiseMenu(void);
int InitialiseVariables(BOOL bStartup);

/* END OF SWIPS.H
*/

#endif

The statement #define identifier substitution-text declaresa macro.
Whenever identifieris found it is replaced by the substitution text. This is a poweful
facilitywhich should be used carefullyas there is no syntaxchecking. Enumerations
should be used in preference where possible.

Include filesmay themselves include further files. To prevent an infiniterecursion of
files includingeach other, at the top of file the line #i fndef NAME checks that a
unique name has not already been defined. If it has not, it is defined,and the rest of

27

•
the file is included. The corresponding #endi f is placed at the bottom of the include
file.

•

3.2.4 Comments!!

Why Use Comments

Programming languages describe the process required to perform a function - HOW
The purpose of a comment is to describe in English WHAT the function does

Guidelines

Write the comments BEFORE writing the proceeding code. This will focus the mind
on what you are about to write, also the I'll add the comments afterwards attitude
usually results in no comments.

•
Comments form documentation of code. Descriptions of functions should allow
another user to use the function without having to examine the source code to see how
it is implemented.

•

C Comments

The ANSI standard C comment is delimited by R and ./

File headers

•
Should contain a copyright message, the date written, the author and the file name, an
abstract describing the contents of the file and also an edit history of changes since the
file was first written

creading.cpp Implementation file for class storing readings

.Copyright (c) 1994 Institute of Hydrology
Author: Richard Alexander.Date: 2nd June 1994

.Edit History

3/5/95 RDA Changed so that time series data grouped into years of
ID data rather than days

*/
IP

Function headers

Should describe the use of the procedure (as opposed to its implementation) and
describe the parameters and whether they are supplied, returned or both. They should
also describe the return value.

* int GetSigFigs(double dValue)

* Determines the number of significant figures that a value should
be displayed to

•

28

•

•
•

E.g. 140.5 would return the value 4

Arguments

10 • double dValue
o The value for which the number of characters is

required.

10 * Returns the number of significant figures required to display the
value

*,

Code

Should be divided into blocks with a comment describing WHAT eachblock does and
if necessary how it works.

1*Clear the current contents of the clipboard, and set
the data handle to the new string.

ID */

IP if (OpenClipboard())

40 EmptyClipboard();
SetClipboardData(CF_TEXT, hData);
CloseClipboard();

41
3.2.5 Defensive Programming

Although it appears to be extra work, adding additional code in casethings go wrong
(and they will!) will save time in the long run.

•

An assert function asserts that a statement is correct. If an assertion is false then a
message appears on the screen indicating where the assertion has failed, making
debugging much easier.

Compilers often have the option of compiling in debug or release mode. A program
compiled in debug mode will allow the programmer to step through the code at run
time user a debugging tool, it will also enable assertions and allow the programmers to
place code which only exists in the debug version.

#include <assert.h>
•

double CalculateMean(double dTotal, int nValues)
IP

double dMean;

IP
/* Calculate mean value, ensure that the number of values is not

IP * zero. Nb. This is one of the few cases when using an
* (in)equality operator on a floating point number is acceptable
*/

if (nValues != 0)
IP

dMean = dTotal/nValues;

411

29

•

ID

41

1 else

111 dMean = 0;
assert(0); /* Always display assertion*/

•
return dMean;

Other checks include always asserting that pointers passed as parameters are not NULL.

int GetIndex(int* pValues, int nValue)

assert(pValues != NULL);
/* ...*/

When allocating memory or opening or writing to a file, always check that the
operation was successful.

[C-I-1-exception handling makes this much easier!]

When freeing memory or closing files check that the file was actually open.

[See return values for example 3.1 2]

Additional code may be added to check that a function has worked in the debug
version. E.G. If a function sorts a list then check thc list is sorted. Compilers may
define a macro such as _DEBUG indicating if a program is compiled in debug mode.

•
int SortList(char* aList(), int nLength)

int i;
/* sort list*/

#ifdef DEBUG
ID /. chck sort suCcessfully 4/

for (i = 0; i < nLength-1; i++)

41 assert(aList(i) < aList(i+1);

gendif
ID 1;

• Once a program has been developed, it will be compiled using release mode. This will
allow compiler optimisations making the code run faster, remove debug information
making it smaller, it will also remove all assertions and debug code

•

IP AlArrays,structures and pointers

4.1 Arrays
IP

4.1.1 Declaring and accessing
IP

ID

ID 30

411

An array is an indexed list of values of the same type. In C, arrays areof fixed size
unless they are declared dynamically [see 4.2.6].

The declaration of an array consists of the type of the values, followed by the name of
the array with the size of the array in square brackets.

•
int anValues[20];

The array size must be a constant value.
•

Arrays may be initialised with a list of constant values inside curly braces

Int anValues[201 = (5,7,9,12,15);

Any values which are not assigned a value will be set to zero. [The values contained in
unitialised, automatically declared arrays is undefined]

•

Arrays are accessed using an index to the value required. Indexes arealways based on
zero so an array of twenty values has indices from 0 to 19

•
for (1 = 0; i < 20; I++)

nTotal = nTotal anValues[i];
1;

Only one value within an array may be accessed at a time.

4.1.2 Arrays of characters•
Strings are defined as arrays of characters

char sName[32];

It is important to ensure that the string length is sufficient to hold the possible values.
C has no run-time array bounds checking [although some compilers have the option to
implement this] therefore it is even more important within the code to ensure the end
of the array is not overrun.

Arrays of characters may be initialised with string constants.

char sInitia1isationFile[] = "test.ini";

In this case the empty square brackets indicate that the size of the array will be
calculated by the compiler.

Entire arrays cannot be assigned

sInitialisationFile = "test.ini"; /* WRONG !! /

•
31

•

A standard library of functions exists <string.h> for manipulating strings. The
function st rcpy copies the contents of one string into another.

strcpy(sIntialisationFile,"test.ini");

Formatted input/output functions sscanf and sprintf also exist for strings. [See 5.2]

The length of strings can be determined by searching for a null terminator character.
When writing into a string array, the length of the array is usually passedas an
argument

4.1.3 Multidimensional

•
Arrays may be declared to any dimension. These are rectangular.

•
char sD8Extensions[10][4] =

"RAW","EQU","CAL","FGN","DTH","LOG","PRJ","LOC","CVL","RFL"
;

In this case the first value specifies the number of strings, the second the length of each
string. The value of four for the string length allows for a null terminator.

•

The size of both dimensions of the array must be specified.

Accessing a multidimensional array is as follows:

sDBExtension[1][0] == 'E'; /* TRUE */

A multidimensional array should be thought of as an array of arrays. The following
example indexes the second sub-array. It uses a library function strati')to compare
two strings. This returns zero if the two strings are the same.

•
strcmp(sDBExtension(1],"EQU") == 0; /* TRUE */

•
[Many standard library functions return zero if successful, this is counter-intuitive
being the boolean value FALSE. It is a hangover from UNIX, caution is therefore
necessary when using return values from library functions.]

Multidemensional arrays can be initialised using sublevels of curly braces:

int an[3][2] = ((2,3),(4,3),(2,1));

4.1.4 Passing as arguments

Arrays are passed by address in C. This means that instead of a copy of the array
being passed, like other arguments, it is the original array that can be changed directly.
This is for reasons of efficiency as arrays can be very large.

41
int a[10];
func(a);

•

32

•

•
ID int func(intMO])

ID a[0] = 5; /* Modify originalarray directly*I
1;

The size of the array does not have to be specifiedfor the last dimension. Since there
is no checking that the size of the array passed as an argument and thatof the fiunction
parameter match, it is sensibleto not to specify the length of the arrayand to pass it as
an argument.

•
int a(5];
func(a,sizeof(a)/sizeof(int));

int func(intal[], int n)

•

The s zeoffunction determines the size of an object in bytes. Dividingby the size of
each element in the array determines the number of elements in the array. It is sensible
to use the sizeof function rather than specify the actual size twice as this ensures
consistency.

•
The sizeof function cannot be used on the parameter of the functionto determine the
length of the array. This is because arrays are passed by address, thesize of parameter
al is the size of the address.

In many cases, it arrays it is more intuitive to manipulated arrays insidefunctions using
pointers.

•
long al[50];
func(a1);

void func(long*pl)

while (*pl != -999)

•

••

Since arrays are reference by address, the name of the array is thereforeequivalent to
its address.

•
sa == a; /* TRUE */

•
To pass an array by value, it must be placed inside a structure. [See4.3]

•

For multi-dimensionalarrays, only the last dimensionmay not be specified The other
dimensionshould match.

int a[5][10];

IP func(a);

void func(inta[5](1)
411

•

33

•

•
•

;
•
•
•

4.2 Pointers

4.2.1 Purpose

•

•

•

•

•
Intn;
int*pn = am;

•

•

•

•

••••••
Intan[5];

•
•
•
•

pn++;
pn =pn+5;

•

•

•

Since an array is passed by address, an array cannot be returned directly from a
function unless it is placed in a structure. Normally arrays modified in a function are
declared in the calling function.

A pointer is a variable that contains the address of a variable. They allow access to
dynamically allocated memory and are useful for manipulating arrays

4.2.2 Declaration

The value of a pointer is an address

The type of a pointer is 'pointer to' the type of value it
holds the address of (points to). The above example
declares a pointer to integer an integer value.

4.2.3 Operations

The value a pointer points to is accessed using an
asterisk

J
Pointers to arrays or dynamically allocated memory may be
accessed using array indices

/*Nb. theaddress(6)operatorisnotrequiredas arraysare
alwaysreferredtoby theiraddress

pn = an;

an(2)= 5;

The address of pointers may be modified

34

•
The main use of this is when searching through an array.

char sName() = "Hello there!";
char* pc = sName;

/* Search for a space */
ID

while (*pc != I ' && *pc !=

pc++;•
Nb. The declaration of a pointer int* p (or int •p) should be distinguished from the
accessing of the value a pointer points to *p.

4.2.4 NULL Pointer

The NULL pointer is defined in s tdi o . h . Pointers may be assigned to NULL to
indicate that they do not point to anything. Functions often return NULL as an error
value.

•
4.2.5 Passing as arguments

It is often desirable to modify the values of arguments to functions. Since arguments
are passed by value (i.e. copies are passed) by default, to modify the original it is
necessary to pass a pointer to it.

void swap(int *pnA,int *pnB)
SWAPpnA

int nTemp = pnA;
*pnA = *pnB;
*pnB = nTemp; "BI

int nl = 5;

	

1 5
int n2 = 6;

n

swap (6nl,6n2);

n2
In this example the values nl and n2 are to be
swapped. The fi.inction swap must therefore
change the actual values rather than copies of
them. This is done through pointers.

•
4.2.6 Dynamic memory allocation

•

It isn't always possible or desirable to determine the size or number of arrays or
structures at compile time. This is where dynamic memory allocation is used. This
feature allows a specific size block of memory to be obtained.

Memory allocated is manipulated through a pointer. A cast is necessary to convert the
data to the correct type.

35

•

plValues = (long*)malloc(nValues"sizeof(long));

This allocates a block of memory large enough to hold n values of size long . These

values can now be accessed as for an ordinary array.

41 for (i = 0; i < nValues; i++)
(

plValues[0] = 0;

malloc allocates unitialised memory of a specific size. It returns NULL if unable to
allocate the memory.

calloc allocates memory initialised to zero and takes the two arguments, the size of
each element and the number of elements.

•

Always check that memory was allocated successfully before using it

Memory allocated with malloc or calloc persists until a call is madeto release it
using free. Therefore every call to allocate memory must have a corresponding call
to release it.

if (plValues != NULL)

free(plValues);
I ;

•
4.2.7 Functionpointers

•

Function pointers allow the function to be called to be determined at runtime. The
alternative to this is to have a switch statement with all the alternative functions to be
called.

The capability of detemining functions at run-time is potentially very powerful.
exploits this in a type safe format with virtual functions. In C, function pointers are
used infrequently.

•

4. 3 Structures

4.3.1 Purpose

A structure is a collection of one or more variables, possibly of different types. They
enable related data to be grouped together. For example personal details such as
name, address and phone numbers could be grouped into one entity.

4.3.2 Declaringand assigning

A structure definition contains an optional name (the structure tag) and a list of
members with types.

36

•

IP struct DETAILS

char sName[20];
int nAge;
char sAddress[50);

);

A variable may be declared of this type, either by placing the names immediately after
the type definition, in which case the structure tag is optional:

struct

char sName[20);
int nAge;
char sAddress[501;

) detailsl, details2;

If a tag is supplied then the instances may be declared thus:

struct DETAILS detailsl, details2;

Structure variables may be initialised at declaration:

• struct DETAILS fred = ("Fred",55,"37 T Lane");

Individual members are accessed using the " . " operator.

111
details.nAge = 5;

Entire structures may be assigned, they may also be passed as arguments and returned
from functions

•
Structures may be placed inside arrays and arrays inside structures Dynamically
allocated memory may be cast to the size of a structure.

Since structures may be quite large, they are often passed as arguments to functions by
address. Structure members are accessed through a pointer to the structure using to
-> operator.

func(adetails1);

•
int func(struct DETAILS' pDetails)

• pDetails->nAge = 10;
1;

4.3.3 Typeder

The facility allows the creation of new data type names.
•

typedef int BOOL;

41 BOOL bAccept;

11

IP

IP 37

When used with structures this removes the need to precede the nameof every
declaration of a structure with the word st ruct.

typedef

int nDay;
int nMonth;
int nYear;

) DATE;

typedef struct

long lSite;
DATE date;
int nReadings;
double fReadings(50);

) READING;

READING reading;

4.4 Unions

4.4.1 Purpose

A unlon is a variable that may hold objects of different type and sizesat different
times. They provide a way to manipulatedifferent kinds of data in a single area of
storage. It allows a single variable to hold any one of several types

•

4.4.2 Declaring and assigning

A union is declared thus.

union u_tag

int nVal;
float fVal;
char *pcVal;

) u;

The variable u willbe large enough to hold the largest of the three types.

u.nVal = 5;

• Care must obviouslytaken to ensure that if a value of one type is stored in a union then
it is retrieved as a variableof the same type. Unions may be placed inside structures
which could have a flag indicating the type of the value stored.

•
The exception to this is where unions are used to convert data fromone type to
another.

union lxb

long lu; /* The long */
unsigned char bu(4); /* The bytes *1

) lxb;

•
38

•

ID

41
lxb.bu(0) =
lxb.bu(1) =
/*• */

IP
long 1 = lxb.lu;

ID
Like structures, unions may be assigned and passed as arguments.

•

5 Standard Libraries•

5.1 Input Output

5.1.1 Standard I/0 and Streams

C uses streams for input and output. There are three built in streams:•
stdout - output to the screen
stdin - input from the keyboard
stderr - error output to the screen

These may be redirected when the program is run so that, for example, output goes to
a file. This is operating system dependant

•
c:\> test > output.txt

•

C has many functions for manipulating streams defined in stdio.n These allow the
retrieval and output of characters and strings to and from streams.

fgetc(FILE *pStream); /* Get a character from a stream */
fgets(char *ps, int n, FILE *pStream); /* Get a string */

41 fputc(int c, FILE* pStream); /* Output a character to a stream */
fputs(const char *ps, FILE* pStream) /* Output a string */

IP fprintf(FILE* pStream, const char *psFormat, ...);
fscanf(FILE* pStream, const char* psFormat, ...);

IP
Functions also exist for output directly to staout and reading directly from stain.
These are equivalent to passing stdin or stdout as arguments to the above functions.

fprintf(stdout,"Hello\n"); /* is equivalent to */
printf("Hello\n");

5.1.2 Formatted Output

The output function printf translates internal values into characters

int printf(char *pFormat, ...);

printf converts, formats and prints its arguments on the standard output under the
control of the format string. It returns the number of characters printed.

39

Ordinary characters in the format statement are printed straight out

•
Conversion specifications begin with a % and end with a conversion character.

41
mlags][width][.precision] ((hillItype

41
Flags are:

•

left adjustments
always print sign

space if no sign prefix with space
0 pad with leading zeros•
width minimum field width
precision maximum characters for string

number of decimal places for float
maximum number of digits for int

h short
long

The conversion characters are:
•

d,i int
o octal
x hex

unsigned iM
char
char *
double
double (exponential)
% character

ID	 void OutputTime(TIME •pTime)
{

printf("802:u%02u",pTime->uHours,pTime->uMinutes);
l;

This example displays the time as 09:34 where the hours and minutes field are at least
two characters wide and padded with leading zeros if necessary.

•
The number and type of arguments are determined from the format If these do not
match the argument supplied, no compiler error is given

•
5.1.3 Formatted Input

•

scanf reads characters from the standard input, interprets them according to their
format specifications and stores the results in the remaining arguments.

•

•

40

•

It returns the number of successfully matched and assigned input items. EOF is
returned if the end of file was met

int scanf(char* pFormat, ...);

The arguments must be pointers as the values are to be returned.

In the format specification, blanks and tabs are ignored. Ordinary characters must
match the next non-white characters in the input stream.

•
%I*1(width)((h11)1type

•
assignment suppression

width maximum number of characters to be read in
h short

0 1 long

0 The types available are:

• int •
int • (may be octal or hex)

o int • (octal)
u	 unsigned im •

int • (hex)
char * (character)
char * (string)
float *

p. Input a date delimited by any character e.g. 05/07/1992 */

if (sscanf(szDate,"%usik*cifu%*cliu",auDay,&uMonth, &Year) != 3))

printf("Invalid date");

•
Nb. The it is the address of the arguments uDay,uMonth and uYear which is passed to
the function as values are to be returned.

5.1.4 File Access

•
Streams are opened using the fopen command. The first argument gives the file name,
the second the mode - whether it is being opened for reading/writing.

N.B. Since the backslash character has special meaning in C it must be quoted This
does not affect UNIX path names.

FILE *pOpen = fopen("\\tmp\\test.out","w");

The function returns a pointer to NULL if the file cannot be opened.

Modes available are:

41

•

•

"r" open fbr reading
.w" open for wrifing
"a" append, open file fbr mmiting to end

A + symbol e.g. "a+" indicates the file should be opened for reading and writing. A
call to fflush must be made before switching mode. It is unusual to open files for
both reading and wrifing at the same time.

A b character as part of the mode e.g. "rb" opens the file in binary mode. This causes
no conversions to be made to the file upon opening. Under DOS on, opening a file in
text mode all newline characters are prefixed with a linefeed character. Upon closing a
o s file in text mode the newline characters are removed.

Streams must be closed (except built in ones) before exiting the program.

if (pFile != NULL)

fclose(pFile);

5. 2 String functions

5.2.1 Using

Strings may be manipulated using sprintf and scanf.

int StringAsDate(char 'psDate, DATE •pDate)
(

BOOL bOK = TRUE;

/- Retrieve date from string +1

if (sscanf(psDate,"%u%'c%ulis*c%u",
apDate->uDay, apDate->uMonth, 6pDate->uYear) 1= 3)

bOK = FALSE;
) else

/. Ensure date is valid */

if (IsValidDate(pDate) == FALSE)
{

bOK = FALSE;

return bOK;
);

:standu d library also exists s t ring .h fbr handfing null temninated !strings.

strcpy copies one string into another
strcat appends one string to the end of another

42

• Variants of these st rncpy and st rncat take the length of the destination string as an
argument. This is safer and should be used in preference.

strcmp compares two strings and returns
0 if they are equal,
<0 if the first comes before the second in the alphabet and
> 0 otherwise

•

strlen returns the length of the string excluding the null terminating character

When using strings, always ensure that the array is sufficiently large to hold the result.

6 Compiling under UNIX

The C compiler on the Silicon graphics is an ANSI standard compiler.

The UNIX compiler is called cc.

•
The compiler on the SUNS is non-standard. The GNU C compiler is available
however and this is standard. To use GNU compiler on the SUN workstations, first
type 'SETUP GCC' then use `gcc' instead of 'cc'

•

The cc command also links the files. To compile a number of source files type:

cc file I.c file2.c

By default the UNIX compiler creates an output file called a.out This can be
overridden by using the -o option.

•

cc -o name.out filel .c file2 c

7 Common mistakes in C
•

These are examples of mistakes everyone makes in C, they are very difficult spot even
by an experienced programmer so be aware of them.

•

Some of these are picked up by the compiler but may give misleading error messages.
Others aren't.

1 Semicolon at the end of for statement means that the loo is onl executed once.

int i;
int a = 0;
for (i = 0; i < 5; i++);

a++;

•

•

43

•

2 Assi nment o erator instead of e ualit

if (a = b)

10 1* */

3 Missed off call to function with no ar ments.

I/ BOOL _bValid = TRUE;

10
int IsValid()

return _bValid;
10

if (IsValid)

10

4 #definesaneatextualsubsfitutionshoukibe#defioe I 7withnosemicolon

#define 1=7
#define I 7;

•

5 Missin semicolon corn iler tries to make 'int' an instance of the struct.
•

struct INTEX;

int i;

41 int nValue;

6 Returnin a ointer to arra which is destro ed on return from function

char *GetString()

char sString[10] = "Hello";
return sString;

7 Not asgn addressofscanfsecondar nnent not assin valueto rintfsecond
ID argiment

scanf("%i",nValue); /* should be 6nValue */
printf("Bi",anValue); /* should be nValue */

IP
8 Cannotassinldirectl to agrin

ID char s[20];
s = "Hello"; /* WRONG*I

44

8 Bibliography

The C Programming Language, 2nd Edition Kernighan and Ritchie.

COMP.LANG.0 Newsgroup: Frequentlyasked questions.

45

