

1994 1088

•

•

•

•

Centre for Ecology and Hydrology

Component Institutes Institute of Freshwater Ecology Institute of Hydrology Institute of Terrestnal Ecology Institute of Virology & Environmental Microbiology

.

.

Natural Environment Research Council

•

HYDROLOGICAL ASPECTS OF THE HOST CLASSIFICATION OF SOILS

D.B. Boorman, B. Gannon, A. Gustard, J.M. Hollis[†] & A. Lilly^{*}

Institute of Hydrology Crowmarsh Gifford Wallingford Oxfordshire OX10 8BB UK

,

Tel: 0491 838800 Fax: 0491 832256 Telex: 849365 Hydrol G Soil Survey & Land Research Centre Silsoe
 Bedfordshire
 MK45 4DT
 UK

Tel: 0525 860428 Fax: 0525 62247 Telex: 826838 Macaulay Land Use Research Institute Craigiebuckier Aberdeen AB9 2QJ UK

Tel: 0224 318611 Fax: 0224 311556 Telex: This report is an official document prepared under contract between the Institute of Hydrology and the Ministry of Agriculture, Fisheries and Food. It should not be copied without the permission of the Institute of Hydrology.

-

July 1994

Jominant HOST Class on 1km Grid

LRC/MLURI/DANI

開始

.

.

.

.

ţ

ŕ

Abstract

A hydrologically-based classification of the soils of United Kingdom was developed based on existing data sets that describe both the soils and their distribution, and the hydrological response of catchments. The classification was based on conceptual models of the processes that occur in the soil and, where appropriate, substrate. The resulting scheme has 29 classes, based on eleven response models. Soils are assigned to classes on the basis of their physical properties, and with reference to the hydrogeology of the substrate.

Applications of the classification have been developed that lead to improved estimates of parameters required in low flow and flood estimation procedures. The report contains sufficient detail of the methodologies so that they may be used in combination with soils information obtained from previously published maps. Since the classification is based on soil series it is independent of scale and may be used with many different soil data sets. Access on a national basis to the classification is provided by the 1:250,000 reconnaissance maps produced during the 1980s.

The classification is known by the acronym HOST, standing for Hydrology Of Soil Types.

The map on the previous page shows the distribution of HOST classes on a 1 km grid. For each square only the most extensive class is shown.

Â

-

:

Contents

· --

.

.

I	EXECUTIVE SUMMARY	1
2	ABBREVIATIONS, LIST OF FIGURES, LIST OF TABLES	3
3	INTRODUCTION .	6
4	FROM WRAP TO HOST	8
· · · ·	 4.1 The Winter Rainfall Acceptance Potential Classification. 4.2 Catchment scale hydrological variables 4.3 Soil data and maps 4.4 Integration of catchment and soil information 	
5	THE HOST CLASSIFICATION SYSTEM	35
	 5.1 The basis of the HOST classification system 5.2 HOST response model descriptions 5.3 Sub-divisions within the framework of models 5.4 Validation of the HOST classification 5.5 HOST class descriptions 	
6	APPLICATIONS OF THE HOST CLASSIFICATION	61
	6.1 Low flow estimation (Q95, MAM(n))6.2 Percentage runoff for design flood estimation	
7	ACCESS TO THE HOST SYSTEM	99
	 7.1 Manual overlay 7.2 The 1:250,000 soil data set 7.3 The 1km HOST data set 	
8	CONCLUSIONS AND RECOMMENDATIONS	104
9	ACKNOWLEDGEMENTS	105
10	REFERENCES	105

٠

Page

٠

.

APPENDICES

- A A brief history of the development of the HOST classification system
- B Assignment of HOST classes to map units
- C Catchment data used in the development and calibration of HOST
- D Maps showing the distribution of the 29 HOST classes

1 Executive Summary

It is difficult to overstate the importance of soils in influencing hydrological phenomena at both the site and catchment scale. Although much information is available to describe soils and their distribution, most of this requires considerable interpretation before it can be readily used by hydrologists. The Hydrology Of Soil Types (HOST) Project has produced a classification of the soils of the United Kingdom that can be applied via existing national maps to aid hydrological studies and analyses.

The HOST classification is based on conceptual models of the processes taking place within the soil and, where appropriate, substrate. These models have three physical settings-

- i) a soil on a permeable substrate in which there is a deep aquifer or groundwater (ie at > 2m depth).
- ii) a soil on permeable substrate in which there is normally a shallow water table (ie. at < 2m depth), and,
- (ii) a soil (or soil and substrate) which contains an impermeable or semi-permeable fayer within 1m of the surface.

Within these situations are variations that allow for different soil properties (eg. a peaty top layer), and wetness regime (eg. as indicated by the presence of gleying), that give rise to a total of eleven models. The eleven models are further sub-divided into 29 HOST classes, based on other properties or the geology of the substrate.

The classification was developed using databases of physical soil properties with feedback from catchment scale hydrological variables, mainly base flow index and standard percentage runoff. The distribution of the soils was taken from the national reconnaissance mapping at a scale of 1:250,000 completed for England. Wales and Scotland in the 1980s. In Northern Ireland a special HOST map was prepared prior to the completion of a 1:250,000 soil map of the province.

The HOST classification is based on the soil series and can therefore be used with many different soil data sets. At the 1:250,000 scale, groups of soil series are combined into map units, which may therefore contain more than one HOST class. Other soil maps are available that show the distribution of individual series and it will be possible to use these with the HOST classification to refine hydrological parameter estimates.

The report contains complete methodologies for the estimation of low flow variables (mean annual minimum and the 95 percentile flow) and the Flood Studies Report standard percentage runoff. Existing users of these methods can use the information contained in this report with previously published maps to obtain HOST-based estimates of model parameters. Other applications of HOST are also described.

A product of the HOST project is a computer data set based on a 1km grid that covers the whole of the UK, although data for Northern Ireland is currently less reliable than for the rest of the UK. Using the data set will greatly speed up the process of abstracting HOST classes for catching or sites of interest. These data may be leased from any of the collaborating

l

organisations

The HOST Project has been a collaborative venture between the Institute of Hydrology, Soil Survey and Land Research Centre, Macaulay Land Use Research Institute and Department of Agriculture Northern Ireland.

Ľ.

2 Abbreviations, lists of figures and tables

ABBREVIATIONS

٠

a _n	a regression coefficient
AMP(D)	annual D-day minimum flow having probability of exceedance P
BFI	Base flow index
CWI	Catchment wetness index
D	Duration in days
DANI	Department of Agriculture Northern Ireland
DPR _{CWI}	Dynamic contribution to PR from CWI
DPR _{rain}	Dynamic contribution to PR from RAIN
fse	factorial standard error
FSR	Flood Studies Report
FSSR	Flood Studies Supplementary Report
GRADMAM	Gradient of duration relationship in low flow frequency
HOST	Hydrology Of Soil Types
HOST _n	Fraction of HOST class n
IAC	Integrated air capacity
IH	Institute of Hydrology
LFHG	Low flow HOST group
MAF	Mean annual flood
MF	Mean flow
MAM(D)	Mean annual minimum of duration D days
MLURI	Macaulay Land Use Research Institute
MO	Meteorological Office
NRA	National Rivers Authority
NWA	National Water Archive
P	Exceedance probability
PR	Percentage runoff
Q_{X}	Flow exceeded by x% of all flows.
Q _\ (D)	Flow exceeded during x% of all periods of duration D
r ²	Coefficient of determination
R(Q ₁₀)	Q10/Q95
R(Q ₉₉)	Q ₉₉ /Q ₉₅
RAIN	Event rainfall in mm
RPB	River Purification Board
SAAR	Standard period annual average rainfall (mm)
s.e.e.	standard error of estimate
SPR	Standard percentage runoff
SSLRC	Soil Survey and Land Research Centre
SWA	Surface Water Archive
WRAP	Winter rainfall acceptance potential
WRAP _n	Fraction of WRAP class n

i

LIST OF FIGURES

Figure 4	Daily days 1	
Figure 4.2	Elow dury nydrograph for the River Coowners	
Figure 4 3	Any duration curve for the River Coquet at Rothbury for 1980	
Figure 4 a	An example of a flood event	
Figure 4-5	Raingauge data used to calculate a	
Figure 4.5	The FSR method of flow supervision	
• isure 4.0	The calculation of percentation	
D :	(SPR) from event date	
rigure 4.7	The distribution of gauge	runoff
rigure 4.8	Example flow hydros	
rigure 4.9	The calculation of h	
Figure 4.10	Example bydroom index (BFI) from daily over a	
Figure 4.11	The distribution of BFI values	
Figure 4.12	Comparison of catchments for which BELyolus	
Figure 4,13	Areas show	
Figure 5.1	Physical as unclassified on the 1.250 000 mit	
Figure 5.2	The liter settings underlying the HOST read	
Figure 5 3	The Ho are models used in the Hocre models	
Figure 5 a	The HOST classification	
Figure 5 5	Distinated values of BFI against obcass 1 he	
Figure 5.6	BFI residuals against estimateri BEI	
Figure 6.1	The distribution of BFL residuale	
Figura 6 ac	General distribution of Low Flow Hours	
- Figure 6.2(1-1)) General distribution of estimated of	
Figure 0.3	Type curves for flow duration $Q_{ss}(1)$ and MAM(7)	-
Figure 6.4	Relationship between annual	
rigure 6.5	Example low flow frequences of different durations	
Ett.	four durations	
rigure 6.6	Low flow frequency of	for
rigure 6.7	Type curves for low g	• -
Figure 6.8	Estimated Spp from the frequency curves	
Figure 6.9	Residuals against	
Figure 6.10	Map showing Spp	
Figure 6.11	Estimated Spp. residuals from estimation from US and	
Figure 6.12	Residuale and WRAP against observed und	
Figure 6.13 N	Man showing against estimated values of SPR from Web of SPR	
Figure 6.14 p	showing SPR residuals from estimation for with	
Figure 6.15 p	Paridual SPR from HOST against observed GDD	
Figure 6.16	Age at a set in a set	
Figure 6 17	Tap snowing SPR residuals from estimation HOST	
Figure 6 18 C	ris estimates from HOST plotted against from HOST	
Figure 7 i	eneral distribution of SPR from HOST	
Figure DG was	verlay of catchment boundary on sold	
3 - 0 O(1 - XXX)	Maps showing the distribution of the an	
	HOST classes	

.

4

. .

LIST OF TABLES

Ċ

Table 4.1	The WRAP classification scheme
Table 4.2	Classification of station suitability (after Gustard et al. 1992)
Table 4.3	The soil classification system used by SSLRC in England and Wales
Table 4.4	Examples of the SSLRC map unit naming convention
Table 4.5	The soil classification system used by MLURI in Scotland
Table 4.6	Summary data describing the 1:250,000 soil maps
Table 4.7	Example of the breakdown of map units by soil series
Table 4.8	Soil-geology classes used within the HOST project
Table 5.1	Subdivisions within HOST response Model A
Table 5.2	Subdivisions within HOST response Model E
Table 5.3	Substrate hydrogeology subdivisions within Models H to K
Table 5.4	BFI coefficients from multiple regression analysis
Table 5.5	BFI regression coefficients according to HOST framework
Table 5.6	Representation of HOST classes in the BFI catchment data set
Table 5.7	BFI coefficients from bounded multiple regression analysis
Table 5.8	BFI coefficients from second bounded multiple regression analysis
Table 6.1	$Q_{55}(1)$ estimates for HOST classes
Table 6.2	Assignment of HOST classes to Low Flow HOST Groups
Table 6.3	Percentages of Low Flow HOST Groupings in Great Britain and within
	gauged catchments
Table 6.4	Final Q _{ss} (1) estimates for Low Flow HOST Groups
Table 6.5	Final MAM(7) estimates for Low Flow HOST Groups
Table 6.6	Number of flow duration curves in each class interval of $O_{cs}(1)$
Table 6.7	Flow duration type curves (percentage of mean flow)
Table 6.8	Number of low flow frequency curves in each class interval of MAM(7)
Table 6.9	Type curves for low flow frequency
Table 6.10	Assignment of low flow frequency type curves by MAM(7) and duration
Table 6.11	SPR coefficients derived via BFI
Table 6.12	SPR coefficients for HOST classes from multiple regression
Table 6.13	Occurrence of HOST classes in the SPR data set; values represent equivalent
	number of catchments
Table 6.14	SPR coefficients for HOST classes from bounded multiple regression, with
	some combined classes
Table 6.15	Final SPR coefficients for HOST classes from bounded multiple regression.
	with some combined classes
Table 6.16	Recommended SPR values for HOST classes
Table 6,17	HOST classes for 48009 and the calculation of SPR
Table 6.18	WRAP classes for 48009 and the calculation of SPR
Table A.1	An early proposal for a divided WRAP classification
Table A.2	The first proposal to depart from WRAP
Table A.3	Description of data available for each soil series
Table A.4	An example of a classification based on the soil series properties
Table B.1	HOST classes in map units
Table C.1	Hydrological catchment data
Tuble C 2	

- - -

_ _

-

Table C.2 HOST class percentages for catchments

•

3 Introduction

Soils have a major influence on hydrological processes. Their physical properties govern the storage and transmission of water within the soil, and these properties combine with other characteristics of the soil to provide chemical buffers and biological filters. While these effects occur and may be observed at the very small scale, the influence of the soil properties may also be seen in the integrated response of whole catchment systems. Although these effects are recognised, they remain largely unquantified and many hydrologists struggle to interpret the wealth of soils information, in the form of maps, monographs and surveys, that is available to them.

One attempt to classify soils according to their hydrological response was the Winter Rainfall Acceptance Potential (WRAP) scheme developed for the Elood Studies Report (FSR, NERC, 1975) and described in more detail by Farquharson et al (1978). A 1:1,000,000 scale map of the British Isles was produced showing the distribution of the five WRAP classes. This map was enlarged to 1:625,000 for inclusion in FSR Volume V. Although the WRAP system has few classes and limited resolution it has been at the core of the FSR rainfall-runoff method of design flood estimation for almost 20 years and is also engraned in other design procedures (eg. WASSP, Department of the Environment, 1981)

An opportunity to revise the scale of the WRAP map came in the mid-1980s when the Soil Survey of England and Wales, now the Soil Survey and Land Research Centre (SSLRC) and the Soil Survey of Scotland, now based at the Macaulay Land Use Research Institute, (MLURI) completed the national reconnaissance mapping of soils at 1:250,000. However, rather than merely produce a WRAP map at a more detailed scale, it was considered worthwhile to use the large hydrological databases held by the Institute of Hydrology (IH) to assist in the definition of classes. Thus the Hydrology Of Soil Types (HOST) project was born as a collaborative venture between these three organizations. Soil mapping at 1:250,000 has not yet been completed for Northern Ireland but the Department of Agriculture of Northern Ireland has been involved in the HOST project and in the preparation of a HOST map and data set for Northern Ireland.

Since the HOST classification is based on the physical properties of the soils and their effects on the storage and transmission of soil water, it is largely independent of scale and will have a number of applications outwith the prediction of river flows at ungauged sites eg. the evaluation of sewage sludge acceptance potential, the estimation of pesticide residues, and improving predictions of the effects of soil acidification.

3.1 GUIDE TO THE REPORT

It is anticipated that readers of this report will come from a wide variety of backgrounds. Many hydrologists may not have delved more deeply into the hydrological aspects of soils than that presented to them in the WRAP classification. For these readers we include a great deal of information on how soil scientists approach the classification and mapping of soils. On the other hand there may be soil scientists who only consider the influence of soil physics on local hydrological processes, and not at a catchment scale. Since some of the first applications of HOST concern the estimation of parameters on catchments, a full description of these parameters and their importance in applied hydrology is presented. Chapter 4 of the report covers these background issues and shows how the hydrological and soil data sets have been brought together.

Chapter 5 describes the resulting HOST classification, firstly in terms of response models and processes within different soil types, and then in terms of the landscapes and distribution of each HOST class.

Chapter 6 gives details of a number of ways in which HOST has already been used. Two of these applications describe how HOST has been integrated into procedures for the estimation of low flows and flood peaks. Other applications give an insight into how HOST can be used in studies of nitrates, pesticides and slurry acceptance.

Chapter 7 describes how to access the HOST system using existing paper-based maps, or computer data sets.

While this report contains a full description of HOST and how it may be used a great many other potential applications exist, and it is anticipated that further developments of the system will follow; some suggestions of what may be possible are presented in Chapter 8.

Three appendices complete the report Appendix A gives a brief history of how the HOST classification evolved. Appendix B is the key that allows HOST classes to be derived from the 1:250,000 national soil maps. Appendix C is a complete listing of the catchment based data used in developing and calibrating HOST.

4 From WRAP to HOST

The Winter Rainfall Acceptance Potential (WRAP) classification makes a logical starting point in describing the development of a new classification. The deficiencies of the WRAP system were a major reason for the development of HOST and experiences in using WRAP helped define desirable properties of the replacement classification.

4.1 THE WINTER RAINFALL ACCEPTANCE POTENTIAL CLASSIFICATION

The Winter Rainfall Acceptance Potential classification was based on a theoretical consideration of soil hydrological processes and made use of four main soil and site properties ie, soil water regime, depth to an impermeable layer, the permeability of the soil horizons above this layer, and the slope of the land. The classification scheme is shown in Table 4.1.

		. <u>.</u>				ope Classe	s	_		-
Water	Depth to		< <u>2°</u>			2.8°			> 8°	
class	horizon(cm)		Permeability class (above impermeable horizon)							
		Rapid	Medium	Slow	Bapid	Medium	Slow	Rapic	Medium	Slov
	> 30		_			1	2	1	2	3
1	80-40		1		2					4
	< 40						<u> </u>			I
	> 80	2			3			··	· ·	
2	80-40]				4	,	ــــــ	J	
	< 40	3				,				ł
	> 80		ĺ		<u> </u>			<u> </u>		
3	80-40					5				
	< 40							L	I	
 \\/i	nter Bain Accer		c \A/ı	ntor Ruo /	off Deserv				· <u> </u>	<u> </u>
	1	Very high	• • • •	orer mart	1	Veru	Low			
	2	High			2					
	3	Moderate			3	Mode	vate			
	4	Low			4	Hich				

Table 4.1 The WRAP classification scheme

5

Very low

The soil water regime classification was based on a system given in the Soil Survey Field Handbook (Hodgson, 1974). The three classes identified are:

5

Very high

1) soils rarely waterlogged within 40cm depth, and for less than 90days within 70cm in

most years.

- 2) soils commonly waterlogged within 40cm, but for less than 335 days within 70cm in most years, and
- 3) soils waterlogged within 40cm for more than 180 days, and for more than 335 days within 70cm in most years.

An impermeable layer is defined as a layer with a hydraulic conductivity of less than 0. Im day¹, and should therefore be considered slowly permeable rather than impermeable. Depth to such a layer is often closely related to the water regime class but because of exceptions to this general rule both properties were included.

These two properties were considered the most important in accounting for the variations in the response of soils to rainfall, since, taken together, they indicate if saturation is likely within the soil and the depth at which vertical movement of water stops and horizontal movement begins. However, it was also seen as important to differentiate the soils with no impermeable layer, and also soils where the properties above such a layer were very different. This was achieved by using a simple classification of permeability based on soil structure and particle-size. Slope was used as the final variable since it accentuates the response from soils with a shallow water table.

The classification shown in Table 4.1 using these four variables was based on a theoretical consideration of the movement of water in the soil combined with a general knowledge of the responsiveness of streams, and a small number of catchment studies. The developers of the classification report that "although the directional effects of the the four main parameters are reasonably clear, their relative magnitude is a matter of judgement" (Farquharson et al, 1978). A primary consideration was to produce a system that could be applied consistently by many individual soil scientists in constructing a national map depicting the classes.

Therefore, although the impetus to develop WRAP came from the UK Flood Studies project, little hydrological data were used to develop the classification. The WRAP scheme was applied to the soils of the UK and presented to users as maps at 1:1,000,000 and 1:625,000. To use the system, catchment boundaries were overlain on the WRAP map and the fraction of each class calculated. The five fractions were combined into a soil index:

 $SOIL = 0.15 WRAP_1 + 0.30 WRAP_2 + 0.40 WRAP_3 + 0.45 WRAP_4 + 0.50 WRAP_6$

where WRAP₁ etc are the fractions of each WRAP class on the catchment.

The new variable SOIL was then used in multiple regression studies to estimate the mean annual flood (MAF) and standard percentage runoff (SPR). The WRAP system is therefore at the core of the Flood Studies Report methods of design flood estimation, and has been used in many design studies since the publication of the report in 1974. It has also been integrated into other design procedures (eg. WASSP, Department of the Environment, 1981).

Problems encountered in the use of WRAP are easily illustrated by considering the estimation of SPR, which is percentage runoff derived from event data, adjusted to standard rainfall and catchment conditions, and averaged for a catchment (see Section 4.2.2). To estimate SPR at ungauged sites, the FSR assigned the values of about 15%, 30%, 40%, 45% and 50% to the five WRAP classes (actually 0.955 of these values). Across a boundary between WRAP classes 1 and 5, SPR can change by a factor of slightly over three, and this factor will be carried forward in the flood estimate. (Note that within the statistical approach this factor is

reduced as the SOIL parameter is raised to the power 0.653.) Where a flood estimate is being made on a small catchment in the region of such a boundary then it is easy to see how the resulting estimate may change if either the dividing line on the soil map or the catchment boundary is mislocated. Clearly mapping at a larger scale would remove some of this uncertainty, but users have also commented on the poor discrimination and limited range of the WRAP classification scheme. Downland chalk catchments have typical responses of just a few percent and some small, upland catchments have a standard response of over 60% (see, for example, Boorman 1985).

Limitiations in using WRAP to estimate SPR were recognised from the start and users were advised to refine estimates of variables obtained from the regression equations by reference to local data from gauged catchments, or by commissioning a more detailed soil survey of the study catchment. Recent research has shown that more accurate estimates of SPR can be obtained by transferring data from similar catchments than is possible using regression equations; however, within this approach WRAP is still used to help define similarity (Burn and Boorman, 1993).

Based on hydrological feedback there have been some changes to the WRAP model within the FSR techniques: minor changes to the WRAP map were introduced in Flood Studies Supplementary Report 7 (FSSR 7, 1H, 1978), new coefficients to estimate SPR were presented in FSSR 16 (IH, 1985), and fresh advice on interpreting WRAP in specific locations is contained in FSSR 17 (IH, 1985). It is also worth noting that when the WRAP map appeared in 1975 it left large urban areas unclassified which caused problems for the many flood estimation projects on the urban fringe. One of the revisions to the WRAP map presented in FSSR 7 was the classification of these urban areas mainly through correlations between geology and soil type.

While WRAP has been integrated into procedures for design flood estimation, it was not used in the later development of a methodology for low flow estimation (Low Flow Studies, Institute of Hydrology, 1980) since it was ineffective in distinguishing between responses at the lower end of the WRAP scale. The Low Flow Studies stressed the use of geological maps to aid estimation procedures. It is perhaps because of this need to make a subjective assessment of the soils that meant that the methods of the Low Flow Studies report were not as rapidly or widely adopted as the methods of the FSR

4.2 CATCHMENT-SCALE HYDROLOGICAL VARIABLES

In producing a replacement for WRAP it was seen to be desirable and useful to use hydrological data during the development phase, rather than just calibrating a new classification for specific hydrological purposes. It has already been noted that the areas in which HOST was to be applied immediately were in the estimation of catchment-scale variables.

One approach is, therefore, to use the catchment-scale variables directly to aid in the calibration. This has the obvious benefit of using the information of greatest relevance to the problems being addressed, but could be criticised for being an empirical rather than physically-based approach. The alternative would be to base the classification on hydrologically relevant physical properties of the soil (eg. hydraulic conductivity, storage capacity) and to then use these within a physically based rainfall-runoff model to estimate the response at the catchment outlet and hence the catchment-scale parameter.

While this latter course may be scientifically more rigorous it requires far more elements to be drawn together (eg. a physically based rainfall-runoff model, detailed and widespread measurement of soil physical properties, long-period rainfall and runoff data for validation and calibration, rainfall generator for use in simulation). Within the current project these requirements were considered too demanding and the former approach was adopted. However, in adopting the more empirical approach based on catchment-scale variables it was seen to be important to preserve a structure to the classification that had a sound physical basis.

4.2.1 The hydrological response of catchments

The data that describe the response of a catchment come from a flow gauge at the catchment outlet and raingauges located within or close to the area draining to the outlet. The flow data are, in theory, available at a very fine data interval (typically 15 minute intervals). However, they are often archived as daily mean flows and it is this type of time-series data that are archived by the National Water Archive (NWA) located at IH. The NWA contains daily flow records for well over 1000 UK catchments. Rainfall data are also mainly available on a daily basis, as the majority of gauges are read on a once-a-day basis. Other raingauges can provide data at a finer resolution but the network of these gauges is sparse. Again the main rainfall archive maintained at IH is of daily data.

Daily data are most useful in describing the flow regime of the catchment ie, the general shape of the flow hydrograph, and characteristics of the hydrograph as described by its statistical properties. An example of a daily flow hydrograph for a one-year period is shown in Figure 4.1. The hydrograph contains much information about the nature of response, for example typical response times can be seen, and the seasonal variation in baseflow is apparent. For general water resource purposes a commonly used method of displaying a summary of a long record is as a flow duration curve. Figure 4.2 shows such a curve for the flow gauging station portrayed in Figure 4.1. The x-axis in the diagram is a percentage scale; the flow corresponding to the 50% point is the median flow. It is easy to extract figures corresponding to other percentile flows, so for example it can be seen from Figure 4.2 that the daily flow exceeded 95% of the time (often written as Q_{05}) is approximately 0.8 m³s⁴. Note that in both of these figures the flow is conveniently plotted on a logarithmic scale.

In practice for looking at extreme flows, at both the flood and drought ends of the scale, it is usual to use other parameters. For low flows it is usual to look at durations longer than 1 day, say 5 or 10 days. $Q_{95}(10)$ is therefore the flow not exceeded in 95% of all 10-day periods. For looking at flood flows it is usual to look at data that are at a finer data interval as, in a UK context, daily data hide many of the true variations in the flow hydrograph. Clearly the instantaneous flow peak will usually be larger than the maximum daily mean flow peak, and the difference between the two will be greatest on quickly responding catchments. Statistical analyses of a flow record for flood purposes usually use data describing instantaneous peaks, for example the mean annual flood (MAF) is the arithmetic mean of the largest instantaneous flood peak abstracted from each water year of the station record.

Where a long flow record exists on a catchment then this can be analysed to yield the required parameter. In situations in which it is required to estimate one of these parameters at a site on a river where no data have been recorded, then it is necessary to estimate it from other information. In the Low Flow Studies then the key variable used to link the required statistics to the physical properties of the catchment is the Base Flow Index (BFI). In the

Figure 4.1 Daily flow hydrograph for the River Coquet at Rothbury for 1980

Figure 4.2 Flow duration curve for the River Coquet at Rothbury

rainfall-runoff method of design flood estimation contained in the FSR the most difficult to estimate and single most important parameter is the standard percentage runoff (SPR).

BFI is calculated from daily data and is a dimensionless variable that expresses the volume of baseflow as a fraction of the total flow volume; it is therefore possible to calculate the BFI for many of the catchments for which data are stored in the NWA (approximately 1000 catchments). SPR is derived from a joint analysis of flood events as described by flow data at fine resolution and data describing the rainfall that caused the flood. Like BFI, SPR is a dimensionless variable, but because of its different data requirements it is only available for a set of roughly 200 catchments.

Although BFI and SPR are calculated from different data sets they are well correlated and it was decided to use these two hydrological variables to calibrate and verify the HOST classification. The following sections contain a detailed description of how SPR and BFI are calculated for a catchment with examples that illustrate how these vary between catchments.

4.2.2 Standard percentage runoff

Whereas many parameters describing catchment response can be obtained from flow data alone, such indices do not explicitly account for the rainfall that drives the hydrological response of the catchment. The calculation of SPR is based on the analysis of flood event data ie. collated flow and rainfall data for storm events; simply put, SPR is the percentage of rainfall that causes the short-term increase in flow seen at the catchment outlet. An example of such an event is shown in Figure 4.3.

Figure 4.3 An example of a flood event

As shown in Figure 4.3, the flow data are usually at hourly intervals and are most often obtained directly from the operator of the flow gauge (normally the National Rivers Authority, NRA, in England and Wales, and the River Purification Boards, RPBs, in Scotland), although not always in a computer compatible form. The event shown is an ideal one in which the flow prior to the event is low, the flow record (hydrograph) then rises steeply to a well defined peak, after which the flow drops (recedes) to a level similar to that prior to the event. Note that this event is included in the annual hydrograph depicted in Figure 4.1 but, whereas the peak daily mean flow is about $49m^3s^{-1}$, the peak from the instantaneous record is just over 80 m³s⁻¹.

The rainfall series shown above the flow data in Figure 4.3 is a catchment average rainfall profile which is normally derived from a number of individual raingauge records. The volume of rainfall is a weighted average of the totals recorded by the daily gauges located on or near the catchment. This volume is distributed in time according to the weighted average of profiles from recording gauges in the same area, which are shown on the right hand side of Figure 4.3. Figure 4.4 shows the location of all gauges supplying data used to estimate this average profile. The averaging process uses the percentage of the annual average fall in the event, rather than the depth in mm, and symbols are used on the map in Figure 4.4 to indicate these percentage figures. These data are not usually available from the same source; the Meteorological Office (MO) can provide all daily data, but the recording gauge data may be from the same source or from the gauge operator (again normally the NRA or RPB).

Figure 4.4 Raingauge data used to calculate a catchment average rainfall

Referring again to Figure 4.3 the catchment average rainfall may also be considered ideal because there is a single rainfall burst that starts before the rise in the flow hydrograph, and, because it is perfectly believable that the depicted rise in flow was caused by this rainfall. Because the raingauge network is sparse and for many events the rainfall is spatially variable, the catchment average rainfall calculated from the gauged data does not appear compatible with the flow data and the event has to be rejected from further analysis

To calculate the percentage of the rainfall that contributes to quick response runoff, it is necessary to separate the total flow hydrograph into a quick response component and an underlying baseflow. There are a great many ways of performing this separation that may be justified on the grounds of: physical interpretation, ease of analysis, or robustness in implementation. The event data available for the HOST study had all been previously analysed using the methods of the FSR: Figure 4.5 illustrates how the FSR flow separation is performed. In this procedure the lag between total rainfall and flow peak is derived and the end point of response runoff is taken as four times this lag after the flow peak. In the case of multi-peaked flow events then the centroid of flow peaks is used. The recession prior to the event is continued through the event, and this flow is subtracted from the total flow hydrograph. A straight line is then drawn from beneath the peak flow, or centroid of peaks, to the point already indentified as marking the end of response runoff. The response runoff is the portion of flow above this separation. The Flood Study found this to be a robust procedure that could be reliably applied to individual events. The flow separated by this process should be thought of as quick response runoff, rather than response runoff, since the rainfall will cause an increase in baseflow that may be apparent for a considerable time after the event, but in practice the label 'quick' is often omitted. Percentage runoff (PR) is simply the volume of response runoff expressed as a percentage of total rainfall.

Figure 4.5 The FSR method of flow separation

To see how SPR is derived it is convenient to digress slightly and review how PR is estimated in the design situation. In making a flood estimate using the FSR rainfall-runoff method then PR has to be estimated and a two part model is used. This model divides the percentage runoff from a natural, undeveloped (ie. rural), catchment into two components: a standard term that is fixed for a catchment, and a dynamic component, comprising two terms, that varies between events. The precise form of these terms was revised in FSSR16, but the principle remains the same. The two dynamic terms presented in FSSR16 are given by:

 $DPR_{CWI} = 0.25 (CWI - 125)$

 $DPR_{RAIN} = 0.45$ (RAIN - 40)^{0.7} for RAIN > 40.0 otherwise $DPR_{RAIN} = 0$

where

 DPR_{cwt} is the dynamic percentage runoff term relating to catchment wetness. CWI is the Catchment Wetness Index (CWI),

 DPR_{RAIN} is the dynamic percentage runoff term dependent on event rainfall, and RAIN is the rainfall depth in mm.

On rural catchments these dynamic terms are added to the standard percentage runoff to give the (total) percentage runoff:

 $PR_{RURAL} = SPR + DPR_{CWL} + DPR_{RAEN}$

On catchments that are not rural then an allowance has to be made for the increased runoff from the developed area. The amount of development is obtained from the urban (pink) area of the Ordnance Survey's 1:50,000 scale map. Using a model that assumes 30% of the depicted area to be "impermeable", and that from this area 70% of the rainfall contributes to quick response runoff, the resulting equation is

 $PR = PR_{RURAL} (1.0 - 0.3 URBAN) + 21.0 URBAN.....$

where URBAN is the urbanized fraction taken from the 1:50,000 OS map.

When these equations are applied to an ungauged catchment then URBAN can be taken from a map, RAIN and CWI are calculated from procedures which make use of special maps provided with the FSR, and SPR has until now been derived from the WRAP map.

Returning now to the situation where an event has been analysed and a value of PR obtained, these same equations can be applied in reverse to obtain an SPR value. The observed event PR is adjusted to give the PR_{RURAL} from which the dynamic terms are subtracted to give SPR. It is recommended that at least 5 events are used to give a reliable value of the catchment SPR. It is clear that averaging SPR rather than PR seeks to remove the effects of analysing events that are all drier or wetter than the normal conditions. Figure 4.6 illustrates this calculation for the Mole at Horley. This catchment average value of SPR can, and should when available, be used to replaced the value obtained via the WRAP map.

	(a) <u>Equations</u>						
PR _{oss} = (Response runoff/Total rain}x100							
PR _{RURAL} = {PR _{ons} ·(21.0xURBAN})/(1-0.3xURBAN)							
DPR _{cwi} =	= 0.25 (CWF-12)	5)					
	= 0.45 (RAIN 4	0)°' for P>	40 otherwise DPR _e	AR = 0			
SPR = P	Rausai -DPRcm -D						
	(b) Calculation f	or event of	13 November 197()			
Total rain: 60.8mm Response runoff: 27.5mm Urban fraction: 0.09 Pre-event CWI: 80							
$PR_{ons} = (27.5/60.8) \times 100$ = 45.2							-
PR _{HURAL}	$PR_{HUHAL} = (45.2 \cdot (21 \times 0.09))/(1 - 0.3 \times 0.09) = 44.51$						
$DPR_{RAW} = 0.45 (60.8 \cdot 40)^{0'} = 3.77$							
DPR _{cm} = 0.25 (80 · 125) = -11.25							
SPR	= 44.51 + 11, = 51.99	.25 - 3.77					
	(c) Average for	<u>catchment</u>					
	Event 15-09-68 20-02 69 13-11-70 18-06 71 10-02 74 14-02-74 20-01-75	Rainfall 127.9 23.3 60.8 33.3 43.8 26.6 31.3	Reponse runoff 54.1 15.0 27.5 18.0 24.1 15.5 17.0	CWI 127 124 80 129 136 136 136	SPR 30.70 64.39 51.99 52.76 50.68 55.02 52.11		
		•	Catchment average	le	51.09		

Figure 4.6 The calculation of percentage runoff (PR) and standard percentage runoff (SPR) from event data

The catchment average SPR data derived in this way are the data used by the HOST project. From the above description it is seen that the preparation of such data is laborious as the data come from many sources and require careful processing and checking before they can be used. SPR values were available from the 1910 events on 210 catchments described by Boorman (1985), and from an additional 683 events collected subsequently from the same and other catchments. However, for many of these catchments insufficient events are available to give an acceptable value of SPR and less could be used for HOST. The distribution of these catchments in the UK is shown in Figure 4.7; there are no such catchments in Northern Ireland. Figure 4.8 gives an example event, event SPR and catchment average SPR values for a number of UK catchments that cover a range or response types. In these plots in it is informative to compare the scale of the rainfall axis with the left hand flow axis, as these have the same units, mm hr⁴. In the top left hand diagram, for the Conwy, the peak of the rainfall is about 7mm hr⁴ and the flow peak is just over 4mm hr⁴. As the flow response is fast, and because the flow quickly returns to close to the pre-event value, it is no surprise that the standard percentage runoff is about 60%. Compare this with the bottom right hand diagram for the Ems catchment, in which the peak rainfall is almost 4mm hr⁴ but the peak flow is less than 0.03 mm hr⁴. Here the response runoff continues well beyond the duration of the rainfall event, but the standard percentage runoff is less than 0.5%. The other events shown in this figure represent a variety of responses between the two described. In the data set available for HOST, catchment average SPR ranges from 3.8% to 77.5%.

Figure 4.7 The distribution of catchments for which SPR values were available. Dots represent catchments with SPR calculated from five or more events, circles represent other catchments for which a value of SPR was available

Figure 4.8 Example flow hydrograph separations and SPR values

4.2.3 Base flow index

Whereas the calculation of SPR requires detailed event-based data describing both flow and rainfall, BFI is derived using only daily mean flow data. BFI is the long-term average proportion of flow that occurs as baseflow, and is an index developed in the Low Flow Studies (Institute of Hydrology, 1980). Figure 4.9 illustrates the calculation of BFI for the Coquet at Rothbury which has a BFI for the year of 0.50. Observed values are close to unity on catchments dominated by baseflow but as low as 0.15 on the catchments with the flashiest response. Figure 4.10 presents a selection of annual hydrographs with their BFI separations, and long-term BFI values for the same catchments as are shown in Figure 4.8. The top two hydrographs are for catchments dominated by the quick flow response, whereas the bottom two are almost entirely dominated by groundwater flow. These latter two hydrographs are quite unusual as the baseflow does not show the expected annual variation; Waithe Beck begins at a lower level than expected but then baseflow recovers at the start of the following winter, and the Ems flow decreases through the summer, but does not recover at the start of the next winter. The two middle plots show catchments with a quick response superposed on seasonal variation.

Figure 4.9 The calculation of base flow index BFI from daily mean flow data

BFI has been derived for all of the catchments for which flow data are available in the UK National Water Archive (see, for example, Institute of Hydrology, 1988). However, although values of BFI can be derived for these catchments, many with major artificial influences were rejected. The HOST project was able to draw on station assessments for low flow studies

Figure 4.10 Example hydrographs and BFI values

(Gustard et al, 1992) which included viewing an arbitrarily chosen annual hydrograph; this simple check revealed many problems in the data. The same assessment exercise sought information of artificial influences from gauging authority staff and files. Two measures of the suitability of catchments were therefore available based on the hydrometric quality of the flow gauge, and degree of artificial influence as summarised in Table 4.2.

Grade	Hydrometric Quality	Artificial Influence
A	Accurate low flow measurement.	Gauged Q_{sy} /mean flow within 20% of estimated Q_{sy} /mean flow.
В	Less accurate or periodic variation in quality	Gauged Q_{ω} /mean flow within 50% of estimated Q_{ω} /mean flow.
С	Poor accuracy of low flows (eg. through poor control, scatter of gaugings, weed growth, siltation, vandalism)	Gauged $Q_{\rm M}$ /mean flow not within 50% of estimated $Q_{\rm M}$ /mean flow.
U	Unclassified	Unclassified

Table 4.2	Classification	of station	suitability (after	Gustard et al.	1992)
-----------	----------------	------------	--------------------	----------------	-------

For the current project this scheme was modified to give a more general indication of the quality of the BFI values. Thus any station graded AA,AB,BA or BB was coded A for this study, catchments graded AC, CA or CC were coded D, and all others were graded Y. There were subsequently some modifications, and additions of catchments, and code B was used for additional good quality stations, and X for stations with poor data. It is notable that the list of quality codes that appears in this report indicates different data qualities to those found in Gustard et al. This is most often because a subsequent examination of the data will have shown that by removing a dubious period of the record the quality of the abstracted parameters can be improved. For example, many values of BFI had to be recalculated for a restricted period (eg. only to include pre-impoundment flows at a now-reservoired site).

Even after this thorough review there were many more values of BFI than SPR; the distribution of the catchments for which BFI data were available is shown in Figure 4.11.

4.2.4 Comparison of BFI and SPR

As noted in IH Report 94 (Boorman, 1985) there is a good correlation between SPR and BFI; on a set of 166 catchments the correlation coefficient was 0.75 and a regression equation was presented for the estimation of SPR from BFI. This equation is:

SPR = 72.0 - 66.5 BFI

This relationship is represented for the data available to the HOST project in Figure 4.12.

What the two measures have in common is that they both involve a separation of the hydrograph, but whereas SPR compares the quick response volume to that of the rainfall, BFI compares the remaining, baseflow, volume with the total flow volume. If all of the rain

Figure 4.11 The distribution of catchments for which values of BFI are available. Dots represent catchments quality graded A or B, circles represent other catchments for which a value of BFI was available

falling on the catchment leaves the catchment as runoff (ie. none is lost as evaporation or to groundwater) then the flow volume is the same as the rainfall volume and 1-BFI should be equivalent to some form of average percentage runoff.

The other difference between the two measures is the time scale of the response; SPR separates over a period of tens of hours, whereas the BFI separation is over a period of many days. SPR therefore represents a quicker response than BFI.

Figure 4.12 Comparison of BFI and SPR values

Because of its greater availability, BFI was the main hydrological variable used in the development of the HOST classification, but limited use was made of SPR and of flow duration curve and flood peak statistics.

It must not be forgotten that SPR and BFI are not observed data but the result of applying models to carefully vetted sets of data.

4.3 SOIL DATA AND MAPS

4.3.1 An introduction to soil surveying

Soil, in general terms, is that part of the earth's surface which supports biological activity. It comprises unconsolidated material within which there has been some degree of internal reorganisation due to soil-forming processes which have acted on the material over a period of time. This unconsolidated material may have been altered by the addition and movement of organic material, the redistribution of mineral material and nutrients, and the effects of climate. These processes often lead to a distinct layering within the soil to form *horizons*. The specific nature and order of these horizons informs pedologists of the dominant soil forming processes, and provides a means of classifying soils. Classification is a vital first step in

mapping the spatial distribution of soils.

Although soil classifications are often hierarchical, soils do not, in practice, belong to a series of discrete taxa. The soil seen at a point should be thought of as a sample from a continuously varying medium. The role of the soil surveyor is to define the allowable range in soil properties within the taxa, and then to assign soils to the most appropriate one. By repeating this process over an area the soil surveyor attempts to delineate the distribution of the taxa in the landscape, trying to make sense of what is often a chaotic situation.

The classification schemes used by MLURI (in Scotland) and SSLRC (in England and Wales) are different. Strictly the Scottish Soil Survey has a typological rather than a hierarchical system. Within both systems the *soil series* is the lowest class and represents the individual soil type as defined by the soil forming process, plus other characteristics which are inherited from the parent material, such as soil texture or inherent soil fertility.

Soil science is a field science and as such relies on the recognition of soil properties in the -field for classification and mapping. In applying the classification, a soil surveyor has to take account of what it is practical to delineate at the scale being used, and the intended purpose of the map. It is normal to relate a soil mapping unit to the landscape, or some other physical expression of change in soil type, such as vegetation. This approach relies on the skill of the surveyor and his understanding of the local relationship between soils and the environment. Because of these considerations, the soil series cannot always be used as the soil map unit.

A soil map unit will, in general, comprise a dominant soil series combined with other similar or dissimilar soils. The degree to which the map unit is homogeneous depends largely on the scale of the map but, at the reconnaissance scale of 1:250,000, each unit is likely to contain a mixture of soil types. At this scale it should also be recognised that the proportions of the various soil types are likely to change between locations. At a more detailed scale, say 1:25,000, there is an assumption that the soil map units will be much more homogeneous, and usually represent one soil type. In such a case the unit may still represent more than one soil series, but the sub-dominant ones are likely to have properties similar to those of the dominant series. This need not always be the case and expert advice is often required to interpret soil maps.

Throughout this report the term soil series is used exclusively to represent a taxonomic unit and never a soil map unit. Unfortunately, this is not universally the case and can cause a great deal of confusion even among soil scientists.

The use of soil horizons to help classify soils was mentioned above, and it is relevant to say slightly more about horizons and their nomenclature. Since the definition of horizons is common to both the classifications used in England and Wales, and in Scotland, they were a useful handle for the development of a unified approach to the hydrological classification of the soils of the UK.

Topsoil horizons are designated as A horizons with various subhorizons indicated by the addition of lower-case letters such as p for ploughed, or g for gleyed. The immediate subsoil (ie. material in which pedological alteration has occurred and which has no rock structure) is designated B, again with sub-horizons such as s for sesquioxides (iron and aluminium rich). The relatively unaltered parent material is known as a C horizon and again sub-horizons are identified.

4.3.2 The 1:250 000 soil maps

In the late 1970s the two national soil survey organisations began a rapid reconnaissance mapping programme to provide soils information for the whole of Great Britain at a 1:250,000 scale. The projects were concluded in 1981 and 1982 resulting in a series of seven maps covering Scotland, one map for Wales and five for England. Another product of this exercise was an objectively based national soil inventory whereby soil profiles were examined at 5-kilometre grid intervals. Previous detailed mapping at scales ranging from 1:25,000 to 1:63,360 were incorporated into these national maps, and existing profile descriptions and accompanying analyses were added to computerised databases along with the National Inventory data, making a comprehensive spatially referenced soil and environmental information system suitable for resource management and strategic planning on a national scale.

Although differences in soil classification and certain concepts occurred between the two survey organisations, detailed correlation and matching of the map units at the border ensure continuity throughout.

From the general description of soil surveying presented above, it will be appreciated that the unit shown on the 1:250,000 maps will not be a single soil series, but a co^{11} tion of series that will in many cases have dissimilar properties. So although the maps $sat_{10,1}$ one criterion for the development of a national soils classification for hydrological use, namely that they are the most detailed maps with national coverage, they do not directly relate to the physical properties of soils that are likely to influence the hydrological response. It is necessary, therefore, to consider in slightly more detail the classification schemes used by the two national soil surveys, and the ways in which they represent soils on the 1:250,000 maps. As will become clear later, a basic understanding of these issues will help in using HOST in applications.

England and Wales

In England and Wales, soil profile characteristics are used to classify soils at four levels in a hierarchical system. The four levels are labelled: major group, group, subgroup, and series, and they are described in Table 4.3.

Soil map units (also known as associations in England and Wales) are named after their largest component series and assigned a map symbol that is the sub-group number and a code letter allocated to an alphabetical list of all the units with the same sub-group number. The letters are lower case first, then upper case. If the association's name is upper case it implies that the corresponding series is dominant within the association (ie. >50%). Table 4.4 presents examples of this naming convention.

The colours used to depict the map units shown on the soil maps of England and Wales reflect the major soil sub-groups of the most extensive series within the map unit.

- 1Terrestrial raw soilsNot mapped at this scale2Raw gley soilspale blue
- 3 Lithomorphic soils

Podzolic soils

4 Pelosols 5 Brown soils

6

pale blue yellow, orange khaki brown, orange red
7	Surface water gleys	green
8	Ground-water gleys	blue
9	Man made soils	grey
10	Peat soils	purple

Table 4.3 The soil classification used by SSLRC in England and Wales

· · · · · · · · · · · · · · · · · · ·	Properties	Naming convention	No.	Examples
Major group	Predominant pedological characteristics	Named using the features used to distinguish them	10	4. Pelosols 7. Surface water gley soil 10. Peat soils
Group			67	2.2 Unripened gley soils4.1 Calcareous pelosols7.1 Stagnogley soils10.1 Raw peat soil
Sub-group				4.31 Typical argillic pelosols 7.11 Typical stagnogley soils 10.11 Raw oligo-fibrous peat soil
Series	Precisely defined particle-size subgroups, parent material (substrate) type, colour and mineralogical characteristics.	Named after places at which they were first defined	418	431a Worcester 711a Stanway 1011a Longmoss

::

Ξ.

. .7

Table 4.4 Examples of the SSLRC map unit naming convention

Symbol	Name		
343	a	ELMTONI	First map unit (hence letter a) in sub-group 343, brown rendzina, major series Elmton which is dominant within the association
343	b	ELMTON2	2nd in sub-group 343 (letter b), Elmton main series and dominant so named ELMTON2
343	С	Elmton3	3rd in sub-group (c). Elmton main series but not dominant so in lower case.

Scotland

The Scottish soil classification has four categorical levels (Soil Survey of Scotland, 1984) termed: division, major soil group, major soil subgroup and soil series. The last two groups correspond to the lower categories of the soil classification used in England and Wales. Soils

at the major soil subgroup level are very similar in appearance and are separated at the soil series level according to their parent material and natural drainage.

In Scotland, the underlying geology has been found to have a profound effect on the soil chemistry and so soils have been grouped according to the rock types which comprise the parent drift. This grouping is called an *association*. Thus all soil types developed on granites belong to the Countesswells Association, and those developed on basalts belong to the Darleith Association. Each association will have a suite of major soil subgroups associated with them. The major soil subgroup, the parent material (or Association) and the natural drainage of the soil all combine to produce what is known as the soil *series*. It is this unit that is represented on all the Soil Survey maps at scales less that 1:63,360. The soil series and associations are named according to the region or farm where they were first encountered and, in essence are short hand ways of describing the pedology of the soil (ie. its major soil subgroup), its natural drainage, and its parent material.

	Properties	Naming convention	No.	Examples
Division	Predominant pedological characteristics	Named using the properties used to distinguish them	5	 Immature soils Gleys Organic soils
Major soil group	Soil processes and stages of development		12	1.3 Alluvial soils 4.1 Surface water gleys 5.1 Peats
Major soil sub-group	Nature and arrangement of horizons and sub- hoizons.		37	1.3.1 Saline alluvial soils 4.1.6 Peaty gleys 5.1.1 Eutrophic flushed peat
Series	As above but also distinguished by parent material.	Named according to the region or farm at which they were first encountered	516	

 Table 4.5 The soil classification used by MLURI in Scotland

The map units are grouped according to the Association (ie. parent material) and listed alphabetically after Alluvial and Organic soils. They are also ordered such that dry soils precede wet soils, lowland soils precede mountain soils, and non-rocky terrain precedes rocky landscapes. The map units are then numbered consecutively (Handbook 8, Soil Survey Scotland), the numbers having no other significance.

The colours used to depict the map units shown on the soil maps of Scotland reflect the major soil groups of the most extensive series within the map unit.

Alluvial soils Brown forest soils Humus-iron and peaty podzols Peaty gleys Mineral gleys yellow brown pink, orange and red green blue

Peats purple Rankers, subalpine, alpine soils grey

4.3.3 Understanding differences in the soil classifications and maps

As the two survey organizations have used different classification schemes, the two sets of 1:250,000 maps appear very different, especially to the non-specialist. The map units in Scotland are largely delineated on the basis of landform, while in England and Wales soils which commonly occur together form the basis of the map unit. This difference is predominantly due to the more complex topography found in Scotland and the recognition that similar landform units recur throughout the country with a similar set of soils despite changes in the geological composition of the drift, e.g. hummocky moraine.

Each survey organisation colour codes the map units in terms of the dominant major soil subgroup. These broadly agree in that brown soils are shown in brown colours and podzolic soils in reds and oranges; however, other differences do occur.

On the 1:250,000 maps there are approximately twice as many map units in Scotland as in England and Wales, even though Scotland has only half of the land area. On average, map units in Scotland cover only 1/4 of the area covered by map units in England and Wales, but note that the average extent of a map unit can be misleading because the variation is extremely large.

The Scottish maps contain a higher total number of series, but because there are many more map units, there are, on average, fewer series in a Scottish map unit (1.8) than in England and Wales (3.5). On average, a soil series occurs in more map units in England and Wales:

Table 4.6	Summary	data	describing	the	1:250,	000 soil	maps
-----------	---------	------	------------	-----	--------	----------	------

	England & Wales	Scotland
Area	151,207km ²	77.087km²
No. of map units	300	590
Approximate average extent of map unit	504 km²	130km ²
No. of soil series	418	556
Average no. of series in a map unit	3.5	1.8
Average no. of map units in which a series appears	2.5	1.9

Although there are differences between the soil classification systems used in England and Wales and in Scotland, both are intended for general purpose surveys, and rely on the identification and assessment of soil properties in the field. Underlying both systems are similar data bases collected by the two organisations. Data have been abstracted from these and used to create a common database from which the HOST classification has been developed.

4.3.4 Using the soils data in the HOST project

In the preceding sections it has been noted that soil physical properties were available for soil series, and that national maps showed the distributions of map units. The composition of the map units was understood in a qualitative way that allowed the necessary flexibility to assign soils surveyed in the field to a map unit. However, if a classification based on series was to be applied to derive hydrological parameters, then a quantitative breakdown of the map unit by series was required. The most straightforward way of making this breakdown was to assume fixed proportions of soil series in each occurrence of a map unit, and these proportions were derived as an early requirement for HOST. However, in some units proportions often summed to less than unity as small amounts of subsidiary series were omitted. In using the data the proportions were rescaled so that they totalled one.

Within some map units, particularly in Scotland, map units were at first assigned equally to two soil series that had different soil properties. In such cases a 1% adjustment was made to the assignments so that one of these would always appear as the larger series. The exact reason for this concerns the nature of the database management system used to hold these data, and the way in which HOST classes were attached to series and map units. Making this adjustment meant that when these data were used later in the project the same HOST class would consistently appear as the dominant class. This adjustment was also needed on some catchments with more than two component series, and was always made on the basis of an assessment of the soils rather than on an arbitrary basis.

Map symbol	Association	Component series	Attributed %	Rescaled %
343a	ELMTONE	Elmton	40	44.4
	· ·	Aberford	30	33.3 -
		Shippon	10	11.1
		Moreton	10	11.1

Table 4.7 Example of the breakdown of map units by soil series.

One other addition that was required to the existing soils data sets was to ascribe soil map units to the unclassified, mainly urban, areas. For HOST it was seen as important to provide a complete soil classification since the hydrological effects of urbanisation are conditioned by the underlying soils. The urban areas have now been infilled in the national soil maps, mainly using geological correlation techniques. Figure 4.13 shows those areas depicted as unclassified on the 1:250,000 soil maps; they represent 5.1% of the land area in England, Scotland and Wales.

4.3.5 Soil physical properties

In addition to the map data, there exist databases containing information about the physical properties that characterise the soil series, and the proportions of series within the map units. For England and Wales alone there are physical property data for about 4000 soil layers describing over 1000 soil profiles. The physical properties that were available at the start of the HOST project were: depth to a slowly permeable layer, depth to a gleyed layer, the integrated air capacity (IAC) and presence or abscence of a peaty top soil. However, at an

.

Distribution of urban areas (HOST)

Figure 4.13 Areas shown as unclassified on the 1:250,000 soil maps.

early stage in the project it was seen to be necessary to include a geological component and a soil-hydrogeological classification was derived; where appropriate this also contained information about the depth to an aquifer or groundwater.

Depth to a slowly permeable layer: These soil layers have a lateral hydraulic conductivity of $< 10 \text{ cm day}^{-1}$ and can be defined in terms of their particular soil textural and structural conditions. Such a layer impedes downward percolation of excess soil water causing periodic saturation in the overlying layer. Storage is reduced and, since there is a decreased acceptance of rainfall, there will increased response. The depth to a slowly permeable layer is only included if such a layer exists within 1m of the surface.

Depth to a gleyed layer. Gleying, the presence of grey and ochreous mottles within the soil, is caused by intermittent waterlogging. The particular definition of gleying used identifies soil layers wet for at least 30 days each year, or soils that are artificially drained. This depth is defined in terms of soil colour, particularly the hue, chroma, density and prominence of mottling (Avery, 1980; MAFF, 1988 and Hollis, 1989). The depth to a gleyed layer is only included if such a layer exists within 1m of the surface.

Integrated air capacity: Air capacity is a measure of the soil macroporosity and is defined as the volume of pores in the soil which are greater than 60μ m, i.e. the pores that are unable to retain water against the pull of gravity. The volume of these pores in each soil horizon was integrated over 1 metre (where the soil was deep enough) to give an average percentage volume for the whole soil profile. Although the relevance of this variable to the classification is limited, it provides a useful discrimination between some soils where it acts as a surrogate for hydraulic conductivity in permeable soils and for storage capacity in some impermeable soils (Hollis and Woods, 1989). The air capacity values for 4000 soil horizons held in the soil physical properties database by the SSLRC were used in the assessment of the air capacity values of the HOST soils, again by relating the soil structural and textural conditions to approximate air capacity values. This approach was of particular importance to the classification of the Scottish soils as there were limited soil physical data available.

The presence of a peaty surface layer: Peaty surface layers have more than 20 percent organic matter although in most cases it is much higher. It is indicative of saturated conditions for most of the year. Peaty topsoils are both slowly permeable and yet can store large volumes of water. These layers, therefore, limit infiltration and provide a lateral pathway for rapid response in the uppermost parts of the soil making surface runoff prevalent in soils with these layers. A raw peaty topsoil has specific characteristics of thickness, consistency and fibre composition (Avery, 1980).

Two hydrogeological parameters were used in the development of HOST. These were substrate hydrogeology and the approximate depth to an aquifer or groundwater. Substrate hydrogeology was specifically developed for use in HOST and provides a method of distinguishing between slowly permeable, permeable or impermeable substrates and, in the permeable substrates, between mechanisms of vertical water movement (e.g. intergranular or macroporous flow). Substrate permeability is based on Bell (1985) with permeable substrates having a vertical hydraulic conductivity > 10 cm day⁻¹, slowly permeable between 0.1 and 10 cm day⁻¹, and impermeable <0.1 cm day⁻¹. The national soil maps provided the description of the underlying substrates (soil parent material) and the classification of rock and drift hydrogeology followed that of the Institute of Geological Sciences (1977) and the British Geological Survey (1988). Table 4.8 shows the full hydrogeological classification. Concurrent with the classification of the hydrogeology was an estimation of the likely

THOLE 4. 0 SOLE-geology classes used within the FIOSE proj	Table 4.8	Soil-geology	classes	used	within t	the	HOST	projec
---	-----------	--------------	---------	------	----------	-----	------	--------

Class	Class description
L	Soft sandstone, weakly consolidated sand
2	Weathered/fissured intrusive/metamorphic rock
3	Chalk, chalk rubble
4	Soft Magnesian, brashy or Oolitic limestone and ironstone
5	Hard fissured limestone
6	Hard coherent rocks
7	Hard but deeply shattered rocks
8	Soft shales with subordinate mudstones and siltstones
9	Very soft reddish blocky mudstones (marls)
10	Very soft massive clays
11	Very soft bedded loams, clays and sands
12	Very soft bedded loam/clay/sand with subordinate sandstone
13	Hard (fissured) sandstones
14	Earthy peat
15	River alluvium
16	Marine alluvium
17	Lake marl or tufa
18	Colluvium
19	Blown sand
20	Coverloam
21	Glaciolacustrine clays and silts
22	Till, compact head
23	Clay with flints or plateau drift
24	Gravel
25	Loamy drift
26	Chalky drift
27	Disturbed ground
34	Sand
32	Cryogenic
30	Scree
43	Broded Blanket Peat
44 60	Kaw Peal
50	Unsurveyed
21 52	
	əca

presence of an aquifer or groundwater table and, if present, at what depth it was likely to occur. The depth to an aquifer or groundwater indicates the time taken for excess water to reach the water table. Three categories were recognised: >2m, $\leq 2m$, and no aquifer or groundwater.

4.4 LINKING THE CATCHMENT AND SOIL DATA

For each catchment a digitised boundary has been overlain on a 1km gridded version of the national soil maps and the total percentage of each soil map unit abstracted. From this the proportion of each component soil series was derived and hence the link established between the catchment response descriptors and soil properties.

The catchment boundaries were digitised from lines drawn by hand mainly on 1:50,000 maps. The construction of the boundaries is easy in upland areas but quite difficult in low lying

regions where many ditches exist at right-angles to the expected flow direction. The construction of a hydrologically sound digital elevation model at IH has shown many minor, but very few major, errors in these boundaries. The process of digitisation is unlikely to introduce significant error.

))

5 The HOST classification system

5.1 THE BASIS OF THE HOST CLASSIFICATION SYSTEM

The HOST classification is based on a number of conceptual models that describe dominant pathways of water movement through the soil and, where appropriate, substrate.

Rain falling at the surface of some soils can drain freely, under the influence of gravity, so that the dominant flow pathway is a vertical one. If the underlying substrate is also permeable this vertical pathway extends into the substrate, perhaps for some considerable depth. Eventually the water will reach a water table and vertical movement will stop. Variations in the level of the water table will cause lateral movement of the water perhaps towards valleys and springs, and after some considerable time the water may emerge to augment streamflow. Clearly the time elapsing between rain falling and flow leaving a catchment may be long, and in such a situation the rain would be expected to have little or no influence on the short term response of the catchment, but low flows will be maintained by the slow passage of water through the ground.

The characteristics of other soils and substrates restrict the vertical drainage, so that the dominant pathway for rain falling at their surface is lateral, as surface, or sub-surface runoff. In such situations a very rapid response to rainfall will be seen at a catchment outlet, and little water will be retained within the catchment to maintain the flow between rainfall events.

These are the two extreme response models within the HOST classification. The first in which water movement in the soil is mainly vertical, and the second where the dominant pathway is lateral and at, or very close to, the surface.

In the majority of soils the situation is, of course, more complex, and a number of other response models are necessary. However in all of these models the basic consideration is the same: at what depth within the soil/substrate profile, and for what reason, does lateral water movement become a significant factor in the response of the soils? A complicating factor is that the flow pathways within soils can depend on soil wetness, for example some soils may under dry conditions have capacity to store water and hence limit response, but under wet conditions the water table may rise close to the surface thereby limiting storage capacity and causing an increase in the short-term response to rainfall.

The models themselves fall into three physical settings.

- i) The soil overlies a permeable substrate, in which a ground water table usually exists and is at a depth of greater than 2m.
- ii) Again the soil overlies a permeable substrate but there is a shallow water table within 2m, either in the soil or substrate.
- iii) There is no groundwater or aquifer but usually a shallow impermeable substrate that impedes vertical movement of water.

These three situations are shown in Figure 5.1

Figure 5.1 Physical settings underlying the HOST response models.

Within the basic physical settings there are variations caused by the nature of the parent material, the organic content of the soil, and the influence of climate. These other factors are indexed by the physical properties described in Section 4.6, namely the presence of an impermeable or gleyed layer within 1m of the surface, the presence of a gleyed layer within 0.4m of the surface and the presence of a peaty surface layer. Figure 5.2 shows the full range of models, and these are described in detail in the next section.

5.2 HOST RESPONSE MODEL DESCRIPTIONS

Model A

Model A describes the dominant water movement in permeable, well drained soils with permeable substrates. The dominant water movement is downwards through the vadose zone to an aquifer or groundwater table at least two metres below the surface. Lateral movement is largely confined to the saturated zone. The base flow of rivers and streams dominated by soils in this group is generally high, with the hydrological response being controlled by the flow mechanisms of the substrate. Four types of flow through the substrate have been recognised.

- i) In weakly consolidated chalky substrates the dominant flow is laminar via small pores, but with some fissure flow.
- ii) In unconsolidated sandstones the water flows in large pores between the particles (ie. is intergranular)
- iii) Where the rock is more coherent but deeply weathered or fissured, the dominant flow is via the fissures as the bulk of the rock is only slightly porous at best. Aquifers or groundwater are more rarely found in this group than in the others in Model A.
- iv) In unconsolidated sands and gravels the flow is largely laminar and intergranular.

Model B

Model B encompasses a wide range of soil types which are of limited geographical extent. Although, as in model A, the flow is dominantly vertical through an unsaturated zone, there is an increased likelihood of some seasonal saturated flow particularly in winter when the soils develop a water table for short periods. These soils may be either weakly gleyed, perhaps due to their position in the landscape, or may have a slowly permeable horizon within the top metre. The underlying substrate may well contain groundwater or an aquifer.

Model C

Model C describes the flow regime in soils and loamy substrates with prolonged seasonal saturation and hence a dominantly horizontal flow with only some leakage through the permeable substrate to groundwater. These soils are mineral or humic gleys developed from loamy or colluvial drifts. They are often associated with concave hollows of springs along footslopes and as such they will have groundwater at depth. Much of the land associated with this HOST class is cultivated and will often have artificial drainage schemes.

Model D

Within this model the raw peaty topsoils dominate the hydrology, although a limited amount of throughflow penetrates to groundwater (where present). The drift is coarse and relatively permeable so the saturated conditions are largely due to climatic wetness rather than fluctuating groundwater tables, and there is likely to be a hydraulic discontinuity between surface saturation and the groundwater table.

Whilst the previous models described flow in soils largely unaffected by groundwater but where the degree of soil wetness was increasing, models E to G describe the conditions of soil response where a true groundwater table is within a short distance of the soil surface (nominally 2 metres). Clearly then the height to which a groundwater table rises will affect the speed of the response as will the fact that these models describe conditions of flow in the riparian environment.

Model E

Model E is indicative of coarse sandy, gravelly or loamy textured alluvial soils where the water table only penetrates the upper portions of the soil profile on rare occasions. Therefore, in the sands and gravels, the dominant flow pathway is vertical and largely laminar or intergranular, and in the more loamy alluvium there will be a component of by-bass flow

because of the presence of macropores.

Model F

The saturation is due to a fluctuating groundwater table which comes close to the surface. This means that vertical water movement is restricted to the top few centimetres and rainfall reaches the water table quickly.

Model G

Model G describes the flow regime in drained, cultivated earthy peats (and in lowland basin and valley peats) as well as in small, localised hollows which are permanently saturated but which overlie permeable drifts eg. dune slacks. The dominant hydrological features are the presence of a peaty surface layer (an H horizon) and a water table within a short distance of the surface (nominally 2 metres). Although this will not always hold true for some confined basin peats which have developed as raised mosses, the confined nature of the water table means that these soils are adequately described by this model. Flow is dominantly surface runoff though there will also be saturated throughflow.

Model H

Model H is the first of the models which describes the flow of water through soils which are underlain by either a slowly permeable or an impermeable substrate such as glacial lodgement till or hard coherent rock at depths greater than one metre. However, the soils described by the model have no inhibition to drainage within the first metre and exhibit vertical unsaturated and by-pass flow through the macropores to the depth of the underlying substrates. A groundwater table or aquifer is not normally present in these substrates.

Model I

Model I describes conditions where there is some inhibition to water movement down through the soil profile. In some cases the slowly permeable fine textured glacial till is within one metre of the surface which also leads to the development of perched water tables for a few weeks in the year. In other cases there is solid coherent rock within one metre which leads to lateral water movement along the soil/rock interface. By-pass flow may be a feature of these soils when they are not saturated. When a perched water table forms, the dominant flow regime will be largely saturated lateral flow, however at other times, or where no water table forms, the flow will be predominately vertical, albeit to within a restricted depth.

Model J

Like the previous conceptual model, Model J illustrates the likely flow regime in soils and substrates with seasonal saturation. However, in this case the soils are waterlogged for a longer time and are dominated by prolonged saturated flow controlled by the height and duration of a perched water-table. Some unsaturated and by-pass flow will be apparent in the summer months.

Model K

The flow regime of the soils described by Model K is influenced by the raw peaty topsoil as well as the underlying substrate. Surface runoff is a feature of these soils and the upper soil

layers remain saturated for much of the year. There is some lateral flow above the impermeable layer which may be glacial till or hard coherent rock. The rock is often close to the surface further restricting downward percolation. Where there is deep peat, the flow is dominated by surface and immediate subsurface flow, with the underlying substrate having little influence on the hydrological response except where the peat is eroded.

In eroded peat the exposed mineral layers allow deeper infiltration and the large areas of exposed peat may absorb a greater proportion of the precipitation. The intensity of rainfall may also be important in controlling the response in that low intensity rainfall may be more easily absorbed by the exposed peat, but high intensity rainfall may lead to the development of ephemeral streams which could extend into the gullies often found in these soils.

5.3 SUBDIVISIONS WITHIN THE FRAMEWORK OF MODELS

From the above descriptions it will have been noted that the models do not identify groups of soils that can be expected to respond in the same way to rainfall. Indeed this might be expected from the size of some of the groups; in terms of the area covered in England, Wales and Scotland, Model A covers some 19% and Model J roughly 17%. Of course not all of the models are so widespread; Models B and C each cover less than 1% of the area.

Within Model A, six divisions are made according to flow mechanism and geology, as indexed by the soil hydrogeology coding developed for HOST and described in Section 4.3.5.

	Flow mechanism	Substrate hydrogeology
1	Weakly consolidated, microporous; by-pass flow uncommon (Chalk)	Chalk, chalk rubble Clay with flints or plateau drift Chalky drift
2	Weakly consolidated, microporous, by-pass flow uncommon (Limestone)	Soft Magnesian, brashy or Oolitic limestone and ironstone
3	Weakly consolidated, macroporous, by-pass flow uncommon	Soft sandstone, weakly consolidated sand.
4	Strongly consolidated, non or slightly porous. By-pass flow common	Weathered/fissured intrusive/metamorphic rock Hard fissured limestone Hard (fissured) sandstone
5	Unconsolidated, macroporous, by- pass flow very uncommon	Blown sand Gravel Sand
6	Unconsolidated, microporous, by-pass flow common	Colluvium Coverloam Sand

Table 5.1 Subdivisions within HOST response Model A

A subdivision based on flow mechanism is also applied in Model E, but here only two classes are found as shown in Table 5.2

40

.

	Flow mechanism	Substrate hydrogeology
L	Unconsolidated, macroporous,	Blown sand
	by-pass flow very uncommon	Gravel
		Sand
2	Unconsolidated, microporous,	Hard but deeply shattered rocks
	by-pass flow common	River alluvium
		Marine alluvium
		Coverloam
		Loamy drift
		Chalky drift

Table 5.2 Subdivisions with HOST response Model E

Within Model F the response of the soils depends on their saturated hydraulic conductivity. Soils described by this model are subdivided into those with a low integrated air capacity, $\leq 12.5\%$ (fine textured silty or clayey alluvium), and those whose integrated air capacity is > 12.5% (coarse textured sandy or gravelly alluvium). Hollis and Woods (1989) found that an integrated air capacity of around 12.5 percent equates with a saturated hydraulic conductivity of 1 m day⁻¹.

Model G is divided according to whether the peat is drained or undrained.

Within each of the models there may be a subdivision according to flow rate and water storage. In theory there is an extremely large number of combination models and properties, but in practice not all combinations are possible. Of those that do occur, some can be expected to give a similar hydrological response and indeed cannot be distinguished using the available hydrological data; in such situations they may be combined in a single HOST class. Other model/property combinations are also indistinguishable using the hydrological data but represent different mechanisms of runoff production or situations in which some different HOST classes. Various classification schemes were assessed by studying individual catchments and by multiple regression analysis of the response descriptors for the catchment data set.

Models H, I, J and K all apply to impermeable or slowly permeable soils in which there is no significant groundwater or aquifer; soils are further divided according to the substrate geology, as shown in Table 5.3. In practice not all of the substrates occur in each of the model groups.

One further subdivision exists within Model I. Here integrated air capacity is used to index soil water storage capacity and a split is made into those soils with IAC>7.5 and those with IAC \leq 7.5.

The HOST classification is obtained by applying these subdivisions to the response models and results in the 29 class system shown in Figure 5.3.

	<u></u>	
	Substrate hydrogeology	Soil hydrogeology class
I	Slowly permeable	Soft shales with subordinate mudstones and siltstones Very soft blocky mudstones (marls) Very soft bedded loams, clays and sands Very soft bedded loam/clay/sand with subordinate sandstone Glaciolacustrine clays and silts Till, compact head Clay with flints or plateau drift
2	Impermeable (hard)	Hard coherent rocks
3	Impermeable (soft)	Very soft massive clays
4	Eroded peat	Eroded blanket peat
5	Raw Peat	Raw peat

Table 5.3 Substrate hydrogeology subdivision within Models H to K

5.4 VALIDATION OF THE HOST CLASSIFICATION.

The utility of the HOST classification was verified by using the classification to develop a BFI estimation equation. This analysis took the form of a multiple regression exercise in which BFI is the dependent variable and the independent variables are the fractions of the various classes occurring within the topographic catchment boundary. The relationship sought was of the form

 $BFI = a_1HOST_1 + a_2HOST_2 + a_3HOST_3 + \ldots + a_{29}HOST_{29}$

where $HOST_1...HOST_{29}$ are the proportions of each of the HOST classes, and $a_1...a_{29}$ are the unknown regression coefficients.

Table 5.4 shows the result of such a regression on a set of 575 catchments which were all quality graded A or B, and have an unclassified area of less than 50% on the 1:250,000 soil maps (remember that in the data set used all soils were classified; this was a method of eliminating those most likely to show a strong urban effect).

)

)

.

SUBSTRATE HYDROGEOLOGY			MINEF	RAL SOILS			PEA1	SOILS
	Groundwater or squifer	No impermeable or gleyed layer withun 1 00cm	limpermeable la gleyed lay	iyer within 100cm or er at 40-100cm	Gleyad I	vgr within 40cm	- -	
Weakty consolidated, miscroporous, by-pass flow uncommon (Chalt)	Normally	1 4.31						
Weakly consolidated, microporous, by-pass flow uncommon (Limestone)	present and at >2m	2 2.12						
Weakly consolidated, macroporous,by-pass New uncommon	.	³ 1.58						
Strongly consolidated, non ar slightly porous. By-pass flow common	1	4 3.33	13 0.87		¹⁴ 0.66		15 9.93	
Unconsolidated, macroporous, by-pass flow very uncommon		⁵ 5.07						
Unconsolidated, microporous, by pass flow common	- 	¢ 2.61	T					
Unconsolidated, macroporous, by-pass flow very uncommixen	Normally present and at ≤2m		7 1.01		AC'<12.5 <12.14	IAC'≥12.5 [≥10.day ¹]	Drained	Undrained
Unconsobdated, microporous,by.pass flow common			⁸ 1.62		° 3.68	10 2.21	11 0.55	12 2.93
			IAC*>7.5	IAC*≤7.5				
S.owiy permeable		¹⁶ 0.43	¹⁸ 5.40	21 4.02	24 13.85		26 2.49	
Impermeable (hard)	No significant	17 9.28	19 2.16	22 1.10	- 4 . 		27 0.83	
Impermeable (soft)	groundwater		²⁰ 0.69	23 1.31	²⁵ 3.64	,		
Erodod Peat	or aquifer	•• •					²⁸ 0.59	
Raw Peat			•				29 5.73	

 IAC used to index lateral saturated hydraulic conductivity
 IAC used to index soil water storage capacity Also unclassified (urban) areas (5.15%) and lakes (0.74%).

No extensive UK soil types exist outside the table or within the shaded portions of the diagram. Small numbers are HOST class numbers. Large numbers are percentage land cover in England, Wales and Scotland, on 1:250,000 maps.

Figure 5.3 The HOST Classification

HOST class	BFI coefficient	s.e. of coefficient	HOST class	BFI coefficient	s.c. of coefficient
l	1.034	0.022	16	0.778	0.195
2	1.011	0.039	17	0.613	0.027
3	0.835	0.052	18	0.506	0.039
4	0.790	0.042	19	0.498	0.104
5	1.016	0.065	20	0.526	0.207
6	0.586	0.065	21	0.330	0.025
7	0.725	0.177	22	0.294	0.111
8	0.533	0.216	23	0.198	0.118
9	0.789	0.254	24	0.311	0.019
10	0.437	0.142	25	0.178	0.042
11	0.838	0.213	26	0.247	0.043
12	0.092	0.075	27	0.229	0.193
13	1.005	0.231	28	0.552	0.156
14	0.219	0.225	29	0.232	0.034
15	0.387	0.028			
Standard erro Approximate	or of estimate equivalent r ²	0.089 0.79			

 Table 5.4 BFI coefficients from multiple regression analysis

The values of the coefficient of determination, 0.79, and the standard error of estimate, 0.089, indicate that a useful regression was obtained. The table shows that some of the coefficients (classes 1, 2, 5 and 13) are slightly greater than the maximum allowable value for BFI (ie. 1.0), and that one (class 12) is lower than the minimum expected value of BFI (minimum value in data set 0.14). It is easier to assess the BFI coefficients if they are tabulated in a form corresponding to Figure 5.3; this has been done and is shown as Table 5.5.

From this table the general trends of decreasing BFI from top to bottom and left to right are quite clear. Within the impermeable or slowly permeable group at the bottom of the table the decrease in BFI from left to right is very well defined. From this part of the diagram only two coefficients stand out as being different from expected. The coefficient for class 20 appears considerably higher than for classes 23 and 25 which have the same substrate, but the coefficient is consistent with those for the other classes with the same physical properties but different geologies (ie. HOST classes 18 and 19). The other outstanding coefficient is for class 28, which is higher than for other peat soils.

The coefficients for classes 7 to 12 are consistent with their response models, although as already noted the coefficient for class 12 is lower than any observed BFI in the dataset.

1.034	13 1 005		14.0.210			
² 1.011	1.005		0.219		¹⁵ 0.387	
3 0.835						
4 0.790]					
⁵ 1.016]					
⁶ 0.586						
' 0.725			9 0 780	10 0 427	11 0 020	12 0 000
* 0.533			0.789	0.437	0.838	0.092
¹⁶ 0.778	¹⁸ 0.506	21 0.330	24 0.311		²⁶ 0.247	•
17 0.613	¹⁹ 0.498	22 0.294	· ·		²⁷ 0.229	
	²⁰ 0.526	²³ 0.198	²⁵ 0.178			· · · · · ·
			-		²⁸ 0.552	
					²⁹ 0.232	

Table 5.5 BFI regression coefficients according to HOST framework

Within the top part of the table there are also two anomalies. Firstly it is surprising that the coefficient for class 5 is higher than for class 3. A reducing sequence of BFI coefficients would be expected for the three classes in which macroporous flow dominates (ie. classes 3, 5 and 7). Secondly the physical models imply that class 14 should have a higher BFI coefficient than class 15, but from the regression the reverse is true.

Table 5.4 also shows the standard errors of the coefficients and it will be noted that some of these are relatively large, and that the coefficients are therefore unreliable. This is particular true for classes 12, 14, 20 and 27 for which none of the coefficients is significantly different from zero at the 5% level. It is hardly surprising that some of the coefficients were badly estimated since they have very little areal extent and are therefore very poorly represented in the data set. Table 5.6 shows the way in which HOST classes are represented within the 575 catchment set and, for comparison, the equivalent figure for the whole of the UK. Note that these latter figures differ slightly from those in Table 5.3, since those in Table 5.3 relate to the printed maps of England, Wales and Scotland and have unclassified, mainly urban, areas, but the numbers in Table 5.6 come from the UK HOST data set in which these areas have been infilled with the underlying soil. Although there is some correspondence between the classes for which coefficients are not significant and class with very low coverage this is not always the case.

Overall the results of the regression are encouraging and indicate that the form of the HOST classification, which is based on conceptual models of response, is very useful in the estimation of a catchment-scale hydrological variable, BFI.

In order to fully develop a way of estimating BFI from HOST the regression was repeated with bounds applied to the coefficients so that unacceptably large or small values were excluded. The range of allowable values was specified as 0.170, the minimum reliable BFI coefficient from the unbounded regression, to 1.000, the maximum possible BFI value. Table 5.7 shows the coefficients resulting from this regression, which has a s.e.e. of 0.089.

HOST class	% in UK	Average % on BFI catchment set	Equivalent number of catchments
I	4.17	5 85	33.6
2	2.07	3.17	18.2
3	1.64	1.99	11.4
4	3.22	3.95	22.7
5	5.61	4.07	23.4
6	2.52	2.64	15.2
7	1.04	0.81	4.7
8	1.74	0.88	5.1
9	3.86	0.98	5.6
10	2.14	1.74	10.0
11	0.53	0.30	1.7
12	2.75	1.37	7.9
13	0 85	0.64	3.7
14	0.62	0.55	3.2
15	9.30	10.14	58.3
16	0.61	0.62	2.6
17	8.72	10.02	57.6
18	6.74	5.72	32.9
19	1.94	1.44	8.3
20	0.64	0.97	5.6
21	5.96	6.22	35.8
22	1.01	1.28	7.4
23	1.27	1 46	8.4
24	15.23	15.30	88.0
25	3.82	4.57	26.3
26	3.20	4.88	28.1
27	0.77	0.55	3.2
28	0.57	0.33	1.9
29	6.16	7.19	41.3

Table 5.6 Representation of HOST classes in the BFI catchment data set

It can be seen that imposing these bounds has had little effect on the coefficients, other than for HOST class 12, and that no increase in the standard error of the estimate has resulted.

Because the same inconsistencies between the derived coefficients and the conceptual response models remain, a third regression with additional bounds was performed. In this case the extra constraints set a lower limit on class 3 of 0.9, an upper limit on class 5 of 0.9 (0.9 being between the coefficients derived for these two classes previously and these bounds would ensure the coefficient for class 5 must be less than or equal to that of class 3) and a lower limit on class 14 of 0.38 (the value derived for class 15). Table 5.8 shows the coefficients from this second bounded regression.

The s.e.e. for this regression has increased very slightly from 0.089 for the unbounded case to 0.090, but the coefficients are now in line with the observed range of BFI values, and consistent with the response models.

į

The quality of this regression is depicted in Figures 5.4 and 5.5 which show the observed and estimated BFI values, and the residuals (observed-estimated) plotted against the estimates. These figures show the values-for all 786 catchments (ie. including the poorer quality catchments and those with high urban fractions). Figure 5.7 shows the residuals plotted at

catchment centroids for the same catchments. The map shows some clustering of positive and negative residuals, and therefore indicates where BFI estimation using the equation represented by Table 5.8 is likely to be in error. The reasons for these regional clusters are not known at present, but it is hoped they will be explored fully in future work.

Table 5.7 BFI Coefficients	from	bounded	multiple	regression	analy	ysis
----------------------------	------	---------	----------	------------	-------	------

.. _

1 1.000	13 1 000		14 0 221			
² 1.000	1.000		0.231		15 0.380	
³ 0.833						
4 0.791						
⁵ 1.000						
⁶ 0.615]					
' 0.740	· · · · · ·		9 0 914	10 0 492	-	12 0 170
⁸ 0.509			1 0.814	** 0.482	" 0.862	··· 0.170
¹⁶ 0.825	18 0.511	21 0.332	²⁴ 0.308		²⁶ 0.246	•
17 0.613	19 0.483	22 0.304			27 0.226	
	²⁰ 0.528	²³ 0.215	²⁵ 0.178			
					²⁸ 0.549	
					²⁹ 0.229	

Table 5.8 BFI Coefficients from second bounded multiple regression analysis

¹ 1.000		<u> </u>	14 0 200		150.000	
² 1.000	1 1.000		0.380		¹⁵ 0.380	
³ 0.900	1					
4 0.791	1					
⁵ 0.900	1					
6 0.645]		*			
7 0.792			90.724	10 0 520	11.0.007	12 0 170
⁸ 0.560			1 0.734	0.520	0.927	0.170
16 0.778	¹⁸ 0.518	21 0.340	²⁴ 0.312		²⁶ 0.244	•
17 0.609	¹⁹ 0.469	22 0.315			²⁷ 0.259	
	20 0.524	²³ 0.218	25 0.170			
					²⁸ 0.581	
					²⁹ 0.226	

Figure 5.4 Estimated values of BFI against observed BFI

Figure 5.5 BFI residuals (observed-estimated) against estimated values of BFI

catchment centroids for the same catchments. The map shows some clustering of positive and negative residuals, and therefore indicates where BFI estimation using the equation represented by Table 5.8 is likely to be in error. The reasons for these regional clusters are not known at present, but it is hoped they will be explored fully in future work.

Table 5.7	BFI	Coefficients	from	bounded	multiple	regression	analysis
-----------	-----	--------------	------	---------	----------	------------	----------

¹ 1.000	13 1 000		14.0.221			
² 1.000	1 1.000		0.231		15 0.380	
3 0.833	1					
4 0.791						
5 1.000]					
° 0.615					ļ	
⁷ 0.740			90.014	10 0 100	1	
8 0.509			0.814	0.482	11 0.862	" 0.170
15 0.825	18 0.511	21 0.332	²⁴ 0.308	•	26 0.246	
17 0.613	19 0.483	22 0.304			27 0.226	
	20 0.528	23 0.215	²⁵ 0.178			
	· .				²⁸ 0.549	
		······································	······································		29 0.229	

Table 5.8 BFI Coefficients from second bounded multiple regression analysis

+ 1.000	13 1 000		14 0 200	·	11.0.000	
2.1.000	1 1.000		0.380		0.380	
³ 0.900	1					
* 0.791]					
⁵ 0.900	1					
⁶ 0.645	1					
⁷ 0.792				10.0.500		
⁸ 0.560			- 1 0.734	0.520	0.927	" 0.170
¹⁶ 0.778	¹⁸ 0.518	21 0.340	24 0.312	·	26 0.244	- <u>-</u>
17 0.609	¹⁹ 0.469	22 0.315			27 0.259	
	20 0.524	23 0.218	²⁵ 0.170			
	÷.				28 0.581	<u> </u>
					29 0.226	

Figure 5.4 Estimated values of BFI against observed BFI

Figure 5.5 BFI residuals (observed-estimated) against estimated values of BFI

Figure 5.6 The distribution of BFI residuals (observed-estimated)

5.3 HOST CLASS DESCRIPTIONS

HOST classes have been defined using conceptual models of the processes within the soils and physical properties of the soil and substrate. The following descriptions of the HOST classes aim to set these definitions against a more qualitative description of where the classes are to be found, the form of the landscape, the vegetation and the landuse. Appendix D, Figures Di-xxix show the distributions of the HOST classes in the United Kingdom.

HOST class 1

HOST 1 contains freely drained soils overlying chalky substrates which are weakly consolidated (e.g. chalks). The dominant flow is laminar via small pores with some fissure

flow.

HOST class 2

HOST 2 is similar to HOST 1 except that the substrate is magnesian, oolitic or brashy limestones.

HOST class 3

The soils of HOST 3 are underlain by soft sandstones and weakly consolidated sands, therefore the dominant flow is intergranular via large pores.

HOST class 4

These first three HOST classes are restricted to England and Wales, however HOST 4 has a wider distribution in that it is found in all three countries albeit in a limited extent in Scotland. The underlying substrates include weathered or fissured, intrusive or metamorphic rocks, hard fissured limestones and sandstones. The dominant flow in the substrate is via these fissures as the bulk of the rock is only slightly porous at best. The intrusive and metamorphic rock types found in this HOST class are restricted to England and Wales where they have undergone substantial chemical weathering. Similar rock types in Scotland were extensively glaciated which removed the weathered overburden. There is a likelihood of groundwater at depths greater than two metres in this class.

The soils comprising HOST class 4 are underlain by hard fissured Dalradian, Cambrian or Ordovician limestones or sandstone and are distributed throughout Scotland in both highland and lowland situations. Much of the topography is very rocky, particularly the limestone, regions which have been extensively glaciated. Only rarely is there true karst topography, the land being predominantly undulating with ridges and rock knolls or craggy outcrops on steep-sided valleys. The island of Lismore is composed almost entirely of limestone and has a ridged appearance. Around Tomintoul and upper Decside the landscape is one of rocky knolls and hollows.

The landscape associated with the sandstones varies from gently undulating lowlands with few rock outcrops to the rock-dominated hill tops of Sutherland and Caithness. In Shetland, the topography can be very rocky with a stepped appearance or strongly undulating lowlands. The largest area, around the Black Isle, is gently to strongly undulating with low ridges.

All the soils are freely drained (wetness class I) and include brown forest soils, humus-iron podzols, brown and podzolic rankers, brown rendzinas and lithosols. They are often shallow. As expected with such a diversity in topography and climate, the vegetation varies from seminatural grasslands and herb-rich heather moorland in the uplands to arable, improved pastures, coniferous plantation and occasionally broadleaved woodlands in the lowlands.

HOST class 5

HOST 5 comprises soils developed on fluvioglacial sands and gravels or windblown sands.

Found throughout Britain, the flow through these soils and substrates is largely laminar and intergranular. This HOST class often occupies immediate post-glacial terraces (in Scotland at least) along river valleys and the presence of groundwater is therefore very likely. The depth of these deposits may have a bearing on river response times.

The drift comprising HOST class 5 is coarse textured and dominated by rapid infiltration and through flow. The soils are freely drained (wetness class I) and are found throughout Scotland but primarily south and east of the Great Glen. The soil types are mainly humusiron podzols and brown forest soils with brown calcareous soils, calcareous regosols, alluvial sands and gravel, and regosols. The sand and gravel deposits are associated with a range of geomorphic processes and can be divided into fluvioglacial, raised beach, windblown links and dunes, coarse morainic drift and the specific geomorphology of Glen Roy and Glen Gloy in the Western Highlands. This class is extensive but its importance is limited by its proximity to the sea in many cases.

The fluvioglacial deposits can be either moundy with long sinuous ridges or gently sloping outwash plains (e.g. around Forres in North-east Scotland) and river terraces. The deposits are generally associated with river valleys and vary considerably in thickness.

The raised beach deposits are found around the coast and are generally gently undulating and often terraced. These are areas of former beach but are now above the high water line due to isostatic recovery after the Ice Age.

The windblown coastal sand deposits form areas of gently undulating stable links on which many of the best golf courses are to the found on moundy dune areas with little or no vegetation cover and steep slopes. Again their location limits the impact of these soils on river flow. These areas are extensive e.g. Culbin, Tentsmuir and Gullane.

The coarse morainic drift is a specific case where the deposit grades into fluvioglacial drift and is found around Invergordon in Easter Ross. It can be moundy but in general the topography is gently undulating. The Glen Roy and Glen Gloy areas are world renowned for the series of parallel roads which are former shore lines of a glacial lake. The drift is highly variable ranging from fine silts to coarse gravel with the latter falling into HOST class 5. The slopes on the valley sides are steep and subject to landslippage while the valley floor deposits are gently undulating with terraces.

The diversity of landforms, topography and climate means that the land use of these soils varies from natural marram grassland through heather moorland to coniferous plantation but the dominant land use is arable and permanent pasture.

HOST class 6

HOST class 6 comprises freely drained soils (wetness class I) developed on loamy textured drift underlain by porous rocks such as sandstones. They are found throughout the lowlands of Scotland but most extensively in the east, Caithness and Sutherland. The main soil types are brown forest soils and humus-iron podzols with some subalpine podzols. All are freely drained (wetness class I) and microporous with by-pass flow common along major structural cracks. These soils have the ability to both store water and to allow the rapid transmission of excess rainfall through them to streams and rivers. The landforms associated with these soils are highly variable and encompass undulating non-rocky lowlands, valley sides and hill

tops. The land has a wide range of slopes and is occasionally rocky. There are also localised areas of moundy morainic drift. These soils range in altitude from virtually sea level to around 700 m. This is reflected in the vegetation which ranges from cultivated arable land in the lowlands through heather moorland, rough grasslands and semi-natural woodland.

HOST class 7

The soils of HOST class 7 are free and imperfectly drained, coarse textured alluvial soils. Although these soils are underlain by a fluctuating groundwater table generally within two metres they are relatively unaffected as they tend to be found on the very gently undulating higher terraces away from the river in the lowlands or, as in many Highland glens, they occur on outwash alluvial fans of coarse textured sand and gravel deposits, (wetness class I-III).

HOST class 8

The soils of HOST class 8 are found in similar positions in the lowland landscape to the previous HOST class. The soils, however, are more loamy in nature and will have a more well developed structure leading to by-pass flow. These soils are also freely and imperfectly drained and are often intensively cultivated, (wetness class I-III).

HOST class 9

The alluvial soils of HOST class 9 are developed on fine textured (silty or clayey) lacustrine or riverine alluvium. These deposits are found in various positions in the landscape. They can often be associated with loch margins or infilled ox-bow lakes on broad alluvial flood plains. Occasionally they are found as large, relatively stone-free areas of former lake beds which are still prone to seasonal flooding: Therefore the water table is likely to exert a strong influence on both the soil development and its hydrological response. These soils have low integrated air capacities and as such have a low solute transmission rate which will also influence the soils' response.

HOST class 10

HOST class 10 comprises poorly drained alluvial soils and mineral ground water gleys ie. they are influenced by a fluctuating groundwater table, and are found in low lying areas around lochs, between fluvioglacial mounds, along rivers and on raised beaches. It also encompasses the saline alluvial soils of saltings. All have no impermeable horizon within 1 m of the surface and are often very porous (wetness class IV).

These soils are often found in conjunction with freely drained sands and gravels (HOST class 5), interspersed amongst the hummocks and as recent alluvial deposits fringing modern rivers and lakes, and therefore occupy low lying and depressional sites within the landscape.

The raised beach can be either former estuarine alluvium or coarse gravelly beach deposits but the topography is very similar with a level to gently undulating landform with some depressions. In some instances coarse sandy or gravelly deposits are underlain by silts at depth which reduces the infiltration of rainwater. Modern beach areas, particularly dunes, have localised hollows known as slacks. These areas can also carry mineral gley soils.

The large area of HOST class 10 around Glasgow is based on a best estimate of the drainage conditions and deposits under the urban area. This estimate was made on the basis of a detailed soil survey around the urban fringe and extrapolated to unsurveyed areas using the geological drift maps, local knowledge and topographic maps. The land to the south of the River Clyde has fine sandy (HOST class 10) and silty soils (class 9), is low lying and is punctuated by raised mosses (class 12), some of which lie about one metre above the surrounding land. To the north, the floodplain is more constrained and has more topographic expression and consequently better drained soils (class 7 or 8).

Saline alluvial soils occupying the land below the high-water mark are periodically inundated by sea water. Although a specific landform, its affect on river hydrology is negligible.

The vegetation of these areas varies from the halophytic marsh species of the saltings, rush pastures, and sedge mires to permanent pasture and intensive agriculture where the level of the water table can be controlled.

HOST class 12

The soils and landforms of HOST class 12 are similar in many ways to those of class 9. However, these soils have a peaty surface layer and are predominantly peaty gleys, peaty alluvial soils and occasionally peaty podzols. Again, all are porous albeit below the surface organic layer. Low lying hollows amongst fluvioglacial ridges and mounds, dune slacks, gently undulating raised beaches and outwash plains all carry these soil types.

In addition this class also includes confined and semi-confined peats. Confined peats or raised mosses occur in localised depressions that were formerly lakes. These hollows gradually silted up and the vegetation which grew on this material died, however, the anaerobic conditions prevented this plant debris from breaking down and so it accumulated as peat. The peat accumulation continued to the extent that the moss is now well above the underlying lake bed. Semi-confined peats occur in river valleys particularly in the Highlands often associated with either fluvioglacial mounds or moundy moraines. These peats occupy the lowest positions in these landscapes and are therefore more strongly influenced by the underlying water-table than the confined basin peats.

Basin and valley peats form in confined and partially confined basins in either rock controlled topography or in undulating till deposits. In many instances the basin originally held a small loch which has gradually been clogged with partially decayed vegetation. Basin peats can often form dome-shaped raised mosses with the centre considerably higher than the edges. The vegetation varies from heather moorland to *Molinia*-dominated bog and often there are flushed channels of mosses, rushes and sedges. Flanders Moss, Rora Moss and St Fergus Moss are all examples of these lowland basin peats; many others are now exploited for fuel or horticultural peat.

Outwith the lowlands, valley peats are found over a wide altitudinal range, primarily in areas of high rainfall where they form on level or gently sloping sites generally underlain by impermeable substrate. These sites are often flushed and carry *Molinia*-dominated bog vegetation. In many areas, this type of peat can be found interspersed between morainic and fluvioglacial mounds, on the steps of terraced topography. Peat occupies the intervening

hollows and, in wide valleys where the mounds are less confined, extensive peat flats can develop, (wetness class V-VI).

HOST class 13

The landscape of HOST class 13 is one of gently to strongly undulating lowland and foothills, some valley-side and hummocky moraines. The land is generally non-rocky. The soils are only weakly gleyed brown forest soils and humus-iron podzols (wetness class II - III) or have an impermeable horizon below 40 cm. This impermeable horizon is generally due to the presence of a hard dense compact layer in the soil (termed induration) which formed under much colder climatic conditions. This layer is found in present day arctic soils. Only rarely does this layer impede the flow of water through the soil to such an extent that gleying occurs.

The main land use is again arable with permanent and semi-natural grasslands, coniferous plantation, broadleaved woodland and moorland.

HOST class 14

HOST class 14 has a wide distribution from Shetland in the north, Lewis in the west to the Border Country. The soils are poorly drained mineral and humic gleys (wetness class IV) and are largely confined to concave slopes or depressional sites in the foothills, valley sides and lowlands. Occasional areas of irregular topography or hummocky moraine also carry these soils. The drift is loamy, locally colluvial in derivation where the soils are often associated with flushes and spring lines.

The soils are generally found below 300 metres altitude and the vegetation is predominantly arable, permanent and long ley pasture. Rush pastures occur in embayments in the foothills along with semi-natural grasslands. Areas of moorland and coniferous plantation are generally restricted to the more irregular topography, e.g. hummocky moraines. In Lewis, the landscape is dominated by the long, narrow fields of the crofting communities.

HOST class 15

HOST class 15 is very extensive throughout Scotland and covers a wide range of landforms and geographical regions from lowland depressional sites to the glacially scoured landscape of north-west Scotland. The soils are those with a peaty surface layer on permeable drift (peaty gleys and peaty podzols) and, occasionally, peaty rankers on porous rock. The wetness class is most likely VI and the peaty surface restricts infiltration as well as retaining large amounts of water.

Soils of this class are found from as far south as Dartmoor and Cornwall, and as far north as Shetland. In Scotland, they are found in the lowlands in either depressions and receiving sites, raised beaches of the west coast fjords or fluvioglacial terraces and hollows. These sites are net receivers of water from a number of sources and are generally gleys. Being difficult to drain, these soils are generally under permanent or rush pastures. occasionally arable or forestry. Limited areas with drier podzolic soils may be cultivated. Omitting the low lying, receiving sites interspersed amongst the lowland hill plain, the soils of HOST class 15 are generally to be found in upland areas where the climate is cold and wet. However, the altitude above which these conditions are conducive for the development of these peaty soils decreases from the south-east to the north-west such that the Outer Hebrides are dominated by HOST class 15, even at sea level. The same holds for Shetland where the topography is described as undulating lowlands.

Much of the area in the north and west of Scotland has peaty soils for the reasons explained earlier. This land has also been extensively glaciated and the resultant ice-scoured landscape is quite distinctive with numerous black, peaty lochans and pockets of drift interspersed between the bare, rounded, striated rock knolls. The landscape is one of desolation and chaos, particularly the drainage pattern, as streams twist tortuously from one lochan to the next.

The extreme diversity of landscapes encompassed in this class means that only a brief description can be given. However, the landforms are described in more detail in the Soil Survey publications.

In the uplands and moorlands of the Midland Valley, peaty gleys predominate, particularly in the west. These areas are often smooth and undulating but locally the topography is stepped and terraced with rock outcrops and crags. The vegetation is primarily heather moorland with some *Molinia* grassland.

One of the most extensive landform units which carries this HOST class is that of hummocky moraine and the associated deeply dissected slope moraines. In narrow, constrained valleys the mounds are lightly packed, almost overlapping, and in these areas the soils are predominantly peaty podzols; where the valleys widen and the mounds are more dispersed, the large areas of intervening hollows often have peaty gleys and peat (the latter belonging to HOST class 12). Above the mounds, on the valley sides, the drift is often eroded and gullied giving a similar pattern of soils to that found in the valley bottom. The vegetation varies from bog and heather moorland to *Molinia* grassland and occasionally broadleaved semi-natural woodland and bracken-infested slopes. Some areas have been planted with conifers.

Footslopes, embayments, spring-lines and flushed sites at valley heads can all have soils in HOST class 15 again, predominantly, peaty gleys. These tend to occur sporadically and are generally of only local significance. The vegetation is often specific to flushed areas with mosses, rushes and sedges.

This class encompasses a wide range of hill slopes and valley sides from concave (peaty gleys) to convex (peaty podzols) and from the Southern Uplands to the rugged topography of West Scotland.

Many of the rounded hills and smooth slopes of the uplands, in particular the Ladder Hills, eastern Grampians, Lammermuirs, Moorfoot and Lowther Hills and the central Southern Uplands have peaty podzols developed on a variety of porous drifts. Where the topography is more irregular, with terraces, rocky knolls and crags, the soils in HOST class 15 are both peaty podzols and peaty gleys with occasional peaty rankers on porous rock. The slopes vary enormously from gentle to very steep and can exhibit a great deal of short range variability eg. in the stepped or terraced topography associated with Basaltic lava flows. Here, the smooth flats carry peaty gleys but there is much bare rock in the form of crags.

HOST class 16

The soils comprising HOST class 16 are all developed on water modified glacial till i.e. the upper layers of the soil have had fine particles of clay and silt removed by water from melting glaciers. They are underlain by the impermeable fine-textured tills at depths greater than one metre. They are all freely drained (wetness class 1) and are located in gently to strongly undulating lowlands (and occasionally footslopes) e.g. the Howe of the Mearns and Vale of Strathmore. They tend to be intensively cultivated but long ley pastures and dairying are common in the wetter west. These soils are closely related to those in HOST class 18.

HOST class 17

HOST class 17 is one of the most extensive in Scotland and the UK representing all deep, freely drained soils developed on loamy textured drifts overlying hard, coherent rock at depths greater than one metre. They are found primarily in the foothills of the Grampian mountains, Fife and the Southern Uplands and sporadically throughout the Highlands. Where this class occurs in the Western Highlands it is generally associated with steep valley sides with colluvial drift. Where the slopes become more gentle the soils develop a peaty topsoil and are classified accordingly. The main soil types are brown forest soils, humus-iron podzols, subalpine soils, some brown magnesian soils and alpine soils. As expected with a class with such a wide distribution, the associated landforms are also highly variable and encompass gently undulating non-rocky lowlands: steep, rocky and non-rocky valley sides and hill tops with scattered boulders and rock outcrops. There are also areas of moundy moraines. This class ranges in altitude from virtually sea level to over 900 metres and consequently the vegetation includes the cultivated arable lands of the lowlands, coniferous plantations, semi-natural woodland, heather moorland, rough grasslands and the windclipped moorland and heath reminiscent of the fringes of the arctic tundra.

The alpine soils found on the high mountain summits have a distinct character. The altitude at which these soils occur varies depending on both latitude and exposure, hence in the central Cairngorm mass these soils are found above 700m but in the Orkney Island of Hoy they occur at altitudes of about 275m. The drift is loose and often very stony being essentially frost shattered debris. In many cases the depth of drift is variable but primarily greater than 1m. Continual freezing and thawing within the solum produces this loose fabric which is very porous and often results in the sorting of stones into distinct stripes. On slopes, terracettes can form which are only sparsely vegetated. Boulder lobes and screes are also a feature of this landscape particularly on steep slopes. The alpine soils are invariably freely drained although some exhibit seasonal water logging due to snow-melt. They are also frozen for a large proportion of the year which may lead to direct run-off rather than infiltration. The very severe climate means that the vegetation is rather slow growing and often prostrate. Wind clipped moorland and heath reminiscent of the fringes of the arctic tundra are common and include alpine azalea, lichens and sedges.

HOST class 18

HOST class 18 comprises soils which are weakly gleyed and are waterlogged for at least part of the year. These soils have developed on water-modified glacial tills and are similar to those in HOST class 16 except that the depth of water modification is less. This restricts the volume of soil available to store water as shown by the IAC. At certain times of the year these soils

will have predominantly unsaturated vertical flow but, when waterlogged, the dominant flow regime will be largely saturated lateral flow. Freely drained soils with hard coherent rock within a metre of the surface are in HOST class 19. Because they are shallow these soils have limited storage capacity. The dominant flow is vertical unsaturated flow with some lateral flow along the soil/rock interface. This HOST class is found mainly in Scotland, particularly in glacially scoured areas and sporadically in the uplands of north-west England and parts of Wales and the South-west. In contrast, HOST class 20 is found exclusively in England. The soils have a degree of waterlogging due to the impermeable nature of the soils and substrate, however, as they occur in the drier parts of the UK, they tend to be waterlogged for short periods and at depth. The underlying geology is of soft but massive clays. HOST class 21 includes soils developed on slowly permeable glacial lodgement till, soft shales and mudstones. These soils are weakly gleyed despite their low IAC ($\leq 7.5\%$) and shallow depth to the slowly permeable layer. They are found primarily in the drier, warmer areas of the country although not exclusively and it is perhaps this influence of climate that means that soils with low permeability are only weakly gleyed and have a short period of waterlogging. These soils form a progression of increasing wetness with classes 16, 18, 21, 24 and 26. HOST class 22 is more akin to class 19 but here the depth to the slowly permeable rock is less and so the IAC of these soils is lower than 7.5 percent. The soils are freely drained with dominantly vertical unsaturated flow but there is a preferential pathway of lateral water movement along the boundary between the soil and the rock. The class is dominated by shallow soils and occurs mainly in Scotland. HOST class 23 is similar to class 20 in the flow regime exhibited by the soils but they are less permeable and so will be saturated for longer each year.

Many of the soils of HOST class 18 are similar to those in HOST class 16. However, the thickness of the water modified layer is less, and consequently, the soils have an impermeable horizon and gleying within one metre. They are also mineral soils with wetness class 11 to 111.

This class also includes soils with weakly gleyed horizons but with an impermeable layer. In general, these soils have a reddish colour, e.g. the soils found in the Howe of the Mearns.

The topography associated with both these groups of soils is that of undulating lowlands typified by Strathmore and, occasionally, foothills adjoining the Midland Valley.

HOST class 19

Common factors linking the soils of HOST class 19 are the presence of hard, coherent rock within one metre of the soil surface and their free drainage. They are found in undulating, glacially scoured lowlands, in the high undulating mountain plateaux, and in summits with shallow frost-shattered debris and patterned ground. This exceptionally varied landscape includes the craggy, terraced slopes of Mull and encompasses a wide range of slopes from gentle to very steep, but the land is invariably rocky or bouldery with well developed *roches moutonnées* in the Machars of Wigtonshire.

The rockiness, steep slopes and severe climate precludes much of this land from cultivation although some areas support mixed arable and dairy farming. Semi-natural grassland and moorland predominate with occasional areas of broadleaved woodland and conifer plantations.

HOST class 22

In common with HOST classes 17 and 19, the soils of class 22 are shallow and underlain by hard, coherent rock predominantly at depths less than 0.5m. The soils are freely drained and occur in a number of rock dominated landscapes throughout Scotland, from the lowlands of Kirkcudbright to the high tops of the Cairngorms and as far north as Shetland.

Rugged, rocky lowlands such as Ardnamurchan and Sleat are often cultivated providing some improved pastures for crofting communities. However, the majority of the areas where these soils occur carry little or no vegetation, eg. the precipitous rock walls of corries or the undulating rock pavements of mountain plateaux. Areas of terraced land or steep hill slopes with crags and screes will often carry semi-natural grassland or heather moorland and some lowland areas are dominated by gorse or bracken.

HOST Class 23

HOST Class 24

Gleyed mineral soils with wetness class III or IV and developed on fine-textured lodgement till (formerly boulder clay) or glaciolacustrine and estuarine deposits comprise HOST class 24. These soils are found throughout the Midland Valley, Caithness, The Rhins peninsula, the Merse of Berwick, parts of the north-east and sporadically throughout the foothills and uplands.

The landscape is generally of undulating till plains, typified by parts of Ayrshire, with occasional drumlin swarms which are rounded hillocks of till resembling upturned egg cartons. These drumlins underlie much of Glasgow city centre. In the hill areas the till is often found in corrie-like hollows called till embayments and some steep sided valleys. The slopes are invariably concave and, in contrast to the open hill plains, the vegetation is generally semi-natural rush pasture or *Molinia* grassland. The open, hill plain has both arable farming (primarily in the east) and dairying (especially in western areas). In most instances the fields are divided by hedges or wire fences rather than stone dykes. Locally, especially in the south-west and Kintyre, the till is punctuated by rocky knolls but, in the main, the landscape is non-rocky.

Fine-textured glaciolacustrine deposits occur sporadically and vary widely in extent. The landscape is often gently undulating or level. The estuarine silts and clays form a specific and distinct landform associated with the Rivers Tay, Forth and Cree and are known as the Carse lands. These deposits now lie between 15 and 35 metres above sea level due to changes in the relative position of land and sea since the retreat of ice from Britain. Also included in this group are the more recently reclaimed estuarine soils but these are very small in extent. The landscape is gently undulating or level and carries both arable and permanent pasture; stone dykes are absent.

As previously mentioned these soils are primarily cultivated with dairying being a prominent farming system. More locally, semi-natural grassland, rush pasture, broadleaved woodland and conifer plantation can be found.

HOST class 26

The soils of HOST class 26 are formed on similar drift deposits to those of class 24. However, as they tend to occur in areas of excessive wetness, e.g. in the higher rainfall areas of the west, at higher altitudes and in lowland depressions, they develop a peaty surface layer and gleyed subsoil (wetness class V to VI). They are predominantly found on gently undulating hill ground with semi-natural vegetation including rush pasture, *Molinia* bog and heather moorland. Many areas have been planted with conifers due to the inherent poor potential of the soil for agriculture and generally rock-free topography. Occasionally, areas of steep valley sides have these soils, e.g. Glen Roy but these are rare occurrences. The overall impression of this landscape is of wet, gently undulating bog often with open 'sheep drains' and used primarily as rough grazing.

HOST class 27

Rapid runoff and very little storage typifies the hydrological response of HOST class 27. The soils have a thin peaty surface layer underlain by hard coherent rock. Although the landscapes associated with this class vary, they are all rock dominated from rock pavements in the high mountains to the undulating lowlands of north-west Scotland.

Very steep, almost vertical rock walls and corries are distinct landforms found throughout the mountainous regions of Scotland. In many cases the soils comprise a thin organic layer directly on hard rock and this shallowness, combined with the steep slopes, gives rapid runoff and little storage.

Some less steep slopes with very thin drift and rock outcrops typified by much of the west coast fjords also carry thin, peaty soils, although areas between outcrops may have deeper drift (HOST class 15). Where the slopes become more gentle, the rock and thin soils are separated by peat flats (HOST class 29). A similar distribution of soil types and HOST classes is found in stepped and terraced topography with short, steep rocky crags.

Perhaps the most extensive landform associated with this class is that typified by the Assynt region of north-west Scotland. This desolate treeless landscape has been virtually scoured of any soil forming material leaving only pockets of thin drift and ice-moulded rock knolls in an undulating lowland of peat flats and black, dubh lochans.

A very small area of coastal rock platform in the west of Scotland where soils have developed on thin denuded beach deposits is also included in this class.

HOST Class 28

Although croded peat is found throughout Scotland it has only been delineated in specific localities for the purposes of the 1:250,000 scale map. However, a better appreciation of the extent and distribution of this unit (and hence HOST class 28) can be gained from more detailed, larger scale soil maps.

The main areas shown at the smaller scale include Orkney, Shetland, Sutherland and Caithness, and the Monadhliath, Cairngorm and Eastern Grampian mountain masses. Detailed mapping shows that eroded peat can be found in western Scotland, the Hebridean

Islands and sporadically in the Southern Uplands.

The landscape is undulating plateaux, hill tops and hill sides with slopes generally less than 15°. A characteristic of the peat is that it 'blankets' the existing relief. Because of its widespread distribution, eroded blanket peat is found at a wide range of altitudes from below 60 metres in Shetland to about 800 metres in the Monadhliath mountains. The gullies and channels have two forms: dendritic on gentle slopes and in cols, and radial on steeper slopes. In many instances the peat in the gullies has been totally removed, exposing the underlying solum. The uneroded vegetated haggs often have short, steep slopes of unvegetated black peat which is easily removed by both wind and water. Gullies deeper than 1.5 metres are not uncommon.

The hydrological response of eroded peat differs significantly from that of intact peat. The dendritic and radial drainage pattern would tend to imply a more rapid response in stream levels to incoming rainfall. However, the large expanse of relatively dry, exposed peat may give a larger storage capacity than uneroded peat. Also, in many areas of eroded peat, pools of water form between haggs, again delaying the time taken for rainfall to reach streams and rivers; this may be dependent on the intensity of the rainfall. During heavy rainfall the gullies and channels quickly fill and become extensions of the existing stream pattern. However, in less intense rainfall, absorption by the peat is more likely.

HOST class 29

HOST class 29 is one of the most extensive classes in Britain. It occurs in large areas on its own and in conjunction with other classes in complex soil and landform units. This class encompasses raw organic soils which are uncultivated and carry either semi-natural moorland, scrub or conifer plantation. A few areas will have improved pasture but cultivation is light and often restricted to surface scarification.

.

Blanket peat is unconfined, ombrogenous, climatic peat and is extensive throughout the hills and uplands of Scotland. The term 'blanket peat' is highly descriptive of how the peat smothers and partially masks the underlying topography. Because of its ubiquitous nature, it has a wide altitudinal range and overlies undulating land with gentle slopes including mountain plateaux. This type of peat only rarely develops on slopes greater than 15 degrees. However, blanket peat also develops on the more gentle slopes within steep, rugged topography. It is climatic in nature i.e. the cold wet conditions of the Scottish uplands favour its development by retarding the breakdown and decay of dead plant material. The peat is generally more than one metre thick and can be considerably deeper. The vegetation is dominantly heather moorland, Molinia-dominated bog and the white heads of cotton grass are characteristic as are the herring-bone pattern of open sheep-drains.
6 Applications of the HOST classification

6.1 LOW FLOW ESTIMATION

This describes how the HOST classification can assist in the estimation of low flow indices. The methods described have already been published in Gustard *et al.* (1992), and indeed much of the following has been drawn from that report. These methods were developed before the HOST project was complete using a provisional classification system and data set. Users of the methods should be aware of the following difference between the provisional and final products.

- i In the provisional HOST data set, areas remained unclassified (mainly because they were urban). These areas were placed in HOST class 97, which is treated in this section as a separate class.
- ii The HOST classes have been renumbered. In Gustard *et al.* (1992) HOST class 2 was numbered class 29, with all class numbers between reducing by one. In the following section this renumbering has been applied and this section is consistent with the remainder of the report. There are, therefore, differences between this report and Gustard *et al.*
- iii Some soil series have been reassigned to different HOST classes; the changes affect HOST classes 5, 6, 7, 8, 9, 10, 12, 16, 17, and 29 but are generally small. For small catchments, users should consider referring to the revised assignment of HOST classes to map units presented in this report (Figure 5.3) and calculating new average low flow parameters values for HOST map units. The effect on larger catchments is likely to be insignificant.
- iv The provisional HOST data set was and a single map unit for each 1km square, to which the HOST classes were ascribed. In the new dataset, all map units within each 1km square were used to calculate the HOST classes. The revised data will most affect the percentage coverage on small catchments. It was for this reason that catchments of less than 5 km² were omitted in calibrating the low flow methods, but were considered acceptable for other analyses described in the report.

6.1.1 Introduction

A number of studies have identified the key role of catchment hydrogeology in controlling the low flow response of a catchment (Institute of Hydrology 1980, Pirt and Douglas 1980, Gustard *et al.* 1989). Problems of numerically quantifying this role have contributed to the difficulty in estimating low flows at ungauged sites and to the practical utility of applying a consistent method nationally. The Low Flow Studies (1980) report sought to overcome these problems by using the Base Flow Index as a key variable to index hydrological response from which other flow statistics could be derived. Examples were given of how the index could be estimated at an ungauged site from catchment geology and it was anticipated that hydrologists would develop these procedures based on their detailed knowledge of hydrogeology and low flow response. Although some regional relationships were derived between the Base Flow Index and local geology in Southern England (Southern Water Authority 1979), and Scotland (Gustard, Marshall and Sutcliffe, 1987) the lack of a national low flow response map was a major constraint to the practical application of estimation techniques in the UK.

6.1.2 Estimating flow duration curve: 95 percentile and mean annual 7 day minimum

A total of 865 stations have been identified as suitable for inclusion in the Low Flow Study data base. The selected stations have an average record length of 18.6 years of daily mean flow data, and over 16,000 station years of daily data were analysed.

The percentage coverage of the 29 HOST classes and URBAN (97) and LAKE (98) for each of the 865 low flow catchments were derived using the digitised catchment boundary and HOST data bases, (Gustard et al., 1992). Linear least squares multiple regression analysis was used to relate Q₉₅(1) and MAM(7) to the percent coverage of HOST classes. Only a draft HOST data base was available for Northern Ireland so data from Northern Ireland were not used in the analysis. Because different missing data criteria were used, different data sets were available for the $Q_{95}(1)$ calibration (694 stations) compared with the MAM(7) analysis (660 stations). Gauging stations with catchment areas of less than 5 km² were omitted because of the possibility of introducing errors in small catchments by using the dominant HOST class within 1 km² grids. The estimated $Q_{95}(1)$ parameters for the HOST classes are presented in Table 6.1. The poor representation of certain HOST classes was reflected in the results of the regression analysis with very high standard errors in parameter estimates of $Q_{95}(1)$ and MAM(7). For example, the highest standard errors of the $Q_{95}(1)$ parameters are associated with HOST classes 8 and 11, both of which are very limited in extent. Furthermore, negative parameters are estimated for HOST classes 22, 23, 25 and 27 for both $Q_{95}(1)$ and MAM(7), and additionally for HOST class 9 for $Q_{95}(1)$.

s.e. of Parameter	Q ₉₅ (1) Parameter	HOST class	s.e. of Parameter	Q ₉₅ (1) Parameter	HOST class
2.3	12.3	17	1.8	37.7	1
2.8	14.5	18	2.9	32.7	2
9.4	24.6	19	4.4	68.8	3
20.1	31.4	20	3.2	26.4	4
2.2	12.3	21	4.9	56.4	5
15.2	-3.0	22	8.6	31.6	6
9.1	-12.9	23	14.3	4.8	7
1.5	7 .7	24	32.7	30.0	8
4.3	-2.5	25	23.7	-4.3	9
3.4	9.8	26	12.4	13.2	10
11.0	· 8 .5	27	41.0	44.3	11
12.5	24.7	28	19.2	16.6	12
2.7	5.8	29	15.7	95.8	13
2.3	29.9	97	19.9	5.4	14
28.9	78.3	98	2.6	12.7	15
			13.5	26.8	16

Table 6.1 $Q_{95}(I)$ estimates for HOST classes

 $r^2 = 0.565$

Standard error of estimate = 7.633

62

The regression analysis also identified that HOST classes with similar soil and hydrogeological characteristics with respect to their low flow response possess similar parameter estimates. It was thus decided to group the HOST classes into a smaller number of low flow response units. These units were combinations of HOST classes with similar physical characteristics and in some cases these were supported by the results of the regression analysis. A number of different strategies of groupings were investigated and the final assignment of 29 HOST classes to ten Low Flow HOST Groups (LFHG) is shown in Table 6.2. The final assignment of HOST classes to groups is based principally, but not exclusively, upon hydrogeological class. The URBAN (HOST 97) and LAKE (HOST 98) fractions are assigned to individual Low Flow HOST Groups 11 and 12 respectively. Figure 6.1 displays the general distribution of Low Flow HOST Groups in Great Britain based on the dominant HOST class within grid squares of 1 km².

LOW FLOW HOST GROUP	CONSTITUENT HOST CLASSES
LFHG1	HOST 1
LFHG2	HOST 2
LFHG3	HOST 3, HOST 5
LFHG4	HOST 4
LFHG5	HOST 6, HOST 13
LFHG6	HOST 7, HOST 8, HOST 9, HOST 10, HOST 11
LFHG7	HOST 12, HOST 16, HOST 17, HOST 18,
	HOST 19, HOST 21, HOST 22, HOST 24
LFHG8	HOST 20, HOST 23, HOST 25
LFHG9	HOST 15
LFHG10	HOST 12, HOST 26, HOST 27, HOST 28,
	HOST 29
LFHGII	HOST 97
LFHG12	HOST 98

Table 6.2 Assignment of HOST classes to Low Flow HOST Groups

Table 6.3 presents proportions of the Low Flow HOST Groupings within gauged catchments in the United Kingdom, and the maximum proportion within those gauged catchments.

Using linear least squares multiple regression, $Q_{95}(1)$ and MAM(7) were regressed against the proportional extent of the 12 Low Flow HOST Groupings. Standard errors of parameters are significantly reduced compared with the analysis based on 29 individual HOST classes, no negative parameters are calculated and parameter estimates differ significantly from each other in broad terms.

An analysis of residuals using these relationships identified that there are major differences between the observed and predicted low flow statistics for catchments 26004 and 26005. Both gauging stations are on the Gypsey Race, a bourne stream draining the Yorkshire Wolds, and are controlled by fluctuating groundwater levels and cease to flow each summer when levels fall below that of the channel bed. In the final analyses, these two catchments were omitted from the regional calibration of the Low Flow HOST Groups resulting in minor changes in the parameter estimates and a significant reduction in the overall error of the estimation procedure. The final parameter estimates for $Q_{95}(1)$ and MAM(7) are presented in Tables 6.4 and 6.5. These enable $Q_{95}(1)$ and MAM(7) to be estimated for each soil association in England, Wales and Scotland, calculated from the percentage area of soil series, and thence

Low Flow HOST Group	Mean percentage in Great Britain	Mean percentage in AB graded catchments	Maximum percentage in AB graded catchments
LFHGI	4.53	6.18	100.00
LFHG2	2.24	3.22	90.69
LFHG3	7.01	5.86	98.68
LFHG4	3.50	4.10	77.24
LFHG5	2.69	2.39	45.83
LFHG6	9.67	3.87	37.76
LFHG7	39.75	40.19	100.00
LFHG8	5.92	6.37	95.00
LFHG9	10.44	9.74	86.67
LFHG10	13.10	13.91	100.00
LFHG11	0.57	3.86	97.22
LFHG12	0.57	0.34	10.00

Table 6.3 Percentages of Low Flow HOST Groupings in Great Britain and within gauged catchments

 Table 6.4 Final Q₉₅(1) estimates for Low Flow HOST Groups

Low flow HOST grouping	Q ₉₉ (1) Parameter	s.e. of Parameter
LFHGI	40.8	1.7
LFHG2	31.9	2.6
LFHG3	65.7	2.9
LFHG4	25.0	3.0
LFHG5	49.0	6.8
LFHG6	6.5	5.6
LFHG7	10.7	0.8
LFHG8	1.1	2.0
LFHG9	15.0	2.2
LFHG10	6.8	1.5
LFHGII	29.4	2.1
LFHG12	65.1	25.8
$r^2 = 0.573$		
Standard error of estimate $= 7$.	427	

)

Dominant Low Flow Group on 1km Grid

Ċ

Low flow HOST Grouping	MAM(7) Parameter	s.e. of Parameter
LFHG1	50.8	1.9
LFHG2	40.3	2.8
LFHG3	71.3	3.3
LFHG4	27.5	3.3
LFHG5	53.4	7.5
LFHG6	L.4	6.2
LFHG7	12.4	0.9
LFHG8	0.1	2.3
LFHG9	14.4	2.4
LFHG10	5.9	1.7
LFHG11	33.8	2.4
LFHG12	49.6	28.7

Table 6.5 Final MAM(7) estimates for Low Flow HOST Groups

HOST and Low Flow HOST Group within each association. For Northern Ireland values of low flow parameters are shown for each of the HOST classes for use with the provisional HOST map of the province. Figure 6.2 displays the general distribution of the estimated $Q_{99}(1)$ and MAM(7) statistics for 1 km² grid squares throughout Great Britain. These maps are based on the fractions of soil series within grid squares, which have been assigned to HOST classes and then Low Flow HOST Groups for which $Q_{99}(1)$ and MAM(7) estimates are made.

Figure 6.2(i) (Following) General distribution of estimated $Q_{95}(1)$ in Great Britain based on the proportion of HOST class in each 1 km² derived by the HOST project group

Figure 6.2(ii) (Following) General distribution of estimated MAM(7) in Great Britain based on the proportion of HOST class in each 1 km^2 derived by the HOST project group

Distribution of Q95 (HOST)

Distribution of MAM7 (HOST)

6.1.3 Estimation of the flow duration curve at ungagued sites

The initial approach to developing a procedure for estimating the flow duration curve at an ungauged site was to establish which variables controlled the slope of the line. This was investigated by calculating values of Q_{95} , Q_{10} and Q_{99} for each of the 845 time series of daily mean flows having Q_{95} greater than zero. The following ratios were then derived from each flow duration curve:

 $R(Q_{10}) = Q_{10}/Q_{95}$

 $R(Q_{99}) = Q_{99}/Q_{95}$

Ξ

~

Values of the two ratios were then related to $Q_{95}(1)$, AREA and SAAR. This analysis showed that $Q_{95}(1)$ was the only significant variable in controlling the slope of the flow duration curve, that is there was no significant difference between the gradients of the curve that could be attributed to catchment area or average annual rainfall. Inspection of a number of curves indicated that they did not plot exactly as straight lines using a log normal transformation. It was therefore not possible to use simple relationships based on gradients alone. The procedure adopted was to maintain the shape of the predicted curves by pooling groups of flow duration curves. This was achieved by deriving the 845 curves and pooling them according to their $Q_{95}(1)$ value into one of 15 groups shown in Table 6.6.

Q ₉₉ (1) % MF	Number of flow duration curves
< 2.5	14
2.5 - 7.5	132
7.5 - 12.5	197
12.5 - 17.5	177
17.5 - 22.5	103
22.5 - 27.5	83
27.5 - 32.5	53
32.5 - 37.5	30
37.5 - 42.5	22
42.5 - 47.5	17
47.5 - 52.5	5
52.5 - 57.5	3
57.5 - 62.5	4
62.5 - 67.5	4
67.5 - 72.5	I

Table 6.6 Number of flow duration curves in each class interval of $Q_{95}(I)$

A computer program was used to derive the mean curve for each group of stations by finding the mean discharge (expressed as a percentage of the mean flow, MF) for each of 40 class intervals of x, the plotting position on the frequency axis.

A family of twenty type curves were then interpolated between the pooled curves such that the logarithm of $Q_{95}(1)$ was equally spaced. Thus type curve 0 had a $Q_{95}(1)$ of 1% MF and type curve 19 had a $Q_{95}(1)$ of 79.43% MF. The shape of the curve is therefore entirely dependent on the value of $Q_{95}(1)$. The derived type curves are shown in Figure 6.3 and Table 6.7. In design studies individual curves can be interpolated between the values shown.

Figure 6.3 Type curves for flow duration curve

Q ₉₅ (1))	1.00	1.26	1.58	2.00	2.51	3.16	3.98	5.01	6 30	7.04
Гуре curve		0	I	2	3	4	5	6	7	8	0
Percentile	2 5 50 80	975.70 577.26 20.49	904.17 1534.08 22.69	838.77 511.37 25.10	776.04 480.48 27.86	719.91 452.42 30.82	667.48 425.82 34.11	618.22 400.44 37.81	572.53 376.64 41.82	520.00 350.65 45.10	472.29 326.46 48.64
	90 95 99	1.73 1.00 0.38	4.42 2.13 1.26 0.51	5.27 2.62 1.58 0.67	6.33 3.25 2.00 0.88	7.54 3.99 2.51 1.16	9.00 4.92 3.16 1.53	10.77 6.07 3.98 2.02	12.86 7.47 5.01 2.65	15.20 9.16 6.30 3.46	17.98 11.22 7.94 4.52
Q ₉₅ (1)		10.00	12.57	15.83	19.93	25.13	31.64	39.81	50.13	63.12	79.43
ype curve		10	11	12	13	14	15	16	17	18	19
Percentile	2 50 80 90 95 99	428.96 303.93 52.46 21.25 13.75 10.00 5.89	389.60 282.96 56.57 25.13 16.86 12.57 7.69	353.86 263.44 61.01 29.71 20.66 15.83 10.03	321.39 245.26 65.79 35.12 25.32 19.93 13.08	291.65 228.19 71.00 41.58 31.09 25.13	264.89 212.45 76.57 49.16 38.10 31.64	240.09 197.49 82.60 58.08 46.67 39.81	206.89 176.99 89.91 67.82 56.95 50.13	178.28 158.62 97.86 79.21 - 69.50 63.12	153.69 142.20 106.49 92.46 84.77 79.43

Table 6.7 Flow duration type curves (percentage of mean flow)

6.1.4 Estimation of the flow frequency curve at an ungauged site

Duration relationship

To enable mean annual minimum flow frequency curves of other than the 7 day duration to be estimated a study was carried out of the relationship between the mean annual minimum of different durations. Figure 6.4 shows the relationship between minima of different durations for two contrasting catchments. Station 85003 (Falloch at Glen Falloch) is impermeable and has a low value of MAM(7), a high value of MAM(180) and thus a high value of GRADMAM, the gradient of the duration relationship. In contrast station 39019 (Lambourn at Shaw) is permeable and has a higher value of MAM(7) and a lower gradient.

Figure 6.4 Relationship between annual minima of different durations

For each station values of GRADMAM were derived and related to flow and catchment characteristics. MAM(7) and SAAR were found to be the most significant variables enabling the gradient of the duration relationship to be estimated from

$$GRADMAM = 2.12 .10^{-3} MAM(7)^{-1.02} SAAR^{0.629}$$

$$r^{2} = 0.916 \qquad fse = 1.29$$
(1)

where fse is the factorial standard error from a regression of log(GRADMAN) on log (MAM(7)) and log(SAAR).

From the linear relationship between MAM(D) and D we obtain

 $MAM(D) = MAM(7) ((1 + (D \cdot 7) GRADMAM))$

This enables the mean annual minimum of any duration up to 180 days (the maximum value used in the analysis) to be estimated.

(2)

Frequency relationship

To estimate discharges other than the mean of the annual minima, relationships were derived based on pooled flow frequency curves following a similar procedure to the flow duration curve analysis. Flow frequency curves were derived for annual minima of durations (D) of 1, 7, 30, 60, 90 and 180 days for 680 stations with more than five years of data. A missing year criteria was adopted such that if a year contained more than seven missing days it was rejected. Figure 6.5 illustrates annual minimum plots for two contrasting flow records and for four durations. It can be seen that the curve for the seven day minimum is very much lower for station 85003, the impermeable catchment, than for station 39019 which is a chalk catchment. Differences between durations are greater for the more impermeable catchment. This analysis was repeated on all the flow records, producing 3960 individual flow frequency curves.

Standardisation of individual minima by MAM(D) reduced the variability between minima of different durations and between different stations. Figure 6.6 shows the same data plotted on Figure 6.5 with the annual minima standardised by MAM(D). All stations were then allocated to one of 15 class intervals of MAM(7), Table 6.8 shows the number of stations in each group. For each group of stations, and for each duration, a pooled annual minimum curve was derived resulting in 90 curves. The pooling procedure was carried out by calculating the mean discharge (standardised by MAM(D)) and mean Weibull reduced variate for class intervals of reduced variate. It was found that the range of pooled curves could be described by the family of twelve type curves shown in Figure 6.7 and Table 6.9. These were then overlain on each of the 90 curves to assign a type curve for a given value of MAM(7) and duration (Table 6.10).

The type curves enable the annual minimum (AM) of any probability (P) for any duration (D), AMP(D), to be estimated from the mean annual minimum MAM(D). This is achieved by multiplying the value of MAM(D) by the appropriate type curve factor shown on Table 6.9.

76

Figure 6.5 Example low flow frequency curves for two contrasting flow records and for four durations

.

Figure 6.6 Low flow frequency curves standardised by MAM(D)

M	MAM(7) % MF		NUMBER OF LOW FLOW FREQUENCY CURVES
	<	2.5	16
2.5	-	7.5	87
7.5	-	10.0	69
10.0	-	12.5	59
12.5	-	15.0	83
15.0	-	17.5	64
17.5	-	22.5	90
22.5	-	27.5	66
27.5	-	32.5	50
32.5	-	37.5	35
37.5	-	42.5	13
42.5	-	47.5	16
47.5	-	52.5	12
52.5	-	62.5	11
	>	62.5	9

 \bigcirc

Figure 6.7 Type curves for low flow frequency curves

 Table 6.9 Type curves for low flow frequency

Plotting position					,	FYPE	CURVE	3				
W	1	2	3	4	5	6	7	8	9	10	11	12
0.5	0.85	0.86	0.87	0.89	0.90	0.91	0.92	0.93	0.94	0.96	0.96	0.96
1.0	0.66	0.69	0.70	0.72	0.75	0.76	0.79	0.80	0.82	0.84	0.86	0.87
1.5	0.50	0.53	0.55	0.58	0.61	0.62	0.66	0.68	0.71	0.73	0.76	0.79
2.0	0.34	0.38	0.40	0.44	0.48	0.50	0.54	0.57	0.61	0.64	0.68	0.71
2.5	0.20	0.24	0.27	0.32	0.36	0.39	0.44	0.48	0.52	0.56	0.60	0.65
3.0	0.07	0.12	0.16	0.21	0.25	0.30	0.35	0.40	0.44	0.49	0.53	0.59

Table 6.10 Assignment of low flow frequency type curves by MAM(7) and duration

)

)

)

		Durat	ion days	
MAM(7) as % MF	1	7	60	180
5	2	2	1	1
10	5	5	4	5
15	6	6	5	6
20	7	7	7	7
25	7	7	7	7
30	7	7	7	7
35	7	7	7	8
40	7	7	7	8
45	8	8	8	9
50	7	8	9	10
55	11	11	12	12

6.2 THE ESTIMATION OF STANDARD PERCENTAGE RUNOFF

6.2.1 Introduction

The importance of percentage runoff in the FSR method of design flood estimation, and the form of the FSSR16 percentage runoff model, have already been discussed. In considering how to use HOST to enhance the estimation of PR a number of options were considered.

The most radical of these was to replace the PR estimation method completely. The major disadvantage of this would be a discontinuity with previous methods. The concept of standard and dynamic component models, with each dependent on different factors is conceptually attractive and allows flexibility in application, for example to exploit locally derived data. It was therefore decided to retain this form of model.

Within this framework it would be possible to modify both components. This was an attractive option for two reasons: firstly it would allow the introduction of dynamic terms that differed between soil types, and secondly, as with the calibration of WRAP, it would allow the integrated development of the standard and dynamic component models. These two ideas require expansion.

Very different responses to rainfall would be expected from soils in the different HOST classes. As an approximate guide, the BFI values can be translated to SPRs using the equation presented in Section 4.2.4. A two part PR model adds to this variation in SPR between soil types, with dynamic terms based on wetness and the total event rainfall. In a HOST context it is expected that these dynamic terms would differ markedly between the various HOST classes. For example in classes 21 to 25, in which seasonal variations in the depth to the water table are expected, then a large increase in response with catchment wetness is expected. In contrast the effect of wetness on freely draining soils over permeable substrates is likely to be small. Indeed on some of these soils, dry, baked surface conditions may give rise to a greater response than under normal wetness conditions. The change in response as rainfall increases is also likely to be modest on these soils until very intense rainfall rates are encountered, when overland flow will result. Such soils therefore have a strongly non-linear response to rainfall. This can be contrasted with soils that give a high response to modest rainfall and where when rainfall amounts increase response is likely to increase, possibly to nearly 100%, and thereafter there can be little increase in response even in the most extreme conditions.

Unfortunately while the introduction of such dynamic terms is an exciting prospect, insufficient data are available to calibrate and verify the increased number of sub-models required. It is hoped that this situation can be rectified in future studies.

It was therefore decided that, in this first use of HOST to enhance design flood estimation, only the SPR component of the existing model would be modified, i.e. it would be assumed that the dynamic terms and urban adjustment were correct. While this provides a very straightforward means of integrating HOST with existing methods it imposes dynamic terms that were developed in tandem with the old WRAP classification, and which may, therefore, be biassed.

The following sections describe the development of a model of the form

SPR = $a_1HOST_1 + a_2HOST_2 + a_3HOST_3 + ... + a_{29}HOST_{29}$

Section 6.2.3 describes an approach based on the BFI model derived in Section 4.2.4, then in Section 6.2.4 a model is calibrated directly against SPR data.

6.2.2 The SPR catchment data set

The data required for developing the SPR estimation equation are catchment average values of SPR calculated as described in Section 4.2.3; only the 170 catchment average values coming from at least five events were used in the fitting process, although all catchments 205 were used to assess goodness of fit. The catchments and their SPR values are listed in Table C.2.

6.2.3 Estimating SPR via BFI

In Section 5.3 there is a set of BFI coefficients derived from an analysis of data from 575 catchments, and in Section 4.2.4. there is an equation relating BFI to SPR reproduced from a previous study on a set of 210 catchments. Combining these allows SPR to be estimated using the SPR coefficients given in Table 6.11.

1 5.5	1355	13 5 5 14 46 7		15 46 7		
² 5.5]		40.7		40.7	
3 12.2						
4 19.4						
⁵ 12.2						
⁶ 29.1]					
7 19.3			9 22 2	10 51 3	10.4	12 60 7
* 34.8				51.5	10.4	00.7
16 20.3	¹⁸ 37.6	²¹ 49.4	²⁴ 51.3		26 55.8	
¹⁷ 31.5	19 40.8	22 51.1			27 54.8	
	20 37.2	²³ 57.5	²⁵ 60.7			
					28 33.4	
					²⁹ 54.3	

Table 6.11	SPR	coefficients	derived	via	BFI
------------	-----	--------------	---------	-----	-----

The range of SPR coefficients is from 5.5% (corresponding to BFI of 1.0) to 60.7% (BFI of 0.17), which is greater than with the existing WRAP based method with a range of 10% to 53%, but not as great as for the observed data with a range from 3.8% to 77.5%. Figures 6.8 and 6.9 show plots of the estimated against observed values, and residuals against estimated values, respectively for the 205 catchment set. Figure 6.10 shows the distribution of residuals. The s.e.e. using this estimation procedure is 11.7%.

Figure 6.8 Estimated SPR from HOST via BFI against observed values of SPR

Figure 6.9 Residuals against estimated values of SPR

Figure 6.10 Map showing SPR residuals from estimation from HOST via BFI

No equivalent value is available from FSSR16 for comparison and so the WRAP based estimate has been calculated for the same data set; it has an s.e.e of 11.9%, only fractionally worse than from HOST using BFI. Figures 6.11 to 6.13 show the same three plots as above for the estimates obtained from WRAP. Using this method of estimating SPR gives only a very small improvement over WRAP and to see if this can be improved a direct calibration against HOST was performed. This is described in the next section.

))

))

Figure 6.11 Estimated SPR from WRAP against observed values of SPR

Ď

۲

i)

Figure 6.12 Residuals against estimated values of SPR from WRAP

Figure 6.13 Map showing SPR residuals from estimation from WRAP

6.2.4 Direct estimation from HOST

A multiple linear regression of the same type as used to derive BFI coefficients was performed on the 170 catchment SPR data set. The resulting coefficients are shown in Table 6.12. As expected in a multiple regression with only 170 observations and 29 unknowns, the results are not very useful. No HOST class 28 soils are present on any of the 170 catchments, and many others occur in very small percentages, on a limited number of catchments, as can be seen from Table 6.13. 15 coefficients have t-statistics of less than 1.97, suggesting that they are not significantly different from zero at the 5% level. Several have coefficients that are negative or greater than 100%. The resulting model is clearly of no practical use, but its s.e.e. is 9.4% suggesting that even using a more reasonable, and hence less accurate, model some improvement of the estimation of SPR via BF1 may be possible.

Two modifications to the analysis were made to obtain a usable regression model. First of all, as with BFI, the coefficients had bounds imposed on them so that they could only take on reasonable values. In percentage runoff terms these bounds could be set at 0% and 100%, but SPR, which represents standard and not extreme runoff, can reasonably be resticted to a smaller range. At the lower end of the scale a value of 2% was chosen on the pragmatic basis that in an application this would ensure some response was produced (perhaps rain falling

Table 6.12 SPR coefficients for HOST classes from multiple regression.

¹ -8.7	13 04 5		14.25.0			
2-27	-94,0		-2.5.0		¹³ 51.1	
³ 16.3						
4 -4.5						
⁵ 15.4						
⁶ 52.0						
⁷ 46.5			9 12 6	10 24 6	1 55 0	12 72 5
* 25.3			43.0	54.0	-33.9	12.5
¹⁶ 81.8	¹⁸ 47.5	²¹ 44.7	²⁴ 40.2		²⁶ 56.9	
17 32.1	¹⁹ 54.6	22 7.4			27 102.8	
	²⁰ 127.5	²³ 43.4	²⁵ 43.1	- <u>-</u>		
	·- ·				²⁸ None	• -
					²⁹ 58.1	

Table 6.13 Occurrence of HOST classes in the SPR data set; values represent equivalent number of catchments.

6.4	304		14.0.1			
2 4.0	U.4		Ų.1		15 16.8	
3.5.7]					
* 9.0						
5.3						
6 3.2			1			
7 1.0			820	10 4 5	207	12 1 0
⁸ 1.4			2.0	4.5		~ 1.0
¹⁵ 1.2	18 10.8	21 8.2	²⁴ 25.5	•	²⁶ 13.4	
17 13.0	¹⁹ 1.0	²² 1.5			27 1.2	
	20 2.3	23 3.1	²⁵ 15.3			
	-				28 0.0	
					²⁹ 11.7	

on the channel itself). The upper bound was set at 60%, this being a rounded upper limit from the well defined coefficients from the unbounded regression (ie. mainly classes 26 and 29, but also class 19).

Secondly some classes were combined where they came from the same underlying response model, in a similar fashion to the way low flow HOST groups were defined in Section 6.1.2.

Thus the following classes were combined: 7 and 8 (both response model E), 9 and 10 (model F), 16 and 17 (model H), 18 and 21 (slowly permeable substrate, model I), 19 and 22 (impermeable [soft] substrate, model I), 20 and 23 (impermeable [hard] substrate, model I). This reduced the number of coefficients to be determined from 29 to 22; remember that the coefficient for HOST class 28 could not be determined analytically either. The resulting derived coefficients are shown in Table 6.14. The sie.e. from this model is 10.0%.

1 2.0	12.0		14 2 0			
2 2.0	2.0		2.0		¹³ 48.5	
3 14.4						
4 2.0						
5 14.4]					
° 33.8	1					
7 44.1			\$ 25.7	10 25 7	11.2.0	12 (0,0
⁸ 44.1			- 25.7	25.7	··· 2.0	··· 60.0
¹⁶ 29.2	18 47.2	21 47.2	*4 39.7	•	²⁶ 58.6	
17 29.2	19 60.0	²² 60.0			²⁷ 60.0	
·	²⁰ 60.0	²³ 60.0	²⁵ 49.6			
			· .		²⁸ None	
		·			²⁹ 60.0	

Table 6.14 SPR coefficients for HOST classes from bounded multiple regression, with some combined classes.

The coefficients now show a good deal of consistency with the response models. However, whereas with the BFI coefficients there was a reduction from the left to the right of the diagram (ie. as the soil becomes increasingly waterlogged close to the surface), a slightly different picture emerges with the same general trend but with the soils with a gleyed layer within 40cm giving a lower response.

One explanation of this is that SPR represents a much faster response to rainfall than BFI. In the imperfectly drained soils they may give an increased response over a longer time period of a few days, than they do in the very short term. In such soils the presence of artificial drainage is likely to increase the volume of quick response runoff.

One concern about the coefficients shown in Table 6.14 is the value of 2% for class 14. The response model of this class (model C) suggests a rapid response mechanism more like models E or F which have SPR coefficients of 25.7% and 48.5% respectively. For this reason it was decided to link the HOST class 14 coefficient with coefficient for classes 9 and 10. For practical applications class 28 requires a value of SPR and a value of 60% was ascribed, in line with the high response from the other peat soils. The final set of coefficients is shown in Table 6.15; there has been no significant change in the s.e.e associated with this set of coefficients (ic. it remains at 10%).

Table 6.15	Final SPR coefficients for HOST classes from bounded multiple regression, with	h
some combin	ned classes.	

2.0	120		14 25 2			
2 2.0	2.0		23.5		15 48.4	
³ 14.5]					
4 2.0]			•		
⁵ 14.5]					
⁶ 33.8			ļ			
7 44.3			\$ 25.2	10 75 2		12 60 0
⁸ 44.3			23.5	25.5	2.0	- 00.0
¹⁶ 29.2	18 47.2	21 47.2	24 39.7		²⁶ 58.7	
17 29.2	¹⁹ 60.0	²² 60.0			27 60.0	
	20 60.0	²³ 60.0	²⁵ 49.6			
	ent open Anterna		· · ·		28 60.0	
	e 1 A 2 A		- 		²⁹ 60.0	

For these coefficients estimated SPR values are plotted against observed values in Figure 6.14, and the residuals against the estimates in Figure 6.15. It is clear that there is considerable scatter in these figures, and, as should be expected, the extremes are poorly estimated. Figure 6.16 shows a map of the SPR residuals; two regions show consistent underestimation, the Weald and Cumbria, and in the coastal region of north-west England and North Wales there is a confused picture of poor estimation.

89

Figure 6.14 Estimated SPR from HOST against observed SPR

Figure 6.15 Residuals against estimated values of SPR from HOST

Figure 6.16 Map showing distribution of SPR residuals from estimation from HOST

6.2.5 Comparison of SPR estimation methods

Three ways of estimating SPR have been presented: the method of FSSR16 based on WRAP, a method based on HOST using BFI as an intermediate step, and direct estimation from HOST. The s.e.e. gives an objective method of comparing the goodness of fit: from WRAP s.e.e. is 11.9%, from HOST using BFI s.e.e. is 11.7%, and directly estimating SPR using HOST s.e.e. is 10.0%.

The second of these (ic. estimation via BFI) appears to have no real advantage over using WRAP, since the estimate is likely to be only very slightly more accurate but obtained with far greater effort. However, it may be appropriate, in particular circumstances, to use aspects of this procedure in combination with local data.

In terms of the s.e.e., estimating SPR from HOST offers a small but worthwhile improvement over using WRAP. Part of the explanation for this can be seen by comparing Figures 6.11 and 6.14. In the former, the banding of estimates in the top two WRAP classes is obvious, many catchments have the maximum 53% estimated SPR. In Figure 6.14 a number of catchments have estimated SPR above 53%, but only one with the maximum 60%; at the bottom end of the scale the minimum estimated SPR is about 10%, although a value as low as 2% is possible. Figures 6.13 and 6.16 in which the distributions of residuals are plotted show similar regional trends. However, when the two estimates are plotted against each other as in Figure 6.17 then it is clear that the two methods will produce significantly different estimates on some catchments.

Figure 6.17 SPR estimates from HOST plotted against SPR estimates from WRAP

Two more qualitative benefits accrue from the use of HOST. Firstly the better resolution of both the maps and the classification system mean that, even on small catchinents, several HOST classes are likely to be found. In only 13 of the 170 catchments with at least five events was the observed SPR outside the range of the HOST coefficients for classes found on the catchment. Looking at the percentage runoff from all classes may therefore give an indication of the possible range of SPR.

Secondly, HOST provides a means of selecting a suitable catchment from which data may be transferred. It must be remembered that while HOST gives a better estimate than WRAP, it is still a fairly uncertain estimate which should be refined by looking at local data. Λ

comparison of the HOST classes on the study catchment and various neighbouring catchments will indicate the most suitable analogue for the transfer of SPR.

6.2.6 Conclusion and recommendation

The HOST classification provides a step forward towards more accurate estimation of SPR. The recommended coefficients, equivalent to SPR values, for each of the HOST classes are shown again, in class number order, in Table 6.16. Estimates made using these coefficients had a s.e.e. of 10% on the data available for this study. These coefficients have been derived by a mixture of regression analysis and reference to the physical response models at the core of HOST. As well as being useful for direct estimation of SPR, the HOST classification provides a way of selecting analogue catchments for the transfer of local data, and envelope values for the estimate of SPR.

HOST class	SPR value (%)	HOST class	SPR value (%)
1	2.0	16	29.2
2	2.0	17	29.2
3	14.5	18	47.2
4	2.0	19	60.0
5	14.5	20	60.0
6	33.8	21	47.2
7	44.3	22	60.0
8	44.3	23	60.0
9	25.3	24	39.7
10	25.3	25	49.6
11	2.0	26	58.7
12	60.0	27	60.0
13	2.0	28	60.0
14	25.3	29	60.0
15	48.4		

Table 6.16 Recommended SPR values for HOST classes

As a very broad indication, Figure 6.18 shows an outline map of SPR for the United Kingdom.

Figure 6.18 (Following) General distribution of SPR calculated from HOST

Distribution of SPR (HOST)

6.2.7 An example of the calculation of SPR from HOST

The estimation of SPR via HOST is illustrated for the St. Neot at Craigshill Wood catchment (NWA number 48009) which has an area of 22.7km². The first stage in making the estimate is to abstract the HOST classes found within the catchment boundary. This can be done either by overlaying the boundary on the soil map manually, or by performing this operation on digital HOST or soil map data sets. These processes are described fully in Section 7. Table 6.17 shows the HOST classes found on the catchment and illustrates how the SPR estimate is made.

HOST class	Fraction	SPR for class	SPR × Fraction
A	13	2.0	0.26
9	.01	25.3	0.25
15	.47	48.4	22.75
17	.21	29.2	6.13
18	.01 47.2		0.47
22	.03	60.0	1.8
29	.14	60.0	8.4
stimated SPR =	ESPR×Fraction		40.06

Table 6.17 HOST classes for 48009 and the calculation of SPR

It will be seen from the table that this is a catchment on which the estimated SPR from the component HOST classes ranges from 2% to 60% (ie. the two extreme values). A user should be aware that a different mapping of the soils, or a variation from the nationally assigned proportions of soil series within the map units may lead to a very different flood estimate. The user is therefore made aware of the possibility that the estimate may be particularly unreliable.

In is interesting to compare this HOST based estimate with the one from WRAP. Table 6.18 is the WRAP equivalent of Table 6.17 and again shows a mixture of soil types with very different, but less extreme, SPR values.

This catchment is in fact one of those used in the development of the HOST classification and is one for which SPR has been calculated; from 7 events observed SPR is 37.2%. Although in this case the HOST estimate is a good one, and better than from WRAP, this will not always be the case. Figure 6.16 shows that on many catchments there will be a substantial error in the HOST estimate, and Figure 6.17 implies that in some cases estimates from WRAP will be better than those derived from HOST.

WRAP class	Fraction	SPR for class	SPR × Fraction
2	.2	30.	6.0
5	.8	53.	42.4
Estimated SPR	48.4		

Table 6.18 WRAP classes for 48009 and the calculation of SPR

.

7 Access to the HOST system

The development of the HOST classification required the overlay of catchment boundaries on soil maps. This process was performed automatically by computer. To use HOST in the estimation of hydrological parameters, users will have to perform this overlaying. This section describes three ways in which this can be done: one manual method, and two computer-based overlay procedures using the HOST digital data set and the digitised 1:250,000 soils data set.

7.1 MANUAL OVERLAY

Information provided in this report can be used with the published 1:250,000 national soil maps to help estimate hydrological parameters. Figure 7.1 shows the boundary for the St Neot catchment at Craigshill Wood overlain on the national soil map (England and Wales Sheet 5, Soils of South West England). Table 7.1 shows the areas of the various map units located within the boundary that can be abstracted either using a planimeter or by counting squares on millimetre graph paper. In the example the latter method has been used and the number of squares in each map unit is shown. Two occurrences of each of two units are present, and of course these are added together to obtain the total coverage. As a check that the areas have been abstracted correctly, the total number of squares can be converted to an area in square km by dividing by 16 (1km = 4mm at 1:250,000 and the calculations were done on 1mm graph paper). Thus 383/16 = 23.9km² which is larger than the published area of 22.7km² but within an acceptable margin of disagreement. It will also be noted that on the catchment is a small lake, but this is totally within an area marked as being map unit 1013b and is therefore counted as being part of that unit.

The table shows that on this relatively small catchment there are seven different soil map units. The component HOST classes for each of these map units are listed in Appendix B and below as Table 7.2. The breakdown of these seven map units by class shows that some map units comprise a single HOST class whereas others can be divided into four classes. If this is related back to the description in Sections 4.3.1 and 4.3.2 of how soils are mapped, then soil map unit 651b (Hexworthy), for example, is seen as one that contains soil series that have similar hydrological properties, whereas in map unit 541j (DENBIGH1) the opposite is true. To calculate the overall cover of each HOST class on the catchment then the information contained in Tables 7.1 and 7.2 must be combined; this calculation is contained in Table 7.3. Summing the HOST class fractions provides a check that no errors have crept into the arithmetic. Once fractions have been rounded the total is slightly less than one and a simple way of adjusting for this, in this instance, would be to add 0.01 to the largest fraction.

These HOST class fractions can now be used for any of the applications described in Section 6.

It should be noted that in performing the overlay on the paper version of the map then "unsurveyed" or "built-up areas" and "lakes" may be found. In the estimation of the low flow variables as described in Section 6.1 these should be calculated and used in the same way as any other map unit. In the estimation of SPR then they should be ignored; this will lead to a total of the HOST class fractions that is less than unity, and the various fractions must be scaled so the correct total of 1.0 is achieved. In the above example is was possible to include the lake as part of one of the mapped units and no scaling was necessary.

Figure 7.1 Overlay of catchment boundary on soil map. On the left this is shown at the actual size of the 1:250,000 map, on the right this is enlarged for clarity.

Map unit	Squares on mm paper	Coverage (%)	
541j	13 + 8 = 21	2.3	
611b	44	16.7	
611c	73	5.5	
651b	162	11.5	
713b	10	19.1	
721a	9	2.6	
1013b	32+27=64	42.3	
TOTAL	383	100	

Table 7.1	Fractions	of soil	map unit	s on	catchments	from manual	overlay.
-----------	-----------	---------	----------	------	------------	-------------	----------

Map unit	Component HOST classes HOST class number (percentage in map unit)
541j	4(13.33), 17(60.00), 18(13.33), 22 (13.33)
611b	4(100)
611c	17(87.5), 22(12.5)
651b	15(100)
713b	9(43.75), 15(18.75), 21(18.75), 24 (18.75)
721a	15(100)
1013b	29(100)

Table 7.2 HOST classes in soil map units on catchment

_

_

Table 7.3 Calculation of HOST class fractions on catchment 48009

HOST class	Components (percentage HOST class in map unit x percentage map unit in catchment)	Total (sum of components)	Fraction (total adjusted to a fraction)
4	13.33x5.5=73.315 100x11.5=1150.	1223.315	.12
9	43.75x2.6=113.75	113 75	.01
15	100x42.3 = 4230. 18.75x2.6 = 48.75 100x2.3 = 230.	4508 75	.45 (adjust to 0.46 to compensate for rounding errors)
17	60.00x5.5=330. 87.5x19.1=1671.25	2001-25	.20
18	13.33x5.5=73.315	73.315	.01
21	18.75x2.6=48.75	48.75	.00
22	12.5x19.1=238.75 13.33x5.5=73.315	312.065	.03
24	$18.75 \times 2.6 = 48.75$	48.75	.00
29	$100 \times 16.7 = 1670.$	1670.	.17
TOTAL		9999 945	.99

It will be noted that the calculation of the HOST class fractions has required only this report and the published maps (exactly the same process could have been applied to a Scottish catchment). However, if the exercise had to be undertaken on a large catchment, or repeated on a great many catchments then considerable effort would be expended. The digital versions of the HOST and soil maps can provide relief from this drudgery by handing the task to a computer. Sections 7.2 and 7.3 describe these two digital data sets.

7.2 THE 1:250,000 SOIL DATA SET

Both SSLRC and MLURI have digitised their 1:250,000 soil maps and have them stored on computer databases. The data sets have been constructed by digitising the lines on the maps, forming these into polygons and labelling them with the appropriate map unit. From this vector version of the data set, rastered versions have been produced, in which the map units within 1km or 100m cells have been identified.

To use HOST in estimating catchment parameters, it is clearly possible to overlay the catchment boundary on the digitised map, abstract the map units, and convert these to HOST using a key. For users who are also interested in other properties of soils beyond those offered by HOST, then this may be an attractive route into HOST. Such users should contact SSLRC and MLURI to discuss leasing of the soil map data and HOST key.

For users who only require the HOST data then a derived data set has been prepared and this is described in the next section.

7.3 THE 1KM HOST DATA SET

The HOST data set is the result of applying the HOST classification to the soils of the national maps as represented on a 1km grid. The process was therefore a two stage one; firstly the soil map units in each 1km square were identified, and then the HOST classification was applied to the map units. The percentage of each HOST class was then calculated as the sum of the percentages across all map units.

Since there can be several map units within each 1km (the most found was in fact 7), and several HOST classes represented within a map unit (maximum found was 5), it might be expected that in some 1km squares a great many HOST classes were present. In fact, because many neighbouring map units have some soils in common, this does not happen, and very few 1km squares have more than seven classes. Seven was taken as the maximum number of classes to be stored in the HOST data set, and where more existed, the smallest were ignored and the percentages of the others rounded up to compensate.

A further adjustment of the percentages was made to round them all to the nearest integer, and then to adjust them so the sum of the percentages is 100. These adjustments were considered worthwhile to reduce the storage space of the derived data set. Although there may appear to be some loss of information in this process this is not the case as there are many other sources of uncertainty in compiling the HOST data set including: the accuracy of the underlying soils maps, the use of constant fractions for the series break down of the map units, and neglecting small component series within the map unit.

When a catchment boundary is overlain on this data set then the 1km squares that are completely within the boundary contribute directly to the sum of the HOST classes for the catchment. Where the boundary crosses a square then the proportion of the square within the catchment is found, and all classes within the square are assumed to occur in this portion in the same distribution as in the whole square.

This overlay will therefore give different HOST fractions from those obtained from a manual overlay, but only on very small catchments is the difference likely to be great. As with any other catchment characteristic derived from a map, care is always needed on small catchments
both in abstracting the data and in using that information to estimate another parameter. Section 8 describes ways in which a better representation of the HOST classes can be obtained which are particularly applicable to small catchments.

Table 7.4 contains the HOST fractions obtained from the overlay on the 1km data set and should be compared with Table 7.3 which has the corresponding values from a manual overlay. It will be noted that the differences between the two sets of values are relatively minor.

Table 7.4 Fractions of HOST classes on catchment 48009 derived from HOST data set.

HOST class	Fraction
4	.13
9	.01
15	.47
17	.21
18	.01
22	.03
29	.14

8. Conclusions and recommendations

A new soil classification that uses physical property data to define soil classes has been developed for hydrological purposes. The classification, which is known by the acronym HOST (Hydrology Of Soil Types), is based on conceptual models of the processes taking place within the soil and, where appropriate, substrate. Catchment-scale hydrological indices (mainly BFI and SPR) were used in the development of the HOST classification.

The classification is based on soil series and is therefore not limited to application at any one scale. However, applicability throughout the UK is assured by the accessibility to HOST via the national reconnaissance mapping of soils at a scale of 1:250,000 (only a provisional map of Northern Ireland is currently available). For some applications it may be appropriate to access the HOST system through a computer-based data set: a 1km HOST data set has been created for this purpose.

The efficacy of the HOST classification has been demonstrated in estimating important parameters needed for flood and low flow studies. In these catchment-based studies, HOST has so far only been used by abstracting the coverage within the topographic catchment boundary. An alternative strategy for use in design flood estimation, would be to weight the soils within the boundary according to, say, their distance from a river channel, since flood response is thought to be generated predominantly from a riparian zone. It is also hoped to use the HOST classification of soils directly within distributed catchment models.

9. Acknowledgements

Work on the HOST project has been funded by the Ministry of Agriculture, Fisheries and Food, the Department of Agriculture for Scotland, and the Department of Agriculture for Northern Ireland (DANI). Data sets have been made available by IH, SSLRC, MLURI and DANI.

The following present and former Institute of Hydrology staff are thanked for their support to the HOST project and in the production of this report: Nick Bonvoisin, Andy Bullock and Margaret Clayton.

10. References

Avery, B.W. 1980. Soil classification for England and Wales (Higher Categories). Soil Survey Technical Monograph no. 14. Soil Survey of England and Wales. Lawes Agricultural Trust. Harpenden.

Bell, F.G. 1985. Engineering properties of soils and rocks, Butterworths, London.

Boorman, D.B. 1985 A review of the Flood Studies Report rainfall-runoff model parameter estimation equations. Institute of Hydrology Report No. 94.

Burn, D.H. and Boorman, D.B. 1993. Estimation of hydrological parameters at ungauged catchments, J of Hydrology, 143 429-454.

Department of Environment/National Water Council. 1981. Design and analysis of urban storm drainage - the Wallingford Procedure. National Water Council (Water Authorities Association)

Farquharson, F.A.K., Mackney, D., Newson, M.D. and Thomasson, A.J. 1978. Estimation of run-off potential of river catchments from soil surveys. *Special Survey no.11*. Soil Survey of England and Wales. Lawes Agricultural Trust. Harpenden.

Gustard A., Roald, L.A., Demuth, S., Lumadjeng, H.S. and Gross, R. 1989. Flow Regimes from Experimental and Network Data (FREND), Institute of Hydrology.

Gustard, A., Bullock, A. and Dixon, J.M. 1992. Low Flow Estimation in the United Kingdom. Institute of Hydrology Report No. 108.

Gustard, A., Marshall, D.C.W. & Sutcliffe, M.F. 1987. Low flow estimation in Scotland. IH Report No. 101, Wallingford, UK.

Hodgson, J.M. (Ed.) 1974. Soil Survey Field Handbook, Soil Survey Technical Monograph

No. 5.

Hollis, J.M. 1989. A methodology for predicting Soil Wetness Class from soil and site properties, SSLRC report to MAFF.

Hollis, J.M. and Woods, S.M. 1989. The measurement and estimation of saturated soil hydraulic conductivity, SSLRC report to MAFF.

Institute of Geological Sciences (now British Geological Survey) 1977. Hydrogeological map of England and Wales.

Institute of Geological Sciences (now British Geological Survey) 1977. Hydrogeological map of Scotland.

Institute of Hydrology 1978. A revised version of the Winter Rain Acceptance Potential (SOIL) map, *Flood Studies Supplementary Report No.* 7.

Institute of Hydrology 1985. The FSR rainfall-runoff model parameter estimation equations updated, *Flood Studies Supplementary Report No. 16*.

Institute of Hydrology 1985. A localised re-interpretation of the WRAP (Soil) map, Flood Studies Supplementary Report No. 17.

Institute of Hydrology 1980. Low Flow Studies.

Institute of Hydrology 1988. Hydrological data UK: Hydrometric Register and Statistics 1981-5.

Natural Environment Research Council 1975. Flood Studies Report.

Pirt, J. and Douglas, R. 1980. A study of low flows in the Severn and Trent catchments. Severn Trent Water Authority.

Soil Survey of Scotland, 1984. Organistion and Methods of the 1:250,000 Soil Survey of Scotland. Macaulay Institute for Soil Research, Aberdeen.

Southern Water Authority 1979. Report on low flow studies for the Southern Water Authority area.

Appendix A A brief history of the development of the HOST classification system

The result of the HOST project is a classification scheme that is defined in terms of physical models with subdivisions based on soil properties or the substrate hydrogeology. This appendix describes the evolution of the classification during the HOST Project.

As described in Section 4, the WRAP classification and map were seen as a logical starting point. The first idea to improve upon WRAP was simply to code the new 1:250,000 soil maps with the appropriate WRAP classes, since this would solve one of the main problems with WRAP, that is that the scale was not adequate to represent the spatial variability of the soils. A modification to this approach was to use a revised WRAP scheme that subdivided the WRAP types 1, 2 and 5 as shown in Table A.1

WRAP class	New class	Description
1	1	Soil associations over chalk
	2	Soil associations over sand
	3	Soil associations over hard limestone
2	4	Brown earths, moist areas over shale or rock
	5	Groundwater gleys and lowland peat
	6	Argillic brown earths and Paleo-argillics (excluding chalks)
3	7	No change
4	8	No change
5	9	Hill Peat
	10	Humic Rankers

Table A.1 An early proposal for a divided WRAP classification

While the notion of bolting-on additions to WRAP to give it greater resolution had appeal as an evolutionary approach, it was seen as limiting the possibilities within a revised scheme.

The first scheme considered that departed from WRAP considered a broad division into four major groups, and 10 classes as shown in Table A.2. The geology of the substrate was seen as being a key differentiating characteristic in one of the groups. In two groups IAC was proposed as a surrogate for permeability. IAC could be calculated for all soils, but in some cases this would be through aggregating air capacities from similar horizons in different soils. These early classification schemes were examined initially by referring to 'benchmark' catchments. If catchments were dominated by soils of a particular class and had similar hydrological characteristics this supported the classification scheme, but where these catchments had very different hydrological properties it was clear that the classification was inadequate.

The use of these benchmark catchments quickly showed that classes D and F contained soils with very different response characteristics. In class D it seemed necessary to divide deep peat

soils from thin peat soils over a variety of substrates. Class F appeared to need further division on the basis of substrate geology.

Major differentiating characteristics	Class	Class differentiating properties
Soils with a ground water table within 2m	۸	IAC≥175
depth	В	$175 > IAC \ge 125$
	С	125>IAC
Soils with evidence of wetness below a peaty or humose surface horizon and no groundwater within 2m depth	D	None
Soils, excluding A,B,C and D that overlay	E	Chalk or soft sandstone substrates
hard or shattered rock or gravelly substrates	F	Shattered rock, gravel or fissured limestone
whith soch of the soll surface	G	Hard coherent rock substrates
Deep soils, excluding A, B, C and D on	Н	IAC≥175
very soft or unconsolidated substrates	1	175 > IAC ≥ 125
	J	$125 > IAC \ge 75$
	к	75>IAC

Table A.2 The first proposal to depart from WRAP

In retrospect it is difficult to be certain at what stage it became clear that it was impractical to place map units in these classes. In the scheme represented by Table A.1 this was certainly the intention. However, as soon as more physical properties were introduced it became clear that the new classification had to be series-based, since the properties can only be defined in a meaningful sense for soil series. It therefore became important to have figures for the percentages of the different soil series within the map units. While it was clearly a simplification to assume that soil series were represented 'in' the same proportions in all occurrences of a map unit, it was necessary to make such an assumption.

At this stage the classes were allocated to soil series by inspection and it was therefore very laborious to try a different form of classification. If the various soil parameters could be specified for each soil series then the classification could be altered simply be changing a set of class definitions. In the first data set of properties, three soil parameters were included: depth to a gleyed layer (evidence of seasonal waterlogging), depth to an impermeable layer (indicating the vertical movement in the soil prior to a lateral flow) and IAC (useful both as a measure of storage capacity and permeability). Three other properties were seen as important; slope, drainage and climate. At that time overland slope data were not readily available and although some work was done using channel slopes this was not productive and slope was not considered further in the HOST project. Some information was available on drainage and although it was used in the earlier stages of the project it was later disregarded; the possible future use of drainage in some of the final HOST classes is seen as a likely further development of HOST. Climate is one of the important factors influencing the formation of soils, and is clearly important in influencing the hydrological response of basins. There were lengthy discussions about whether the climate should be used to help define the new classification, or whether it should be another input used in applications of the new system. It was agreed to use the annual average rainfall in some studies to ascertain its value when used with the soil data to discriminate between benchmark catchments. Eventually this parameter was also disregarded in the definition of the HOST classification.

A data base of properties was established that contained average proportions of the soil series in each map unit, and the three soil physical properties. Although some analysis work was done using these properties alone it became clear at a very early stage that other information was required. From the above tables it can be seen that important properties in the two schemes are the substrate geology, the soil depth, the presence and, if appropriate, depth to an aquifer or groundwater, and the presence of a peaty top layer to the soil. It was decided to add these to the data held for each series. The geological classification, as described in Section 4, was based on the hydrogeological classification used by BGS, but many other classes were added. Table A.3 shows the nature of the data available to describe all of the soil properties.

Property	Nature of data	
IAC	Value in cm.	
Depth to an impermeable layer	- Value in cm (if $> 1m$ then set to -100)	
Depth to a gleyed layer	Value in cm (if $> 1m$ then set to -100)	
Soil depth	Options: DEEP,SHALLOW	
Peaty top layer	Options: YES, NO	
Depth to groundwater or aquifer	Options: $>2m$, $<2m$, NO	
Substrate hydrogeology	See Table 4.8	

Table A.3	Description	of da	a available	for	each	soil	series
-----------	-------------	-------	-------------	-----	------	------	--------

It is perhaps worth dwelling slightly longer on the hydrogeological classification of the substrate. It was hoped that the new classification could be based as far as possible on-physical properties of the soils. While some other properties may appear more appropriate than those in Table A.3, hydraulic conductivity for example, such data were not available. It was hoped that the data that were available would act as surrogates for these more desirable properties. Although substrate geology appeared to be important, it was hoped that some simple properties might be sufficient to represent what geology was thought to be contributing to the classification. Again physical properties relating to the substrate would be most appropriate but all that was available were the inferred properties soil depth, and depth to a water table. It quickly became clear that this was not the case and the descriptive substrate geology classification became an essential element of the project.

Once this data set had been established it become possible to test classifications more easily. One of the first experiments was to partition the continuous variables to form discrete variables and examine all possible combinations of the parameters. Even when this was done using a highly simplified substrate hydrogeology scheme a great many classes result, although very many of these contain no recognised soil series. However, using this type of approach in combination with the benchmark catchments, it was possible to see some aspects of the scheme where distinctions seemed necessary, and others where they did not. In this way it was possible to group soils into roughly 130 classes, but this was clearly far too many classes to form a practical tool for hydrologists, and it was difficult to see any rationale as to why some distinctions seemed necessary but other not.

To take the development further it was necessary to go back and consider the processes occurring in the soil and substrate. By considering these simple physical models it became possible to group the 100 plus classes into a more manageable number. However, using this approach did not lead directly to a unique set of classes; one scheme resulting from this approach is shown in Table A.4. With this type of classification, that has only 26 classes, it is possible to perform multiple regression analyses using BFI as the dependent variable and the fractions of the classes as the independent variables.

Substrate hydro- geology	Subdivision	Further differentiation	Cases		
Permeable	Intergranular flow (deep water table)	For each subdivision the following cases are distinguished	3		
	Intergranular flow (shallow water table)	1. No gleyed or impermeable layer within 1m 2. Not 1. and IAC>125	3		
	Fissure flow	$3.$ Not 1, and IAC ≤ 125	3		
	Clay with flints				
	Any permeable geology with no gleyed or impermeable layer within the top 1m and a peaty top soil				
Peat	Earthy				
	Eroded Blanket				
	Raw				
Impermeable	Hard	For each subdivision the following cases are distinguished	4		
	Clay	1. Not gleyed within 40cm, IAC > 125 2. Not gleyed within 40cm, $125 \ge 1AC > 75$	3		
	Others	 3. Not gleyed within 40cm, 75≥IAC 4. Gleyed within 40cm, no peaty top 5. Gleyed within 40cm, neary top 			

Table A.4 An example of a classification based on the soil series properties

Using both the multiple regression studies, and the benchmark catchments, many different classifications were examined to see which variables appeared useful in differentiating catchment-scale parameters, and which were not. For example in the above scheme the 3 classes based on IAC in the impermeable substrate section appeared to contribute little to the resolution of the catchment-scale parameters. In other models a greater division of permeable substrate geology yielded benefits.

While the process of combining or separating classes referred to the hydrological data, it also considered the physical processes at work in the soil. Classes were never merged simply because they did not help the hydrological estimation process but only when the classes represented similar physical models.

Using this approach a classification with about 30 classes seemed inevitable. This was certainly more than had been envisaged at the start of the project when it was thought that a system with around 10 classes would be appropriate. This earlier estimate was based on the expected accuracy in estimating hydrological parameters. While combining then 30 classes into 10 would result in no loss in accuracy in estimating BFI or SPR, it would probably compromise the use of the classification for other purposes. This idea is easily understood by referring back to the table defining the WRAP classification (Table 4.1) which shows that WRAP class 5 covers 2 water regime categories, 3 depth to impermeable layer categories, 3 slope categories, and 3 permeability categories. It is hard to imagine that the same physical processes are dominant within such a diverse collection of soils.

Map units in England and Wales

CODE	MAP_UNIT	CLASS	PERC	CODE	MAP_UNIT	CLASS	PERC
00	CHINA CLAY WORKS	17	100.00				
0ι	LAKE	98	100.00	511d	Blewbury	1	68 75
0S	SEA	99	100.00		,	13	31 25
0U	UNSURVEYED	97	100.00	511e	SWAFFHAM PRIOR	1	100 00
22	UNRIPENED GLEY SOILS	9	100.00	511 <i>f</i>	COOMBE 1	1	77 78
92a	DISTURBED SOILS1	21	100.00			6	22.22
92b	DISTURBED SOILS2	21	100.00	511g	COOMBE2	1	100.00
92c	DISTURBED SOILS3	24	100.00	511h	BADSEY 1	5	77.78
. <u>511a</u>	REVIDGE	15	42.86			7	11.11
7194	CKIDDAL	29	57.14	.		8	11.11
2110	SKIDUAW	15	33.33	511i	BADSEY2	5	78.95
		27	53.33			7	10.53
3110		29	13.33	5 4 4 5		10	10.53
5110	WEITONI	4 16	41.00 59.1/	511,	STRETHAM	18	50.62
3114		15	20,14	51 3		21	49.38
5110	WEITONE	14	23.00	5128	ASWARBY	5	17.65
3110	RANCOR	27	10.92			13	47.06
2110	Dendok	27	17.14			23	17.65
313a		10	38 80	E176		25	17.65
5150	DOMALLE	23	30.09	2120	LANDBEACH	5	13.79
		27	16 67			1	70.11
313h	POWYS	17	10.07	517-	DUCKINGTON	8	16.09
21.00	10415	22	66 67	5120	COONE		100.00
313c	CRWBIN		100.00		GRUVE	8	41.18
341	ICKNIELD	1	GL 7L			10	23.53
		, ,	5 26			20	23.53
342a	UPTON 1	ĩ	100.00	5120		25	11.76
342ь	UPTON2	i	100 00	5120	BLOCK	ŕ	29.07
342c	WANTAGE 1	i	88 89			0	30.23
		6	11 11			10	50.01
342d	WANTAGE2	ī	69.23	512f	Nilton	10	29.07
		9	30.77	2.61	HICCON	2	20.00
343a	ELMTON1	ź	100.00	513	CANNANO2F	18	20.00
343b	ELMTON2	2	90.00		CANNANORE	21	15 00
		4	10.00			21	15.00
343c	Elmton3	2	55.25	521	METHWOLD	1	100.00
		23	25.00	532a	RIACKTOFT	, B	RO / 7
		25	18.75		SCHOR IGN 1	0	10 57
343d	SHERBORNE	2	77.78	532b	ROMNEY	Ŕ	100.00
		23	22.22	541A	BEARSTED 1	5	86 21
343e	MARCHAM	2	:00.00			s R	15 70
343 f	NEWMARKET1	1	100.00	5418	BEARSTED2	š	52 94
343g	Newmarket2	1	84.21			10	29.41
		5	15.79			19	17.65
343h	ANDOVER1	1	90.00	541C	NEWBIGGIN	6	65.00
		6	10.00			18	35.00
3431	ANDOVER2	1	85.00	541D	OGLETHORPE	5	77.78
		6	15.00			6	22.22
346	Reach	9	100.00	541a	MILFORD	6	10.53
201	Sandwich	5	89.47			17	78.95
777	112112	10	10.53			21	10.53
312	Willingham	10	85.00	5416	BROMSGROVE	3	71.43
111-	Frank a d	11	15.00			4	14.29
4118	Evesnami	2	29.41			18	14.29
/116	ENCOURING	25	70.59	541c	EARDISTON 1	3	14.93
4110	EVESNAMZ	23	52.94			4	67.16
6110	EVECUANT	25	47.08	-		18	17.91
4110	CAEPHAND	20	23.08	5410	EARDISTON2	4	100.00
		23	01.04	5410	CREDITON	2	22.22
411d	HANSIODE	22	10.00	F / 1 /		3	77.78
421a	STOU	14	14 47	2411	RIVINGTON1	4	66.67
-210	3104	20	55 54	5/10	0 I VI NOTOVO	13	33.33
		21	16 67	2419	RIVINGIUNZ	4	83.33
		21	11 11	5/1-	NEATH	21	16.67
421ь	HALSTON	17	10 00	11 PC	NLAIN	17	25.00
· _ · -		21	45 05			18	23.00
		24	43 06	5/14	MUNSLOP	21	100.00
431	WORCESTER	21	100.00	5411	DENRIGHT	· · ·	100.00
511a	ABERFORD	2	89.47	<u> </u>	02001000	4	۵۰ ۵۶ ۲۲.۲۱
		6	10.53			17 19	17 77
511Ь	Moreton	2	65.96			22	כב. כי דד דן
		23	54.04	541k	DENB1GH2	<u>در</u> ۸	0A - BI
511c	PANHOLES	1	90.00			Ŕ	17 44
						.,	

.

B. I

4

CODE	MAP_UNIT	CLASS	PERC	CODE	MAP_UNIT	CLASS	PERC
•		9	17.44			9	11.11
		17	46.51	571A	Rowton	5	53.33
541L	BARTON	4	83.33			18	33.33
		18	16.67			24	13.33
541m	SOUTH PETHERTON	3	80.00	57 1 a	STON EASTON	2	66.67
		16	20.00			4	16.67
541n	Trusham	4	68.00	5 74		23	16.67
		17	20.00	5716	BROMTARD	4	15.20
5/10	MAL HAMS	22	12.00	5710	NALL INC	10	04.42
2410	MALINANI	15	85 00	5710	NALLING	2	16 67
•541n	MALHAM2	4	100 00			3	16 67
5410	VALTHAM	4	55.56			16	38.89
- 4		6	44.44			18	16.67
541r	WICK1	5	75.00	571d	FYFIELD1	3	66.67
		7	25.00			16	22.22
541s	WICK2	5	37.50			18	11.11
		6	15.63	571e	FYFIELD2	3	100.00
		8	10.42	571 f	FYFIELD3	3	77.78
		13	36.46	C 74		15	22.22
541t	WICK3	5	12.22	571g	FTFIELD4	3	70.00
E/ 1	FLIFORCY	0 6	27.70			10	20.00
5410		5	100.00 88.80			24	5 00
7414	RACIDOL	R	11 11	5716	APDINCTON	27	23 53
5414	Neunham	5	71 43	51.11	REDINGTON .	16	64.71
2418	IVÇ MI MIQIN	8	28.57			24	11.76
541x	EAST KESWICK1	6	52.94	571i	HARWELL	4	10.00
		7	11.76			16	55.00
		21	35.29			24	35.00
541y	EAST KESWICK2	5	15.00	571j	FRILSHAM	1	100.00
		6	65.00	571k	MOULTON	1	80.00
		17	20.00			5	20.00
541z	EAST KESWICK3	4	\$7.50	571	CHARITYI	1	40.00
5/3		- 6	62.50	571-	CUAD LTY?	. 0	60.00
542	NEKCWIS	21	37 50	mi ve	UMARITZ		20.02
5/3	ADDOLL	24	75 00	5710		1	89.47
747	AKKUW .	10	25 00	27.11		18	10 53
544	RANBURY	2	83.33	5710	MELFORD	1	100.00
2		20	16.67	5710	ESCRICK1	6	62.50
551a	BRIDGNORTH	- 3	89.47			18	21.88
-		5	10.53			24	15.63
551Ь	CUCKNEY1	3	55.00	571q	ESCRICK2	5	20.00
		5	45.00			6	60.00
551c	CUCKNEY2		52.94			· · · - 18	- 20.00
		10	23.53	5/1r	HUNSTANTON	1	68.42
		10	23.33			2	15.79
2210	NEWPURTI	10	12 50	571c	ECCORD 1	5	77.77
		18	12.50	3715			40.59
5510		3	26 67			8	14.85
	NEW ONTE	รี	73.33			, 9	4.95
551f	Newport3	5	60.00	571t	Efford2	5	36.05
		18	40.00			10	11.63
551g	NEWPORT4	5	100.00			18	34.88
552a	KEXBY	5	33.33			25	17.44
		7	66.67	571u	SUTTON 1	5	100.00
552b	Ollerton	.7	40.59	571v	SUTTON2	5	77.78
		13	19.80			6	22.22
		18	39.60	571w	Hucklesbrook	2	90.00
> >48	FRILFORD	3	89.47	E 71.	المعالم مرا	(E	77 77
55/6	LOOL INCTON	13	10.55	37 1X	Luarona	5	26 67
3540	WUKLINGTON	, s	30.00	571	HANRIE 1	1	13 33
		16	20 00	2019		6	40.00
555	Doumham	5	21.05			8	26.67
		10	42.11			18	20.00
		13	36.84	571z	HAMBLE 2	6	53.33
561a	WHARFE	8	88.89			8	46.67
		10	11.11	572a	YELD	2	22.22
561b	TEME	8	80.00			4	16.67
.		9	20.00			18	61.11
201C	ALUN	8	81.25	5726	ALVOLETON	18	85.88
541-1		10	10.75	571-	KOONET	24	14.12
סיסנ	LUGWARDINE	ð	00.09	5720		د	11.70

ŀ

)!

))

))

)

)

)

)

)

)

))

j

))

B.2

CODE	MAP_UNIT	CLASS	PERC	C00E	MAP_UNIT	CLASS	PERC
• • • • • • •			11 76	•••••		5	33.33
		18	64 71	582a	BATCOMBE	1	18.75
		21	11 76			18	81.25
6774	Ubimplo1	5	34 07	582h	Hornbeam1	1	26.67
572U	winniprei	Å	20 67			5	40.00
		21	36 26			18	33.33
6.70.		21	22.52	582c	HORNREAM2	1	37 50
572e	WHIMPLEZ	د ۱۲	23.33	5622	HORRBEARE	18	62 50
		21	10.41	5824	HODNDEANZ	18	70 50
5721	WHIMPLES	21	17 45	5820	now see and	21	17.65
		24				21	11 76
5729	DUNNINGTON HEATH	10	71.43	5974	15000100	5	32 61
		21	28.57	5028	TENUKING	, ,	10.01
572h	OXPASTURE	20	52.50			20	45.05
		23	12.50	(11-	MALUFOU	24	21.74
		25	32.00	Qiid	MACVERN	10	71 /3
572 i	CURTISDEN	5	9.46	(11)		17	100.00
		16	9.46	0110	HUKETUNHARPSTEAU	4	07.60
		18	54.05	6110	MANUU	22	12 50
		24	27.03			~~~	12.50
572 j	8ursledon	10	17.24	6110	WITHNELLT	4	22.20
		13	17.24			17	33.33
		18	34.48			21	11.11
		25	31.03	611e	WITHNELLZ	4	83.33
572k	BIGNOR	4	11.24		-	19	16.67
		. 16	33.71	. <u> </u>	PARC	15	11.76
		18	32.58			17	70.59
		24	22.47			26	17.65
5721	FLINT	18	87.50	6126	MOOR GATE	4	87.50
		24	12.50			15	12.50
572m	SALWICK	5	25.00	631a	ANGLEZARKE	4	60.00
		8	20.00			15	40.00
		18	55.00	631b	DELAMERE	3	100.00
572n	BURLINGHAM1	5	37.50	631c	SHIRRELL HEATH1	3	44 44
		18	62.50			10	22.22
5720	BURLINGHAM2	6	15.79			13	16.67
		18	63.16			18	16.67
		24	21.05	631d	SHIRRELL HEATH2	3	100.00
572n	BURLINGHAM3	î	30.00	631e	GOLDSTONE	3	78.57
5100		5	30.00			4	21.43
		18	40.00	631f	Сгаллутоог	5	72.94
5720	ASHI FY	18	64.71		•	10	27.06
27.54	AGHEET	21	23.53	633	LARKBARROW	4	50.55
		24	11.76			15	49.45
572r	Ratsborough	18	37.50	634	SOUTHAMPTON	5	87.01
2121	all soor begin	24	35.71			24	12.99
		25	26.79	641a	SOLLOH1	5	31.58
572c	Rishamoton1	ŝ	21.05			10	68.42
2123	Brancheronn	6	26.32	6416	Sollom2	3	22.22
		18	36.84			5	11.11
		24	15.79	641b	Sollom2	10	50.00
572+	RISHAMPTON2	18	46.66	• · -		18	16.67
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	BI SIMIN TONE	20	11.11	641c	HOLME MOOR	5	12.50
		24	27.78			7	66.25
		25	16.67			10	21.25
5730	UNTERSTOCK	ŝ	11 76	64 3 a	Holidays Hill	3	23.53
71,74	WATERSTOCK	Á	17 65	0434		10	11.76
		7	23 53			13	11.76
		Ŕ	35 20			18	29.41
		0	11 76			25	23.53
5.77h		Ś	23 53	643h	Poundgate	18	23.53
5150	WIX	7	66 71	0455	,00.03010	24	64.71
		25	11 76			26	11.76
591.	NORDRACH	25	100.00	A43c	Bolderwood	ŝ	16.67
2018	NORDRACH COUNTROA	4 E	89 80	0450	801021 8003	26	83.33
2010	SONNINGI	19	11 11	1174	Felthorne	7	26.67
2010	SONNINGI	10 F	11.11	04.30	revulo pe	10	73.33
2010	SUNNINGZ	3	12 50	254-		ž	18 75
		10	12.30	0518	JELHONI	15	81.25
		27	23.00	2846	Heventhy	15	100 00
2810	LAKSTENS		11 11	0210		15	68 75
	940101	0	72 72	6510	. CANLE	27	31 25
2010	MAKLUW	1	72.23	453	MAU	15	100 00
5011	DADD01	18	20.0/	002	UAEDEN	15	86 67
2011	BARKUN	1 F	JJ.UU /s nn	0248		24	13 33
		2	47.UU 70 70	1816		15	AR RO
2010	STUNE STREET	1	21.10	0740	,	24	11 11
		2	70.04				

•

-

.

•

A

٠

•

CODE	MAP_UNIT	CLASS	PERC	CODE	MAP_UNIT	CLASS	PERC
654c	Gelligaer	15	100.00	713c	FFOREST	21	10.53
711a	STANWAY	18	20.00			24	78.95
7116	BBOCKNURST 1	24	80.00			26	10.53
7110	BRUCKHURSTT	21	20.00	/13d	CEGIN	17	11.76
711c	BROCKHURS12	24	13,33			18	11.76
		24	86.67	713.0	PRICKETELD1	24	16.47
711d	MARTOCK	24	100.00	7156	DRICKFIELDI	24	08.75
711e	WICKHAM1	20	11.76	713 f	BRICKELELD2	20	31.23
		24	17.65	· • • • • • • • • • • • • • • • • • • •		21	20.00
		25	70.59			24	53 33
711f	WICKHAM2	20	16.67	713g	BRICKFIELD3	24	100.00
		23	11.11	714a	DUNKESWELL	18	10.53
		25	72.22			24	63.16
/11g	WICKHAM3	10	15.79			26	26.32
		18	10.53	7145	OAK 1	24	100.00
7116	LILORUAN/	25	73.68	714c	OAK2	18	33.33
7116		25	100.00	-		24	66.67
	HICKHAND	18	12.99	714d	ESSENDEN	18	20.00
		20	12.99	74 / /		-	
		24	41 0/	/140	ESSENDEN	24	60.00
711 i	KINGSTON	27	17 45	721 -	0014057018	25	20.00
		16	11 76	7218	ONECOTE	<u>را</u>	100.00
		18	23.53	7210		20	100.00
		24	47.06	7210	WILLOUKSI	10	
711k	VERNOLDS	-9	21.43	721d	NU COCKS2	15	11 11
		18	21.43	12.0		26	55 56
		24	57.14			20	33 33
711L	CLAVERLEY	19	25.00	721e	VENALLT	26	84 21
		24	75.00			29	15.79
711m	SALOP	18	18.75	811a	ENBORNE	8	21.05
744		24	81.25			9	15.79
7110	CLIFTON	10	10.53			10	63.16
(110	LIFION	18	21.05	8116	CONVAY	8	23.53
7110	0165000	24	68.42			9	76.47
1110	KUPPUKU	10	45.00	8110	HOLLINGTON	8	11.11
711n	DUNKESUTCK	24	100.00	0111		9	88.89
7110	PINDER	24 19	22 22	8110	RUCKCLIFFE	8	11.11
	· INDER	24	77 78			10	55.56
711r	BECCLES1	24	100.00	8116	TANNATS		33.33
711s	BECCLES2	10	15.79	5116		10	38 90
		24	84.21	812a	FROME	10	05.07
711t	BECCLES3	18	25.00			11	5 00
		21	15.00	8125	WISBECH	8	31.25
		24	60.00		• • • • • • • • • •	- 9	68.75
711u	HOLDERNESS	18	32.61	812c	AGNEY	9	100.00
711.	0000000	24	67.39	813a	HIDELNEY	9	83.33
7110	GRESHAM	10	15.79			10	16.67
		14	03.16	8135	FLADBURY1	8	15.00
711	CROET DASCOR	24	21.05			9	85.00
	CROFT PASCOC	õ	20.00	8130	FLADBURT2	8	23.53
		13	20.00	817.4		ý	76.47
		14	50.00	8130	PLADBURTS	10	88.89
712a	DALE	24	100.00	813.	CONDION	10	100.00
712Б	DENCHWORTH	20	14.29	8134	VALLASEA1	7	100.00
		23	14.29	813a	UALLASEA2	7 8	12 77
		25	71.43			ŏ	87 23
712c	WINDSOR .	23	10.00	813h	Dowels	ó	100.00
		25	90.00	814a	THAMES	Å	8.89
712d	HALLSWORTH1	24	100.00			9	91.11
/12e	HALLSWORTH2	24	100.00	814b	Newchurch1	8	25.32
7127		24	100.00			9	74.68
1129	KAGUALE	21	22.22	814c	NEWCHURCH2	9	100.00
7125	FOCGATHODOGA	24	100.00	815	HORMOOR	9	100.00
7121	FOCGATHODE2	24	100.00	821a	EVERINGHAM	7	26.32
713a	BARDSEY	24 1	20 / 1	0316		10	73.68
		21	11 74	0210	OLAUNWUUU	/	9.52
		24	58.82	831-		10	YU.48
713ь	SPORTSMANS	9	43.75	0.0	- CVERANDEARA	0	70 50
		15	18.75			26	11 76
		21	18.75	83 1b	SESSAY	9	55,00
		24	18.75			10	15.00

.

CODE MAP_UNIT	CLASS	PERC
831c WIGTON MOOR	24 7 8 9	30.00 11.11 16.67 44.44
832 KELNSCOT	10 7 9	27.78 12.50 12.50
841a Curdridge	10 10	75.00 80.00
8416 HURST	7 8	13.33 13.33
841c SWANWICK 841d Shabbington	10 10 7 8 9	73,33 100,00 13,33 26,67 46,67
841e PARK GATE	25 8	13.33 22.22
851a DOWNHOLLAND1	9 10	64.71 17.65
8515 DOWNHOLLAND2	11 9	17.65 71.43
851c DOWNHOLLAND3	9 10	28.57 50.00 20.00
861a Isleham1	11 10 20	30.00 80.00 30.00
861b isleham2	7 10	20.00 20.00 50.00
871a LAPLOYD	11 10 12	30.00 23.53 64.71
8716 HENSE	29 3 10	11.76 10.00 70.00
871c HANWORTH	12	20.00 70.00
872a PEACOCK	9 11	15.00 16.67
872b Clayhythe	25 9 10 11 25	68.33 15.79 63.16 10.53 10.53
873 IRETON 1011a LONGMOSS 10116 WINTER HILL 1013a CROWDY1	10 12 29 15 26	100.00 100.00 100.00 11.11 16.67
10136 CROWDY2 1021 TURBARY MOOR	29 29 11	100.00 80.00
1022a ALTCAR1 1022b ALTCAR2 1024a ADVENTURERS+1	12 11 11 11	20.00 100.00 100.00 100.00
10246 ADVENTURERS'2 1024c ADVENTURERS'3	10 11 9	20.00 80.00 23.53
1025 Hendham	10 11 9	23.53 52.94 38.89
1025 Mendham	11	61.11

ſ

۲

•

.

CODE	MAP_UNIT	CLASS	PERC
3	ALLUVIAL SOILS	7 8	35.00 15.00
		9 10	10.00 20.00
2	ALLUVIAL SOILS	12 10	20.00
3	ORGANIC SOILS	12	100.00
5	ABERLOUR	29 14	70.00
6	ABERLOUR	15 13	30.00 40.00
7	ABERLOUR	15	50.51
9	ABERLOUR	12	49.49
10	ABERLOUR	15	55.00 50.51
11	ABERLOUR	17	49.49 50.51
12	ABERLOUR	17	100.00
	ABERLOUX	29	50.51
14 15	ABERLOUR ABERLOUR	17 22	100.00 75.00
16	ARBIGLAND	27 18	25.00 25.00
17	ARDVANTE	24	75.00
18	ARKAIG	17	100.00
19	ARKAIG	14 15	50.51
20	ARKAIG	13 17	49.49
21	ARKAIG ARKAIG	15	100.00
37		29	49.49
23	AKKALG	15 29	65.00 35.00
24 25	ARKAIG ARKAIG	15 17	100.00
26	ARKAIG	12	35.00
27	ARKAIG	15	65.00 100.00
28	ARKAIG	15 17	50.51 49.49
29	ARKAIG	12	49.49
30	ARKAIG	15	50.00
71	ADVALO	27	25.00
20	ARKAIG	15	70.00
22	AKKATG	12 15	30.30 35.35
33	ARKAIG	27 19	34.34 100.00
34	ARKALG	19 29	50.51 49.49
35 36	ARKAIG ARKAIG	19 22	100.00 49.49
36	ARKAIG	27	50.51
38	ARRAN	24	100.00
39 40	ASHGROVE	24	100.00
41	BALROWNIE	18	100.00
42 13	BALROWNIE	24	100.00
44	BALROWNIE	4 6	50.51
45	BALROWNIE	13	49.49
46	BALROWNIE	12	49.49
47	BALROWNIE	26 24	50.51

.

CODE	MAP_UNIT	CLASS	PERC	CODE	HAP_UNIT	CLASS	PERC
48	BALROWNIE	26	100.00	97	CORRY	ς	100 00
49	BALROWNIE	6	100.00	98	CCRBY	ś	70.00
50	BALROWN1E	12	49.49			7	10.00
		26	50.51			. 8	5 00
51	BARGOUR	24	100.00			ŏ	5 00
52	BARNCORKRIE	16	50.51			10	5 00
		24	49.49			12	5 00
53	BEMERSYDE	17	100.00	00	CORRY	5	100.00
54	BEMERSYDE	17	100.00	100	CORRY	ś	100.00
55	BENERSYDE	15	100 00	101	(UDBA	15	100.00
56	RENAN	×	100.00	102	CORDY	7	10.10
57	RENAN	6	100.00	102	CONDI	, A	5 05
59	DENAN	2/	100.00			ů 0	5.05
50	DEDALCOALE	24	100.00			10	5.05
40	DERRIEVALE	0	100.00			10	5.05
41	DERXIEDALE	14	100.00			12	39.39
01	BERKIEDALE	12	70.00	107		15	35.35
		29	30.00	103	CORBY	5	50.51
62	BERRIEDALE	12	49.49			12	49.49
		15	50.51	104	CORBY	12	85.00
63	BERRIEDALE	6	100.00			15	15.00
64	BERRIEDALE	15	80.00	105	CORBY	5	50.51
		29	20.00			15	49.49
65	BERRIEDALE	15	100.00	106	CORBY	12	50.51
66	BERRIEDALE	4	34.34			15	49.49
		6	35.35	107	CORRIEBRECK	14	15.00
		17	30.30			17	85.00
67	BERRIEDALE	6	50.51	108	CORRIERRECK	17	100 00
-		29	49.49	109	CORR1 EBRECK	12	30.00
68	RIA1P	24	100 00			15	70.00
60	RIAIR	24	25 25	110		15	100.00
07	ULAIR	24	36 36	111	CORDIERCEN	12	100.00
		20	34.34	111	LUKKTEBRECK	12	49.49 E0 E1
70	DOCTOR	27	100.00			15	50.51
70	BUGIUWN	24	100.00				
()	BKAEMUKE	0	50.51	112	CURRIEBRECK	17	100.00
70		15	49.49	113	COUNTESSWELLS	17	100.00
12	BRAEMORE	6	35.35	114	COUNTESSVELLS	17	100.00
		13	54.54	115	COUNTESSWELLS	17	100.00
_		14	30.30	116	COUNTESSWELLS	14	100.00
73	BRAEMORE	14	100.00	117	COUNTESSWELLS	15	100.00
74	BRAEMORE	6	100.00	118	COUNTESSWELLS	15	50.51
75	BRAEMORE	15	34.34			29	49.49
		26	35.35	119	COUNTESSWELLS	15	50.51
		29	30.30			29	49.49
76	BRIGHTMONY	16	100.00	120	COUNTESSWELLS	12	49.49
77	CAIRNCROSS	6	50.51			15	50.51
		24	- 49.49 -		COUNTESSWELLS	17	70.00
78	CANISBAY	6	100.00			22	30.00
79	CANESBAY	24	85.00	122	COUNTESSMELLS	17	100.00
		26	15.00	123	COUNTESSVELLS	12	35.00
80	CANISBAY	6	29.29			15	65.00
	•••••••••	15	20.20	124	CONTRACTOR	12	85 00
		24	30 30	124		27	15 00
		26	20.20	125		17	100.00
81	CANISBAY	15	100.00	126	COUNTESSWELLS	15	50.51
82	CANTODAT	26	100.00	120	COUNTESSWELLS	17	10.0
02	CANICOAN	20	100.00	177		17	47.47
0J 0/	CANOUDIE	24	100.00 E0 E1	121	LOONTESSMELLS	12	49.49
04	LANUNBIE	10	20.21	170		15	50.51
05		24	49.49	128	LOONTESSWELLS	17	50.51
85	CANONBIE	24	100.00			22	49.49
86	CANONBIE	0	100.00	129	COUNTESSWELLS	15	49.49
87	CANONBIE	26	100.00			27	50.51
88	CANONBIE	12	49.49	130	COUNTESSWELLS	15	70.00
		26	50.51			29	30.00
89	CARPON	5	100.00	131	COUNTESSWELLS	15	70.00
90	CARTER	6	30.00			27	30.00
		14	70.00	132	COUNTESSWELLS	12	49.49
91	CARTER	14	30.00			15	50.51
		24	70.00	133	COUNTESSWELLS	27	100.00
92	CARTER	6	30.00	134	COUNTESSWELLS	17	100.00
		24	70.00	135	COUNTESSWELLS	17	50.51
93	CARTER	15	100.00			29	49.40
94	CARTER	24	49.49	136	COUNTESSWELLS	17	100.00
		26	50.51	137	COUNTESSVELLS	22	100 00
95	CARTER	26	50.51	138	CRAIGDALE	15	40.40
-		20	49.49			17	50 51
96	CORBY	17	100.00	110	CRAIGDALE	24	50.51
		••		• 2 7		C.4	20.21

B.6

L0 CRAIGELLACHIE 18 100.00 190 DURWILL 17 70.00 141 CREETOW 17 100.00 191 DURWILL 17 70.00 142 CREETOW 24 50.51 192 DURWILL 17 85.00 143 CREETOW 24 50.51 192 DURWILL 17 100.00 145 CROMATY 18 100.00 193 DURWILL 27 100.00 146 CROMATY 18 100.00 193 DURWILL 27 100.00 146 CROMATY 16 100.00 197 ECKTORD 57 100.00 146 DARLETIN 17 100.00 197 ECKTORD 17 100.00 150 DARLETIN 17 100.00 197 ECKTORD 170.00 200 150 DARLETIN 17 100.00 200 ECKTORD 170.00 100.00 170.00 170.00	CODE	MAP_UNIT	CLASS	PERC	CODE	MAP_UNIT	CLASS	PERC
140 CRAIGELLACHTE 18 100.00 101 DURNHILL 27 30.00 141 CREETOAN 17 100.00 101 DURNHILL 17 30.00 143 CREETOAN 17 100.00 101 DURNHILL 17 30.00 144 CREETOAN 17 100.00 103 DURNHILL 17 30.00 145 CREMARTY 18 100.00 103 DURNHILL 17 30.51 146 CREMARTY 18 100.00 103 DURNHILL 17 100.00 147 DARLETIN 17 100.00 109 ECKTORD 5 30.00 140 DARLETIN 17 100.00 199 ECKTORD 5 30.00 150 DARLETIN 17 100.00 199 ECKTORD 10 30.00 150 DARLETIN 15 00.00 201 ECGIN 14 50.51 151 DARLE			26	49.49	190	DURNHTLI		70 00
141 CREETOW 17 100.00 101 DURNHILL 27 30.00 142 CREETOW 24 50.51 192 DURNHILL 17 85.00 143 CREETOW 24 50.51 192 DURNHILL 17 85.00 144 CROMARY 13 100.00 193 DURNHILL 17 50.01 145 CROMARY 13 100.00 193 DURNHILL 27 100.00 146 DARLETH 17 100.00 197 ECKFORD 100.00 147 DARLETH 17 100.00 198 ECKFORD 100.00 150 DARLETH 17 100.00 198 ECKFORD 100.00 151 DARLETH 19 100.00 198 ECKFORD 170.00 152 DARLETH 19 100.00 200 ECKFORD 170.00 152 DARLETH 19 100.00 201 ELIN 1	140	CRAIGELLACHIE	18	100.00			37	70.00
142 CREETOM 17 100.00 191 DURWILL 17 70.00 143 CREETOM 26 50.51 192 DURWILL 17 85.00 144 CREMARY 13 100.00 193 DURWILL 17 50.51 145 CROMARY 13 100.00 196 DURWILL 12 100.00 147 DARLETIM 17 100.00 196 ECKTORD 5 70.00 140 DARLETIM 17 100.00 197 ECKTORD 5 70.00 151 DARLETIM 17 100.00 197 ECKTORD 5 70.00 152 DARLETIM 15 100.00 209 ECKTORD 10 30.00 155 DARLETIM 15 100.00 209 ECKTORD 10 30.00 155 DARLETIM 15 40.49 202 ELGIM 15 40.49 156 DARLETIM	141		17	100 00	101		27	30.00
14.3 CREETOWN 26 69, 49 92 DURWHILL 27 85.00 14.4 CREMARTY 13 100.00 193 DURWHILL 27 55.00 14.5 CREMARTY 13 100.00 193 DURWHILL 27 65.00 14.6 CREMARTY 13 100.00 196 DURWHILL 22 100.00 14.6 DARLEITH 17 100.00 196 ECKFORD 5 100.00 14.6 DARLEITH 17 100.00 197 ECKFORD 5 100.00 150 DARLEITH 17 100.00 198 ECKFORD 10 100.00 151 DARLEITH 15 100.00 109 ECKFORD 10 100.00 152 DARLEITH 15 00.00 201 ELGIM 10 10.00 153 DARLEITH 15 00.00 203 ELGIM 10 10.00 155 DARLEI	142	CREETOWN	17	100 00	101	DUDVHILL	[] []	70.00
1.4. C.R.MARTY 13 100.00 193 DURNILL 27 85.00 14.4 C.RUMARTY 18 100.00 193 DURNILL 27 15.00 14.5 C.RUMARTY 18 100.00 193 DURNILL 17 100.00 14.6 C.RUMARTY 15 50.51 195 DURNILL 22 100.00 14.6 C.RUMARTY 16 100.00 196 ECKFORD 5 100.00 15 DARLETH 17 100.00 198 ECKFORD 17 30.00 15 DARLETH 17 100.00 108 ECKFORD 5 70.00 18 20.00 16 30.00 200 ECKFORD 10 100.00 108 20.00 105 00.01 100.00 108 ECKFORD 10 100.00 105 100.01 100.00 105 100.00 105 100.00 105 100.00 105 100.00 100.00 100.00 100.00	143	CREETOWN	2/.	50.51	102	DOMANILL	21	30.00
14.4 CROMARTY 13 100.00 193 DURNHILL 17 15.00 145 CREMARTY 14 49.49 104.00 107 100.00 147 DARLETH 17 100.00 107 ECKFORD 5 100.00 147 DARLETH 17 100.00 107 ECKFORD 5 70.00 149 DARLETH 27 100.00 107 ECKFORD 5 70.00 150 DARLETH 17 100.00 108 ECKFORD 5 70.00 151 DARLETH 19 100.00 200 ECKFORD 10 30.00 152 DARLETH 19 40.40 199 ELGIN 10 30.00 153 DARLETH 19 50.51 201 ELGIN 10 30.00 155 DARLETH 17 50.51 207 ETRICK 19 100.00 156 DARLETH 17 50.5		0	26	10.11	192	DOKNHILL	17	85.00
14.5 CEDMARTY 16 16.0 17.5 DURNAILL 17 50.51 14.6 CERMARTY 14 6.9 4.0 100	144	COMADTY	17	100.00	107		27	15.00
14.6 CROMARTY 10 10.0 10.0 10.0 10.0 10.0 10.0 14.7 DARLETTH 17 100.00 17 ECKFORD 5 100.00 14.6 DARLETTH 24 100.00 197 ECKFORD 5 100.00 14.6 DARLETTH 24 100.00 197 ECKFORD 5 100.00 150 DARLETTH 24 100.00 198 ECKFORD 5 70.00 151 DARLETTH 17 100.00 200 ECKFORD 5 70.00 152 DARLETTH 15 50.51 201 100.00 200 ECKFORD 15 100.00 206 ETTRICK 17 100.00 155 DARLETTH 15 50.51 201 ELGIM 15 40.00 156 DARLETTH 15 50.51 207 ETTRICK 17 100.00 157 DARLETTH 17 40.40	1/5	CROMANTY	10	100.00	193	DURNHILL	17	50.51
Into CARDMAIL 11 24, 24, 34 100 100 DURNILL 12 100, 00 147 DARLETH 27 100, 00 109 ECKTORD 5 100, 00 148 DARLETH 24 100, 00 109 ECKTORD 5 70, 00 150 DARLETH 17 100, 00 109 ECKTORD 5 70, 00 151 DARLETH 19 100, 00 200 ECKTORD 10 100, 00 153 DARLETH 19 40, 40 109 ECKTORD 10 100, 00 153 DARLETH 19 40, 40 200 ECKTORD 5 70, 00 155 DARLETH 19 40, 40 202 ELGIN 16 50, 00 155 DARLETH 17 50, 51 203 ELGIN 15 40, 00 156 DARLETH 15 50, 51 205 ETRICK 17 100, 00 157 <td>14.5</td> <td>CROMARTY</td> <td>10</td> <td>100.00</td> <td></td> <td></td> <td>29</td> <td>49.49</td>	14.5	CROMARTY	10	100.00			29	49.49
1.7 DARLETH 15 50.31 195 DURNHILL 22 100.00 146 DARLETH 24 100.00 196 ECKFORD 5 100.00 150 DARLETH 24 100.00 198 ECKFORD 12 30.00 151 DARLETH 17 100.00 198 ECKFORD 5 70.00 151 DARLETH 17 100.00 200 ECKFORD 5 70.00 152 DARLETH 15 50.51 70.00 101 14.55.51 30.00 201 ELGIM 14 50.51 30.00<	140	LKUMARTY	14	49.49	194	DURNHILL	17	100.00
14.2 DARLETH 17 100.00 196 ECKYORD 5 100.00 150 DARLETH 2 100.00 197 ECKYORD 5 70.00 151 DARLETH 2 100.00 198 ECKYORD 5 70.00 151 DARLETH 19 100.00 200 ECKYORD 5 70.00 152 DARLETH 19 49.49 199 ECKYORD 5 70.00 153 DARLETH 15 50.51 70.00 10 30.00 10 30.00 155 DARLETH 15 50.51 203 ELGIN 15 64.90 70.00 10 30.00 204 ELGIN 15 64.00 60.00 100.00 206 ETRICK 16 100.00 10 100.00 10 100.00 10 100.00 10 100.00 10 10 10 100.00 10 10 100.00 10 100.00			15	50.51	195	DURNHILL	22	100.00
148 DARLETH 24 100.00 197 ECKFORD 5 70.00 150 DARLETH 17 100.00 198 ECKFORD 5 70.00 151 DARLETH 17 100.00 198 ECKFORD 5 70.00 152 DARLETH 15 100.00 200 ECKFORD 10 100.00 153 DARLETH 15 100.00 200 ECKFORD 10 100.00 155 DARLETH 15 50.51 201 ELGIN 14 50.51 155 DARLETH 15 40.49 202 ELGIN 15 40.00 156 DARLETH 15 50.51 207 ETRICK 16 100.00 158 DARLETH 15 50.51 207 ETRICK 17 100.00 160 DARLETH 17 100.00 210 ETRICK 17 100.00 158 DARLETH 17 <td>147</td> <td>DARLEITH</td> <td>17</td> <td>100.00</td> <td>196</td> <td>ECKFORD</td> <td>· 5</td> <td>100.00</td>	147	DARLEITH	17	100.00	196	ECKFORD	· 5	100.00
14.9 DARLETH 24 100.00 198 ECKFORD 57 30.00 151 DARLETH 17 100.00 198 ECKFORD 570.00 152 DARLETH 19 100.00 199 ECKFORD 10.00 153 DARLETH 19 100.00 201 ECKFORD 570.00 154 DARLETH 15 50.51 201 ELGIN 15 570.00 155 DARLETH 15 50.51 203 ELGIN 15 60.00 156 DARLETH 17 50.51 203 ELGIN 15 100.00 157 DARLETH 17 50.51 203 ELGIN 15 100.00 158 DARLETH 15 50.51 203 ETRICK 17 100.00 159 DARLETH 17 100.00 206 ETRICK 17 100.00 160 DARLETH 17 100.00 210 <td< td=""><td>148</td><td>DARLEITH</td><td>24</td><td>100.00</td><td>197</td><td>ECKFORD</td><td>5</td><td>70 00</td></td<>	148	DARLEITH	24	100.00	197	ECKFORD	5	70 00
150 DARLETIN 17 100.00 198 ECKFORD 7 5 7 151 DARLETIN 19 100.00 200 ECKFORD 10 00 153 DARLETIN 19 49.40 199 ECKFORD 10 00 153 DARLETIN 19 100.00 200 ECKFORD 5 70.00 155 DARLETIN 15 49.40 200 ELGIN 14 50.31 156 DARLETIN 15 49.40 202 ELGIN 6 60.00 156 DARLETIN 12 35.00 204 ETRICK 16 160.00 157 DARLETIN 19 100.00 206 ETRICK 17 100.00 158 DARLETIN 19 100.00 206 ETRICK 17 100.00 158 DARLETIN 15 50.51 207 ETRICK 12 100.00 160 DARLETIN 15 50.51 207 ETRICK 12 50.01 160	149	OARLEITH	24	100.00			12	30.00
151 DARLETH 19 100.00 1	150	DARLEITH	17	100.00	108	ECKEOPD	, <u>,</u> , , , , , , , , , , , , , , , , ,	20.00
152 DARLËTIN 15 50,51 10	151	DARLEITH	19	100.00	170		, ,	70.00
DARLET IN 19 26:69 199 ECKTOBD 18 20:00 153 DARLET IN 15 100.00 200 ECKTOBD 100.00 154 DARLET IN 15 70.00 200 ELGIN 11 30.01 155 DARLET IN 15 50.51 201 ELGIN 15 40.49 156 DARLET IN 17 50.51 203 ELGIN 15 40.49 157 DARLET IN 17 50.51 203 ELGIN 15 100.00 158 DARLET IN 17 100.00 206 ETRICK 17 100.00 160 DARLET IN 19 100.00 210 ETRICK 17 100.00 161 DARLET IN 17 100.00 210 ETRICK 12 40.49 162 DARLET IN 17 100.00 210 ETRICK 12 40.49 164 DARVEL 5 100.00	152	DARIFITH	15	50 51			(10.00
153 DARLEITH 15 TOTO O 200 EXTORD 50 70.00 154 DARLEITH 15 70.00 201 ELGIN 14 50.01 155 DARLEITH 15 50.31 201 ELGIN 14 50.01 156 DARLEITH 15 49.49 202 ELGIN 13 49.49 157 DARLEITH 17 50.51 203 ELGIN 13 49.49 158 DARLEITH 12 35.00 206 ETHRICK 17 100.00 159 DARLEITH 15 50.51 207 ETHRICK 17 100.00 160 DARLEITH 17 100.00 210 ETHRICK 13 49.49 161 DARLEITH 17 100.00 210 ETHRICK 12 70.00 162 DARLEITH 17 100.00 210 ETHRICK 12 70.00 163 DARVEL 5			10	/0./0	100		8	20.00
154 DARLET IN 10 100 200 ECKROBD 5 70.00 155 DARLET IN 170.00 201 ELGIN 14 50.51 156 DARLET IN 170.00 200 ELGIN 15 40.40 156 DARLET IN 17 50.51 203 ELGIN 15 40.40 157 DARLET IN 17 50.51 207 ETRICK 19 100.00 158 DARLET IN 19 100.00 206 ETRICK 19 100.00 159 DARLET IN 19 49.49 208 ETRICK 17 100.00 160 DARLET IN 17 50.51 207 ETRICK 12 70.00 164 DARLET IN 17 50.51 210 ETRICK 12 40.49 164 DARLET IN 17 50.00 212 ETRICK 12 40.57 163 DARVEL 5 70.00	153		19	49.49	199	ECKFORD	10	100.00
15-4 DARLETIN 15 70.00 201 ELGIN 14 50.00 155 DARLETIN 15 30.00 201 ELGIN 15 49.49 156 DARLETIN 15 49.49 202 ELGIN 15 49.49 157 DARLETIN 17 50.51 203 ELGIN 15 40.00 158 DARLETIN 17 50.51 203 ELGIN 16 100.00 159 DARLETIN 15 50.51 207 ETHRICK 17 100.00 160 DARLETIN 15 50.51 207 ETHRICK 17 100.00 161 DARLETIN 17 100.00 210 ETHRICK 17 100.00 162 DARLETIN 17 100.00 210 ETHRICK 17 170.00 164 DARVEL 5 100.00 212 ETHRICK 17 100.00 165 DEECASTLE <t< td=""><td>457</td><td>DARLEIJN</td><td>15</td><td>100.00</td><td>200</td><td>ECKFORD</td><td>5</td><td>70.00</td></t<>	457	DARLEIJN	15	100.00	200	ECKFORD	5	70.00
155 DARLEITH 15 30.00 201 ELGIN 14 50.51 156 DARLEITH 29 49.69 202 ELGIN 60.00 157 DARLEITH 17 50.51 203 ELGIN 15 40.69 157 DARLEITH 17 50.51 203 ELGIN 15 100.00 158 DARLEITH 16 60.00 206 ETHRICK 17 100.00 159 DARLEITH 17 50.51 208 ETHRICK 17 100.00 160 DARLEITH 17 50.51 210 ETHRICK 17 100.00 161 DARLEITH 17 50.51 210 ETHRICK 12 50.51 162 DARVEL 5 100.00 213 ETHRICK 12 20.64 163 DARVEL 5 100.00 213 ETHRICK 12 20.50 164 DARVEL 5 100.00<	154	DARLEITH	15	70.00			10	30.00
155 DARLEITH 15 50.51 202 ELCIN 6 60.00 156 DARLEITH 15 49.49 202 ELCIN 13 40.00 157 DARLEITH 17 50.51 203 ELCIN 15 100.00 158 DARLEITH 12 35.00 206 ETTRICK 17 100.00 158 DARLEITH 19 100.00 206 ETTRICK 17 100.00 160 DARLEITH 19 49.49 208 ETTRICK 17 100.00 161 DARLEITH 17 50.51 207 ETTRICK 12 49.49.49 162 DARLEITH 17 50.51 210 ETTRICK 12 49.49.49 163 DARVEL 29 100.00 211 ETTRICK 12 27.00 164 DARVEL 7 50.00 214 ETTRICK 12 30.00 165 DEECASTLE			29	30.00	201	ELGIN	14	50.51
29 49,49 202 ELGIN 5 6 7 10 00 <	155	DARLEITH	15	50.51			15	40 40
156 DARLEITH 15 49.49 Letter 161 161.00 157 DARLEITH 12 35.00 204 ETHE 15 100.00 158 DARLEITH 19 100.00 205 ETHICK 16 100.00 158 DARLEITH 19 100.00 206 ETHICK 17 100.00 160 DARLEITH 19 49.49 208 ETHICK 17 100.00 160 DARLEITH 17 50.51 209 ETRICK 12 49.49 161 DARLEITH 17 50.51 210 ETRICK 12 49.49 162 DARLEITH 17 50.51 210 ETRICK 12 49.49 163 DARVEL 5 100.00 213 ETRICK 12 50.01 164 DARVEL 5 100.00 214 ETRICK 12 50.00 165 DEECASTLE 4 100.0			29	49.49	202	FLGIN		40.00
157 DARLEITH 12 50.51 203 ELGIN 15 100.00 158 DARLEITH 15 65.00 205 ETIRICK 160.00 159 DARLEITH 15 50.51 205 ETIRICK 17 100.00 160 DARLEITH 15 50.51 207 ETIRICK 17 100.00 161 DARLEITH 17 50.51 208 ETIRICK 124 50.99 161 DARLEITH 17 100.00 210 ETIRICK 124 50.91 162 DARVEL 5 70.00 212 ETIRICK 12 70.00 163 DARVEL 5 70.00 213 ETIRICK 12 70.00 164 DEECASTLE 4 100.00 214 ETIRICK 12 85.00 165 DEECASTLE 4 100.00 216 ETIRICK 12 85.00 166 DEECASTLE 4	156	DARLEITH	15	49.49	202		17	00.00
157 DARLEITH 12 55:00 200 ELLIN 19 100.00 158 DARLEITH 19 100.00 265 ETRICK 16 100.00 159 DARLEITH 19 100.00 265 ETRICK 17 100.00 159 DARLEITH 19 49.49 206 ETRICK 17 100.00 160 DARLEITH 17 50.51 208 ETRICK 13 49.49 161 DARLEITH 17 50.51 210 ETRICK 12 50.51 162 DARLEITH 17 50.51 210 ETRICK 12 50.51 163 DARVEL 5 100.00 213 ETRICK 12 50.50 164 DARVEL 5 100.00 214 ETRICK 12 50.00 165 DEECASTLE 4 49.49 215 ETRICK 12 50.00 166 DEECASTLE 4 <td></td> <td></td> <td>17</td> <td>50 51</td> <td>202</td> <td>ELCIN</td> <td>13</td> <td>40.00</td>			17	50 51	202	ELCIN	13	40.00
DARLETIN 12 32.00 200 EINTE 19 100.00 158 DARLETIN 15 60.00 206 ETRICK 17 100.00 159 DARLETIN 15 50.51 207 ETRICK 17 100.00 160 DARLETIN 15 50.51 207 ETRICK 17 100.00 161 DARLETIN 17 50.51 207 ETRICK 12 50.51 162 DARLETIN 17 50.00 210 ETRICK 12 49.49 163 DARVEL 5 100.00 212 ETRICK 12 49.49 164 DARVEL 5 100.00 213 ETRICK 12 50.01 165 DEECASTLE 4 100.00 214 ETRICK 12 50.00 165 DEECASTLE 4 100.00 216 ETRICK 15 50.00 165 DEECASTLE 100.00 2	157		12	35 00	203	ELGIN	15	100.00
158 DARLEITH 19 03.00 205 ETTRICK 16 100.00 159 DARLEITH 15 50.51 207 ETTRICK 17 100.00 160 DARLEITH 15 50.51 207 ETTRICK 17 100.00 161 DARLEITH 15 50.51 209 ETTRICK 17 100.00 162 DARVEL 5 100.00 210 ETTRICK 12 49.49 163 DARVEL 5 70.00 212 ETTRICK 12 49.49 164 DARVEL 5 70.00 213 ETTRICK 12 70.00 164 DARVEL 5 70.00 214 ETTRICK 12 35.00 165 DEECASTLE 4 49.49 215 ETTRICK 12 35.00 166 DEECASTLE 4 100.00 216 ETTRICK 12 35.00 167 DEECASTLE 4	121	DAREETIN	10		. 204	EIHIE	19	100.00
139 DARLETIN 19 100.00 206 ETRICK 17 100.00 160 DARLETIN 15 50.51 207 ETRICK 19 100.00 161 DARLETIN 15 50.51 209 ETRICK 13 40.49 161 DARLETIN 17 100.00 210 ETRICK 124 50.51 162 DARLETIN 17 50.01 210 ETRICK 12 50.51 163 DARVEL 5 100.00 212 ETRICK 12 50.51 164 DARVEL 5 100.00 213 ETRICK 12 50.51 165 DEECASTLE 4 100.00 214 ETRICK 12 55.00 166 DEECASTLE 4 100.00 216 ETRICK 12 35.00 165 DEECASTLE 4 100.00 216 ETRICK 12 35.00 166 DOUHE 100.0	100		15	65.00	205	ETTRICK	16	100.00
159 DARLETIN 15 50.51 207 ETRICK 19 100.00 160 DARLETIN 15 50.51 208 ETRICK 17 100.00 161 DARLETIN 17 100.00 210 ETRICK 17 100.00 161 DARVEL 5 100.00 210 ETRICK 12 49.49 162 DARVEL 5 70.00 212 ETRICK 12 70.00 163 DARVEL 5 70.00 212 ETRICK 12 70.00 164 DARVEL 5 70.00 213 ETRICK 12 70.00 165 DEECASTLE 4 94.49 215 ETRICK 12 35.00 166 DEECASTLE 4 100.00 216 ETRICK 12 35.00 167 DEECASTLE 4 100.00 216 ETRICK 15 100.00 168 DEECASTLE 100.00 <td>128</td> <td>DARLEITH</td> <td>19</td> <td>100.00</td> <td>206</td> <td>ETTRICK</td> <td>17</td> <td>100.00</td>	128	DARLEITH	19	100.00	206	ETTRICK	17	100.00
160 DARLELTH 19 49,49 208 ETTRICK 17 100.00 161 DARLELTH 17 100.00 210 ETTRICK 24 50.51 162 DARLELTH 17 100.00 210 ETTRICK 24 50.51 163 DARVEL 5 100.00 211 ETTRICK 12 50.51 164 DARVEL 5 100.00 212 ETTRICK 12 50.01 164 DARVEL 5 70.00 212 ETTRICK 12 50.51 164 DARVEL 5 70.00 213 ETTRICK 12 50.51 165 DEECASTLE 4 100.00 214 ETTRICK 12 55.00 166 DEECASTLE 4 100.00 216 ETTRICK 12 85.00 167 DEECASTLE 4 100.00 216 ETTRICK 15 70.00 166 DEECASTLE <td< td=""><td>159</td><td>DARLEITH</td><td>15</td><td>50.51</td><td>207</td><td>ETTRICK</td><td>19</td><td>100 00</td></td<>	159	DARLEITH	15	50.51	207	ETTRICK	19	100 00
160 DARLELTH 15 50.51 200 ETTRICK 13 60.20 161 DARLETH 17 100.00 210 ETTRICK 24 50.51 162 DARLETH 17 50.51 210 ETTRICK 12 50.51 163 DARVEL 5 100.00 211 ETTRICK 12 49.49 164 DARVEL 5 70.00 212 ETTRICK 12 49.49 164 DARVEL 5 70.00 213 ETTRICK 12 49.49 164 DARVEL 5 70.00 213 ETTRICK 12 70.00 165 DEECASTLE 4 100.00 214 ETTRICK 12 35.00 166 DEECASTLE 4 100.00 216 ETTRICK 12 85.00 170 DREGNORN 5 100.00 216 ETTRICK 15 100.00 171 DRONCAN 5			19	49.49	208	ETTRICK	17	100 00
29 49.69 20 ETRICK 21 50.71 162 DARLETH 17 100.00 210 ETRICK 14 49.49 163 DARVEL 5 100.00 211 ETRICK 12 70.00 164 DARVEL 5 100.00 212 ETRICK 12 49.49 164 DARVEL 5 100.00 212 ETRICK 12 49.49 164 DARVEL 5 100.00 213 ETRICK 12 49.49 165 DECASTLE 4 100.00 214 ETRICK 12 55.00 166 DEECASTLE 4 409.49 215 ETRICK 12 85.00 167 DEECASTLE 4 100.00 216 ETRICK 15 70.00 168 DECASTLE 4 100.00 217 ETRICK 15 70.00 170 DREGNORN 10 100.00 216	160	DARLEITH	15	50.51	209	ETTRICK	17	40.00
161 DARLETIN 17 100.00 210 ETRICK 14 94.9 162 162 DARLETIN 17 50.51 211 ETRICK 12 50.51 163 DARVEL 5 100.00 212 ETRICK 12 97.00 164 DARVEL 5 70.00 212 ETRICK 12 49.49 164 DARVEL 5 70.00 213 ETRICK 12 49.49 165 DEECASTLE 4 100.00 213 ETRICK 12 35.00 165 DEECASTLE 4 100.00 216 ETRICK 12 85.00 166 DEECASTLE 4 100.00 216 ETRICK 15 70.00 167 DEECASTLE 4 100.00 216 ETRICK 15 70.00 168 DOUNE 5 100.00 219 ETRICK 15 100.00 171 DROKGAN			29	49.49	207		27	47.47
162 DARLETTH 17 SG.ST 210 ETRICK 14 29 40.49 211 ETRICK 12 50.51 163 DARVEL 5 100.00 212 ETRICK 12 70.00 164 DARVEL 5 70.00 212 ETRICK 12 49.49 164 DARVEL 5 70.00 212 ETRICK 12 50.01 165 DEECASTLE 4 90.49 215 ETRICK 12 85.00 165 DEECASTLE 4 49.49 215 ETRICK 12 85.00 166 DEECASTLE 4 90.49 216 ETRICK 12 85.00 166 DEECASTLE 4 100.00 216 ETRICK 12 80.00 166 DEECASTLE 100.00 217 ETRICK 15 70.00 170 DROGRAN 10 100.00 217 ETRICK 15 70.00	161	DARLEITH	17	100 00	210	STRICK	24	50.51
Contention 10 20-11 211 ETRICK 12 70.00 163 DARVEL 5 100.00 212 ETRICK 12 49.49 164 DARVEL 5 70.00 212 ETRICK 12 49.49 165 DEECASTLE 100.00 213 ETRICK 12 50.01 166 DEECASTLE 4 100.00 214 ETRICK 12 50.00 166 DEECASTLE 4 100.00 216 ETRICK 12 85.00 166 DEECASTLE 4 100.00 216 ETRICK 12 70.00 167 DEECASTLE 4 100.00 217 ETRICK 15 70.00 168 DOUME 5 100.00 218 ETTRICK 15 70.00 171 <drogran< td=""> 10 100.00 219 ETTRICK 15 70.00 173 DULSTE 15 100.00 219 <te< td=""><td>162</td><td>DARLETTH</td><td>17</td><td>50 51</td><td>210</td><td>CLIKICK</td><td>14</td><td>49.49</td></te<></drogran<>	162	DARLETTH	17	50 51	210	CLIKICK	14	49.49
163 DARVEL 5 10:00 212 ETRICK 12 70:00 164 DARVEL 5 70:00 212 ETRICK 12 49:49 164 DARVEL 5 70:00 213 ETRICK 12 49:49 165 DEECASTLE 40:00 213 ETRICK 12 50:00 165 DEECASTLE 40:00 215 ETRICK 12 85:00 166 DEECASTLE 40:00 216 ETRICK 12 85:00 167 DEECASTLE 40:00 216 ETRICK 12 85:00 168 DOUNE 100:00 216 ETRICK 15 100:00 171 DRCHGORN 5 100:00 218 ETRICK 15 100:00 171 DROMGAN 24 100:00 219 ETRICK 15 20:00 171 DROMGAN 24 100:00 219 ETRICK 17 100		omeet na	30	10.11			24	50.51
164 DARVEL 5 100.00 212 ETRICK 17 30.00 164 DARVEL 5 70.00 212 ETRICK 12 49.49 7 5.00 213 ETRICK 12 50.01 9 5.00 214 ETRICK 12 35.00 165 DEECASTLE 4 00.00 215 ETRICK 12 35.00 166 DEECASTLE 4 00.00 216 ETRICK 12 35.00 166 DEECASTLE 4 00.00 216 ETRICK 12 35.00 166 DEECASTLE 4 100.00 216 ETRICK 15 100.00 170 DRECHORN 10 100.00 218 ETRICK 12 25.00 172 DULSIE 15 100.00 219 ETRICK 12 25.00 175 OULSIE 15 50.51 220 ETRICK 12 2	143	DADVEL	29	49.49	211	ETTRICK	12	70.00
164 DARVEL 5 70.00 212 ETTRICK 12 49,49 7 5.00 213 ETTRICK 12 70.00 9 5.00 213 ETTRICK 12 70.00 10 5.00 214 ETTRICK 12 75.00 165 DEECASTLE 4 69,49 215 ETTRICK 12 85.00 166 DEECASTLE 4 69,49 215 ETTRICK 12 85.00 167 DEECASTLE 4 69,49 215 ETTRICK 12 85.00 166 DOLME 5 100.00 216 ETTRICK 15 70.00 170 DRECHORN 10 100.00 218 ETTRICK 15 70.00 171 DROMGAN 24 100.00 219 ETTRICK 15 250.00 172 DUSIE 15 50.51 220 ETTRICK 15 250.00 <	147	DARVEL	2	100.00			17	30.00
7 5.00 213 ETRICK 12 50.00 9 5.00 214 ETRICK 12 70.00 10 5.00 214 ETRICK 12 35.00 165 DEECASTLE 4 100.00 15 50.51 17 15.00 166 DEECASTLE 4 49.49 215 ETRICK 12 85.00 167 DEECASTLE 4 94.49 216 ETRICK 15 70.00 168 DOUME 5 100.00 216 ETRICK 15 70.00 169 DRECHORN 10 100.00 217 ETRICK 15 70.00 171 DROGAN 24 100.00 219 ETRICK 15 70.00 172 DULSIE 15 50.51 220 ETRICK 15 250.00 175 DULSIE 15 50.51 220 ETRICK 17 100.00 176<	104	DARVEL	5	70.00	212	ETTRICK	12	49.49
8 10.00 213 ETRICK 12 70.00 9 5.00 214 ETRICK 15 30.00 10 5.00 214 ETRICK 12 35.00 12 5.00 12 5.00 15 50.1 12 5.00 17 15.00 17 15.00 166 DEECASTLE 4 49.49 215 ETRICK 12 85.00 167 DEECASTLE 4 100.00 216 ETRICK 15 70.00 168 OQUME 5 100.00 217 ETRICK 15 70.00 170 DREGHORN 10 100.00 218 ETRICK 12 25.00 171 DRORGAN 24 100.00 219 ETRICK 12 25.00 172 DULSIE 15 100.00 219 ETRICK 12 25.00 174 DULSIE 15 100.00 221			7	5.00			15	50.51
9 5.00 15 30.00 10 5.00 214 ETTRICK 12 35.00 165 DEECASTLE 4 100.00 17 15.00 166 DEECASTLE 4 49.49 215 ETTRICK 12 85.00 167 DEECASTLE 4 49.49 215 ETTRICK 12 85.00 167 DEECASTLE 4 100.00 216 ETTRICK 15 70.00 168 DQUNE 5 100.00 218 ETTRICK 15 100.00 170 DREGMORN 10 100.00 219 ETTRICK 12 25.00 173 DULSIE 15 100.00 219 ETTRICK 12 25.00 174 DULSIE 15 50.51 220 ETTRICK 15 25.00 175 DULSIE 15 100.00 221 ETTRICK 17 100.00 176 DUNNET			8	10.00	213	ETTRICK	12	70 00
10 5.00 214 ETRICK 12 35.00 165 DEECASTLE 4 100.00 17 15 50.00 166 DEECASTLE 4 49.49 215 ETRICK 12 85.00 166 DEECASTLE 4 100.00 216 ETRICK 12 85.00 167 DEECASTLE 4 100.00 216 ETRICK 15 70.00 168 DOUNE 5 100.00 218 ETRICK 15 70.00 170 DREGMORN 10 100.00 218 ETRICK 15 70.00 171 DROGAN 24 100.00 219 ETRICK 12 25.00 174 DULSIE 15 50.51 220 ETRICK 15 25.00 175 OULSIE 15 100.00 221 ETRICK 17 26 50.00 176 DUNNET 15 100.00 221 <td< td=""><td></td><td></td><td>9</td><td>5.00</td><td></td><td></td><td>15</td><td>30.00</td></td<>			9	5.00			15	30.00
12 5.00 16 17 15 50.00 165 DEECASTLE 4 100.00 17 15 00 166 DEECASTLE 4 49.49 215 ETTRICK 12 85.00 167 DEECASTLE 4 49.49 215 ETTRICK 15 70.00 168 DQUNE 5 100.00 216 ETTRICK 15 70.00 170 DREGNORN 10 100.00 218 ETTRICK 15 70.00 171 DRONGAN 24 100.00 219 ETTRICK 15 25.00 173 DULSIE 15 100.00 219 ETTRICK 15 25.00 175 DULSIE 15 100.00 221 ETTRICK 17 100.00 175 DULSIE 15 100.00 221 ETTRICK 17 100.00 176 DUNNET 17 100.00 222 ETTRICK			10	5.00	214	ETTRICK	12	35.00
165 DEECASTLE 4 100.00 17 15.00 166 DEECASTLE 4 49.49 215 ETTRICK 12 85.00 167 DEECASTLE 4 100.00 216 ETTRICK 15 70.00 168 DOUNE 5 100.00 217 ETTRICK 15 70.00 169 DREGMORN 5 100.00 218 ETTRICK 15 70.00 170 DREGMORN 10 100.00 218 ETTRICK 15 70.00 171 DRONCAN 24 100.00 219 ETTRICK 15 20.00 173 DULSIE 15 100.00 219 ETTRICK 15 25.00 174 DULSIE 15 100.00 221 ETTRICK 15 25.00 176 DUNNET 15 100.00 221 ETTRICK 17 100.00 176 DUNNET 15 100.00 22			12	5.00	2		15	50.00
166 DEECASTLE 4 49,49 215 ETRICK 12 85.00 167 DEECASTLE 15 50.51 27 15.00 29 30.00 168 DCUNE 5 100.00 216 ETRICK 15 70.00 169 DREGMORN 5 100.00 218 ETRICK 15 70.00 170 DREGMORN 10 100.00 218 ETRICK 15 70.00 171 DRONGAN 24 100.00 219 ETRICK 15 25.00 173 DULSIE 15 100.00 219 ETRICK 15 25.00 175 OULSIE 15 100.00 221 ETRICK 17 100.00 176 OUNNET 15 100.00 221 ETRICK 17 100.00 177 DUNNET 15 100.00 222 ETRICK 19 100.00 177 DUNNET 15	165	DEECASTLE		100.00			13	50.00
167 DECONTL 15 50.51 213 ETRICK 12 85.00 167 DEECASTLE 4 100.00 216 ETRICK 15 70.00 168 DOUNE 5 100.00 217 ETRICK 15 70.00 169 DREGHORN 5 100.00 218 ETRICK 15 70.00 170 DREGHORN 10 100.00 218 ETRICK 15 70.00 171 DRONGAN 24 100.00 219 ETRICK 15 70.00 172 DULSTE 15 100.00 219 ETRICK 12 25.00 174 DULSTE 15 50.51 220 ETRICK 15 25.00 176 OUNNET 15 100.00 221 ETRICK 17 100.00 178 DUNNET 17 100.00 222 ETRICK 19 100.00 179 DURISDEER 18	166	DEECASTLE	, i	100.00	346	CTTR10V	17	15.00
167 DEECASTLE 4 100.00 216 ETRICK 15 70.00 168 DOUNE 5 100.00 217 ETRICK 15 70.00 169 DREGHORN 5 100.00 217 ETRICK 15 100.00 170 DREGHORN 10 100.00 218 ETRICK 15 70.00 171 DRONGAN 24 100.00 219 ETRICK 12 29 30.00 172 DULSIE 15 100.00 219 ETRICK 12 25.00 174 DULSIE 15 100.00 221 ETRICK 15 25.00 175 DULSIE 15 100.00 221 ETRICK 17 100.00 177 DUNNET 15 100.00 222 ETRICK 19 100.00 175 DUNNET 17 100.00 222 ETRICK 17 100.00 176 DUNNET		DECONSTEE	10	49.49	215	ETTRICK	12	85.00
168 00/NE 5 100.00 216 ETRICK 15 70.00 169 DREGHORN 5 100.00 217 ETRICK 15 100.00 170 DREGHORN 10 100.00 218 ETRICK 15 70.00 171 DROMGAN 24 100.00 218 ETRICK 15 70.00 172 DULSIE 16 100.00 219 ETRICK 12 25.00 173 DULSIE 15 50.51 220 ETRICK 15 25.00 175 DULSIE 15 100.00 221 ETRICK 15 25.00 176 DUNNET 15 100.00 221 ETRICK 17 100.00 179 DUNNET 17 100.00 222 ETRICK 19 100.00 179 DURISDEER 6 50.51 223 ETRICK 19 100.00 180 DURNHILL 15	147	DECOACTUE	12	20.21	-		27	15.00
160 UCURE 5 100.00 217 ETRICK 15 100.00 170 DREGHORN 10 100.00 218 ETTRICK 15 100.00 171 DROMGAN 24 100.00 218 ETTRICK 15 100.00 172 DULSIE 16 100.00 219 ETRICK 12 25.00 173 DULSIE 15 100.00 219 ETRICK 15 25.00 174 DULSIE 15 100.00 201 ETRICK 15 25.00 175 DULSIE 15 100.00 221 ETRICK 15 26 25.00 176 DUNNET 15 100.00 221 ETRICK 17 100.00 175 DURISDEER 6 50.51 223 ETRICK 19 100.00 177 DURISDEER 18 49.49 224 ETRICK 17 36.34 180 DURNHILL <td>140</td> <td>DEELASILE</td> <td>4</td> <td>100.00</td> <td>216</td> <td>ETTRICK</td> <td>15</td> <td>70.00</td>	140	DEELASILE	4	100.00	216	ETTRICK	15	70.00
IOP DRECHORN 5 100.00 217 ETTRICK 15 100.00 170 DRECHORN 10 100.00 218 ETTRICK 15 70.00 171 DROMGAN 24 100.00 219 ETTRICK 12 29 30.00 172 DULSIE 16 100.00 219 ETTRICK 12 25.00 174 DULSIE 12 49.49 26 50.00 26 50.00 175 OULSIE 15 50.51 220 ETTRICK 15 25.00 176 DUNNET 15 100.00 26 25.00 27 50.00 177 DUNNET 15 100.00 221 ETTRICK 17 100.00 178 DUNNET 17 100.00 222 ETTRICK 19 100.00 179 DURISDEER 6 50.51 223 ETTRICK 17 100.00 22 35.35	100	VOUNE	5	100.00			29	30.00
170 DREGNORN 10 100.00 218 ETTRICK 15 70.00 171 DRONGAN 24 100.00 219 ETTRICK 12 25.00 173 DULSIE 15 100.00 219 ETTRICK 12 25.00 174 DULSIE 15 100.00 219 ETTRICK 15 25.00 175 DULSIE 15 50.51 220 ETTRICK 15 25.00 176 DUNNET 15 100.00 221 ETTRICK 17 100.00 177 DUNNET 15 100.00 222 ETTRICK 17 100.00 177 DUNNET 17 100.00 222 ETTRICK 17 100.00 178 DUNNET 17 100.00 223 ETTRICK 19 100.00 179 DURISDEER 18 49.49 223 ETTRICK 17 36.34 181 DURNHILL 15 50.51 225 ETTRICK 17 30.00 182	109	DREGHORN	5	100.00	217	ETTRICK	15	100.00
171 DROMGAN 24 100.00 219 ETRICK 12 25.00 173 DULSIE 15 100.00 219 ETRICK 12 25.00 174 DULSIE 12 49.49 26 50.00 26 25.00 174 DULSIE 15 50.51 220 ETRICK 15 25.00 175 OULSIE 15 100.00 221 ETRICK 15 25.00 176 OUNNET 15 100.00 221 ETRICK 17 100.00 177 DUNNET 15 100.00 222 ETRICK 19 100.00 177 DUNNET 17 100.00 223 ETRICK 19 100.00 179 DURISDEER 18 49.49 224 ETRICK 19 30.30 181 DURNHILL 14 50.51 225 ETRICK 17 30.00 182 DURNHILL 15 50.51 226 ETRICK 15 70.00 183 DURNHILL <td>170</td> <td>DREGHORN</td> <td>10</td> <td>100.00</td> <td>218</td> <td>ETTRICK</td> <td>15</td> <td>70.00</td>	170	DREGHORN	10	100.00	218	ETTRICK	15	70.00
172 DULSIE 16 100.00 219 ETTRICK 12 25.00 173 DULSIE 15 100.00 15 25.00 174 DULSIE 12 49.49 26 50.00 175 DULSIE 15 50.51 220 ETTRICK 15 25.00 175 DUNSIE 15 100.00 21 ETTRICK 15 25.00 176 DUNNET 15 100.00 221 ETTRICK 17 100.00 177 DUNNET 15 100.00 221 ETTRICK 17 100.00 178 DUNNET 17 100.00 222 ETTRICK 19 100.00 179 DURISDEER 18 49.49 223 ETTRICK 19 30.30 180 DURNHILL 14 50.51 226 ETTRICK 17 30.00 183 DURNHILL 15 50.51 226 ETTRICK 17 30.00 184 DURNHILL 15 50.51 227 ETT	171	DRONGAN	24	100.00			20	30.00
173 DULSTE 15 100.00 16 17 15 25.00 174 DULSTE 12 49.49 26 50.00 175 DULSTE 15 50.51 220 ETTRICK 15 25.00 175 DUNET 15 100.00 26 25.00 26 50.00 176 DUNNET 15 100.00 221 ETTRICK 17 100.00 177 DUNNET 17 100.00 222 ETTRICK 19 100.00 179 DURISDEER 6 50.51 223 ETTRICK 19 100.00 180 DURISDEER 18 49.49 224 ETTRICK 19 70.00 180 DURNHILL 14 50.51 225 ETTRICK 17 30.30 181 DURNHILL 15 50.51 225 ETTRICK 17 30.00 183 DURNHILL 15 50.51 226 ETTRICK 17 30.00 184 DURNHILL 15 50.51 <td>172</td> <td>DULSIE</td> <td>16</td> <td>100.00</td> <td>219</td> <td>ETTRICK</td> <td>12</td> <td>25 00</td>	172	DULSIE	16	100.00	219	ETTRICK	12	25 00
174 DULSIE 12 49.49 13 23.00 175 DULSIE 15 50.51 220 ETTRICK 15 25.00 175 DUNET 15 100.00 26 25.00 26 25.00 176 DUNNET 15 100.00 221 ETTRICK 17 100.00 177 DUNNET 15 100.00 222 ETTRICK 17 100.00 177 DUNNET 17 100.00 222 ETTRICK 19 100.00 179 DURISDEER 6 50.51 223 ETTRICK 19 70.00 180 DURISDEER 18 49.49 22 30.00 23 30.30 19 30.30 181 DURNHILL 14 50.51 226 ETTRICK 17 70.00 22 35.35 182 DURNHILL 15 50.51 226 ETTRICK 17 70.00 183 DURNHILL 15 50.51 226 ETTRICK 17 100.00 <t< td=""><td>173</td><td>DULSIE</td><td>15</td><td>100.00</td><td></td><td></td><td>15</td><td>25.00</td></t<>	173	DULSIE	15	100.00			15	25.00
175 DULSIE 15 50.51 220 ETRICK 15 25.00 176 DUNNET 15 100.00 26 25.00 177 DUNNET 15 100.00 29 50.00 177 DUNNET 15 100.00 221 ETRICK 17 100.00 178 DUNNET 17 100.00 222 ETRICK 19 100.00 179 DURISDEER 6 50.51 223 ETRICK 19 70.00 180 DURNHILL 16 49.49 22 30.00 19 30.30 181 DURNHILL 14 50.51 225 ETTRICK 17 70.00 182 DURNHILL 15 50.51 226 ETTRICK 17 30.30 183 DURNHILL 15 50.51 226 ETTRICK 17 70.00 184 DURNHILL 15 50.51 227 ETTRICK 15	174	DULSIE	12	49 49			74	50.00
175 DULSIE 15 100.00 220 ETRICK 15 25.00 176 DUNNET 15 100.00 221 ETRICK 17 100.00 177 DUNNET 15 100.00 221 ETRICK 17 100.00 178 DUNNET 17 100.00 222 ETRICK 19 100.00 179 DURISDEER 6 50.51 223 ETRICK 19 100.00 179 DURISDEER 18 49.49 223 ETRICK 17 34.34 180 DURNHILL 14 50.51 226 ETRICK 17 30.30 181 DURNHILL 15 49.49 225 ETRICK 17 70.00 182 DURNHILL 15 100.00 226 ETRICK 15 70.00 183 DURNHILL 15 50.51 227 ETRICK 15 70.00 184 DURNHILL 15 50.51 227 ETRICK 15 100.00 185 DU			15	50 51	220	ETTOLOW	20	50.00
176 DUNNET 15 100.00 221 ETRICK 29 50.00 177 DUNNET 15 100.00 222 ETRICK 17 100.00 178 DUNNET 17 100.00 222 ETRICK 19 100.00 179 DURISDEER 6 50.51 223 ETRICK 19 100.00 180 DURISDEER 18 49.49 224 ETRICK 17 34.34 181 DURNHILL 14 50.51 225 ETRICK 17 30.30 182 DURNHILL 15 49.49 225 ETRICK 17 30.30 183 DURNHILL 15 100.00 22 35.35 19 30.30 184 DURNHILL 15 50.51 226 ETRICK 15 70.00 183 DURNHILL 15 50.51 227 ETRICK 15 70.00 184 DURNHILL 15 50.51 227 ETRICK 15 100.00 185 DURN	175	0ULS1F	15	100.00	220	CITKICK	15	25.00
177 DUNNET 15 100.00 221 ETTRICK 17 100.00 178 DUNNET 15 100.00 222 ETTRICK 19 100.00 179 DURISDEER 6 50.51 223 ETTRICK 19 70.00 180 DURISDEER 18 49.49 22 30.00 180 DURISDEER 18 49.49 22 30.00 181 DURNHILL 14 50.51 22 35.35 181 DURNHILL 14 50.51 226 ETTRICK 17 70.00 182 DURNHILL 15 50.51 226 ETTRICK 17 70.00 183 DURNHILL 15 50.51 226 ETTRICK 17 100.00 184 DURNHILL 15 50.51 227 ETTRICK 17 100.00 185 DURNHILL 15 50.51 227 ETTRICK 15 100.00 186 DURNHILL 15 50.50 230 ETTRICK 15	176	DUNNET	15	100.00			26	25.00
177 DURNET 15 100.00 221 ETTRICK 17 100.00 178 DUNNET 17 100.00 222 ETTRICK 19 100.00 179 DURISDEER 6 50.51 223 ETTRICK 19 100.00 180 DURISDEER 18 49.49 22 30.00 181 DURNHILL 14 50.51 225 ETTRICK 17 34.34 181 DURNHILL 14 50.51 225 ETTRICK 17 70.00 182 DURNHILL 15 100.00 225 ETTRICK 17 70.00 183 DURNHILL 15 50.51 226 ETTRICK 17 30.00 184 DURNHILL 15 50.51 227 ETTRICK 15 70.00 185 DURNHILL 15 50.51 227 ETTRICK 17 100.00 185 DURNHILL 15 50.51 227 ETTRICK 15 100.00 186 DURNHILL 15	177	DUNNET	12	100.00			29	50.00
173 DURNE1 17 100.00 222 ETTRICK 19 100.00 179 DURISDEER 6 50.51 223 ETTRICK 19 70.00 180 DURISDEER 18 49.49 22 30.00 22 30.00 181 DURNHILL 14 50.51 22 35.35 19 30.30 181 DURNHILL 14 50.51 225 ETTRICK 17 70.00 182 DURNHILL 15 100.00 225 ETTRICK 17 70.00 183 DURNHILL 15 50.51 226 ETTRICK 17 100.00 184 DURNHILL 15 50.51 227 ETTRICK 15 100.00 185 DURNHILL 15 50.51 227 ETTRICK 15 100.00 185 DURNHILL 15 50.00 230 ETTRICK 15 100.00 185 DURNHILL	170	DUNNET	15	100.00	221	ETTRICK	17	100.00
179 DURISDEER 6 50.51 223 ETRICK 19 70.00 180 DURISDEER 18 49.49 224 ETRICK 17 34.34 181 DURNHILL 14 50.51 22 30.00 182 DURNHILL 14 50.51 22 35.35 182 DURNHILL 15 49.49 225 ETRICK 17 70.00 183 DURNHILL 15 50.51 226 ETRICK 15 70.00 184 DURNHILL 15 50.51 226 ETRICK 15 70.00 184 DURNHILL 15 50.51 227 ETRICK 17 100.00 185 DURNHILL 12 35.00 229 ETRICK 15 100.00 185 DURNHILL 12 35.00 230 ETRICK 15 100.00 186 DURNHILL 17 100.00 231 ETRICK 15 100.00 187 DURNHILL 17 100.00 232 <t< td=""><td>170</td><td>DUNNET</td><td>17</td><td>100.00</td><td>222</td><td>ETTRICK</td><td>19</td><td>100.00</td></t<>	170	DUNNET	17	100.00	222	ETTRICK	19	100.00
18 49.49 22 30.00 180 DURISDEER 18 49.49 224 ETTRICK 17 34.34 181 DURNHILL 14 50.51 22 35.35 182 DURNHILL 15 50.51 22 35.35 182 DURNHILL 15 100.00 24 30.00 183 DURNHILL 15 50.51 226 ETTRICK 17 70.00 184 DURNHILL 15 50.51 226 ETTRICK 15 70.00 184 DURNHILL 15 50.51 227 ETTRICK 17 100.00 184 DURNHILL 15 50.51 227 ETTRICK 17 100.00 185 DURNHILL 12 35.00 229 ETTRICK 15 100.00 185 DURNHILL 17 100.00 230 ETTRICK 15 100.00 186 DURNHILL 17 10	179	DURISDEER	6	50.51	223	ETTRICK	19	70.00
180 DURISDEER 18 49.49 224 ETRICK 17 34.34 181 DURNHILL 14 50.51 19 30.30 181 DURNHILL 14 50.51 22 35.35 182 DURNHILL 15 49.49 225 ETRICK 17 70.00 183 DURNHILL 15 100.00 24 30.00 183 DURNHILL 15 50.51 226 ETRICK 15 70.00 184 DURNHILL 15 50.51 227 ETRICK 17 100.00 184 DURNHILL 15 50.51 227 ETRICK 15 100.00 185 DURNHILL 12 35.00 229 ETRICK 15 100.00 185 DURNHILL 17 100.00 230 ETRICK 15 100.00 186 OURNHILL 17 100.00 231 ETRICK 15 100.00 187 DURNHILL 17 100.00 232 ETRICK 15			18	49.49			22	30 00
24 50.51 19 30.30 181 DURNHILL 14 50.51 22 35.35 182 DURNHILL 15 49.49 225 ETRICK 17 70.00 183 DURNHILL 15 100.00 24 30.00 183 DURNHILL 15 50.51 226 ETRICK 17 70.00 184 DURNHILL 15 50.51 227 ETRICK 15 70.00 185 DURNHILL 12 35.00 229 ETRICK 15 100.00 185 DURNHILL 12 35.00 229 ETRICK 15 100.00 185 DURNHILL 12 35.00 230 ETRICK 15 100.00 186 DURNHILL 17 100.00 231 ETRICK 15 100.00 187 DURNHILL 17 100.00 232 ETRICK 15 100.00 187 DURNHILL<	180	DURISDEER	18	49.49	274	FITRICK	17	36.00
181 DURNHILL 14 50.51 22 35.35 182 DURNHILL 15 49.49 225 ETRICK 17 70.00 183 DURNHILL 15 100.00 24 30.00 183 DURNHILL 15 50.51 226 ETRICK 15 70.00 184 DURNHILL 15 50.51 227 ETRICK 17 30.00 185 DURNHILL 12 35.00 229 ETRICK 17 100.00 185 DURNHILL 12 35.00 229 ETRICK 15 100.00 185 DURNHILL 12 35.00 230 ETRICK 15 100.00 186 DURNHILL 17 100.00 231 ETRICK 15 100.00 187 DURNHILL 17 70.00 232 ETRICK 14 50.51 188 DURNHILL 12 30.00 233 ETRICK 14 50.51 188 DURNHILL 15 70.00 15			24	50 51		LINNICK	10	70.70
182 DURNHILL 15 49.49 225 ETRICK 17 70.00 183 DURNHILL 15 100.00 24 30.00 183 DURNHILL 15 50.51 226 ETRICK 15 70.00 184 DURNHILL 15 50.51 226 ETRICK 15 70.00 184 DURNHILL 15 50.51 227 ETRICK 17 100.00 185 DURNHILL 15 50.51 227 ETRICK 17 100.00 185 DURNHILL 12 35.00 229 ETRICK 15 100.00 185 DURNHILL 12 35.00 230 ETRICK 15 100.00 186 DURNHILL 17 100.00 231 ETRICK 15 100.00 187 DURNHILL 15 70.00 232 ETRICK 15 100.00 188 DURNHILL 12 30.00	181	DURNHILL	14	50.51			17	20.30
182 DURNHILL 15 100.00 24 30.00 183 DURNHILL 15 50.51 226 ETRICK 15 70.00 184 DURNHILL 15 50.51 226 ETRICK 15 70.00 184 DURNHILL 15 50.51 227 ETRICK 17 30.00 185 DURNHILL 15 50.51 227 ETRICK 17 100.00 185 DURNHILL 15 50.51 227 ETRICK 15 100.00 185 DURNHILL 12 35.00 229 ETRICK 15 100.00 186 OURNHILL 17 100.00 231 ETRICK 15 100.00 186 OURNHILL 17 100.00 231 ETRICK 15 100.00 187 DURNHILL 17 100.00 233 ETRICK 14 50.51 188 DURNHILL 12 30.00 233 ETRICK 14 50.51 188 DURNHILL 15			15	20 /0	516	CTTDICY	22	32.35
183 OURNHILL 15 100.00 24 30.00 183 OURNHILL 15 50.51 226 ETRICK 15 70.00 184 DURNHILL 15 50.51 227 ETRICK 17 100.00 185 DURNHILL 15 50.51 227 ETRICK 17 100.00 185 DURNHILL 12 35.00 229 ETRICK 15 100.00 185 DURNHILL 12 35.00 229 ETRICK 15 100.00 186 DURNHILL 17 100.00 230 ETRICK 15 100.00 186 DURNHILL 17 100.00 231 ETRICK 15 100.00 187 DURNHILL 17 100.00 232 ETRICK 14 50.51 188 DURNHILL 12 30.00 233 ETRICK 14 50.51 188 DURNHILL 12 30.00 <t< td=""><td>182</td><td>DURNHTU</td><td>10</td><td>100 00</td><td>223</td><td>CITRICK</td><td>17</td><td>70.00</td></t<>	182	DURNHTU	10	100 00	223	CITRICK	17	70.00
13 50.51 226 ETRICK 15 70.00 184 DURNHILL 15 50.51 227 ETRICK 17 30.00 184 DURNHILL 15 50.51 227 ETRICK 17 100.00 185 DURNHILL 12 35.00 229 ETRICK 15 100.00 185 DURNHILL 12 35.00 229 ETRICK 15 100.00 186 DURNHILL 17 100.00 230 ETRICK 15 100.00 186 DURNHILL 17 100.00 231 ETRICK 15 100.00 187 DURNHILL 17 70.00 232 ETRICK 15 100.00 188 DURNHILL 12 30.00 233 ETRICK 14 50.51 188 DURNHILL 12 30.00 233 ETRICK 15 65.00 189 DURNHILL 27 100.00 2	187	DURNHILL	13	E0 F4			24	30.00
CY 49.49 17 30.00 184 DURNHILL 15 50.51 227 ETTRICK 17 100.00 185 DURNHILL 12 35.00 229 ETTRICK 15 100.00 186 DURNHILL 12 35.00 229 ETTRICK 15 100.00 186 DURNHILL 17 100.00 230 ETTRICK 15 100.00 186 DURNHILL 17 100.00 231 ETTRICK 15 100.00 187 DURNHILL 15 70.00 232 ETTRICK 15 100.00 188 DURNHILL 12 30.00 233 ETTRICK 14 50.51 188 DURNHILL 12 30.00 233 ETTRICK 14 50.51 188 DURNHILL 27 100.00 234 ETTRICK 15 65.00 189 DURNHILL 27 100.00 234 ETTRICK	100	VURATILE	21	50.51	226	ETTRICK	15	70.00
104 UURNHILL 15 50.51 227 ETRICK 17 100.00 185 DURNHILL 12 35.00 228 ETRICK 15 100.00 185 DURNHILL 12 35.00 229 ETRICK 15 100.00 186 DURNHILL 12 35.00 230 ETRICK 15 100.00 186 DURNHILL 17 100.00 231 ETRICK 15 100.00 187 DURNHILL 15 70.00 232 ETRICK 14 50.51 187 DURNHILL 12 30.00 233 ETRICK 14 50.51 188 DURNHILL 12 30.00 233 ETRICK 14 50.51 188 DURNHILL 12 30.00 233 ETRICK 15 69.49 189 DURNHILL 27 100.00 234 ETRICK 15 65.00	10/	D11000000000	29	49.49			17	30.00
29 49.49 228 ETRICK 15 100.00 185 DURNHILL 12 35.00 229 ETRICK 15 100.00 186 DURNHILL 15 65.00 230 ETRICK 15 100.00 186 DURNHILL 17 100.00 231 ETRICK 15 100.00 187 DURNHILL 17 70.00 232 ETRICK 14 50.51 188 DURNHILL 12 30.00 233 ETRICK 14 50.51 188 DURNHILL 12 30.00 233 ETRICK 14 50.51 189 DURNHILL 27 100.00 234 ETRICK 15 65.00	104	DOKNHILL	15	50.51	227	ETTRICK	17	100.00
185 DURNHILL 12 35.00 229 ETIRICK 15 100.00 186 DURNHILL 17 100.00 230 ETIRICK 15 100.00 186 DURNHILL 17 100.00 231 ETIRICK 15 100.00 187 DURNHILL 15 70.00 232 ETIRICK 14 50.51 188 DURNHILL 12 30.00 233 ETIRICK 14 50.51 188 DURNHILL 12 30.00 233 ETIRICK 14 50.51 188 DURNHILL 12 30.00 233 ETIRICK 14 50.51 189 DURNHILL 27 100.00 234 ETRICK 15 65.00	• - -	· · · · · ·	29	49.49	228	ETTRICK	15	100.00
186 DURNHILL 15 65.00 230 ETIRICK 15 100.00 187 DURNHILL 17 100.00 231 ETIRICK 15 100.00 187 DURNHILL 15 70.00 232 ETIRICK 15 100.00 188 DURNHILL 12 30.00 17 49.49 188 DURNHILL 12 30.00 233 ETIRICK 14 50.51 189 DURNHILL 27 100.00 234 ETIRICK 15 65.00	185	DURNHILL	12	35.00	229	ETTRICK	15	100 00
186 DURNHILL 17 100.00 231 ETTRICK 15 100.00 187 DURNHILL 15 70.00 232 ETTRICK 15 100.00 187 DURNHILL 15 70.00 232 ETTRICK 15 50.51 188 DURNHILL 12 30.00 233 ETTRICK 14 50.51 188 DURNHILL 12 30.00 233 ETTRICK 14 50.51 189 DURNHILL 27 100.00 234 ETTRICK 15 65.00			15	65.00	230	FURICK	15	100.00
187 DURNHILL 15 70.00 232 ETRICK 15 100.00 188 DURNHILL 12 30.00 233 ETRICK 14 50.51 188 DURNHILL 12 30.00 233 ETRICK 14 50.51 189 DURNHILL 27 100.00 234 ETRICK 15 65.00	186	DURNHILL	17	100 00	271	FTIRICY	10	100.00
12 13 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 12 30.00 233 ETTRICK 14 50.51 17 49.49 14 50.51 17 49.49 14 50.51 14 50.51 14 50.51 14 50.51 14 50.51 14 50.51 15 49.49 15 70.00 15 49.49 15 50.00 15 49.49 15 50.00 15 49.49 15 50.00 15 49.49 15 65.00 15 65.00 15 49.49 15 65.00 15 49.49 15 65.00 15 49.49 15 65.00 15 49.49 15 65.00 15 49.49 15 65.00 15 49.49 15 65.00 15 49.49 15 49.40 15 65.00 15 49.40 15<	187	DURNHELL	15	70 00	221	CTTRICK	12	100.00
27 30.00 17 49.49 188 DURNHILL 12 30.00 233 ETTRICK 14 50.51 15 70.00 15 49.49 189 DURNHILL 27 100.00 234 ETTRICK 15 65.00			70	30.00	۵۵۲	CHRICK	14	50.51
100 12 50.00 235 ETRICK 14 50.51 15 70.00 15 49.49 189 DURNHILL 27 100.00 234 ETRICK 15 65.00	188	DURNHTLA	27	30.00			17	49.49
15 70.00 15 49.49 189 DURNHILL 27 100.00 234 ETTRICK 15 65.00		- SAAAA LL	12	30.00	233	ETTRICK	14	50.51
107 DORMITEL 27 100.00 234 ETTRICK 15 65.00	180		15	70.00			15	49.49
	107	UUKNHILL	27	100.00	234	ETTRICK	15	65.00

•

•

•

۲

B.7

٠

CODE	MAP_UNIT	CLASS	PERC	CODE	HAP_UNIT	CLASS	PERC
		70	35 00	288		· · · · · · · · · · · · · · · · · · ·	70.00
235	ETTRICK	22	100.00	200	MATFIELD	24	30.00
236	ETTRICK	17	100.00	289	HAYELELD	24	100.00
237	FORFAR	16	45.00	290	FAYFIELD	15	100.00
		18	55.00	291	HINDSWARD	24	100.00
238	FORFAR	24	100.00	292	HINDSWARD	24	100.00
239	FORFAR	16	50.51	293	HINDSWARD	26	50.51
		18	49.49			29	49.49
240	FOUDLAND	17	100.00	295	HOBKIRK	16	100.00
241	FOUDLAND	14	100.00	296	HOBKIRK	6	100.00
242	FOUDLAND	14	100.00	297	HOBKIRK	6	70.00
243	FOUDLAND	17	100.00			14	30.00
244	FOUDLAND	15	100.00	298	HOBKIRK	14	100.00
245	FOUDLAND	15	50.51	299	HOBKIRK	6	49.49
		29	49.49			15	50.51
246	FOUDLAND	15	70.00	300	HOBKIRK	6	49.49
		29	30.00			15	50.51
247	FOUDLAND	15	70.00	301	HOBKIRK	15	100.00
		29	30.00	302	HOBKIRK	15	50.51
248	FOUDLAND	. 12	49.49			29	49.49
		17	50.51	303	HOLYWOOD	16	49.49
249	FOUDLAND	12	49.49			18	50.51
		15	50.51	304	HOLYWOOD	18	50.51
250	FOUDLAND	17	100.00			24	49.49
251	FOUDLAND	17	100.00	305	HOLYWOOD	6	100.00
252	FOUDLAND	15	50.51	306	HOLYWOOD	6	100.00
		17	49.49	307	INCHKENNETH	6	100.00
253	FOUDLAND	15	100.00	308	INCHKENNETH	24	100.00
254	FOUDLAND	15	100.00	309	INCHKENNETH	24	100.00
255	FOUDLAND	17	100.00	310	INCHKENNETH	26	100.00
256	FOUDLAND	17	70.00	311	INCHKENNETH	26	100.00
		29	30.00	312	INCHKENNETH	26	100.00
257	FOUDLAND	17	100.00	313	INCHKENNETH	6	100.00
258	FOUDLAND	22	100.00	314	INCHNADAMPH	4	100.00
259	FRASERBURGH	5	100.00	315	ENCHNADAMPH	4	34.34
260	FRASERBURGH	2	100.00			15	35.35
261	FRASERBURGH	>	70.00	7.47	1.000	29	30.30
		10	30.00	316	INSCH	17	100.00
202	FRASEXBURGH	10	100.00	317	INSCH	15	30.00
203	FRASERBURGH	12	100.00	710	1915 511	24	10.00
204		10	100.00	318	INSCH	17	100.00
202		24	100.00	212 1025	INSCH	15	50.51
200		24	100.00	520	INSCH	00	/0./0
207		15	100.00	101	10000	1/	49.49
200		15	36 36	121	Instri	. 14	50 51
207	GEERALMORD	26	30 30	702	INCOM	12	30.00
		26	35 35	JEE	INJEA	15	70.00
270		26	50 51	323	INCLH	17	70.00
270	GLENAL MOND	29	49.49	525	insen	22	30.00
271	GLENAL MOND	6	100.00	324	INSCH	17	100 00
272	GLENAL MOND	15	100.00	325	INSCH	15	70.00
273	GLENEAGLES	Ś	100.00	527		20	30.00
274	GOURDIE	6	30,00	326	INSCH	17	49.49
		18	70.00			22	50.51
275	GOURDIE	24	51.02	327	INSCH	12	49.49
		26	48.98			15	50.51
276	GOURDIE	6	100.00	328	INSCH	15	30.00
277	GOURDIE	6	49.49			17	70.00
		15	50.51	329	INSCH	17	50.51
278	GRULINE	5	100.00			29	49.49
279	GRULINE	5	25.00	330	INSCH	17	100.00
		12	75.00	331	KILMARNOCK	24	100.00
280	GRULINE	12	30.00	332	KILHARNOCK	24	100.00
		27	70.00	333	KINTYRE	24	100.00
281	HATTON	24	50.51	334	KINTYRE	26	100.00
		26	49.49	335	KINTYRE	24	100.00
282	HATTON	6	100.00	336	KINTYRE	26	50.51
283	HATTON	15	100.00			29	49.49
284	HATTON	15	50.51	337	KIPPEN	13	50.51
		29	49.49			17	49.49
285	HATTON	6	49.49	338	KIPPEN	24	100.00
		15	50.51	339	KIPPEN	6	100.00
286	HATTON	15	100.00	340	KIPPEN	24	100.00
287	HAYFIELD	16	51.02	341	KIPPEN	6	100.00
		24	48.98	342	KIPPEN	15	100.00

CODE	MAP_UNIT	CLASS	PERC	CODE	MAP_UNIT	CLASS	PERC
343	KIPPEN	15	65.00	394	LOCHINVER	12	49.49
		29	35.00	-		15	50.51
344	KIPPEN	15	50.51	395	LOCHINVER	12	34.34
7/5	KIDDEN	29	49.49	705	1.0011111/00	15	35.35
340 346	KIPPEN	12	30.00	395		27	20.30
540	AIFFER	15	70.00	5,0	LOCITIVER	27	30.00
347	K1PPEN	15	100.00	397	LOCHINVER	17	50.51
348	KIRKCOLM	5	100.00			29	49.49
349	KIRKWOOD	6	50.51	398	LOCHINVER	17	80.00
750	× 10×1000	24	49.49	300		22	20.00
200	KIRKWUOD	24	20.21	244	LINEDARDI	24	49.49
351	KNOCKSKAE	14	100.00	400	LYNEDARDY	15	50.51
352	KNOCKSKAE	17	70.00			26	49.49
		22	30.00	401	MAUCHLINE	18	100.00
353	KNOCKSKAE	17	100.00	402	MAUCHLINE	24	100.00
354	KNOCKSKAE	15	100.00	403	MAUCHLINE	26	100.00
322	KNOCKSKAE	12	35.00	404	MAUCKLINE	6	70.00
356		17	100 00	405	MILLEUTE	14	100.00
357	KNOCKSKAE	15	70.00	406	MILLBUIF	6	30.00
		29	30.00			18	70.00
358	KNOCKSKAE	15	70.00	407	MINTO	24	100.00
		27	30.00	408	MINTO	24	100.00
359	LANFINE	24	100.00	409	MINTO	24	100.00
360	LANFINE	24	100.00	410	MINTO	15	49.49
301		20	100.00	/11	NINTO	24	50.51
202		0 74	100.00	411	MINIU	12	70.00
364	LAUDER	24 K	100.00	612	MINTO	29	100.00
365	LAUDER	6	30.30	413	MOUNTBOY	16	100.00
		15	35.35	414	MOUNTBOY	6	30.00
		24	34.34			18	70.00
366	LAUDER	6	50.51	415	MOUNTBOY	24	70.00
		15	49.49			26	30.00
367	LAUDER	15	50.51	416	NOUNTBOY	6	100.00
748		29	47.49	417	MOUNTBUT	<u>د</u> ا ۸	50.51
500	CHORENCERIKK	17	24.47	410	MOUNT BUT	15	20.20
		18	51.02	. 420	NTGG	Ś	100.00
369	LESLIE	17	100.00	421	NIGG	10	100.00
370	LESLIE	24	100.00	422	NOCHTY	5	70.00
371	LESLIE	17	100.00			7	10.00
372	LESLIE	24	100.00			8	5.00
575	LESLIE	22	30.00			9	5.00
37/		24	100.00			10	5.00
375	LETHANS	24	100.00	423		24	100 00
376	LETHANS	6	49.49	424	NORTH MORMOND	24	100.00
		15	50.51	425	NORTH MORMOND	6	50.51
377	LETHANS	15	100.00			13	49.49
378	LETHANS	15	100.00	426	NORTH MORMOND	15	100.00
379	LINFERN	12	49.49	427	ORDLEY	24	50.51
700		15	50.51	(20		26	49.49
380		2	100.00	428	ORDLEY	6	65.00
201	LINKS	5 10	20.21	420	DETERNEAD	13	100 00
382	LINKS	12	100.00	427	PETERHEAD	24	100.00
383	LINKS	5	100.00	431	RACKWICK	12	49.49
384	LINKS	12	100.00			15	50.51
385	LOCHINVER	14	100.00	432	REPPOCH	6	100.00
386	LOCHINVER	17	100.00	433	REPPOCH	24	100.00
387	LOCHINVER	17	70.00	434	REPPOCH	6	49.49
799	1.00010050	22	30.00			15	50.51
200	LUCHINVER	14	35.00	/ 75	0500004	15	70 00
389		17	100 00	(L¥	KEPPOUN	20	30 00
390	LOCHINVER	15	50.51	436	REPPOCH	15	50.51
- / -		29	49.49			29	49.49
391	LOCHINVER	12	49.49	437	RHINS	17	100.00
		15	50.51	438	RHINS	24	100.00
392	LOCHINVER	15	50.51	439	RHINS	19	49.49
101		29	49.49		ONTHE	24	100.00
747	COCHINNER	14	12.00 AS 00	440	641NC	24	95 00
			07.00	14 He	ANITS	17	05.00

۲

-

٠

CODE	MAP_UNIT	CLASS	PERC	CODE	MAP_UNIT	CLASS	PERC
		22	15 00	. 495	STONEHAVEN		100 00
442	DHING	24	100 00	496	STONERAVEN	6	100.00
442		17	100.00	470	STORENEN	1/	100.00
443		18	100.00	477	JIKICHEN	27	47.47 En Ei
444		10 2/	100.00	/ OR	CIDICNEN	24	100.00
447		24	100.00	470		17	100.00
440	ROWANNILL	24	100.00	477	SIKICHEN	15	100.00
447	ROWANHILL	O I	100.00	500	SIRICHEN	15	50.51
448	ROWANHILL	4	85.00	5.0.0		29	49.49
_		13	15.00	501	STRICHEN	15	50.51
449	ROWANHILL	15	100.00			29	49.49
450	ROWANHILL	15	50.51	502	STR1CHE#	15	50.51
		29	49.49			29	49.49
451	ROWANHILL	6	25.00	503	STRICHEN	15	15.00
		14	25.00			17	85.00
		15	50.00	504	STRICHEN	12	30.00
452	ROY	5	50.51			15	70.00
		24	49.49	505	STRICHEN	17	100.00
453	ROY	15	30.00	506	STRICHEN	15	50.51
		26	70 00			17	49 49
454	SARHATI	4	49.49	507	STRICHEN	12	40 40
	0//0///14	13	50 51			15	50 51
455	CARVATI	15	100 00	508	5101CHEV	17	65 00
156	CADUALI	15	50 51	,00	JATCHEN	22	35 00
430	SAGNATE	20	10.01	500	CTO LOUGH	15	/0/0
167	CADUATI	27	47.47	509	SIKICHEN	נו	47.47
437	SABHAIL	13	49.49	64 0		22	20.21
		15	50.51	510	STRICHEN	15	70.00
458	SHAWHILL	6	100.00			27	30.00
459	SKELBERRY	14	49.49	511	STRICHEN	12	30.30
		15	50.51			15	35.35
460	SKELBERRY	15	100.00			27	34.34
461	SKELBERRY	15	100.00	512	STRICHEN	19	100.00
462	SKELMUIR	24	100.00	513	STRICHEN	19	30.00
463	SKELMUIR	26	100.00			29	70.00
464	SMAILHOLM	17	100.00	514	STRICHEN	19	100.00
465	SORN	18	100.00	515	STRICHEN	22	75.00
466	SORN	24	100.00			27	25.00
467	SORN	24	100.00	516	SYNINGTON	5	100.00
468	SORN	6	24.74	517	TARVES	13	49.49
	••••	15	26.74	2		17	50.51
		26	25 77	518	TAPVES	15	40.40
		26	26 76	210		24	50 51
1.60	SUDN	15	50.51	· 510	TADVEC	14	50.51
407	JOKA	26	/0.51	217	100.000	17	10.10
/ 70	CODM	20	47.47	520	TADVICO	17	100 00
470	SUKN	14	47.47	520	TARVES	16	100.00
/ 71	5000	20	50.51	523	TADVES	15	50 51
471	SOKN	0			.IAXVES		- 50.51
(70	countroope	14	49.49	5.37	1101/00	29	49.49
472	SOURHUPE	17	100.00	523	TAKAF 2	12	49.49
475	SOURHOPE	24	100.00	5.5.		15	50.51
474	SOURHOPE	19	100.00	524	TARVES	12	30.00
475	SOURHOPE	17	100.00			15	70.00
476	SOURHOPE	15	100.00	525	TARVE S	17	100.00
477	SOURHOPE	15	50.51	526	TARVES	14	49.49
		29	49.49			17	50.51
478	SOURHOPE	15	50.51	527	TARVE S	15	49.49
		29	49.49			17	50.51
479	SOURHOPE	19	100.00	528	TARVES	12	49.49
480	SOURHOPE	15	65.00			15	50.51
		29	35.00	529	TARVES	17	49.49
482	SOURHOPE	22	100.00			22	50.51
483	STAFFIN	24	100.00	530	TARVE S	17	49.49
484	STAFFIN	24	100.00			22	50.51
485	STAFFIN	26	50.51	531	TARVES	15	50.51
		20	49.49			27	49.49
686	STAFFIN	26	50 51	512	TARVES	17	50 51
-00		20	60.00	222		20	20 20
1.87	CT 101 1NC	27 3/	100 00	617	TARVES	17	47.47
407	STIDE INC	24 3/	100.00		INNYCJ		47.47 50 54
400	511KLING	24	100.00	E7/	TIDIEC	CY 17	100.00
407	STIKLING	20	100.00	204	THINGO	1Ç	100.00
4 Y U	STUNEHAVEN	0	30.00	232	INUKSU	4	50.00
		18	70.00	.		6	70.00
491	STONEHAVEN	24	100.00	>36	INURSO	24	100.00
492	STONEHAVEN	6	100.00	537	INURSO	24	100.00
495	STONEHAVEN	6	49.49	>38	INURSO	24	100.00
		13	50.51	539	TEURSO	6	100.00
494	STONEHAVEN	15	100.00	540	THURSO	12	49.49

B.10

541 THURSO 15 100.00 542 THURSO 15 100.00 543 THURSO 15 100.00 544 THURSO 15 100.00 544 THURSO 12 49.49 545 TIPPERTY 24 100.00 546 TOROSAY 12 49.49 550 TOROSAY 12 49.49 548 TOROSAY 15 50.51 549 TOROSAY 15 50.51 550 TOROSAY 15 50.51 551 TOROSAY 15 50.51 552 TORTIDON 14 49.49 553 TORTIDON 14 49.49 554 TORTIDON 12 35.00 555 TORRIDON 12 35.01 556 TORRIDON 12 34.34 557 TORRIDON 12 34.34 558 TORRIDON 12 34.94	CODE	MAP_UNIT	CLASS	PERC
541 THURSO 15 100.00 542 THURSO 15 100.00 543 THURSO 15 100.00 544 THURSO 12 49.49 545 TIPPERTY 24 100.00 546 TOROSAY 12 49.49 548 TOROSAY 12 49.49 548 TOROSAY 15 50.51 548 TOROSAY 15 50.51 550 TOROSAY 15 35.35 27 34.34 29 49.49 550 TOROSAY 15 35.35 27 34.34 29 49.49 551 TORNIDON 14 49.49 552 TORRIDON 12 35.00 554 TORRIDON 12 35.00 555 TORRIDON 12 49.49 557 TORRIDON 12 34.34 558 TORRIDON 12 34.53		•••••••••••••••••••••••••••••••••••••••	15	50 51
542 THURSO 15 100.00 543 THURSO 12 49.49 544 THURSO 15 50.51 545 TIPPERTY 24 100.00 546 TOROSAY 17 70.00 547 TOROSAY 12 49.49 548 TOROSAY 15 50.51 548 TOROSAY 15 50.51 549 TOROSAY 15 50.51 550 TOROSAY 15 35.35 551 TOROSAY 19 50.51 552 TORRIDON 14 100.00 553 TORRIDON 12 35.00 554 TORRIDON 12 49.49 555 TORRIDON 12 49.49 556 TORRIDON 12 49.49 557 TORRIDON 12 49.49 558 TORRIDON 12 49.49 559 TORRIDON 12 49.4	541	THURSO	15	100.00
543 THURSO 15 100.00 544 THURSO 12 49.49 545 TIPPERTY 24 100.00 546 TOROSAY 12 49.49 547 TOROSAY 12 49.49 550.51 548 TOROSAY 12 50.51 548 TOROSAY 15 50.51 549 TOROSAY 15 55.35 27 36.33 27 36.33 551 TOROSAY 15 55.55 521 TORRIDON 14 100.00 553 TORRIDON 14 100.00 554 TORRIDON 14 100.00 555 TORRIDON 17 70.00 556 TORRIDON 12 36.50 557 TORRIDON 12 36.51 558 TORRIDON 12 36.51 559 TORRIDON 12 36.51 560 TORRIDON 12 36.51 570 TORRIDON 12 36.51	542	THURSO	15	100.00
544 THURSO 12 49.49 545 TIPPERTY 24 100.00 546 TOROSAY 17 70.00 547 TOROSAY 12 49.49 548 TOROSAY 12 49.49 548 TOROSAY 15 50.51 548 TOROSAY 15 50.51 570 TOROSAY 15 35.35 27 34.33 27 34.34 29 49.49 49.49 49.49 550 TOROSAY 15 35.35 27 34.34 29 49.49 551 TORRIDON 14 49.49 552 TORRIDON 12 35.00 555 TORRIDON 12 49.49 555 TORRIDON 12 49.49 556 TORRIDON 12 49.49 557 TORRIDON 12 49.49 560 TORRIDON 12 49.49	543	THURSO	15	100.00
545 TIPPERTY 24 100.00 546 TOROSAY 17 70.00 22 30.00 547 TOROSAY 12 49.69 548 TOROSAY 15 50.51 50.51 549 TOROSAY 15 50.51 550 TOROSAY 15 50.51 550 TOROSAY 15 50.51 551 TOROSAY 15 50.51 551 TOROSAY 19 50.51 552 TORRIDON 14 40.69 553 TORRIDON 14 40.60 554 TORRIDON 12 35.00 555 TORRIDON 12 35.051 556 TORRIDON 15 50.51 557 TORRIDON 12 34.34 558 TORRIDON 12 34.34 559 TORRIDON 12 34.34 561 TORRIDON 12 34.34 5	544	THURSO	12	49.49
546 TOROSAY 17 70.00 546 TOROSAY 12 49.49 547 TOROSAY 15 50.51 548 TOROSAY 15 50.51 549 TOROSAY 15 55.35 29 30.30 27 34.34 550 TOROSAY 15 35.35 29 30.30 30.30 551 TOROSAY 19 50.51 552 TORNIDON 14 100.00 553 TORRIDON 14 100.00 554 TORRIDON 17 70.00 555 TORRIDON 17 70.00 556 TORRIDON 17 70.00 557 TORRIDON 12 49.49 558 TORRIDON 12 49.49 550 TORRIDON 12 49.49 561 TORRIDON 12 49.49 561 TORRIDON 17 25.00 562 TYNE HEAD 26 50.51 570 TORRID	<i></i>		15	50.51
3-50 LOKUSAT 17 70.00 547 TOROSAY 12 49.49 548 TOROSAY 15 50.51 548 TOROSAY 15 50.51 549 TOROSAY 15 50.51 77 49.49 50.51 77 49.49 50.51 77 49.49 50.51 77 49.49 50.51 77 49.49 50.51 77 30.53 27 34.33 27 34.34 29 49.49 552 TORRIDON 14 49.49 553 TORRIDON 12 35.00 554 TORRIDON 12 35.00 555 TORRIDON 15 50.51 557 TORRIDON 15 50.51 558 TORRIDON 15 100.00 560 TORRIDON 15 100.00 561 TORRIDON 15 100.00	545	TIPPERTY	24	100.00
547 TOROSAY 12 49 55 108 100 10 100 10 50 51 100 10	240	TURUSAT	22	30.00
548 TOROSAY 15 50.51 548 TOROSAY 15 50.51 549 TOROSAY 15 50.51 550 TOROSAY 15 50.51 550 TOROSAY 15 50.51 550 TOROSAY 15 55.35 29 30.30 551 TOROSAY 29 40.40 552 TORRIDON 14 100.00 553 TORRIDON 17 50.51 554 TORRIDON 12 35.00 23 60.00 555 TORRIDON 17 70.00 22 30.00 556 TORRIDON 12 49.49 49.49 557 TORRIDON 12 49.49 49.49 558 TORRIDON 12 49.49 49.49 561 TORRIDON 12 49.49 50.51 570 TORRIDON 17 75.00 22 25.00 561 TORRIDON	547	TOPOSAY	12	49 49
548 TOROSAY 15 50.51 29 49.49 49.49 550 TOROSAY 15 50.51 550 TOROSAY 15 35.35 29 30.30 29 30.30 551 TOROSAY 19 50.51 552 TORRIDON 14 100.00 553 TORRIDON 14 100.00 554 TORRIDON 12 35.00 555 TORRIDON 17 70.00 23 30.00 55 TORRIDON 15 50.51 557 TORRIDON 15 50.51 27 30.00 558 TORRIDON 12 49.49 49.49 561 TORRIDON 15 100.00 50.51 <td< td=""><td></td><td></td><td>15</td><td>50.51</td></td<>			15	50.51
29 49.49 549 TOROSAY 15 50.51 550 TOROSAY 15 35.35 27 34.34 49.49 551 TOROSAY 19 50.51 552 TORRIDON 14 40.00 553 TORRIDON 14 49.49 552 TORRIDON 14 49.49 554 TORRIDON 12 35.00 555 TORRIDON 12 35.00 556 TORRIDON 15 50.51 557 TORRIDON 12 49.49 557 TORRIDON 12 49.49 558 TORRIDON 12 49.49 561 TORRIDON 12 49.49 561 TORRIDON 12 49.49 57 TORRIDON 12 49.49 561 TORRIDON 12 36.31 580 TORRIDON 15 100.00 562 TYNEH	548	TOROSAY	15	50.51
549 TOROSAY 15 50.51 550 TOROSAY 15 35.35 27 34.34 29 30.30 551 TOROSAY 19 50.51 29 49.49 552 TORRIDON 14 100.00 552 TORRIDON 14 49.49 17 50.51 554 TORRIDON 14 49.49 17 50.51 555 TORRIDON 12 35.00 17 70.00 556 TORRIDON 12 49.49 49.49 557 TORRIDON 12 49.49 557 TORRIDON 12 49.49 558 TORRIDON 12 34.34 559 TORRIDON 12 34.34 563 TYNEHEAD 29 49.49 563 TYNEHEAD 24 100.00 564 TORRIDON 17 25.00 563 TYNEHEAD 24 100.00 564 TYNEHEAD 24 100.00 565 TWET			29	49.49
17 49.49 27 34.34 29 30.30 551 TOROSAY 19 552 TORRIDON 14 17 50.51 552 TORRIDON 14 17 50.51 554 TORRIDON 14 17 50.51 555 TORRIDON 12 556 TORRIDON 12 557 TORRIDON 12 558 TORRIDON 12 557 TORRIDON 12 558 TORRIDON 12 558 TORRIDON 12 561 TORRIDON 15 557 TORRIDON 15 560 TORRIDON 15 561 TORRIDON 15 562 TYNEHEAD 24 563 TYNEHEAD 24 564 TYNEHEAD 13 565 TYNET 15 570	549	TOROSAY	15	50.51
530 IOROSAT 13 33.3 37.3 27 34.34 29 30.30 551 IOROSAY 19 50.51 552 TORRIDON 14 100.00 553 IORRIDON 14 100.00 554 TORRIDON 12 35.00 555 TORRIDON 12 35.00 555 TORRIDON 17 70.00 556 TORRIDON 15 50.51 557 TORRIDON 12 49.49 557 TORRIDON 12 49.49 557 TORRIDON 12 49.49 558 TORRIDON 12 49.49 561 TORRIDON 12 49.49 561 TORRIDON 15 100.00 562 TYNEHEAD 27 30.30 563 TYNEHEAD 17 25.00 564 TORRIDON 17 25.00 564 TYNEHEAD	550	TODOCAN	17	49.49
29 30 30 551 TOROSAY 19 50.51 552 TORRIDON 14 100.00 553 TORRIDON 14 49.49 554 TORRIDON 14 49.49 555 TORRIDON 12 35.00 555 TORRIDON 17 70.00 556 TORRIDON 17 70.00 557 TORRIDON 12 34.34 558 TORRIDON 12 34.34 558 TORRIDON 12 34.43 558 TORRIDON 12 34.43 559 TORRIDON 12 34.43 560 TORRIDON 12 34.43 561 TORRIDON 15 100.00 562 TYNEHEAD 24 100.00 563 TYNEHEAD 24 100.00 564 TYNET 15 100.00 565 TYNET 15 100.00	550	TURUSAT	27	37.37 76.76
551 TOROSAY 19 50.51 552 TORRIDON 14 100.00 553 TORRIDON 14 49.49 553 TORRIDON 14 49.49 554 TORRIDON 14 49.49 555 TORRIDON 17 50.51 556 TORRIDON 17 70.00 556 TORRIDON 12 49.49 557 TORRIDON 12 49.49 557 TORRIDON 12 49.49 558 TORRIDON 12 34.34 15 35.53 27 30.30 560 TORRIDON 12 34.34 15 35.051 35.35 27 561 TORRIDON 15 100.00 560 TORRIDON 17 25.00 562 TYNEHEAD 24 100.00 563 TYNEHEAD 24 100.00 564 TYNET 15 1			29	30 30
29 49 49 49 552 TORRIDON 14 100.00 553 TORRIDON 14 49.49 17 50.51 17 50.51 554 TORRIDON 12 35.00 555 TORRIDON 12 35.00 555 TORRIDON 15 50.51 557 TORRIDON 12 49.49 557 TORRIDON 12 49.49 558 TORRIDON 12 34.34 559 TORRIDON 15 100.00 560 TORRIDON 15 100.00 561 TORRIDON 15 100.00 562 TYNEHEAD 6 50.51 564 TORRIDON 17 25.00 565 TORRIDON 17 25.00 564 TYNEHEAD 13 49.49 565 TYNET 14 40.00 565 TYNET 5 100.00	551	TOROSAY	19	50.51
552 TORRIDON 14 100.00 553 TORRIDON 14 49.49 17 50.51 554 TORRIDON 12 35.00 555 TORRIDON 17 70.00 555 TORRIDON 17 70.00 556 TORRIDON 12 49.49 557 TORRIDON 12 49.49 558 TORRIDON 12 34.34 559 TORRIDON 12 34.34 560 TORRIDON 12 34.34 57 TORRIDON 12 34.34 58 TORRIDON 12 34.34 560 TORRIDON 12 34.34 561 TORRIDON 12 34.34 562 TYNEHEAD 29 49.49 563 TYNEHEAD 24 100.00 564 TYNET 14 100.00 565 TYNET 15 100.00 566 TYNET 15 100.00 567 TYNET 15 </td <td></td> <td></td> <td>29</td> <td>49.49</td>			29	49.49
553 TORRIDON 14 49.49 554 TORRIDON 17 50.51 555 TORRIDON 17 70.00 556 TORRIDON 17 70.00 557 TORRIDON 12 35.01 558 TORRIDON 12 49.49 557 TORRIDON 12 49.49 558 TORRIDON 12 49.49 558 TORRIDON 12 49.49 560 TORRIDON 12 43.4 559 TORRIDON 15 100.00 560 TORRIDON 15 100.00 561 TORRIDON 17 25.00 562 TYNEHEAD 24 100.00 563 TYNEHEAD 13 49.49 563 TYNEHEAD 13 49.49 564 TORRIDON 17 25.00 565 TYNET 14 100.00 564 TYNET 14 100.00 565 TYNET 15 100.00 <td< td=""><td>552</td><td>TORRIDON</td><td>14</td><td>100.00</td></td<>	552	TORRIDON	14	100.00
554 TORRIDON 12 35.00 555 TORRIDON 17 70.00 555 TORRIDON 17 70.00 556 TORRIDON 12 49.49 557 TORRIDON 12 49.49 557 TORRIDON 12 49.49 558 TORRIDON 12 34.34 558 TORRIDON 12 34.34 559 TORRIDON 15 100.00 560 TORRIDON 15 100.00 561 TORRIDON 17 25.00 22 25.00 22 25.00 562 TYNEHEAD 6 50.51 563 TYNEHEAD 13 49.49 563 TYNET 14 100.00 564 TYNET 15 100.00 565 TYNET 15 100.00 566 WALLS 15 50.51 570 WALLS 15 50.00 <td>553</td> <td>TORRIDON</td> <td>14</td> <td>49.49</td>	553	TORRIDON	14	49.49
534 TORRIDON 12 53 55 555 TORRIDON 17 70:00 556 TORRIDON 15 50:51 557 TORRIDON 12 34:94 557 TORRIDON 12 34:34 15 550:51 50:51 557 558 TORRIDON 12 34:34 15 35:35 27 30:30 559 TORRIDON 15 100:00 560 TORRIDON 15 100:00 561 TORRIDON 17 25:00 29 49:49 56:31 17NEHEAD 24 100:00 562 TYNEHEAD 24 100:00 56:51 13 49:49 563 TYNET 15 100:00 56:56 17NET 15 100:00 564 TYNET 15 100:00 56:55 57:57 WALLS 15 50:51 570 WALLS 15	E E7	10001000	17	50.51
555 TORRIDON 17 70.00 556 TORRIDON 15 50.51 29 49.49 557 TORRIDON 12 49.49 557 TORRIDON 12 34.34 15 35.35 27 30.30 559 TORRIDON 12 34.34 15 35.35 27 30.30 560 TORRIDON 15 100.00 560 TORRIDON 19 50.51 29 49.49 561 100.00 562 TYNEHEAD 6 50.51 563 TYNEHEAD 15 100.00 564 TYNET 15 100.00 565 TYNET 15 100.00 564 TYNET 15 100.00 565 TYNET 15 100.00 564 TYNET 15 100.00 567 WALLS 15 50.51 570	224	TURRIDUN	12	33.00
22 30.00 556 TORRIDON 15 50.51 29 49.49 557 TORRIDON 12 49.49 558 TORRIDON 12 34.34 15 550.51 15 50.51 558 TORRIDON 12 34.34 15 35.35 27 30.00 560 TORRIDON 15 50.51 560 TORRIDON 15 50.51 560 TORRIDON 19 50.51 561 TORRIDON 17 25.00 562 TYNEHEAD 6 50.51 563 TYNEHEAD 24 100.00 564 TYNET 15 100.00 565 TYNE T 15 100.00 564 TYNE T 15 100.00 567 WALLS 15 50.51 570 WALLS 15 50.51 571 WALLS 15 <td< td=""><td>555</td><td>TORRIDON</td><td>17</td><td>70:00</td></td<>	555	TORRIDON	17	70:00
556 TORR IDON 15 50.51 29 49.49 15 50.51 557 TORR IDON 12 49.49 15 50.51 50.51 558 TORR IDON 12 34.34 15 35.35 27 30.30 559 TORR IDON 15 100.00 560 TORR IDON 19 50.51 27 30.30 29 49.49 561 TORR IDON 19 50.51 29 49.49 50.51 29 562 TYNE HEAD 22 25.00 563 TYNE HEAD 24 100.00 564 TYNE HEAD 15 100.00 565 TYNE T 15 100.00 564 TYNE T 15 100.00 565 TYNE T 15 100.00 564 TYNE T 15 100.00 570 WALLS 15 50.51			22	30.00
29 49.49 557 TORR IDON 12 49.49 15 50.51 50.51 558 TORR IDON 12 34.34 15 35.35 27 30.30 559 TORR IDON 15 100.00 560 TORR IDON 19 50.51 27 30.30 29 49.49 561 TORR IDON 19 50.51 29 49.49 49.49 561 TORR IDON 19 50.00 22 25.00 562 TYNE HEAD 6 50.51 563 TYNE HEAD 24 100.00 565 519 100.00 564 TYNE T 15 100.00 567 179 ET 15 100.00 565 TYNE T 15 100.00 567 179 ET 15 100.00 566 TYNE T 15 100.00 571 WALLS 15 50.51 57	556	TORRIDON	15	50.51
557 TORRIDON 12 49,49 15 50.51 558 TORRIDON 12 34,34 27 30,30 559 TORRIDON 15 100,00 560 TORRIDON 15 100,00 561 TORRIDON 19 50.51 29 49,49 561 TORRIDON 19 562 TYNEHEAD 22 25.00 563 TYNEHEAD 24 100.00 564 TYNEHEAD 13 49,49 563 TYNEHEAD 24 100.00 564 TYNET 14 100.00 565 TYNET 15 100.00 564 WALLS 29 100.00 567 WALLS 15 50.51 570 WALLS 15 50.51 577 WALLS 15 70.00 575 WHITSOME 24 100.00 576 YARROW			29	49.49
558 TORR IDON 12 34.34 15 355.35 27 30.30 559 TORR IDON 15 100.00 560 TORR IDON 19 50.51 29 49.49 9 561 TORR IDON 19 50.00 29 49.49 13 49.49 563 TYNE HEAD 6 50.51 563 TYNE HEAD 24 100.00 564 TYNE HEAD 15 100.00 565 TYNE T 14 100.00 564 TYNE T 15 100.00 565 TYNE T 15 100.00 564 TYNE T 15 100.00 564 TYNE T 15 50.51 570 WALLS 14 49.49 572 WALLS 15 50.51 570 WALLS 15 100.00 574 WHITSOME 24 100.00	557	TORRIDON	12	49.49
550 TORRIDON 12 35.35 27 30.30 559 TORRIDON 15 100.00 560 TORRIDON 19 50.51 29 49.49 561 TORRIDON 19 50.00 29 49.49 563 TYNEHEAD 6 50.51 562 TYNEHEAD 24 100.00 564 563 17NEHEAD 24 100.00 564 TYNEHEAD 15 100.00 565 17NET 14 100.00 564 TYNET 14 100.00 566 17NET 15 100.00 564 TYNET 15 100.00 565 17NET 15 50.51 570 WALLS 15 50.51 15 70.00 571 WALLS 15 50.51 29 49.49 572 WALLS 15 50.01 15 70.00 573 WALLS 17 100.00 <td>558</td> <td>TOPPIDOK</td> <td>12</td> <td>30.31</td>	558	TOPPIDOK	12	30.31
27 30.30 559 TORRIDON 15 100.00 560 TORRIDON 19 50.51 29 49.49 561 TORRIDON 19 50.00 22 25.00 22 25.00 22 25.00 562 TYNEHEAD 6 50.51 13 49.49 563 TYNEHEAD 24 100.00 565 51 564 TYNEHEAD 15 100.00 565 17NET 14 100.00 565 TYNET 15 100.00 568 WALLS 29 100.00 564 TYNET 15 100.00 565 570 WALLS 15 50.51 570 WALLS 15 50.51 29 49.49 572 WALLS 15 50.01 55 571 577 WALLS 15 50.01 575 575 575 100.00 575 575 575 <td< td=""><td></td><td></td><td>15</td><td>35.35</td></td<>			15	35.35
559 TORRIDON 15 100.00 560 TORRIDON 19 50.51 29 49.49 50 561 TORRIDON 17 25.00 562 TYNEHEAD 6 50.51 563 TYNEHEAD 6 50.51 564 TYNEHEAD 24 100.00 565 TYNEHEAD 15 100.00 564 TYNEHEAD 15 100.00 565 TYNET 14 100.00 566 TYNET 15 100.00 566 TYNET 15 100.00 567 TYNET 15 100.00 568 WALLS 29 100.00 570 WALLS 15 50.51 570 WALLS 15 50.00 571 WALLS 15 70.00 572 WALLS 15 70.00 573 WALLS 17 100.00 5			27	30.30
560 TORR IDON 19 \$0.51 29 49.49 \$0.00 561 TORR IDON 17 \$25.00 562 TYNE HEAD 6 \$0.51 3 49.49 \$0.00 \$22 \$25.00 563 TYNE HEAD 6 \$0.51 \$34.9.49 563 TYNE HEAD 24 \$100.00 \$65.51 564 TYNE HEAD 15 \$100.00 \$66.57 565 TYNE T 14 \$100.00 \$66.56 566 TYNE T 15 \$100.00 \$66.56 567 WALLS 29 \$100.00 \$56.51 570 WALLS 15 \$100.00 \$57.1 571 WALLS 15 \$0.00 \$57.1 572 WALLS 15 \$0.00 \$57.5 573 WALLS 17 \$100.00 \$7.6 574 WHITSOME 16 \$30.00 \$57.5 575 W	559	TORRIDON	15	100.00
29 49,49 561 TORRIDON 17 25.00 19 50.00 22 25.00 562 TYNEHEAD 6 50.51 13 49,49 563 17NEHEAD 24 100.00 564 TYNEHEAD 15 100.00 565 TYNET 14 100.00 565 TYNET 15 100.00 566 17NET 15 100.00 564 TYNET 15 100.00 568 WALLS 29 100.00 567 WALLS 14 49.49 15 50.51 570 WALLS 15 50.01 57 50.51 577 WALLS 15 70.00 57 50.51 572 WALLS 15 70.00 57 50.51 573 WALLS 17 100.00 57 57 9 50.51 575 WHITSOME 16 30.00 0 50.5	560	TORRIDON	19	50.51
561 1000000000000000000000000000000000000	561	10201000	29	49.49
22 25.00 562 TYNEHEAD 6 50.51 13 49.49 563 TYNEHEAD 24 100.00 564 TYNEHEAD 15 100.00 565 TYNET 14 100.00 565 TYNET 14 100.00 566 TYNET 15 100.00 564 WALLS 29 100.00 567 TYNET 15 100.00 568 WALLS 14 49.49 15 50.51 570 WALLS 15 50.00 51 50.51 571 WALLS 15 50.00 57 50.51 572 WALLS 15 70.00 57 50.51 573 WALLS 15 70.00 57 57 WALLS 15 70.00 574 WHITSOME 24 100.00 57 57 57 9 50.00 0 57 575 WHITSOME 2	501	TORKIDON	19	50.00
562 TYNEHEAD 6 \$0.\$1 13 49.49 563 TYNEHEAD 24 100.00 564 TYNEHEAD 15 100.00 565 TYNET 14 100.00 566 TYNET 6 100.00 567 TYNET 15 100.00 568 WALLS 29 100.00 569 WALLS 14 49.49 570 WALLS 15 50.51 570 WALLS 15 50.51 571 WALLS 15 50.00 572 WALLS 15 70.00 573 WALLS 15 70.00 574 WHITSONE 16 30.00 575 WHITSONE 24 100.00 576 YARROW 5 100.00 577 YARROW 5 35.35 579 YARROW 5 70.00 580 YARROW			źź	25.00
13 49.49 563 TYNEHEAD 24 100.00 564 TYNEHEAD 15 100.00 565 TYNET 14 100.00 566 TYNET 14 100.00 567 TYNET 15 100.00 568 WALLS 29 100.00 569 WALLS 14 49.49 570 WALLS 15 50.51 570 WALLS 15 50.51 571 WALLS 15 50.51 572 WALLS 15 50.51 573 WALLS 15 70.00 574 WHITSONE 16 30.00 575 WHITSONE 16 30.00 576 YARROW 5 100.00 576 YARROW 5 100.00 577 YARROW 5 35.35 579 YARROW 5 70.00 580 YARROW 5 70.00 580 YARROW 5 70.00 </td <td>562</td> <td>TYNEHEAD</td> <td>6</td> <td>50.51</td>	562	TYNEHEAD	6	50.51
563 TYNEHEAD 24 100.00 564 TYNEHEAD 15 100.00 565 TYNET 14 100.00 566 TYNET 14 100.00 567 TYNET 15 100.00 568 WALLS 29 100.00 569 WALLS 14 49.49 570 WALLS 15 50.51 570 WALLS 15 50.51 571 WALLS 15 50.51 572 WALLS 15 50.51 573 WALLS 15 70.00 574 WHITSONE 16 30.00 575 WHITSONE 16 30.00 576 YARROW 5 100.00 576 YARROW 5 100.00 577 YARROW 5 35.35 579 YARROW 5 70.00 580 YARROW 5 70.00 580 YARROW 5 70.00 601 LAKE			13	49.49
564 TYNET 13 100.00 565 TYNET 14 100.00 566 TYNET 15 100.00 567 TYNET 15 100.00 568 WALLS 29 100.00 569 WALLS 14 49.49 570 WALLS 15 50.51 570 WALLS 15 50.51 571 WALLS 15 50.51 572 WALLS 15 50.51 572 WALLS 15 70.00 573 WALLS 15 70.00 574 WHITSONE 16 30.00 575 WHITSONE 24 70.00 576 YARROW 5 100.00 577 YARROW 5 100.00 578 YARROW 5 35.35 579 YARROW 5 70.00 600 BUILT_UP_AREA 97 100.00 601 LAKE 98 100.00 602 SEA	565	TYNEHEAD	24	100.00
566 TYNET 14 100.00 566 TYNET 15 100.00 567 TYNET 15 100.00 568 WALLS 29 100.00 569 WALLS 14 49.49 570 WALLS 15 50.51 570 WALLS 15 50.51 571 WALLS 15 50.51 572 WALLS 15 50.51 573 WALLS 15 70.00 574 WHITSOME 4 30.00 575 WHITSOME 16 30.00 576 YARROW 5 100.00 576 YARROW 5 100.00 577 YARROW 5 35.35 579 YARROW 5 70.00 600 BUILT_UP_AREA 97 100.00 601 LAKE 98 100.00 602 SEA 99 100.00 601 LAKE 98 100.00 602 SEA <t< td=""><td>545</td><td>TYNET</td><td>12</td><td>100.00</td></t<>	545	TYNET	12	100.00
567 TYNET 15 100.00 568 WALLS 29 100.00 569 WALLS 14 49.49 570 WALLS 15 50.51 570 WALLS 15 50.51 571 WALLS 15 50.51 572 WALLS 15 50.51 573 WALLS 15 70.00 574 WALLS 15 70.00 575 WALLS 17 100.00 574 WHITSOME 24 70.00 575 WHITSOME 24 100.00 576 YARROW 5 100.00 577 YARROW 5 100.00 578 YARROW 5 70.00 579 YARROW 5 70.00 600 BUILT_UP_AREA 97 100.00 601 LAKE 98 100.00 602 SEA 99 100.00 731 ORGANIC SOILS - 3D 12 100.00 732 OR	566	TYNET	6	100.00
568 VALLS 29 100.00 569 VALLS 14 49.49 15 50.51 570 VALLS 15 100.00 571 VALLS 15 50.51 572 VALLS 15 50.51 572 VALLS 15 70.00 573 VALLS 4 30.00 574 VALLS 17 100.00 575 VALLS 17 100.00 576 YARROM 5 100.00 576 YARROM 5 100.00 576 YARROM 5 100.00 577 YARROM 5 100.00 578 YARROM 5 100.00 579 YARROM 5 70.00 7 10.00 8 5.00 600 BUILT_UP_AREA 97 100.00 601 LAKE 98 100.00 602 SEA 99 100.00 731 ORGANIC SOILS - 3D 12 100.00	567	TYNET	15	100.00
569 WALLS 14 49.49 15 50.51 570 WALLS 15 50.51 571 WALLS 15 50.51 572 WALLS 15 50.51 572 WALLS 15 50.51 572 WALLS 4 30.00 573 WALLS 17 100.00 574 WHITSOME 16 30.00 575 WHITSOME 24 70.00 576 YARROW 5 100.00 576 YARROW 5 100.00 577 YARROW 5 100.00 578 YARROW 5 100.00 579 YARROW 5 70.00 7 10.00 8 5.00 9 5.00 12 5.00 600 BUILT_UP_AREA 97 100.00 601 LAKE 98 100.00 602 SEA 99 100.00 731 ORGANIC SOILS - 3D 12 100.00	568	WALLS	29	100.00
15 50.51 570 WALLS 15 100.00 571 WALLS 15 50.51 572 WALLS 29 49.49 572 WALLS 4 30.00 573 WALLS 15 70.00 574 WALLS 17 100.00 575 WALLS 17 100.00 576 YARROM 5 100.00 576 YARROM 5 100.00 577 YARROM 5 100.00 577 YARROM 5 100.00 577 YARROM 5 100.00 578 YARROM 5 70.00 579 YARROM 5 70.00 600 BUILT_UP_AREA 97 100.00 601 LAKE 98 100.00 602 SEA 99 100.00 731 ORGANIC SOILS - 3D 12 100.00 732 ORGANIC SOILS - 3E 28 100.00	569	WALLS	14	49.49
570 WALLS 15 100.00 571 WALLS 15 50.51 29 49.49 29 49.49 572 WALLS 15 70.00 573 WALLS 15 70.00 574 WHITSOME 16 30.00 575 WHITSOME 16 30.00 576 YARROM 5 100.00 576 YARROM 5 100.00 577 YARROM 5 100.00 577 YARROM 5 100.00 578 YARROM 5 100.00 578 YARROM 5 100.00 579 YARROM 5 70.00 7 10.00 8 5.00 9 5.00 10 5.00 10 5.00 12 5.00 580 YARROW 5 70.00 12 5.00 12 5.00 600 BUILT_UP_AREA 97 100.00 601 LAKE 98	e = 0		15	50.51
571 WALLS 13 50.51 29 49.49 29 49.49 572 WALLS 15 70.00 573 WALLS 15 70.00 573 WALLS 17 100.00 574 WHITSOME 16 30.00 24 70.00 24 70.00 575 WHITSOME 24 100.00 576 YARROM 5 100.00 577 YARROM 5 100.00 578 YARROM 5 100.00 578 YARROM 5 70.00 579 YARROM 5 70.00 7 10.00 8 5.00 9 5.00 10 5.00 10 5.00 12 5.00 580 YARROW 5 70.00 580 YARROW 5 70.00 601 LAKE 98 100.00 602 SEA 99 100.00 603 LAKE 98 1	570	WALLS	15	100.00
572 WALLS 27 \$71.49 573 WALLS 15 70.00 573 WALLS 17 100.00 574 WHITSOME 16 30.00 24 70.00 24 70.00 575 WHITSOME 24 100.00 576 YARROW 5 100.00 577 YARROW 5 100.00 578 YARROW 5 100.00 578 YARROW 5 35.35 579 YARROW 5 70.00 7 10.00 8 5.00 9 5.00 10 5.00 9 5.00 10 5.00 9 5.00 10 5.00 10 5.00 10 5.00 580 YARROW 5 70.00 12 5.00 12 5.00 600 BUILT_UP_AREA 97 100.00 601 LAKE 98 100.00 602 SEA 99 1	371	WALLS	15	20.21
15 70.00 573 WALLS 17 100.00 574 WHITSOME 16 30.00 24 70.00 24 70.00 575 WHITSOME 24 100.00 576 YARROW 5 100.00 577 YARROW 5 100.00 578 YARROW 5 100.00 578 YARROW 5 35.35 579 YARROW 5 70.00 7 10.00 8 5.00 9 5.00 10 5.00 9 5.00 10 5.00 9 5.00 10 5.00 9 5.00 10 5.00 9 5.00 10 5.00 9 5.00 10 5.00 10 5.00 12 5.00 10 5.00 12 5.00 600 BUILT_UP_AREA 97 100.00 601 LAKE 98 100.00 602	572	WALLS	4	30,00
573 VALLS 17 100.00 574 WHITSOME 16 30.00 24 70.00 575 WHITSOME 24 100.00 576 YARROW 5 100.00 577 YARROW 5 100.00 578 YARROW 5 100.00 578 YARROW 5 35.35 579 YARROW 5 70.00 7 10.00 8 5.00 9 5.00 9 5.00 10 5.00 10 5.00 880 YARROW 5 70.00 580 YARROW 5 70.00 600 BUILT_UP_AREA 97 100.00 601 LAKE 98 100.00 602 SEA 99 100.00 731 ORGANIC SOILS - 3D 12 100.00 732 ORGANIC SOILS - 3E 28 100.00			15	70.00
574 WHITSOME 16 30.00 24 70.00 575 WHITSOME 24 100.00 576 YARROW 5 100.00 577 YARROW 5 100.00 578 YARROW 5 35.35 579 YARROW 5 70.00 7 10.00 8 5.00 9 5.00 70.00 7 9 5.00 10 5.00 9 5.00 10 5.00 10 5.00 12 5.00 580 YARROW 5 70.00 580 YARROW 5 70.00 600 BUILT_UP_AREA 97 100.00 601 LAKE 98 100.00 602 SEA 99 100.00 731 ORGANIC SOILS - 3D 12 100.00 732 ORGANIC SOILS - 3E 28 100.00	573	WALLS	17	100.00
24 70.00 575 WHITSOME 24 100.00 576 YARROW 5 100.00 577 YARROW 5 100.00 578 YARROW 5 35.35 579 YARROW 5 70.00 7 10.00 8 5.00 9 5.00 70.00 8 9 5.00 9 5.00 10 5.00 9 5.00 10 5.00 12 5.00 580 YARROW 5 70.00 600 BUILT_UP_AREA 97 100.00 601 LAKE 98 100.00 602 SEA 99 100.00 731 ORGANIC SOILS - 3D 12 100.00 732 ORGANIC SOILS - 3E 28 100.00	574	WHITSONE	16	30.00
575 WARROW 5 100.00 576 YARROW 5 100.00 577 YARROW 5 100.00 578 YARROW 5 35.35 12 64.65 579 YARROW 5 70.00 7 10.00 8 9 5.00 9 10 5.00 9 580 YARROW 5 70.00 600 BUILT_UP_AREA 97 100.00 601 LAKE 98 100.00 602 SEA 99 100.00 731 ORGANIC SOILS - 3D 12 100.00 732 ORGANIC SOILS - 3E 28 100.00	575	INTEONE	24	70.00
577 YARROW 5 100.00 578 YARROW 5 35.35 579 YARROW 5 70.00 7 10.00 8 5.00 9 5.00 7 10.00 8 5.00 9 5.00 9 5.00 10 5.00 9 5.00 10 5.00 9 5.00 10 5.00 9 5.00 10 5.00 9 5.00 12 5.00 600 BUILT_UP_AREA 97 100.00 601 LAKE 98 100.00 602 SEA 99 100.00 731 ORGANIC SOILS - 3D 12 100.00 732 ORGANIC SOILS - 3E 28 100.00	576	VARROL	<u> </u>	100.00
578 YARROW 5 35.35 12 64.65 579 YARROW 5 70.00 7 10.00 8 5.00 9 5.00 9 5.00 9 5.00 10 5.00 9 5.00 10 5.00 12 5.00 580 YARROW 5 70.00 12 5.00 600 BUILT_UP_AREA 97 100.00 601 12 30.00 601 LAKE 98 100.00 602 SEA 99 100.00 731 ORGANIC SOILS - 3D 12 100.00 732 ORGANIC SOILS - 3E 28 100.00	577	YARROW	ŝ	100.00
579 YARROW 5 70.00 7 10.00 8 5.00 9 5.00 9 5.00 10 5.00 10 5.00 10 5.00 12 5.00 580 YARROW 5 70.00 600 BUILT_UP_AREA 97 100.00 601 LAKE 98 100.00 602 SEA 99 100.00 731 ORGANIC SOILS - 3D 12 100.00 732 ORGANIC SOILS - 3E 28 100.00	578	YARROW	5	35.35
579 YARROW 5 70.00 7 10.00 8 5.00 8 5.00 9 5.00 10 5.00 10 5.00 10 5.00 12 5.00 580 YARROW 5 70.00 600 BUILT_UP_AREA 97 100.00 601 LAKE 98 100.00 602 SEA 99 100.00 731 ORGANIC SOILS - 3D 12 100.00 732 ORGANIC SOILS - 3E 28 100.00			12	64.65
7 10.00 8 5.00 9 5.00 10 5.00 10 5.00 12 5.00 12 5.00 12 5.00 12 30.00 600 BUILT_UP_AREA 97 601 LAKE 98 602 SEA 99 731 ORGANIC SOILS - 3D 12 732 ORGANIC SOILS - 3E 28	579	YARROW	5	70.00
5 5.00 9 5.00 10 5.00 10 5.00 12 5.00 12 5.00 12 5.00 12 5.00 600 BUILT_UP_AREA 97 601 LAKE 98 602 SEA 99 731 ORGANIC SOILS - 3D 12 732 ORGANIC SOILS - 3E 28			. (2	10.00 5 An
10 5.00 10 5.00 12 5.00 12 5.00 12 5.00 12 5.00 12 30.00 600 BUILT_UP_AREA 97 601 LAKE 98 602 SEA 99 731 ORGANIC SOILS - 3D 12 732 ORGANIC SOILS - 3E 28			0	5,00
580 YARROW 5 70.00 580 YARROW 5 70.00 12 30.00 12 30.00 600 BUILT_UP_AREA 97 100.00 601 LAKE 98 100.00 602 SEA 99 100.00 731 ORGANIC SOILS - 3D 12 100.00 732 ORGANIC SOILS - 3E 28 100.00			10	5.00
580 YARROW 5 70.00 12 30.00 600 BUILT_UP_AREA 97 100.00 601 LAKE 98 100.00 602 SEA 99 100.00 731 ORGANIC SOILS - 3D 12 100.00 732 ORGANIC SOILS - 3E 28 100.00			12	5.00
600 BUILT_UP_AREA 97 100.00 601 LAKE 98 100.00 602 SEA 99 100.00 731 ORGANIC SOILS - 3D 12 100.00 732 ORGANIC SOILS - 3E 28 100.00	580	YARROW	5	70.00
603 LAKE 98 100.00 603 LAKE 98 100.00 602 SEA 99 100.00 731 ORGANIC SOILS - 3D 12 100.00 732 ORGANIC SOILS - 3E 28 100.00	600		12	30.00
602 SEA 99 100.00 731 ORGANIC SOILS - 3D 12 100.00 732 ORGANIC SOILS - 3E 28 100.00	601	LAKE	97 QR	100.00
731 ORGANIC SOILS 3D 12 100.00 732 ORGANIC SOILS 3E 28 100.00	602	SEA	99	100.00
732 ORGANIC SOILS - 3E 28 100.00	127	ORGANIC SOILS - 3D	12	100.00
	732	ORGANIC SOILS - 3E	28	100.00

CODE	HAP_UNIT		CLASS	PERC
733	ORGANIC SOILS	- 3DE	28	100.00
741	ORGANIC SOILS	- 4D	29	100.00
742	ORGANIC SOILS	- 4E	28	100.00
743	ORGANIC SOILS	- 4DE	28	100.00
800	BARE ROCK - X		17	40.00
			22	60.00

.

.

-

٠

•••••

Appendix C Catchment data used in the development and calibration of HOST

•

Ì

•

•

.

.

. .

.

· · ·

.

.

·

.

LAKE	м	60	Ч	ч	(7	Ś	۱Ŋ	9	2				69	Ч		·-1		-1			-1																	2		
H29 1	36	27	27	6 5	41	ഗ	თ	35	ഗ	18	23	23	ഗ	38	7 11	ማ	54	ω	14	B	ω	22	20	л;	б	9		7		4	٢	11		11	13	4 ⁴ e1	ហ	æ	22	19
428	2	12	07 1-1							39	22		23		~	11	4	თ	2	19	ማ													2	Ч			6 1		
127		ч	2			~	m		2	4	m		7	Ч	m	v	Ч	ഹ	m	2	4											٦		Ч	Ч	r-1	4	ч		
Н26 Н																	0					~				ᅯ		m												
H2 5																																								
H24					Ч							-		-	Ч		2		m			2	ഗ	σ	14	2	ሌ	17	9	m	2	N	9	Ч	~		2	2	m	
123																																								
H22 F							Ч		Ч	7	4		2	Ч	9	٢	ഗ	თ	ŋ	2	7	0												ω	9	16	2		ч	28
Н21																																								
H20.						•									•			-									-					•								
119 1		Ś	4	Ч	3	3.2	18	Ś	ч	δ	ഗ		2		7	15 1	Ч	ыц	2	v	11													ហ	4	10		-1	4	10
H18 I													S																										Ч	
H17	2	m	Ś		ω	4	Q	٦	23	2	2	12	1	'n	16	თ	32	10	17	15	10	4 5	47	46	32	63	68	36	63	56	48	46	76	37	წ	28	21	е е	5 M	21
Н16										Ч	, ri		ഗ	4	2	2		2	2	9	m					-														
115 1	51	34	42	31	28	38	38	29	41	14 4	26	14 4	19	41	23	24	20	23	23	30	25	24	13	13	20	10	9	œ	5	15	20	21	10	22	22	50	53	24	28	18
14 F										Ч	ч	m	2	2	н		ч		-				2	٢	13	m	ហ	δ	4	m	m		4	н	ч		4		н	
413 F		0			чЛ				2		•	σ	7		m		4		ო		ч		ഹ	4	4	4	ი	ማ	12	თ	11	13		w	4	4	æ	9	m	~
H12 I	ν	2	2	2	ഗ	12	18 1	23	19	2	m	2	m	0	4	5	ы	9	4	4	9		Ч	6	4	3	Ч	1	н	н	ч		ч	1	Ч	ч		ы		
I TTE																																								
101						•				٦		-1	Ч		٦	Ч		ศ	ч	Ч	Ч			ч	Ч			٦		Ч	Ч		ч							
109 I												Ч	ч			ч																								
1 80H										ч		ч	н		Ч	ч		ч	н	ч	ы				ч					٦			ч							
107										T	Ч	2	ы		Ч	2		٦	Ч	Ч	2		٦	Ч	7		ч	Ч	Ч	н	ы	ч	ч	Ч	-					
106 1					ŝ							8	1				Ч						3	2	4	9	4	н	m	Ч	Ч	N								
05 F							2			<u>0</u>	5	22	20	2	თ	٢	H	11	ω	v	11		ო	m		m	0	S	3	m	m	N		ŝ	ഗ	'n	н	н	-1	
04 H					2								2				Ч					~																		
03 H																																								
02 Н																																								
01 H																	•																							
H ON	10	1	53	53	33	72	33	96	80	1	22	33	34	5	1	2	4	5	96	60	0	ч.	ī	2	ñ	14	ц Г	22	ñ	Ţ	2	93	L L	ц.	ğ	ũ	4	с С	9	5
NWA_1	20(300	30(38(40(58(600	600	600	700	700	700	700	700	800	800	800	800	.800	800	801	801	006	906	906	006	1000	1000	1000	1100	1100	1100	1180	1200	1200	1200	1200	1200	1200	1200

с. С

AKE			ч								m	r=1		-	-		ч	3		7	Ч		Ś		m r	٦							7	Ч	Ч					
29 L	ы	4		œ	5			26	17	ч	ហ	7	22	р : 	~ <u>1</u>	16	m	14	29		ۍ	27	12	5 M	σ,		11	ഗ	თ		6.7	47	7	m		m	(N 0	ה 1	r
28 H				٢	m			2																																
н 1 2 1																ы																								
26 H											2	2	2					-1	m				-1		(N			г			1	æ	Ч	г	2				
25 H																																								
24 H	m		ч	2	m	18	ч		9	4	5	9	9	50	10		თ	4	m	73	54	4	m	Q	m ç	5			41	36	41	თ	24	22	13	16		רח . עד י	# C	4 F
23 H																																								
22 H					m			m	ч			ч	ч	-1	Ч	н		ч					1		м ,	ч														
21 H																																								
20 H																																								
H 611				2	'n			14	ы	2		4	ч			10	9	'n	4	17			4	2	α	m.	4	13				Ţ		m		r				
118 H	38	33	67	17	19	σ	67			ч		11	13					14	Q	18	19	24	ഹ	30	1	12			32	31		10	ა ო	œ	49	10	32	4	ח ע	n
117 H	11	19		17	28	37	80	27	48	53	41	28	20	29	0	22	4 S	22	19	2	9	m	28	2	41	0	20	5 0	3	ч		9	6	9	31	ഹ		о н	ν α -	₽ -1
116 1		m	14	m	9	ч	'n						4					H														9		-		4				•
115 F	თ	7		24	12			18	16	28	29	13	15	29	28	34 4	22	13	10		4	11	20	12	25	14	42	16	10	1	00	5	ማ	٢	4	Ę	20	~ ~	-	v
414 F				Ч	2			2	S	4	ഗ	ഹ	ч	6	01		ወ	2	ഗ				9		4	ጣ			Ч			-1	00	Ч	-1	Ч		-1	-	4
H13					. 1	4	س		-		ч	Ч						ч	Q			4	ч	m		н	-	-	-	- •	-	-		m		Ч		m .	ar u	n
H12	Ч	٦	г	ч		Ч	Ч	ო	ŝ		3	Ч	'n	2	2	11	2	ŝ	2	m	m	2	ഗ	Ч	ഹ	~	23	11	2	თ		10		ഗ		യ		н ,	-1 r	4
H11																																								
HIO	н	Ч	ч	Ч	н	س	Ч											Ч				Ч		Ч								Ч				Ч		-		4
H09		-1	Ч		ч													ч				ч										Ч				Ч				-
H08	Ч	ч	-	Ч	Ч		Ч											٦				Ч		1								2	Ч	ч		ы			N C	N
Н07	ч	m	0	H	2	н	2		•	ч		Ч				-		2				2	ы	2	Ч	ч			Ч			Ч				Ч		-		-
H06	24	20	'n	80	7	5	11			2	Ч	Ø	M				•,	4	2			4	~	m		4						2	4	13		S	14	9	ማ በ	-
HOS	9	2	10	9	9	16	-	m) -1	4	2	50	8	'n	m	2	ы	4	Ч		7	БЦ	m	12		m			Ч			24 4	4	25		25	ы	12	5 v H v	о Н
Н04												Ч						m				m	Ч	N		ч														
но з																																								
H02																•																								
LOH																			·																					
A_NO	3001	3002	3005	3007	3008	4001	4002	5001	2005	5004	5005	2010	5013	5017	5023	5024	5809	5001	6003	7004	7005	8001	8003	9005	8008	TTOS	9017	9018	1006	9002	9003	9004	9006	9007	90106	1106	9805	1000	0003	2000
MN	H	H	H	-i	નં	н,	Ĩ	-	1 -1		i A	i H	7	Ä	Ä	H	- F	ň	ň	н	h	ਜ	ลี	ĥ	ក	ñ	Ē	ลั	-	Ä	Ä	Ē	-	Ä	- H	F	ř.	Ñ	Ň	Ñ

-

C.2

NWA_NO H01 H02 H03 H04 H05 H06 H07 H08 H09 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 LAKE

•

•

••

.

-

1	10 N H H	-1	0 - 0	-1
	447 0001 11 1	1 1 1 1 1 1	8023015 8000 2015 8000	54 J 9 9 6 6
				34 23 30 7
			<u>а 654</u> ч	
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 8 3 3 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ဖင္ဝီ က စ မီ စ င	<b>ଌ୳୰ଡ଼</b> ୭ <b>१</b> ७ <i>ฒ</i>	ഗ്സപപ്പ ത്
				ы 4 М
			NN M M	807 70
				н н
		• •		
		ичыч ч <b>ч</b>	8 40 4F	40 6400
7		ч v		-
50	0 1 2 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	9 8 0 7 4 7 3 8 4 1 0 8 0 7 4 7 3 8 4 1 0 8 0 7 4 7 3 8 4 1 0 8 7 4 7 3 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	29
		н 4 0	101	
11 9 9	9 0 4 4 0 7 4 7 9 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1		8816111 2188 88161411 2188	1 1 0 1 0 1 0 0 1 0 1 0 1 0
N N 0	0 ~ 4 4 0 0 0 1	8 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 0000 11 15	Ч
- 101 - T	н NI	м мюо Н		ч
m	<b>нннн</b> н	adaaa ma	ччч очч	г
м. м		плала пл		
0				
	0			
<b>LUL 2 4</b>		4° OV V	0 0 7 1 1 1 1 0	
н с и н о 80880	ן היאראשטי	4.0 - 10 800 	ор о о 4	Fi v mmoo
	ч			
		•		
000 4000 000 000 000 000 000 000 000 00	000000000000000000000000000000000000000	0 - 2 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	084675420000	8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
206 208 208 208 208 208 208	00000000000000000000000000000000000000	000000000000000000000000000000000000000		000 5550 5550 5550 5550 5550 5550 5550

с. С.

~

• -

LAKE
H29 ]
H28
H27
H26
H25
H24
H23
H2 2
H21
H20
6TH
H18
H17
5 H16
H15
3 H14
2 Hl.
I HI
TH 0
1H 6
0H 8
7 HO
96 НС
05 H(
04 H
03 H
102 H
401 H
No.
NWA

$ \begin{bmatrix} 1 & 1 & 1 & 2 & 3 & 1 & 1 & 1 & 2 & 3 & 1 & 1 & 1 & 2 & 3 & 1 & 1 & 1 & 2 & 3 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2$				ч	4		4		2																	-1													<del>-</del> -1
1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1		23	15	18	19	27	37	47	10	15	63	19	56	16	30	48	13		36	15		31		۲9 ا	סו	0	96	,	-1	4		۲ <del>۱</del>	00				~		5
								•			-					•						• •			•					7		w							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ማ	m																																				
1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	19		2	31	31	24	ი ო	22	20	43	12	5 S	23	27	ς Έ	26	8 1	4	27	30	4	37	ц С	26	n c T	7.	4		~	14	4	12	22	14			88		13
1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1																												4											
1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	93 93	2	25	31	29	36	~	25	54	17	20	4	'n	46	29	11	50	83	25	24	16	16	78	n U	91	5 <b>T</b>		1 75 	17	17	50	Q	25	22	73	5 6		61	4 U
1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td></td> <td>0</td> <td>ዋ</td> <td></td>		0	ዋ																																				
<pre></pre>	3	2		N		ч								ഹ	1		ч			m				ч	ч		1	m i	2		œ			m	4	ნ			r-1
1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	·																											-1 1	ų					10					
1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1		34	14																						ſ	۷													
1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1																												-	ካ									30	~
1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1																	Ч		1			Ч		Ч															
1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>1</td> <td>N</td> <td></td> <td></td> <td></td> <td></td> <td>'n</td> <td></td> <td></td> <td></td> <td></td> <td></td>										-																		1	N					'n					
и роболого и на на и на	m	'n	15	m I	8		ഗ		S	10		10	11			ۍ رو	4	Ч	2	11		9		9	m,	4			4					21					4
и робоно и полиција	н		ч		ч				ч							-					-	-	N		- •		-	-	_	_	_	-	-		-				-
w       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y       y	M			5	,	m		Ч																						4									
и       0       0       1       1       1       0       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	ч																										(	N		(4					m			-	
No       No <td< td=""><td>чw</td><td></td><td>m</td><td>n,</td><td>র<b>শ</b>।</td><td>m</td><td>w</td><td>m</td><td>m</td><td>٢</td><td>. 4</td><td>7</td><td>'n</td><td>m</td><td>4</td><td>m</td><td>m</td><td>ч</td><td>ო</td><td>4</td><td>н</td><td>S</td><td>2</td><td>m</td><td>20</td><td>N</td><td></td><td>-1</td><td></td><td>2</td><td>-1</td><td>7</td><td>m</td><td></td><td>r-I</td><td>н</td><td>11</td><td>2</td><td>~</td></td<>	чw		m	n,	র <b>শ</b> ।	m	w	m	m	٢	. 4	7	'n	m	4	m	m	ч	ო	4	н	S	2	m	20	N		-1		2	-1	7	m		r-I	н	11	2	~
Model			12	Ч						7		Ч															c	<b>N</b> 1	~		Ч				2	ų		Ч	-
м оо м ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч			н	2	rt i	2	Ч	-	ч	-1					m		Ч				-			٦	2						Ч							1	7
ч оо оп п п п п п п п п п п п п п п п п п	Ч		7						Ч			Г					Ч	2									C	7			5				ጣ	9		S	
ч ром ч ром и и и и и и и и и и и и и и и и и и и	~		-	m						ч	Г	-		~			10 - - -	1	۲ ۲			3		~ ~	2	~	•				6			~	-	-		4	4
רי א הסט הי י	н m	2	<u>თ</u>		ო	-	Ъ	г	m	 m	7	2	2	••		2	m	2		4	2	ч	m	4	m.	-		<b>u</b>	<b>v</b> .	ч	5			28		7			ເຈ ດ
																				Ч																			-
•																		ч							ч		ſ	n							9	6			m
																•																							
00000000000000000000000000000000000000	2006	3008	6003	1001	3002	1004	1005	1006	1007	800	000	010	110	1012	1013	014	100	002	003	004	005	900	007	008	600	003	500	004	200	006	001	IIO	012	610	020	021	810	007	100

j

))

с. 4

LAKE	
H29	
H28	
H27	
H26	
H25	
H24	
H23	
H22	
H21	
H20	
H19	
H18	
H17	
H16	
H15	
H14	
HI3	
H12	
HII	
HIO	
H09	
HO8	
H07	
H06	
HOS	
H04	
, H03	
LOH .	
LOH (	
ž	1

١ 

•

•

•

AKE									r-1																			~			Ч					ы		2		
:29	10	11	61	Μ	<b>-</b> -1	36	-1	23	21	51	24	m		Ч	പ	24		21	7		7	л О	4		5		9	2 2	12		ΙI		ч		10	22			ч	
H28 :																																								
H27 :																																								
:26 J	σ	10	ЗŢ	14	œ	21	Ч	29	ထ	42	24	20		œ	20	29		50	40	ω	2	32	29	ω	23	17	16	12	12		11	Ч	10		თ	27			თ	
125				m	4									4	ч		ማ								4	4												4		
124	37	З С	20	18	17	æ	ი ა	11	10		σ	e i	21	17	19	თ	m	10	26	16	41	17.	22	4	20	12	38		42	6 ۳	ഗ	61	62	73	37	24	66	44	31	21
i23 I				Ч	Ч									г			2								Ч	ч												Ч		
H22 i																																								
H21 I	9	ហ	2	Ч	2	m	2		2		2	<b>ი</b> ი	m	Ч	2		50		2		ω	ч	'n		ч		ω	ഗ	ч	ە	ч		4	N	6	н	ч	თ	m	ิ่
H2 0		÷	3	4	3									2	œ	•	2		v			4			ഗ	ч								Ч				Ч		
H19																																								
H18	2	m			ч									Ч			2		Ч										4					9	2			10	ч	~
H17			Ч						Ч						Ч							Ч						٦			ч	Ч								
H16			2	н							•				2				0			н	m		Ч															
HIS	S	ഗ		12		15	2	17	1	1	თ	13		10	11	18		ტ	ወ		2	25	14	23	18	29	v	æ	4		10	4	4		ហ	5			ഗ	
H14																																								
H13				Q	Ś		4		13			,	-	ŋ	ഗ						5		Ч	~	m	m	m	4	н	4	5 T	ማፅ	N			2	ŋ			7
H12																																								
ιιн	٦				٦									г																					٦					
H10	4	ۍ ۱		ы	m	. <b>m</b>		4	Ч	ഗ	4	m		2		4	л Г	m		1						ų	0	ч	2		ч	•	-	4	4	m		ഗ		4
н09	m	0		4	4				ч			4	N	4			ч								ч	2			Ч	2				ഗ	m			4	N	ŝ
108	0	2		Ч	2	Ч		Ч	Ч		Ч	Ч		0	٦	Ч									ч	ч			0						3			2	Ч	-
Н07	m	m			4	-					m			4			m										m		Ч					Ч	'n			œ		Ч
н06	6	8	4	Ч	Ч	4	Ч	Ч	4		11	~ `	-	٦	ŝ	Ч	۲3 י'				Ч	2					4	m	9	4	4	4		-1	2					4
H05	7	2	Ч		4	Ч		m	Ч		m			4	٦	4	Ч		4			l		2			۲	٦	m		Ч	Ч		'n	~			m		15
H04	m	4	Ч	15	13	2	30	σ	38		4	9	ע	14	14	ማ		9	2		36	ۍ ۱	00	31	10	12	ø	36	8	24	37	8,19	7 <del>0</del>		m	<b>1</b> 3	17	Ч	42	9
ноз					2									0										m	2													9	4	13
H02	Ч	Ч		12	11									11	Ś								v	21	ഗ	15			7	20					Ч					29
101					4									4			10																							
NWA_NO	27008	27009	27010	27014	27015	27024	27026	27027	27031	27032	27034	27035	27040	27041	27042	27043	27044	27047	27050	27051	27052	27054	27055	27056	27057	27058	27059	27061	27062	27064	27065	27066	27067	27069	27071	27072	27074	28002	28008	28016

C.5

.

LAKE		!											2		-	4		•	-																									α	)	
H2 9				9	m						Ч	ч Ч	30	m	• -	1	"	4					•		с с С	4 L 4 L	n																			
H2 8																																														
127 1																																														
H26 H		ų	0 (	7	6						23	18	m	28	•	49	;	<b>ء</b> 1	4						77	, r	4																			
H25								α	•		-			m															;	Ŧ	х г	μ. 4 C	ית איני	ი ი 1 ი	1 I V	۰ ۱	~	31	۲	17	'n	13	33	11	34	
H24		24	ף ( ה (	77		4 S	41	5	0	0 d - r	r J	H	10	28	38	46	-	1 4		2	65	11	÷	70	I		ſ	n u N	ח ע י	ο 1 Γ	> < • ∩	۳ n	n . - (	10	יע	л Г	4			30	г	49	12	13	12	
123								2						ч					•										ſ	v	ų	) <	7 T	- (	n a	2	-4	ഗ	Ч	m	ч	m	5	4	-	
H22 F				•	-1		-																																							
H21		0	) 4 1	Ø		21	24	26		•	<b>1"</b> (	2	4	9	5	Ч	4	' VC	, c	11	<b>~</b> 1	2	л Г	12			σ	۲ ۲						•	T	ŕ	ر.			ы		14	17	10	18	
H2 0				÷	•			Ч						ч															ŕ	n	~	ı v	<b>،</b> ر	4 6	D 7	4 (	N		2	4	5	m	14	4	15	
119 I									17																																					
H18 I		m	4	۲	1	17	13	21	m	1		I	2		<b>1</b> 9					,	4.	-	16	Ч			ſ	) α	о <i>и</i>	ົດ	)	ſ	I		ſ	N C	1		н	æ			г	ч	г	
H17		Ч	<b>~</b>	۰ ۱	4		-1						ማ																																	
H16																																				ŗ	4 4									
115 1	ł	m	σ	י ה ב	n •					4	• -		17	IJ			13								21	27											•								•	و ن
14 F	ĺ																																													
II3 H			٦	ı			Ч			-	1	_		n (	2	-		ņ	4	•		!	<b>.</b>										Ч	ı -	-،	<b>,</b> -	-	-		• ,	<b>~</b> 1	-		-		
12 H											-																																			
11 Н																						,	-1				ч														-4					
то н		-	ч		"	-1	н.			Ч	I			ſ		7						,	-1		m		Q		ч		4	2	ഗ		~	। ব	• •	) <del>,</del>		N (	N	N		•		
H 60		4	ч		•	<b>r</b> (	<b>m</b> 1	m i	2	ч			ŕ	ר ה	Ņ			2	ч	5	- ۱۰	1,	-	ഗ			m	ч	ч		9	ר ר	-11	N	4		- 	•		-			0		~	
B H(		N	2		ç	4.	-1					-	4 -	, 1	-1												~				~		- 			•				•	•	•••				
7 НС		2					d" (	-4											_					~														1		-1		•	-	,	-1	
5 HO			~				•	•																			(1)		m		N	21	m	T	n				1	۵	Ċ	4				
90H 3						_							•					Ч	ы С	-	 •1							10	S	9		н				M	-	ια	)							
HOS		-	2		U	3 (	ופ					5	ſ	u	n				N	2		۲ ا د	7 I V	רי			ω					4									ŗ	7				
H04	ſ	23	с С	74		ſ	V			о М	17	ר ר		) - 1	-  (	<b>v</b> (	9	5 7	1	23	18	)		Ċ	7	9	2																			
НОЗ	c	ת	Ч		0	1 C	V							a	0					2	S	0 ~	o n			•	C/ C/									Ч	22									
H02																			45										ч		5 5 6		40	40	21		ч	I		a	0	٥	00	рг 7	-	
ГОН																				•								35	5 J	68		11			<b>m</b>	51	11	65	) r ) r	1						
NWA_NO	01000	01007	28021	28023	28025	20026		63007 0000	20020	28031	28033	28037	28038	02020			24027	28048	28049	28055	28058	28060				21087	28079	29001	29002	29003	29004	29005	29009	30001	30002	30003	30004	1005	CL005	2100C	4100F			00015	10070	

•

01015																																									
H28 H29 LAKE									2		1					7	7=4		r-1																						
26 H27																																									
125 H	31	٩		23	38	40		18	29	21	11	0	খ	11	32	18	29	m	2	ഗ	٢	37	10	13	7	20					29			L L	20		œ	m		11	
[24 H	12	9 G E	19	Ч	12		77	42		9	۲	29	00	m	ഗ	2	æ	ч	16		19	ഗ	7	13		16	S	16	24	n M		32	'n	σ	42	21	2	3		æ	
(23 H	œ	٢		Ŋ	2	Q		4	9	4	ტ	26	9	9	2	4	9	٢	თ	20	m	œ	13	8	9	ഗ					12			15	Ś		Чг	10		TT	
122 H														•																											
H21 H	4	11	11		19	43	22	31	14	2	27	30	41	36	σ	26	ω		44	64	35	თ	3 3 1	31	36	17			2		48	80	23	24	16		45	18	48	32	
H20 I	10		ო	13	14	01		4	12	N	8		9	10	19	, LL	19	ч	m	٢	4	18	9	4	2	4		•			ω			œ	9		12	4		ഹ	
H19																																									
H18	Ч				2						2				ი	4	10		m		8	2	ഗ	ഗ	٦	1	11	Q	13	13		15	9	9		14		11	٦	ഗ	
H17																																									
H16											-																4	ч	m	N		3	2			4					•
H15																																									
H14																									•																
H13										9																	ч		Ч							Ч		Ч			
H12																																				•					
HII										2																	4	ų	m	2		H I	m			'n					
HIO		5								31																	2	4	ហ	4		-	Ч	2		œ		Ч			
1 H09					S			Ч		Г	4	Ч	Г	m	'n	г	0		3		Ч		4	4	4	m						-	Ч	4	ч		1	ഗ	м	4	
7 НОВ					Ч						н				н						_		0	10	-	Ч	_				Ч			4				2	m	2	
C HO										"	-				-		CN.		-		-		~	_		<b>.</b>	IJ	[1]	m	0	~			0		v					
5 НО										0	~				10	_	., م	~	-		~				~	~	~	~	~	10	~	- -	~			•		~			
4 HO										5	•••					• •	•	.,			••		4		•••		н	5	Ä	3		н.				ä		w	-	4	
0H E																							ň	2										ы				2		4	
12 HO	S	9	9	æ	2				2	2	ы	ч	2	0	m	0	გ	ഗ	2	4	9	9	ų.	ri.		ჟ								,	0			н г		• 9	
OH LO	m	2	9	ഗ					Ś		2	Ч	г	m	-1	m ,		8	~		г	-1	S	ı 1	0	Ч	6	0	9	8		4	æ	B	-1	7		č	m	و	
VO HC	0	ц.	9	0;	L.	2	ň	<del>ທ</del>	9	2	Ч	0	ň	4	9	5	8	0	ñ	5	Ч	Ę	1	2	<u>3</u>	ហ្	6 3	4 (1	8 2	л 1	7	м М	4	ъ	8	9 2	0	2 2	44	9	
A MA	IOIE	3101	3101	3102	3102	3102	3102	3102	3102	3102	3200	3200	3200	3200	3200	3200	3200	3202	3202	3202	3203	3280	3300	3300	3300	3300	3300	3300	3300	3301	3301	3301	3301	3301	3301	3301	3302	3302	3302	3302	

. .

•'

с.7

AKE													г																													
H29																																										
H28																																										
H27																																										
H26																																										
H25	4	m	4	18			m	17	13											Ч																						
H24		4	15	9	Ч	24	9	19	12	23	48	ა ო		N		40		2		10	41	68	S	18	9 S	5 . G .	4	c t	2	2	Ċ	07	m	0 0	94 14	32	6 0	4		9		
H23	18		18	11			2	ŝ	1											Ŋ																						
H22																											٠															
H21	24		41	21	17	ы	13	28	31									72		36						ω v	٥	C	v					n N	40	37	0 M	5 4	88	ЧЧ		
Н20	7	Ļ	5	12			Ч	4	ഗ											7																						
H19																																										
H18	3	Q	თ	4	15	13	4	2	ഗ	15	16	22		2		ч Г	~			46	0 C 20	17	ഗ	5 A	30	о г н ,	1	¢	ω	-	0	N ( N	~	4	თ	26	-	11		94 4		
H17																																										
H16		m				m	2			m.		1	10	σ		2			•																						•	8.
H15																																										Ú
H14																							Ч		•																	
H13				ч		-1	• -	-	-	Ч	-	2		m					-			• •	10		• •		- r	< · ·	••		•	· · · 1		• •	•	•			•	-		
H12																																										
IIH		'n				m	2			ഗ	m	4	5	Ś		N					m	2	ų	m	'n	n	•	5	<b>3</b> 4	2	1	m ·	4		2		2					
HIO		4				<del>س</del> .	S			8	ŝ	5	12	ማ		Ē					'n	m	~	ŋ	4		( •	n r		m	I	in i	10	Ч		Ч						
60H	m			Ч	2		Q	4	4										21							2	-	¢	V					m	Ч	n	7	2				
Н08	4			2			2	Ч	3						16								m				(	V				•	4					Ч				
H07		2				ų	7			Q	0	5	ഗ	10		N					1	-		0	3			•	-1	н	1	2	-									
H06					Ч			Ч	2	•							''						17	Ч			(	2			Ч	1	16					9	m	~		
H05	Ч	თ	4		8	19	10	Ч	7	1.9	25	16	20	14	4	5	v	0	Ŋ		19	10	50	3 0 0	30	4	- 1	n n	ע	42	п 15	н М	46	S	2	2	Ч	17	σ	20		
Н04																																										
Н03				22					7																									Ч								
H02								14	10																																	
тон	37	65 65			50	26	35		н	18		'n	45	41	80	4 4	87	24	74					12		φ	10	(	<b>n</b>	38 0	67	17		m	7			ŝ	ч	N		
NWA_NO	33027	33029	33030	33031	33033	33034	33035	33037	33039	33044	33045	33046	33048	33049	33062	33063	33065	33066	33067	33809	34001	34002	34003	34004	34005	34006	34007	34008	34010	34011	34012	34014	34019	35002	35004	35008	35013	36001	36002	36003		

																							u	ſ								T												2	
					-							0	[		1 0	, .	4			ć			4	٣			0		4	4			4	י נו	ה ר	÷		ഗ	4		4	ิส	æ	ы	
	1	ማ	m	4	m		>	ſ	ň	c	3	9	Ś	o c	، ە ە	• •	4.0		m	ማ		<i>.</i>	ע יק	5 r	ı	'n	0 0		• 1 თ	л П	თ	н		i C	- 1	,	2		2 6	Ś	1 6	7 6	8	7 2	
												m		-	י ג	,							٢	-			ഗ		ч	4		^(N)	4	α	>			ч	7	r-1	7	6 1	7	m	
	81	60	6 S	6 5	80	54	56	н с 6 с	R R	61.	70	42	99		1 1 1 1 1	, . ,	4	65	56	0 ເງ	78	84	5 -	4 F 0	~ ( 2 - (	ъ ъ	0	74	8		47	80			Ċ	ς ı	m	91	2	m	27	7	4	Ч	
																						•																							
•	7	20	٢	S	~	02	ו		1	9	ব	11	14	5	1 r 1 r	• •	Ð	5	m	13		v	• •	4	C	עב	7		14		16	36		α	5 (	7	5 5		ഗ	е С		9	4	m	
												•																																	
															-	4.	-1						F	4											ŗ	4									
															-		-						ر ر	1			4 4								,	4			m				m		
			m		٦	I					2	~																									-			Ч				10	
			ч									m	M	•	• -	4				Ч	I						m		2	23			23	2					4	2		m	4	24	
														~	1												4		36	ማ			6	•					Ч				Ч	٦	
		m	0	9	~	)	ſ	7 0	N	m	4	m	œ		· r	4 1	-	Ø	.10		Υ.	) (*	יי נ	4 •	di (	-		7			5	ſ				ſ	V		4	4		4	4	24	
	-1	00	17	16	6	•	ſ	- •	Q	7	12	Ч	12	10	1 1	••	-	21	28	17	5	) (C	שכ	о с ,	1 O	20	12	<u>1</u> 9	15	20	20	18	20	)		L	ŋ			9					
	7		ſ		ı –	4					Q											-	4													4 (	ת	4		2					
	04 1	35	20	1 70			n (		11	12	ر ا ک			ה נו ה כ	n u		17	98	60			4 0	4 1	י י י	۲e	[]	19	20	12		4	i ir		2.5	- 	7 K		77	14	18 3	0;	1	22	4	
	360	360	2602	3600	2004			200.	360.	360.	360	3700	2705			5	3701	370(	370(	170	000				370	370	370	370.	3702	3702	370;	3705	012			1022	380(	380(	3801	3801	3802	3802	3802	3802	

Nation of the second se

• '

.

-

с. 9

WA_NO HO1 HO2 HO3 HO4 HO5 HO6 HO7 HO8 HO9 HI0 H11 HI2 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H29 LAKE

••

			5	4	I	ισ	۱ <u>۳</u>	, u	σ	ייי	חע	0 ~	<b>י</b> ר	10	4	r 4	5 L	רינ	n c	с С	<u>م</u> د	J		ſ	7	0	(	7 0	י ר	+ 0	n a	οι	۔ م	4 -	4 U	ŋ		0	•
		-	י אר	4 4	4		- -	. –	•	r n	า	, -,	ન પ ન સ	•		4	י ז ר	די ז רוני	" ר ነ	v ۲	4				н Г		r	າ-	-	ć	- 1 -	14	יי כ ד	) V	, σ	n		4	
			_			•							_		_			_									•	•	_		•		,	1 –	i			H.	
				í		1		7	1	<b>u</b> t-	•		0	í	~	, (		1	4						5		-		1~	ſ	V	•	ŝ		ւս	ר		2	
				•																																			
L L	γ α γ	) 4 7	•										-	•				<u>_</u>	;						<b>.</b> .						~	1							
			Ś	)		2		m	•	I			[]	1	٦	I		51							ማ		r	• •	r		רט י-י	) (	ഗ	· ~	•			٢	
	ר א	23		26	œ		10	-	10	ւտ	r	12	1	21		N	l v	)	77	24	-	17	Υ	. ი	m		~		4	9	2	5	1 00		1	m	- <del>1</del>	11	
																																	-						
			4						4	ı		Ţ	ı				~	1		ŝ							<del>.</del>	4					7	9					
										-																													•
												_							_		_		-						_			<u>.</u> .			<b>_</b> .				
					-	-	4	•	ന			- ^				Ч	•	-		4	-1					-	D			5		4	•						
																~														r (									
			m	Ч	24		15	4	m	11	m	ഗ		2		7	ഗ		Ч	4		~1		Ч		r	n ~	. LT	2	σ		ω	I						
		н,	ഗ		Ч	ഗ	m	4	<b>r</b> -1	m	I	ч				М		2	2		m				4		ſ		I	ഗ	2		'n	2				4	
			2		ო	Ч	ч	ч	-1	2	I										2				Ч		ŝ	I	ч				ч					2	
			~1	ศ	m		-1	2	~1	2											ч						2		. 4									Ч	
-	I	m	ч	m			m		9	2	0	9		G		ហ	2		ഗ	æ		o	Ч.	<b>V</b>	2	r	- ന			2						9			
		<b>б</b>	ഹ	ഗ		m	ч	৩	~7	ч	-	9		5		י. ה	2		m			-1	-	ч	ч			9	4	5		2	1						
							Ч		ч								Ч												•										
									-																			•											
				<b>F1</b>	1.1		Ц	7	2	(1		7				-				m	7.5			Ч	(	ר ה	Ч			15		თ	18	17				14	
	•		38 0			99		4 4					2		6 8 9			17							52	~	11	42	76		58								
	17	<u>г</u>	2	60	17		Ч Ч	Ч	34 4	36	81	52		63		37	23		50	46	1	72	75	51		r a	5 4 7 4			ø						91	86	m	
38026	38029	38030	39002	39004	39005	39006	39007	39008	39011	39012	39015	39016	39017	39019	39020	39022	39025	39026	39027	39028	39029	39031	39032	39033	39034	07075 50077	39038	33040	39042	39044	39051	39052	39053	39054	39055	39061	39065	39068	

ŝ

C. 10

LAKE																						m									-1										
28 H29 I																																									
127 H																																									
I26 н																				2																					
125 F	32		٣	1 7	2		থ	ð	1	6 8	17		9	2	21	24	34	50	26	5 C	20	17	ი წ	13	21	17	28	18	34	32	σ	22	48	61	17	30	48	'n	52	52	
i24 i	15						m	v		ч			13	26			21	16	۱Ŋ	29	м	25	15	7	20	25	23	25	22	53	25	24	Ľī	17	9	23	11		σ	16	
423 i	2	19	26	5 S	13		Ч	4.	۱	10	16						ч		ч		7		ч	r-1	'n								ч		2		2		2	2	
H22 I																																									
H21																																									
H20	9				2		ч	7	-		m		Ч				Q	හ	ហ	m	4	m	ົ	8	4	m	ഗ	m	9	ഹ	0	4	ወ	11	m	ഗ	თ		ი	ማ	
61H																																									
H18	18			<del>، ا</del>				4	727		ч	m	23	50		<i>.</i> -1	26	တ	٢	36	თ	37	14	ч Г	8 0	40	32	0 7	28	52	44	36	2	9	5	31	5	ч	ഗ	ഗ	
H17																																									
H16	Ŷ						S	v	•		•		14	0 11			ഗ	r")	Ľ	φ	ω	ç	m	ŝ		2	9	~	ഗ	ን	ω	9	2	Ч	თ	ഗ	7			Ч	•
H15																																									
H14																																									
5 H13						4	Ч																												2						
1 H 1																																									
TH 0		н	ر س	~				5	) <del></del>		44				ч						ч														_			_			
TH 6	ம		-1		m			~			m						ň	9		2	თ	н	4	~							-		in .	-1	-		۱Ô		N		
8 HO	2			г			ч	7			-1							e	Ч		m		N	m.							Ľ	<b>,</b>	2		-1		N	ч	- L	ч	
7 HO	ч		ч	2			ч	,	1		-1							r-1	ı				,-1										ч				ч		m		
06 HC						æ	ň	-	14			ማ							ч		m			9											ч			S			
05 H(			m	14	ч		с С				ហ						'.		m				ч															Ч			
04 H							ч	-	1																										3						
03 Н	12								1				43	12	75	75	ഗ	2	17	9	16	9	Ч	11	7	8	<u>ں</u>		Ś	ഗ	01	9		m	35	ហ	12		3	2	
102 H		79	61	6 C	73			4	•		44							-1	ſŊ		m			2																	
H TOF						88	66	c c	ა თ • ო		2	88			2			2	17		21		<b>~</b> 1	32											с Н			78		11	
NO F	69	173	174	75	176	22	78	۲ د		92	57	01	13	14	90	31	04	S O D	06	07	08	60	10	11	17	20	21	24	10	02	:9 0	9 0	0.7	10	11	13	14	15	18	20	
	0	<u> </u>		0			$\sim$		$\sim$	-	$\sim$		$\sim$	$\sim$	$\sim$	~	~	~	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	~	~	$\sim$	$\sim$		~	~	$\sim$	~	~	_	_	~	_		

C.11

	129 LAKE			ſ	۳I																																		~	1.02		
	n2/ H28 H																																									
	97H					-																																	4	9-	-1	
	072	66	ტ ო	m m	່ ດ ເລ	16	15	36	9 د	с С	5 M	40	ហ					-	I	49	8.0	2		13	23		4 U			9		ы	4	11	4			ы С				
V C D	F 7 C	19	ω	26	10	28	œ	11	18	v		ч 4								2	-	ч	~		Ч				-	m I	υ,	N	Ч				ч		ი	8 7	<b>7</b> 4	
ссл					m		m	4		ç	2													т	5	1	M H							M rH	Ч			თ				
ссн																																							ഗ	7		
1 C H																																							10	о о Т	) r	
H20		11	2	ч.	1	m	m	Q	œ	7												r <del>,</del>		4	ഗ	C	ን				-	4	(	2	Ч			m				
6TH																						Ч	1	~		н		ſ	1	-	• -	4	¢	N 1	-					-1		
/ H18		0	m	50	ι Ω	ማ ነ ጠ	տ (	00	28	N -	ς Γ	0 T	Ч						-1	æ	с <del>т</del> З	<b>-1</b>		-	2	¢	V		٣	)	· -	4 F "	- L 4	ה ת ז	יי	26	32	ſ		1.9 1.3		
LH S				-																																		ć	2 1	9 H		
5 HIG		~1	•	01	ſ	- ( 1	-1		Υ <b>ι</b>	-1	-										ſ	י רי ר		,	<b>ч</b> ,	- r	4 H	ŝ		28	n n	- 1	10	0 -	4							12
4 H1																																						C	р. -	777		U
3 H1.										_		.,																														
2 H1								<b>-</b> -	-	• •		•							,	-	- <u></u> r	ч _. с	<u>י</u> י	<u>.</u> -	-,	•	1, 4	4	. ~	.ო	2	2	•	7		¥ 1			•			
1 H1												-	.4						_															-	•					2		
TH O.						ý	۱ ۱			~	) 4	• •	4	0	30	• •	, v r	× -		n •																				·		
LH 61		~	4	~	4						0	י ר	4		- •	•••	•••	••		-							i Un	æ	52	m	7	11	m	9	1					ΤT		
18 HC		ר ר	•	~	4						e	,							_		•			~		4.			~	4	Ч							2	• •	ለማ		
17 HC		m	1	-	4						m													~					on 	2		Ч						Ч	ſ	N		
06 HC						ч	ı			س	,	2	2	~	1.00	0.01	, -	1 10	) (	:		ŝ	<b>7</b> 4	.0	•	_	•		4	-										Ч		
05 H(											<b>س</b>	2	 		l			• – ·:	i c	:	1		•			-	-	- - -	16	"	9	9		9	Ч	φ	ഗ					
04 H(						2																	<b>c1</b>	•		• •			2		Ţ	-		Н		4	Ч	Ч		Ч		
03 H(		L L	თ	æ	~	5	0	m	ч	m	3	ч						2	0		ন্দ	ۍ	m	~	~	~	_	~ ·			-							m	4	0		
02 Hi						CN.	( <b>N</b>												-1		-1	•	7 1.	О	- •	~		~ •		-	`¥ ب	υ ι ι		4				~		20		
01 H						5	14		16	8		5	17	0	4	5	ņ	თ	9		ъ	9	ч	4	г	;; 9	-	<b>~</b>	,	ъ.		, , ,		m	~	10	ຕ ຕ	~		27		
H ON	21	22	24	25	26	27 1	28	1	J6 4	11 4	33	. 40	9 9	5 21	8 8	8 6	0	2	4	6	з 6	5	6 4	ч м	8	<u>م</u>	а 1	0 N 0	, ,	+ -	5 ·	4	~	40	5 60	3 56	31			(7)		
NWA	410	410.	410.	410	410	410	410	418(	418(	4200	4200	4200	1200	4200	4200	4200	4201	4201	4201	1201	4300	4300	4300	4300	4300	4300	4301	4 C C L C L C L C L C L C L C L C L C L			4 5 6 6	4400.	4 4 0 0 °	44004	44006	44005	44005	45001	4 5 0 0 Z	15003		

.

D

4

NWA_NO HOI HO2 HO3 HO4 HO5 HO6 HO7 HO8 HO9 HI0 HI1 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 LAKE

•

•

	ч			•،	n	ω	I		~					_	_																							_		
	ч									• •	1 4	~~~	1.1	30	4	1		<i>₁</i> −1		٦	e=1	00			۲. ۲	ידי ( ה- ו			I	9		12	1		4	I	ſ	ı	۳. ۲	1
- 1	ч																																							
		5	1 m	~	י	4 1														Ч	Ч	m			ч		2	N			-						Ч	I		
	16								m																	•														
	æ	n L	1 8				ì4	16	ம்				Ч			2		25	Ч	31	23	m	ტ ო				Ч	N	37	Ч			c,	)						0
	m																																							
				11		9	2		4	m			8			თ	13	4	ດ		9	9	m	13	4	4	7	ΓT	~	S	4	m	m	- <b>-</b> 1	m	10	2	ഗ		m
	13	28	n n n				24	37	4									14		20	11		21				Ч	~	25	e-1			m							Ч
	4								Ч																															
	-1	2	i m															Ч																						
	16	10	- 1 4	~	ი	Ч	8	ഗ	m	2			7			σ	13	œ	1	5	თ	S	10	10	Ч	m	ব	7	14	Ч	Ч		m		Ч	80				2
	~			57	6 5	42	20		21	19			35			41	60	28	6 C	19	34	32	23	59	26	20	29	ы С	20	5 M	53	22	42	13	21	50	32	48		45
	m			~		~			•	~				~								_																		
				[-	(N	28			01	M	m	58	ä	9	43			4	23	<b>V</b> "	খ	ወ			41	15	10	m		22 23	13	40	m	14	47	7	24	2	83	Ч
		ч	ч	ч				ч	m	2	N	m																												
																										•••					Ű									
	2	9	თ					4	5	ч	Ч																				2									
	m	4	2		m		4	9					4			5		4	м	ω	2	v					5	~		m	 0	-	æ	m	Ч	2	۵	m		đ
	-1	4	2		ч			5	5				2					m	г	4	г	۔ س									- •		ਜ 0	 	•••	2	ал. ал.	~		ř.
	ч																															1	Ч					-		Ч
	თ					•												2		м	ч	m								<b>,</b> -4	4		-1	m		5	<del>თ</del>	2		m
		80	4					12									۰.																Ч							-1
		2		δ	H	ч	m	e.	6	00	14	σ	51		æ	27	4	7	رو او	г	8	6	m	9	S	m T	0	С С	7	Ś	ഗ	2	γ	6	ņ	œ	Ч	4	4	2
	9	17	10				20	10	ч	, <b>.</b>			• ◄			~	. 7		-1			-		-	~	4	1.1	( 1		Ч		14		U)	Ч	Ч	-	11		
							س	•								2																								
	Ø	2	m					ч																																
	45004	45005	45008	45009	45010	45011	45012	45013	46002	46003	46005	46007	46008	46802	46805	46812	46818	47001	47004	47005	47006	47007	47008	47009	47011	47014	47015	47016	47017	48002	48003	48004	48005	48006	48009	48010	49001	49002	49003	49004

C.13

AXE											<i>i</i> -4						0																								
H29 L	r-4	٦		9	Ч		m																														m			-1	
H28 :																																									
H27																																									
H26	r-1	2	2		m		ω																														m			~	
H25		-1				Ч				24		18	20		ц С	φ			ι∩ Μ	31	21		21 2	17	16		94 1	Υ Υ	10	21	2 T	m		m	16	37					
H24	24	Ч Л	15	25	25	m			φ	ω	13	2	0	Ч	ω	8	æ	8		2	2	Ś	23	ហ		3		4	თ	2	1			11	24	н	80 I 100 I 100 I	ς Υ	26	10	
H23						2				ŋ		22	25	ഹ	22	29			2.6	ထ	20	23	œ	ст 0	27	21	80	l	28	19	20	32	28	1 N	8	12					
H22	4	Ч	7	2	5	7		٢	Ч		2						φ	2																			2			2	
H21	15	23	Q	12	m	20	Q	4	22		21			18		5	10	ወ			2	г 7	50	~1		24		1	11	2	N			0	24	I	~	77	2		
H20										5		4	8		7	01			œ	9	m		4	m	2		2	<b>н</b> 1	N	m	m	Ч			<b>س</b> ۱	۵					
H19																			(1) (1)					-1				9												7	
H18	ტ	11	ß	9	œ	<del>г</del> і			10	20	φ	φ	7	٦	ഗ	2	φ	m	8	~	m	~	9		2	2	4	¢	œ	m	m				6		<u> </u>		5 H	24	
H17	32	19	42	17	31	28	2	77	21		23			10			ഗ ഗ	26			Ч	Ч	m	ഗ		Ч				~	Ч			10	m		14			12	
H16										4		4	B		2	٦				10	Ч			Ч				б, Ч	-1	r -1	Ч				•	4					•
H15	4	2	ማ	9	15	2	40	3									ų.	14																-1		•	m			Ч	Ċ
H14																																									
H13									2									ы		2	• •	4		-		-	<b>М</b> .	m		н <b>,</b>	Ч			-	•	-		•	Ч		
H12				2							ч																														
IIH																																				ı	5				
HIO				ч						3	2	Ч			н				v	Ċ,	2			2	4		4	0		ო	2				•	<b>d</b> r (	2	I	S		
H09	н	Ч	2						m	۰ľ	ব	2		m	ч	σ	ч			5	2	Ч	2		Ч		~		ı	2	2				<b>м</b> 1	л (	~ ~	-	H.	4	
H08	0	M	М	'n		Ч			-4	г	-1	2			Ч	2		3		~	r-1			г			Ч			Ч	Ч					2	m		Ч	ഗ	
Н07										ч		ч								-1	-1						٦			Ч	Ч					H	-( (	ŋ			
H06	ч	Ч	Ч			m		4	9	5	4	ч		9			~	ഗ						~			н	13						Ч			Ч			ሞ	
H05 1						4			5		ഗ	2		ഗ	m	~		ማ			2									7	2						01		14	ഗ	
104	m	2	ഗ	11	5	11	40	m	2		m		ы	31	Ч		ഗ	20			m	6	m	16	Ч	m				m	m	-	m	36	ഗ		ο o	N	m	29	
E O J	2	-		φ		18		2	18	Ð	ដ	σ	19		8	-1	61	~1	5	ი	m	m	Ч	4		4	æ	26	Ч	m	m				<b>н</b> і	m	ю ı	л Н	0		
H02				~		m		ч	Μ	2	~	23	16	18	21	23	г		œ	ഗ	28	v 7	'n	19	ნ Ⴏ	44	0		28	28	28	63	69	22	ഗ	11			Ч	ч	
1 TOH										9									r:	81	4			3			18	15		J.	4					11					
A_NO F	1000	0002	0006	0007	0012	1001	1002	1003	2003	2004	2005	2006	2007	2009	2010	2011	2014	2016	2020	3002	3003	3005	3006	3007	3008	3009	3013	3016	3017	3018	3022	3023	3024	3025	3026	3029	4001	4004	4006	4008	
N.	ഗ	Ŋ	ι M	Ń	ທົ	Ś	Ś	'n	'n	Ś	ທີ	'n	ທີ	ທີ	Ś	'n	ú	'n	ŝ	Ω.	ທ່	'n	ú	Ś	'n	ហ	ú	ິດ	ທ່	ഗ	ഗ	0	'n	ທ	'n	ഗ	ហំ រ	ñ	ம்	ທ່	

. . . .

C.14
WWA_NO HO1 HO2 HO3 HO4 HO5 HO6 HO7 HO8 HO9 HI0 HI1 HI2 HI3 H14 HI5 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28 H29 LAKE

•

•

•

	4		·	I	
	C 4	ው <u>ጣ</u> ግር	1 00 Cl	N	H 0 0
		N			214
	19	10 010 11		00 F	1 1 1 4 0 4
5	22	19	4 4 H W	7	* T
с <b>1</b> с 24 с	1000 1000 1000	1000 4000 1000 4000	16726851 1226851	4 0 0 1 0 1 0 0 4 4 1 0 7 1 0 0 1 0 0 4 7 4 0	13
19	TO	53 4	30 16	4 ri	12
	രഗ	л 6 H	n Qu	H	
0 4 M	17	- N - F	1 7 4 0 M H	<b>2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</b>	11
14	പ	4.	r 6	Н	m
		0 0r		8 M H	
-1 10 4	4 N C	وشوة باسلام	MMORFOM	ろりらず m m n v o o o o o u u u	ω
-	04	4 HHV ØF	а аа ма	a r na r r	m
	<b>4</b> U	v	4 1	n d	
	~ ~		<b>a</b>		
	30		10	ц	76 43 643
••			1	<del>-</del>	
ഗ	٢		トーン	C: 141 00 4	
9 19	្រប	) ww H v	5074 1	6 141201 8	
2 2	~ m ~	1 m m m m m m	20 20 21	Nm-1m m .	4
<b>н</b> н	Μ	чч 0°~	1 1 1 N		
ы н И	~	۲ ۲ ۲	ന H N H ന	т очн он н	
e-1		-1 <b>4</b> "-	r f	^ማ ወ 4	
<b>ط 4</b> 0	-1 a				
н м м	0 1 0	۱۳ ۱۵ ۱۵	ч ч момъю		•
 		- K K			-
F 53	- <b>u</b>	- (4 C	2 m	- 1000000000000000000000000000000000000	יי
Ъ€		64 P	1 80		<u>ባ</u>
_					
4010 4011 4011	4013 4014 4015 4015	4019 4019 4019 1022 1025 1025	4034 4038 4041 4041 1043 1048 1048	00000000000000000000000000000000000000	0901009100910091
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>፞</u> ጞ፟፟፟ኯ፟ዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀ	ሻ ሻ ሻ ሻ

LAKE
ii29
H28
H27
H26
H25
24
H23
H22
H21
H20
H19
118
: 11
16
15 H
L4 H
3 H]
2 H1
Н
LTH
HIO
60H
H08
H07
90H
H05
H04
ноз
H02
Н01
Q.
NWA

	4	
0004040000 00	5 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	しょうこうすう こうりょう
	· - 1	
80121 421 80127 4421 80127 4421	14 10 14 15 14 1 14 10 14 15 14 14 14 14 14 14 14 14 14 14 14 14 14	74 0190 000000000000000000000000000000000
		10
мц 01 0740 м 01 2724		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		N
	יייש אינאיש.	ແຜຜບ4ບ40ພຜ ໄຜບູ
		N
	•4	
מס מהשמת יישים מישים איידיים איידיים איידיים איידיים איידים איידים איידים איידים איידים איידים איידים איידים איידים אייד	1 04804 048040 004 04040	917 M M 70
8084 40888 8084 40888	6 F 97978 99 4	5740 64 7255444 5540 55 1555 5740 555 1505 1555 1505 15550 15550 1555 1555 15550 15550 15550 15550 15550 15550 15550 15500 15500 15500 15500 15500 15500 15500 15500 15500 15500 15000 15000 15000 15000 1500000000
- -		
10044001 4007104401	9000 20 20 20 20 20 20 20 20 20 20 20 20	00 0000 000000000000000000000000000000
	••••	. .
4		•
	г	ww N N N
HO 0 1 14	20 FWF4 20	ŝ
W 4 4 4	1 N MMC4+1 4	ы ог т т огч
-л мн	ч н	
60 5 6	, , , , , , , , , , , , , , , , , , ,	よ そを89717200017500470
5 F 7 F 6	א די א טע	- 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20
54 1 1 1 1 2 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10110000100100000000000000000000000000	11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	et et -1	
54818 55002 55005 55005 55009 55009 55011 55013 55013 55013 55013 55013	0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ធាលលក្លសក្លក្លក្លា	លើលីស៊ីស៊ីស៊ីសំសសសសត្វតីស៊ីស៊ី	រ ៣ ព័ត៌ ព័

LAKE																							I					· 1									ſ	2 1	1
H29	9	æ					Ś			œ				44		n		2			Ч		12	2	۱∕۱	m					2	m	2	2	~	о, -	-1 o	0	, I
ii28 i																																							
H27																																			r-1	11	5	, vo	,
:26 i	34	31	18	20	42	21	46	17	ں ۲-1	ទទ	28	ŝ	17	75		37	12	12	м	m	12	5	0	16	25	77	10	12	~†~?	E	თ	15	ω	11	~ '	<u>ہ</u> م	τu	o co	35
125						2		ഗ					n		9																								
124 F	9	ч	H	11	ഗ	4	13	ΙI		9		11	12			л С	32	2	৩	ч	ß	ഗ	Ţ	15	14	7	ഗ	ഗ		ഗ	11	11	۰ ۱	21 21	9		ç	4 O	10
23 H						. -т		4					m		9																								
22 H																		80	თ	10	7	с О	4	Ч	ഗ	~	5	æ	r	2	æ	9	ω		r •	a 0	<i>.</i> -	1 17	
21 H	ഗ	2	ß	ഹ	9	ហ	m	m	ഗ	m	ഗ	m	ጠ			ມ	01		ч					ເກ			i-1			Ч								m	6
20 H			• •			-		Ч					ч		г																								
н ег																													4								σ	5	
18 H			ە	7													ч		m	m							ы	4		2	و	4	4	പ	ч	ſ	4		
L7 H:	9	4	-	ഗ	0	2	2	Ś	4		4	ഗ	ഗ			9	9	9	8	ň	1	۲u م	0	2	5	'n	ດ		0	6	9	8		ה נ		ρv	<u> </u>	ı س	
16 HJ																		u	U	1-			(*)	(*)	C1		æ			4.	4	(°1)	σ 1		ש ו (v u	ı	Ч	
5 H]	1	4	4	2	9	9	9	m	0	r.	-	0	m	o		۰.	4	თ	ч	2	2	m	4	S,	4	0	2	~ (æ	5	v	0	m, ·	4 1			• ~	·1	6
4 H]		v					Г		4	-	" 1	~		-		-1							m		-	Ч						-	-		-1 r	ገቦ	• •		
.3 HJ																																							
2 HJ	•																																				8	0	
1 HJ																																						Ч	
СН 0	ო	৵	m	ω	ഹ	m	4	4	5	2	4	৩	ধা		ω Ο	4	ч	ч							2	Ч	-1		N		ч			-4			~	. 1 7	4
- 6 1H 6						•									ч				C1	4	Ч	ч					4	~ (m,	ব	2	বা	đ			n	~	M	
8 НО	-		ഹ	1		5	N	č	2	Ъ	2	m	m		ч	4	N	ч	2	ч	ы	ч				-	N	~	-	2	~	<i>с</i>	-		- 1 -	-			
7 НО	ч		-1	ហ	2			N					N		ы												 												_
OH S					~	_	~			~		_			ਜ	~			_					~														•	-
ОН	~		-			•••	••					•••		_		•••	·, _,	~~					~	• •	~ .		~			~	~.				_				ř
ЮН			4	Ä.							_			-			4	m		_			m	_	(1	4	m	ব			(N	m			ť	N		4	
H04	1	w	24	7	h	27	Ψ	8	^m N	U 1	2	ω	5		В М	14	(N (H		m	m				Q			12	U) ·	4	2	ব	m	m 1	Ģ		00	1	, -1	21
EOH :																																							
H02				7		г		10					10		18																								
тон																																							
A_NO	7005	7006	7008	7009	7010	8001	8002	8003	8005	8006	8007	8008	8009	8010	8011	9001	9002	0002	0003	0004	0005	0000	0001	6000	0012	0013	1001	1002	1003	1004	2001	2002	3001	3003	4001	2005		5004	3005
Ř	ហ	ഗ	ហ	S	ഗ	Ŋ	ń	Ń	ហ័	ເກັ	ທີ	S	ທີ	IJ,	ທີ	ŝ	ۍ ۱	õ	ō	õ	õ	õ	õ	9	9	ō	ò	6	ف	ò	9	, e	9	ø	ō	οv		0	9

- .

•

AKE	T									m	18 1		m				Ч						Ч	г					Ч								Ч				
:29 L	œ	12	14	Ч	9		Ч	7	28	26	14	10	σ	۰	51	23	12	м М		•5*			11								Ч		13				27		29	85	
H28																																									
H27	ω	N	9 ;-1						œ	9					٢		2	12																							
H26	80	14	2	~	ß		4	01	14	თ	22	r	12		32	Q	ω	4		2			9						m	N	Ч		9			4	10		21	9	
H25																																									
H24	4	m		11	12	Ч	22	11	4	17		8	18	21	ч	m	15	15	0 0 0	44	43	48	40	46	9	с S	4	46	32	62	42	4 J	21	63	92	72	34	60	m		
H23																																									
H22	7	2	Ч	9	5	4	ŝ	7	m	Ч		9	4	0		ഗ	4														-1										
H21	8					٦						e		9			Ч		Г	-			0						S	-	7		9			m	2				
9 H2 0	_		•																																						
B HIG		4		ю	N	m	m	2	-	-		~	~	~	-		~	N	0	m	-	5	10	~	<u>م</u>	-		~	~		m	0	_	-			_	10			
LH C	9	y Q	'n	~	~	5	m	2	0	-		4	ი	~		4	 თ	m	Ä	~	H.	Ä		H	Ä	ř.	Ϋ́	Ä		Ļ.		ř	 	ř.			•••	ਜ			
6 HI	Ч	Ч		m	Ś	-1	m	۱Ŋ	1	Ч		4	0			m	2																								
5 H1	2	L I	9 9	4	2	، ٦	2	œ	م ب	<u>م</u>	9	2	1	ı۵	თ	ნ	ພຸ	-		9			v.						Ч	4	N		9			ហ	4		Q	9	с. 18
14 H]		v	-							-	v	-											• 1										-				-		~		
13 H																									•		. .														
H 211																		~													I	ч			2						
111																			~	ч	m	m		m							4	m			9	ч					
HI0 I		Ч																-	12	ഗ	14	12	۲	17	ς Γ	16	6 I	L	٢	თ	4	m m	2	ч			4	14	m	Ч	
40H	2	0		খ	ч	ч	2	Ч		ч			Ч	0			e 1	щ				-					Ч	4			N						Ч				
Н08	ч	Ч		0	~		4	2		ч			Ч	Ч			2		Ч	r-1	Ч	ч															ч				
Н07	4			m		ى ،								4 "			-1		m	н	4	4	ч	2		М	~1	3	'n	3	ú (m									
90H	Ч	Ч		8		29	ტ							16			•1																								
HO5	11			თ		15	2	Ч				Ч		13			(1	Г	17	11	21	n H	m	18	н	ጣ	18	15	13	2	L L	5		4				S			
H04	σ	m	47	œ	-	21	œ		2	1		-		ທ 			Ч			4	-1		σ.		_		_	~	23	S	10		32			15	11	8	8	Ч	
2 H03																			m		-	Ч	~		10		r	12						17				~			
1 НО																																									
OH O	9	7	1	ч	2	4	ഗ	9	Ъ	Ъ	'n	ഹ	9	8	0	n	ഗ	8	F	e	4	ഗ	6	7	0	4	Ś	0	B	ч	7	n	2	8	σ	0	2	ч	4	2	
MA_N	6500	6500	6580	6600	6600	6600	6600	6600	6601	6700	6700	6700	6700	6700	6701	6701	6701	6701	6800	6800	6800	6800	6800	6800	6801	6801	6801	6802	0069	6901	6901	6901	6901	6901	6901	6902	6902	6903.	6903	6980.	
ا به																																									

•

8																													7	7						7		
8				11	43	7	28	ιι	21	12	10	23	23	66	17	ማ	17	16	18	ი	17	16	26	8	20				15	21	16	12	24		25	15	9	v
															7		2	m	m				ſ						12	10	ഗ	٣	16 1		ഗ	11	m	
ч	Ч			16	35	16	61	20	18	18	20	26	25	4	17	20	17	80	16	47	31	14	29	41	28	ب ،	ч	2	10	23	13	2	13	9	۲	10	· •	2
46	42	ភ	46	42	7	44	50	39	37	41	38	12	12		17	S S	17	12	11	17	24	27	14	17	21	69	66	28				m		19			თ	
7	5		-	ć	ч	m		Ś	~	e	m	4	4 1		3		м М	m	m			ד 0	I					9	4	9	Q	2	7	¢	9	4	6	С Г
																						Ч									• ·							
																													20	4	9	4	16		10	19		
7	9 9 0	m	25	2				_				~`	~,		ч	5		2	7	ч	Ч	~	۲	Ч		23	21	4	5	0	4	۰ ۵	~	б	2	2	8	0
															ω		01	н П	14			i v	v					44	17	20	с 4	ň	L	25	ι Γ	18	47	c u
				5	œ	٢		7	ιı	∞	Q	11	11	24	12	ω	12	18	13	5	m +1	12	8	12	23			16	2	ഗ	'n	₹	m	Ś	7	2	4	-
		г																																Ч				
Ч		ഗ	2													7											7							М				
L L	7	43	14	m.	. 77	'n	2	ጣ	m	m	ш	m	m	Г	'n	æ	m	3	m	80	ഹ	7	ধ	13	m	Ч	Ś				2	ч	0	4		ч		
			Ч	r		\$		ч	ч	Ч		m	m		ч	н	Ч			•		ы		2			щ		Ч				Ч			Ч		
			2	٦				Ч	Ч	Ч		Ч	7		2	9	2		H	Ч	7	г		m			Ч		ч		Ч		1			Ч		
								Ч				Ч	Ч		Ч		Ч		۲				Ч								г	ы		Ч			Ч	
				0				4	2	2		ო	ო		4	١.	4	ŋ	m			7	2									2		3				
8	5	19	10	Ч		Ч		'n		0		4	ഗ		4	Ч	m	-	4				2			ഗ	m				m	ഗ		m	-1		7	
12	8	12		89	2	16		4	4	Ø	17	9	9	9	9	2	9	11	7	m	4	4	4	m	S				10	m	9	10	Q	15	9	10	7	(
002	004	0006	0803	1001	1003	L004	1005	1006	1008	1009	0101	1011	1802	1804	2001	2002	2004	2005	2006	007	008	600	110:	1183	2814	2817	2818	2820	3001	3002	3003	3005	3007	3008	3009	010	1101	

. C.19

AKE		9	9	7	Ч	ц	4	m	I		0			٦	m		Ч																						ا م	Ч
8 H29 1	27	29	24	ማ	32	11	17	8		14	21		ŗ	14	25	ŗ,	12	۲.	5		80	32		18	12	29	r-1	16	ω	19	80	20	6	12	20	10	~	16	ц С	13
27 H2	22	37	33	13	28	თ	13	55	б	8	10	ч		m	8		2		ហ																					
26 H	22			ч	2	2	~	۲		10	۰.	7		~	4	9	'n	20			19	20		01	ъ	9 1	12	37	2	4	2	m	.~ ^	2	5			m	ч	
125 H																																								
H24 F			4	27		22	ß	m	9	19	12	2.7	50	2.2	14	31	25	19	38	34		7		16	1.	0 4	64	28	10	ধ	15	თ	9	۳ ۲	28	r=1	ч	20	22	
H23																																								
H22						m	m	٢	9	0	~	m	ч						-'										~		~	Ч		Ч		ഗ	Ч		n,	н
H21						IJ	4	2	m	თ	9	m	ч	Ч	2		г		~																					
H20																																								
8 H19	16	15			12	9	11			4	15		Ч	4	11	_	1					_							m		m	Ч		2		н Г	Ś	Ч	8	
7 H16	~		п п	сл гт		_	~	е	~		•	8	~	9 2	m	~	8	4	പ	16		9		-	•		~	œ	m .0	4	2	4	4	л о		•			- .	•
9 HT.			•••	7		8	г	4	4	H	Ū,	N	0.						51					Ч	1	U	(v		2 TE	.,	5	8	4 E	1 20	Ψ	0	1 34	Г	011	n
5 H1			ч	2		ហ	ഹ	1	0	თ	۲	9	Ţ	m	2	4	'n		80			1~	5	7	2	-	7		æ	س	ហ	7	4	Ч	m	0	~	ю	m. •	4.
14 H]									ι- 1														9	۲ ۵	6 4	8	4		4	с 9	5	э 2	4 3	۳ ۵	6 2	n n	7	ς.		
13 8							-															-		-	. ન				9	.4	7	ω	ហ		н.		-			
H12 H																	0	16			70			Ч	m		ഗ	Ч	m	4	m	-1	4	ч	N		খ	н , ,	юц П	n
HII H																																								
Н10	4		7	m	ч			Ч		-	ч	ч	2	থ		ഗ	9	0	~	7	2	m		Ч	ч	ч		80	ч	ч	ч	н	Ч	ч	-		rł			
н09				ч	Ч	Ч	2		ч	Ļ									ч										н		٦		٦		Ч					
Н08						Ч		0						ч		-	7		Ч	7								Ч	н	м	ч	-	٦	Ч	Ч					
H07				2								-	m	10		m	5	Ч		9				Ч	ч				0	2	2	0	7	-	2		Ч	-1		
5 H06		ß	٦.	~	4	छ स		-	2		v	ເ- ທ	e A	e S	-10	თ. თ	۲	0	сл сл			2 18	12			н	4	_	4	~	4		2	2	н 	~	~1 		~ 1	
4 HO	2	8	m	н 1 1	o	m	س	н		m	7	9 9	9	н 6		~ ~	г 9	ਜ	 ა	9 2,		0	છ						•	•••	•		•••	,			Ű			
03 HO			8	Ч	2									4	Г	Ч	e			2		н Н	(N																	
02 H(
H 10F																																								
NO	001	002	003	005	007	002	003	004	206	207	600	010	717	02	004	205	707	800	600	010	111	714	305	100	02	003	004	205	101	02	503	04	105	02	03	04	205	106	10	400
NWA	74	74	74	74	74	75	75	751	75(75(75(75(75(760	761	76(76(76(76(76(76(76(768	77(77(77(77(77(78(78(78(78(78(790	79(79(79(790		801

.

	٦		Ч	~1			I					-1	r=1				Ч				2			٦					2	~1	m				ć	~	c	V
Ч	15	49	4	13	24	14	37	н С	19	24		œ	73	1	11	13	7	12	28	19	ω	12	27	Ø	٢	12	22	19		m	10		ΓR	4	mι	م	Ċ	n
	~	Ч	4																															-	C	× 0	4	
	Ч	4		æ	CI			ம்		m		7		2	5	Ч						-1				2		7				•	-					
				39	11	14	32	14	69	61	30	55		17	9	32	17	79	23	17	17	36	13	51	32	L2	28	1	7	92	с 		ņ		(7		
				••		7	• •	7			w					•••	7	•			7		7	Ψ.	w					01		J (•					
67	4	-											•																				¢	7	•	-1		1
	2	S	4	ч	ň	č						8	б				m		2	ი	2			4			<u>م</u>				8	c	0 0	2	,	٥	N	,
							2	ч		80				4	ഗ	4	٢		2	2		4	9	9		4	۲ נ	7	Ч			าเ	n	-1		ſ	v	
14	11	۲	16	8	14	11		r-1	ч		ហ	1		0	m	9		ŝ	2	51	12	s	÷ł	ň		С	ŋ	თ			، س	- 	4 1	~ (א רכ	r	-	•
••	•••			8	• •	• •									1											<i>(</i> ¬						ſ	- <i>'</i>	-1 (ч -	-		
۲ د ر	57	91	11	10	5 L	19	14	٢	2	r		13	16	32	r=1 5*	53	2		13	ч	8	ľč	৩	m	7	35	ø	ŝ		m	1	-		х) г		7 U	0.5	•
	-1	Ч		2	່ ທ	•••		Ч				•••			, v	Ч										,		ň				ŗ	4	1 4				
					4																							ч				ſ						
3	22	14	58	7	13	3	থ	4	ч	m	10	2		m	2	m	4	m	г			7	ŝ	7		7		4			ŗ		۹ ¢	ρι Hr	<u>م</u> د	9 C		• •
					-1	ч			Ч			٦		Ч	-1	г	м				ω	Ч		ч		Ч		-1				-	4		~	•1		
						Ч											ч							ч														
					Ч	Ч			Ч			Ч		rH	Ч	Ч	2					r-1	٦	ч		ศ	г					ŗ	4					
	ч			Ч	Ч	7			ч			Ч		Ч	2	Ч	4					Ч	Ч	0		~		-1				ſ	v		~	4		
				ঔ	9		ഗ	Ч		N				9	m	ىت	1 U		24			ഗ	m	4		ഗ		ч			ſ	N						
	-1	~1	Ч	m			m	m	ហ	N	4	г		10	თ	œ	4		2		4	7	6	4		ማ	2				ſ	a u	D					(
																									м					Ч								
005	002	003	004	100	003	002	003	004	005	006	007	600	002	003	004	005	006	008	600	110	012	013	014	015	016	018	020	022	023	025	026		707	500	400			
80	81	г 1	81	82	82	83	80	83	83	83	89	83	84	84	84	84(84(84(84	84	84	83.	841	841	84	84	84.	84	84(84(100			ົດເ ໝູ	ກັບ ໝູ		ζσα	

.

••

- - -

C.21

•

щ	1 @ C -1 m m	
LAK		
H29		
H23	「 4 5 5 7	
H27	ት 10 Ch - H	
H26		
12 S	۰۵ س ۱	
124	L B B C C C C C C C C C C C C C C C C C	
123 F		
22 H	ч ч ч	
21 H		
50 H	ر م. م.	
6 H2	N N 700	
1H 8		
TH 7		
5 HI		
H16		. 22
H		υ
H14		
H13		-
H12	1 ユユユ ユ うらのらま ア Z	
НЛ		
HIO		
60н	m	
нов		
Н07		
106 J	m	
105	→ C2	
04 F	ч ч ч ч ч	
03 H	ν φ π π	
02 H		
iΗ τς	ದ್ದ ನಾ.	
Ĥ		
8		

. .

. . • • • .

• . .

•

. . . • . . ٠

••

NWA_NO	RIVER	LOCATION	o	AREA	SPR EVENTS	BFI
2001	Helmsdale	Kilphedir	A	551.4		.484
3001	Shin	Lairg	٨	494.6		. 55 2
3003	Oykel	Easter Turnaig	A	330.7		.239
3803	Tirry	Rhian Bridge	А	64.2		.275
4003	Alness	Alness	р	201		.451
5802	Farrar	Loch Beannachran	Д	243.5		.334
6003	Moriston	Invermoriston	٩	391		.291
6006	Allt Bhlaraidh	Invermoriston	٩	27.5		.291
6008	Enrick	Mill of Tore	A	105.9		.367
7001	Findhorn	Shenachie	٩	415.6		.369
7002	Findhorn	Forres	۲	781.9		.408
7003	Lossie	Sheriffmills	۵	216		.517
7004	Nairn	Firhall	A	313		.454
7005	Divie	Dunphail	Ω	165		.445
8001	Spey	Aberlour	4	2654.7		.581
8002	Spey	Kinrara	٨	7.1101		.575
8004	Avon	Delnashaugh	٩	542.8		. 553
8005	Spey	Boat of Garten	D	1267.8		.618
8006	Spey	Boat o Brig	4	2861.2		. 605
8009	Dulnain	Balnaan Bridge	A	272.2		.466
8010	Spey	Grantown	A	1748.8		.603
8011	Livet	Minmore	Δ	104		.632
1006	Deveron	Avochie	4	441.6		.588
9002	Deveron	Muiresk	۲	954.9		.579
9003	Isla	Grange	٩	176.1		.534
9004	Bogie	Redcraig	ሻ	179		.676
10001	Ythan	Ardlethen	Δ	448.1		.718
10002	Ugie	Inverugie	Ω	325		. 609
10003	Ythan	Ellon	Δ	523		.728
11001	Don	Parkhill	A	1273		.674
11002	Don	Haughton	4	787		.667
11003	Don	Bridge of Alford	A	499		.67
11801	Urie	Urieside	۸,	239		. 72
12001	Dee	Woodend	4	1370		. 533
12002	Dee	Park	4	1844		. 535
12003	Dee	Polhollick	A	690		.508
12004	Girnock Burn	Littlemill	4	30.3		.407
12005	Muick	Invermuick	A	110		.521
12006	Gairn	Invergairn	A	150		.541
12007	Dee	Mar Lodge	A	289		.487

IMA_NO	RIVER	LOCATION	o	AREA	SPR EVENT	S BFI	
13001	Bervie	Inverbervic	4	123		. 538	
13002	Luther Water	Luther Bridge	A	138		538	
13005	Lunan Water	Kirkton Mill	۵	124		.498	
13007	North Esk	Logic Mill	٩	730		.516	
13008	South Esk	Brechin	٩	490		.572	
14001	Eden	Kemback	٩	307.4		.6	
14002	Dighty Water	Balmossie Mill	4	126.9		572	
15001	Isla	Forter	4	70.7		565	
15002	Newton Burn	Newton	4	15.4		.577	
15004	Inzion	Loch of Lintrathen	4	24.7		. 625	
15005	Melgan	Loch of Lintrathen	۹	40.9		. 575	
15010	Isla	Wester Cardean	Ω	366.5		. 535	
15013	Almond	Almondbank	4	174.8		.441	
15017	Braan	Ballinloan	٩	197		.386	
15023	Braan	Hermitage	4	210		.466	
15024	Dochart	Killin	٩	239		.309	
15809	Muckle Burn	Eastmill	Ω	16.5		.528	
16001	Earn	Kinkell Bridge	Δ	590.5		459	
16003	Ruchill Water	Cultybraggan	ፋ	99.5		. 307	
17004	Ore	Balfour Mains	A	162		533	
17005	Avon	Polmonthill	D	195.3		.398	
18001	Allan Water	Kinbuck	Ą	161		.447	
18003	Teith	Bridge of Teith	۵	518		.439	
18005	Allan Water	Bridge of Allan	٩	210		.461	
18008	Leny	Anie	٩	190		.381	
18011	Forth	Craigforth	Δ	1036		.422	
18017	Monachyle Burn	Balquhidder	4	7.7		. 195	
18018	Kirkton Burn	Balquhidder	A	6.85		.394	
10061	Almond	Craigiehall	¥	369	51.55	384	
19002	Almond	Almond Weir	4	43.8	62.63 J.	.339	
19003	Breich Water	Breich Weir	ব	51.8		.33	
19004	North Esk	Dalmore Weir	ፈ	81.6		.538	
19006	Water of Leith	Murrayfield	Ω	107		.459	
19007	ESK	Musselburgh	Ω	330		.513	
19010	Braid Burn	Liberton	Δ	16.2		. 607	
19011	North Esk	Dalkeith Palace	A	137		. 53	
19805	Spittle Burn	Ninemile Burn	4	9.		.68	
20001	Tyne	East Linton	A	307	36.59 10	.519	
20003	Tyne	Spilmersford	A	161		.491	
20005	Birns Water	Saltoun Hall	<	93		.462	

SPR EVENTS . 43.05 AREA 569.8 о. 9 37.5 14.2 1.8 23.7 45.6 373 1500 499 4390 2080 119 139 159 5.7 56.2 648 51.8 7.1 11:0 ы 2 3 207 239 175 61.6 1 5 G 3330 503 113 174 198.9 277 59.5 21.4 64 231 0 AAAAO ፈፈወ AADDAAAA đ 44 AADAAAD a a ፈ ፈ 4440 4 AA æ Athelstane Ford Crichton Dene Thornton Mill Hutton Castle Ormiston Mill Eyemouth Mill North Belton Belton House Hungry Snout Brockhoperig Lyne Station Mouth Bridge Menzion Farm Philipňaugh Hawick Gordon Arms Lennoxlove Coldstream Galashiels Henderland Kirknewton Sprouston Lyne Ford Shillmoor Earlston Woodhall Boleside Dryburgh Cademuir Jedburgh Deephope LOCATION Blanerne **Jawkhill** Lindcan Morwick Bygate Norham Ancrum Fruid Etal Whiteadder Water 21022 Whiteadder Water Blackadder Water Whiteadder Water Hedderwick Burn 20804 Thornton Burn 10807 Woodhall Burn Ettrick Water **Gifford Water** Ettrick Water Cogtail Burn Salters Burn Yarrow Water 21015 Leader Water 21020 Yarrow Water Menzion Burn Megget Water Fruid Water 21019 Manor Water 21013 Gala Water Tima Water 21018 Lyne Water Leet Water Biel Water Usway Burn Eye Water 21024 Jed Water Ale Water Teviot Teviot Coquet Coquet Tweed Tweed NWA_NO RIVER Tweed 21009 Tweed 21010 Tweed 21032 Glen Till Aln 20007 0806 21005 21026 20006 21002 21007 0803 21008 21012 21016 21017 21025 21027 21028 20808 21006 21011 21030 1805 22003 22004 21001 21021 21023 21031 2001 2002

426 509 483

441

344 588 599

434 496 511 341

441

416

427

269 489 382 572 481 487 395 .46

447 .47

.43

559 499 397 446 517 514

307

608

567 641

BFI

243 691 507 . 32

MA_NO	RIVER	LOCATION	o	AREA	SPR	EVENTS	BFI
22006 1	Blyth	Hartford Bridge		269.4			242
22007 1	Wansbeck	Mitford	4	287.3			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
22008	Alwin	Clennell	٩	27.7			, 14 17
22009 (Coquet	Rothbury	А	346			473
23001	Tyne	Bywell	2 0	175.6			349
23002 1	Derwent	Eddys Bridge	٩	118	37.13	თ	426
23004	south Tyne	Haydon Bridge	٦	751.1		I	.34
23005 1	North Tyne	Tarset -	4	284.9	53.79	9	.269
23006	South Tyne	Featherstone	A	321.9	38.74		329
23007	Derwent	Rowlands Gill	۹	242.1			495
23008	Rede	Rede Bridge	А	343.8			.328
23009	South Tyne	Alston	ፈ	118.5			299
23010	Tarset Burn	Greenhaugh	ላ	96	49.22	9	.267
23011 1	Kielder Burn	Kielder j	ব	58.8			.335
23012 1	East Allen	Wide Eals	n	88			.341
23013 4	West Allen	Hindley Wrae	۹	75.1			.267
23014 1	North Tyne	Kielder temporary	٩	27			.346
24001 1	Vear	Sunderland Bridge	Д	657.8			413
24002 (Gaunless	Bishop Auckland	D	69			513
24003 1	vear	Stanhope .	Þ	171.9	46.92	ഹ	343
24004 I	Jedburn Beck	Bedburn ;	٨	74.9			.464
24005 E	3rowney	Burn Hall	ব	178.5	28.87	18	.516
24006 F	łookhope Burn	Eastgate ;	4	36.5			349
24007 E	згоwney	Lanchester	×	44.6	37.27	80	.449
24008 1	vear	Witton Park	A	455		I	.444
24009 4	vear	Chester le Street	ч Д	008.3			.457
25002	000	Dent Bank	4	217.3			.21
25003 1	rout Beck	Moor House	4	11.4	64.76	'n	. 147
25004 5	skerne	South Park	≻	250.1	24.58	ŋ	.523
25005 I	leven	Leven Bridge	ሻ	196.3			.432
25006 0	Jreta	Rutherford Bridge	A	86.1	46.49	2	.209
25007 0	llow Beck	Croft '	<	78.2			.536
25011 I	angdon Beck	Langdon	A	13	47.02	Ч	.197
25012 H	larwood Beck	Harwood	٨	25.1	67.67	2	. 224
25019 I	,even	Easby	A	14.8			.579
25020 5	skerne	Preston le Skerne	Δ	147			.368
25021 S	skerne	Bradbury	Δ	70.1			.461
25810 S	yke weir	Moor House	Σ	. 04	58.92	ഗ	
26007 C	atchwater	Withernwick	ፍ	15.5			.353
27001 N	idd	Hunsingore Weir	۲	484.3	42.28	12	.496

۰.

.451 .374 329 .369 507 676 595 319 475 562 685 366 407 375 284 588 158 439 BFI 87. . 427 483 623 671 354 454 .192 307 . 63 .47 271 443 513 391 411 401 612 695 561 491 24 24 SPR EVENTS 2 2 Ц ω 50.73 59.9 40.99 52.42 41.31 34.13 32.25 25.86 37.1 131.7 68.6 121.6 57.6 87.5 87.5 516 AREA 18.9 679 510.2 282.3 67.9 1586 59.2 165 245 308 1345.6 381 443 22.17 427 5 10.2 8.1 83.7 399 231 1634.3 42.8 19.1 215.5 71.7 50.2 97.4 1363 46.3 163 3315 4400 σ < 0 × Ω × Ω 1 А, < D D D **4444** Addingham Sandhills Bridge Crook House Farm Hamstall Ridware Kilgram Bridge Kildwick Bridge Stamford Bridge Longroyd Bridge Ashlowes Highfield Road Kirby Wiske Bransdale Weir Little Habton Skip Bridge Walden Stubbs Rocester Weir Leckby Grange Broadway Foot Ilkley Colne Bridge Buttercrambe Kirkby Mills Whittington Burn Bridge Cherry Farm Ings Bridge Sheepbridge Queens Mill Serlby Park Low Houses Northorpe Crakehill Sleights Richmond Stavelcy Normanby LOCATION Keighley Skelton Hebden Ripon Snaizeholme Beck **Blackburn Brook Blackfoss Beck** Pickering Beck Hebden Beck Hodge Beck Hodge Beck Spen Beck Whitting Derwent Crimple Doe Lea Derwent Wharfe Rother Wharfe Blithe Riccal Colne Swale Colne Worth NWA_NO RIVER Swale Seven Holme Wiske Swale Ryton Laver Sheaf Aire Nidd Dove Ouse Dove Rye Ure Went Rye П С 27010 27026 27034 27008 27014 27015 7027 7032 27035 27040 7044 27047 7050 7052 7056 7058 7062 27065 7066 1074 27009 27024 27041 27042 27043 27051 2054 27055 27059 27069 28016 27057 27064 27072 28002 28008 27031 27071 7067 27061

NWA_NO	RIVER	LOCATION	ο	AREA	SPR	EVENTS	BFI
28018	Dove	Marston on Dove	4	C 288			203
28021	Derwent	Dravcott	:	1175			100 100 100
28023	Wye	Ashford	<u>م</u>	154	15 07	σ	
28025	Sence	Ratcliffe Culey	14	169.4		'n	200
28026	Anker	Polesworth	×	368	48.63	ſ	474
28029	Kingston Brook	Kingston Hall	A	57) 	3	. 8 .
28030	Black Brook	Onebarrow	4	8.4			10.4
28031	Manifold	Ilam	4	148.5			ា ហ
28033	Dove	Hollinsclough	4	0	24.38	œ	.44
28037	Derwent	Mytham Bridge	n	203) ; ;)	406
28038	Manifold	Hulme End	A	46			2.5
28039	Rea	Calthorpe Park	А	74			4 8 6
28041	Hamps	Waterhouses	A	35.13	44.23	ſ	000
28046	Dove	Izaak Walton	A	8		3	
28048	Amber	Wincfield Park	n	961			י ר י ט י
28049	Ryton	Workson	4				202
28055	Ecclesbourne	Duffield	. a	50.4			0000
28058	Henmore Brook	Ashbourne	4				
28060	Dover Beck	Lowdham .	đ	69			- C - C - C
28066	Cole	Coleshill	R,	130			100.
28070	Burbage Brcok	Burbage	<	- 1 - 1	42.47	σ	447
28075	Derwent	Slippery Stones	A	17		x	575
28079	Meece	Shallowford	പ	86.3			604
29001	Waithe Beck	Brigsley	4	108.3	7.49	σ	843
29002	Great Eau	Claythorpe Mill	۲	17.4		١	882
29003	Lud	Louth	D	55.2			.899
29004	Ancholme	Bishopbridge	×	54.7	31.42	80	.455
29005	Rase	Bishopbridge	4	66.6			.541
29009	Ancholme	Toft Newton	ব	27.2			.515
30001	Witham	Claypole Mill	4	297.9	27.5	11	.675
30002	Barlings Eau	Langworth Bridge	~	210.1			.454
30003	Baın	Fulsby Lock	4	197.1			.584
30004	Partney Lymn	Partney Mill	4	61.6	22.21	11	.654
30011	Bain	Goulceby Bridge	A	62.5			.722
30012	Stainfield Beck	Stainfield	A	37.4			544
30013	Heighington Beck	Heighington	4	21.2			746
30014	Pointon Lode	Pointon	4	11.9			475
31005	Welland	Tixover	Σ	417	57.48	α) 1
31006	Gwash	Belmesthorpe	4	150			.69
31007	Welland	Barrowden	A	111.6			.444

355 939 .596 .412 .411 515 563 555 1 582 572 547 6 5 6 6 905 719 727 259 BFI 142 342 .71 602 408 506 .515 .653 .504 815 529 511 271 633 775 548 .782 283 728 .77 493 404 5 2 ω ۰ O SPR EVENTS 41.41 31.12 32.97 39.84 13.65 36.03 . 19.6 137.5 205.9 272 277.1 68.9 250.7 24.5 2.5 24.3 73.85 6.81 274.5 153.3 699 31.6 36.5 20.8 10.6 1634.3 89.6 74.3 194 232.8 46.9 3030 1460 4.4 223 107 AREA 803 388.5 128.7 316 201.5 541.3 47.5 138.1 198 2570 0 444000440000 AAA AA A < < 2 D 4 A D ADDAAAA> ADAD \circ Thetford Nol Staunch County Bridge Euston Mays Sluice Bourne Harrowden Old Mill Brownshill Staunch Ashley Market Harborough Thornborough Mill **Ryeholmes Bridge** Cappenham Bridge Focheringhay Old Mill Bridge South Luffenham Burton Coggles Fosters Bridge Rectory Bridge Melford Bridge Wootton Park Easton Wood Meagre Farm Chesterton St Andrews Empingham Bottisham Northwold Wansford LOCATION Brampton Dernford Egleton Dodford Bedford Blunham Marham Manton Willen remple Offord Flore Orton Jpton Nene Brampton Nene/Kislingbury Nenc/Kislingbury Gwash South Arm Wittering Brook Alconbury Brook Egleton Brook Harpers Brook Morcott Brook Grendon Brook Wootton Brook Billing Brook Flore Stream Bedford Ouse Bedford Ouse Bedford Ouse Willow Brook Bedford Ouse North Brook Little Ouse Little Ouse Bourne Eau West Glen West Glen Ise Brook Sapiston Welland Jordan Chater Wissey NWA_NO RIVER Ouzel Nene Lark Ivel Tove Thet Cam Nar H الم Can 31010 31016 31020 31025 2004 12006 2020 3008 3019 3020 3026 31022 31023 31026 2008 12023 2031 3002 3012 3014 3015 31011 31021 31027 2003 2027 2801 3001 3005 11061 13003 3006 3018 3022 12001 12002 2007 3007 3013 3024

NWA_NO	RIVER	LOCATION	ø	AREA	SPR E	VENTS	BFI
33027	Rhee	Wimpole	A	119.1			655
33029	Stringside	White Bridge	×	98.86	11.72	7	857
33030	Clipstone Brook	Clipstone	4	40.2			.377
33031	Broughton Brook	Broughton	4	66.6			389
33033	Hiz	Arlesey	A	108			851
33034	Little Ouse	Abbey Heath	A	699.3			
33035	Ely Ouse	Denver Complex	Д	3430			498
33037	Bedford Ouse	Newp't Pagnell Wr	٩	800			497
33039	Bedford Ouse	Roxton	٩	1660			. 543
33044	Thet	Bridgham	A	277.8			745
33045	Wittle	Quidenham	4	28.3	21.93	7	644
33046	Thet	Red Bridge	٩	145.3	1		633
33048	Larling Brook	Stonebridge	A	21.4			628
33049	Stanford Water	Buckenham Tofts	٩	43.5			885
33062	Guilden Brook	Fowlmere two	Ω				967
33063	Little Ouse	Knettishall	A	101			.691
33065	Hiz	Hitchin	<	6.8			. 848
33066	Granta	Linton ;	ፈ	59.8			.474
33067	New River	Burwell	р	19.6			.957
33809	Bury Brook	Bury Weir	٩	65.3	55.53	6	.316
34001	Yare	Colney	4	231.8			. 657
34002	Tas	Shotesham	൧	146.5			579
34003	Bure	ingworth	ፈ	164.7	13.07	с С	.831
34004	Wensum	Costessey Mill	4	536.1			. 733
34005	Tuđ	Costessey Park	A	73.2	22.59	7	.652
34006	Waveney	Needham Mill	æ	370			. 18
34007	Dove	Oakley Park	A	133.9	42.95	'n	.47
34008	MATC Matterior	homing Lock	< •	4.9 4.9			.864
			4	149.4			.428
0407T	wensum	Fakenham	4	127.1	11.23	ഗ	.825
	Burn	Burnnam Uvery	۲.	0.9			.954
34014 24014	wensum	swanton Moriey Total	A	363			.749
240TV	bure 	Horstead Mill		313			. 795
35002	Deben	Naunton Hall	A	163.1			.357
35004	Ore	Beversham Bridge	4	54.9			.466
35008	Gipping	Stowmarket	A	128.9	44.29	10	.385
35013	Blyth	Holton	D	92.9			. 342
36001	Stour	Stratford St Mary I	Δ	844.3			. 507
36002	Glem	Glemsford	æ	87.3			.435
36003	Box	Polstead	Æ	53.9			.637

Hadleigh LOCATION Langham

NWA_NO RIVER

36004

36005 36006 6007 36008 36009 6010

4 A 4 D 4 Ω AAA AA 4 1 1 A R. 1 1 RC 4 4 Ω Æ 2 4 Δ Edmonton Silver Street Appleford Bridge Bardfield Bridge Bounstead Bridge Thorpe le Soken Guithavon Vallcy Sewardstone Road Panshanger Park Crabbs Bridge Sandon Bridge Perces Bridge **Cradle Bridge** Elizabeth Way Ordnance Road Bretons Farm Long Melford Beach's Mill Copford Halī Springfield Earls Colne Broad Green Albany Park Water Hall Poolstreet Kedington Redbridge Cockfield Churchend Wickford Edmonton Westmill Lamarsh Writtle Mardock Sturmer Stisted Felsted Lexden Bumpstead Brook Small River Lee Belchamp Brook Cobbins Brook Holland Brook Holland Brook Bourne Brook Canons Brook Salmon Brook Turkey Brook Pymmes Brook Sandon Brook Stour Brook Chad Brook Blackwater Blackwater Jpper Lee Chelmer Chelmer Chelmer Roding Mimram Crouch Brain Colne Stour Stour Colne Roman Brett Stour Stour Brett Colne Beam Pant Ash Can Чег Wid

7010

7011 7012 7013 7016 7017 7019 7020

7008 7009

7007

7030

7031 8002 18007

8003

8018 18020

18021

8022 38024

8014

7022 7025

17021 7024

16015

7001 7003 7005 7006

6012

16011

27 n n 18 φ 47.86 36.75 38.9 32.98 37.2 46.19 24.15 11.85 58.6 224.5 34.5 303.3 238.2 72.6 71.8 78.7 133.9 156 578 25.7 28.3 76.2 77.8 62.5 47.4 190.3 60.7 60.6 49.7 52.6 54.9 480.7 228.4 247.3 48.6 150 136.3 65.1 139.2 20.5 38.4 132.1 32.1 21.4 42.2 42.6 41.5 154.2

228 449 513 .416 .371 312 357 402 525 395 492 526 419 .391 548 682 496 489 .49 506 425 531 431 267 . 34 274 364 517 613 471 494 305 813 239 216 414 438 466 271

ВFI

SPR EVENTS

AREA

O

NWA_NO	RIVER	LOCATION	o	AREA	SPR E	VENTS	ВFI
38026	Pincey Brook	Sheering Hall	٩	54.6			.384
38029	Quin	Griggs Bridge	4	50.4			.437
38030	Beane	Hartham	4	175.1			.786
39002	Thames	Days Weir	n ∠	444.7			.643
39004	Wandle	Beddington Park	۲	122	5.81	22	.767
39005	Beverley Brook	Wimbledon Common	Д	43.6	18.21	17	.606
39006	Windrush	Newbridge	٩	362.6			.864
39007	Blackwater	Swallowfield	Д	354.8	19.13	13	.684
39008	Thames	Eynsham .	A I	616.2			.674
39011	Wey	Tilford	A	396.3			.742
39012	Hogsmill	Kingston upon Thames	¥	69.1	19.08	11	. 728
39015	Whitewater	Lodge Farm	A	44.5			.936
39016	Kennet	Theale	ч Ч	033.4			.873
39017	Ray	Grendon Underwood	4	18.6	57.38	25	.153
39019	Lambourn	Shaw	A	234.1			.964
39020	Coln	Bibury	A	106.7			.938
39022	Loddon	Sheepbridge	4	164.5	40.15	12	. 753
39025	Enborne	Brimpton	×	147.6	25.13	13	.536
39026	Cherwell	Banbury	Ω	199.4	34.83	10	.401
39027	Pang .	Pangbourne	٩	170.9			.869
39028	Dun	Hungerford	4	101.3			95
39029	Tillingbourne	Shalford	4	59			.888
39031	Lambourn	Welford	A	176			.981
39032	Lambourn	East Shefford	Δ	154			.974
39033	Winterbourne St	Bagnor	4	49.2			.959
39034	Evenlode	Cassington Mill	4	430			. 708
39036	Law Brook	Albury	≻	16	3.8	ч	.933
39037	Kennet	Marlborough	Å	142			.949
39038	Thame	Shabbington	n	443			. 537
39040	Thames	West Mill Cricklade	D	185			.632
39042	Leach	Priory Mill Lechlade	4	76.9			. 783
39044	Hart	Bramshill House	Д	84			.626
39051	Sor Brook	Adderbury .	ব	106.4			.77
39052	The Cut	Binfield	بر	50.2	29.44	8	.422
39053	Mole	Horley	Ж	89.9	51.05	7	.425
39054	Mole	Gatwick Airport	æ	31.8			. 245
39055	Yeading Bk West	Yeading west	4	17.6			.262
39061	Letcombe Brook	Letcombe Bassett	4	2.7			.959
39065	Ewelme Brook	Ewelme	A	13.4			.974
39068	Mole	Castle Mill I	Ω	316			.414

.728 . 76 .486 .832 .976 648 809 . 39 239 619 368 . 87 706 972 501 581 437 322 694 439 439 447 421 356 484 415 BFI . 51 247 624 362 918 321 174 272 2015 2015 SPR EVENTS α σ 5 2 L C 6 6 20 43.37 43.46 60.44 77.49 98 90 43.78 12.94 20.41 22.98 45.22 47.34 65.21 35.11 48.64 4.68 40 180.9 87.8 403.3 66.29 25.1 997 255.1 230 136.2 AREA 74.4 59.2 191.12 53.1 206 277.1 16.9 296 234 4 Ն 50.3 224.3 34S 27.5 53.7 32.4 25.1 18.4 154 14.2 379 12.69 20 109.1 58.3 66.8 34.6 142 84 25 αααααραοχααχχχ 0 **KK** A A AADAAAAA A D > Z A A AD Marlborough Poulton Fm Hendal Bridge Hopemill Br Sandhurst Bartley Mill Hendon Lane Bridge Hammer Wood Bridge Whetstone Bridge Kinnersley Manor Hatterell Bridge Quarrendon Mill Pallingham Quay Sheepen Bridge Allott Gardens Tilley Bridge Henley Bridge Chafford Weir Stile Bridge Stone Bridge Rectory Road Cirencester Ramsbury Ifield Weir Gold Bridge Park Mound IliM guidl vestbourne Beckenham Hazelwick Penshurst LOCATION Tanyards Worsham Burwash Isfield Farnham Buscot Hadlow Horton Udiam ٩ ğ Nunningham Stream Huggletts Stream Chaffinch Brook Bartley Mill St Marston Meysey **Crawters Brook** Hexden Channel Eridge Stream Adur W Branch Ampney Brook Dollis Brook Great Stour Great Stour Ash Bourne Wey (north) Misbourne 9101 Aldbourne Windrush Dudwell Thames Rother Bourne Medway Rother Churn Teise NWA_NO RIVER Beult Mole Arun Mole Beck Eden Ouse Arun Kird х оо UCK UCK EBS g 19078 39076 9813 9830 00100 39069 39074 9092 9814 10005 0008 6000 19075 10007 40020 19077 9097 9831 10006 0017 1606 10004 1100 40021 1001 1002 1005 1010 9073 9081 0024 11011 1013 11014 1015 1018 1006 11007

С. Э

Clappers Bridge

Bevern Stream

41020

NWA_NO	RIVER	LOCATION	0	AREA	SPR	EVENTS	BFI
41021	Clayhill Stream	old Ship	D	7.1	53.52	ഗ	.168
41022	Lod	Halfway Bridge	4	52	49.66	89	.348
41024	Shell Brook	Shell Brook P S	4	22.6			. 523
41025	Loxwood Stream	Drungewick	4	91.6	57.88	9	.221
41026	Cockhaise Brook	Holywell	A	36.1			.523
41027	Rother	Princes Marsh	٩	37.2			. 62
41028	Chess Stream	Chess Bridge	A	24	48.03	18	.374
41801	Hollington St	Hollington	Σ	3.52	39.51	15	
41806	North End Stream	Allington	Ω	2.3			.422
42001	Wallington	North Fareham	۲	111			.403
42003	Lymington	Brockenhurst Park	A	98.9			.363
42004	Test	Broadlands	൧	1040			.944
42005	Wallop Brook	Broughton	٨	53.6			.935
42007	Alre	Drove Lane Alresford	A	57			.98
42008	Cheriton Stream	Sewards Bridge	<	75.1			.969
42009	Candover Stream	Borough Bridge	đ	71.2			.964
42010	Itchen	Highbridge+Allbrook	4	360			.961
42012	Anton	Fullerton	٩	185			.965
42014	Blackwater	Ower -	A	104.7			.45
42019	Tanners Brook	Millbrook	A	16			۲.
43003	Avon	East Mills	۲ ۲	477.8			16.
43005	Avon	Amesbury	4	323.7			606.
43006	Nadder	Wilton Park	٩	220.6			.813
43007	Stour	Throop Mill	ፈ	1073			.661
43008	Wylye	South Newton	4	445.4			.913
43009	Scour	Hammoon	A	523.1			.319
43011	Ebble	Bodenham	4	109	•		.843
43012	wylye	Norton Bavant	Þ	112.4			.873
43013	Mude	Somertord	A	12.4			.571
43014	East Avon	Upavon .	4	86.2			168.
43021	Avon	Knapp Mill	4	1706			.89
44001	Frome	East Stoke total	ፈ	414.4			.841
44003	Asker	Bridport ; 3 1	A	49.1			.644
44004	Frome	Dorchester total	٩	206			.812
44006	Sydling Water	Sydling St Nicholas	4	12.4			.861
44008	Sth Winterbourne	W'bourne Steepleton	4	19.9			.886
44009	Wey	Broadwey	4	~			.945
45001	Exe	Thorverton	4	600.9			.513
45002	Exe	Stoodleigh	ፈ ፡	421.7	33.07	21	.518
45005	mrnJ	TTIW DOOM	A	226.1	43.38	15	.524

•

.

2 2 3			41	D	Gwills	004 Gannel	490
. 582	18	47.59	21.7	У	De Lank	003 De Lank	490
.836			48.9	A	St Erth	002 Hayle	490
.614			208.8	A	Denby	001 Camel	.490
.726			38.1	A	Trebrownbridge	010 Seaton	480
.628	7	37.19	22.7	A	Craigshill Wood	009 St Neot	480
.735			40.1	ס	Helston	1006 Cober	480
.668	01	12.69	19.1	A	Truro	1005 Kenwyn	480
.72	11	33.49	25.3	A	Trengoffe	1004 Warleggan	480
.694			87	A	Tregony	1003 Fal	480
.641			171.2	ם	Restormel one	1002 Fowey	480
.383			31.1	٥	Combe Park Farm	017 Wolf	470
.636			20.5	٥	Lumburn Bridge	1016 Lumburn	470
.477			197.3	ט	Denham / Ludbrook	1015 Tavy	470
. 585			43.2	~	lorrabridge	7014 Walkham	470
.482	13	28.93	79.2	Y	Carn Wood	011 Plym	470
. 598			37.2	A	Tideford	1009 Tiddy	470
.385	7	31.14	112.7	A	Tinhay	008 Thrushel	470
. 54	13	28.74	54.9	A	Puslinch	7007 Yealm	470
.476			218.1	A	Lifton Park	1006 Lyd	470
.39			120.7	A	Werrington Park	1005 Ottery	470
.569			135.5	A	Pillaton Mill	1004 Lynher	470
.462	-		916.9	A	Gunnislake	1001 Tamar	470
.389			ω. ω	ס	Woodlands	5818 Hems	468
.542			39.2	ם	Tally Ho]	5812 Hems	468
	œ	44.43	5.9	л Л	Bala intake	5805 Bala Brook	468
.368	13	63.11	14.2	Y	Swincombe intake	5802 Swincombe	468
.509			102.3	A	Loddiswell	5008 Avon	460
.416			47.9	D	Dunnabridge	5007 West Dart	460
.424	11	58.32	21.5	A	Bellever	5005 East Dart	460
. 524	23	30.1	247.6	A	Austins Bridge	5003 Dart	460
. 549			086	7	Preston	5002 Teign	460
533			34.4	ט	Fairmile	5013 Tale	450
.45			261.6	۵	Cowley	5012 Creedy	450
.565	14	35.99	128	Ð	Brushford	5011 Barle	450
. 547			50	Ð	Hartford	5010 Haddeo	450
.501	18	19.65	147.59	Ķ	Pixton	5009 Exe	450
.488			104.2	A	Fenny Bridges	5008 Otter	450
.538			202.5	A	Dotton	5005 Otter	450
.495	15	42.53	288.5	Х	Whitford	5004 Axe	450
BFI	EVENTS	SPR	AREA	Ø	LOCATION	A_NO RIVER	NWA

. N.

NWA_NO RIVER 53025 53023 53013 54008 54006 54004 53026 53006 51003 52003 54001 53029 53024 53022 53018 53017 53016 53009 Wellow Brook 53008 53007 53005 Midford Brook 52020 52011 52010 52007 51002 53003 53002 52016 52005 52014 52009 52006 52004 51001 50012 50007 50006 Mole 50002 10005 Stour Teme Tetbury Avon Avon Avon Yeo Yeo Biss Mells Spring Flow Boyd Currypool Stream Gallica Stream Sowe Severn Marden Sherston Avon Semington Brook Cary Sheppcy Doniford Stream Taw Taw Frome (Bristol) Avon Frome (Somerset) Frome (Bristol) Avon Tone Brue Parrecc Isle Halse Water Washford Horner Water Tone Torridge Semington Bath St James Stoneleigh Bewdley Trowbridge Frampton Cotterell Vallis Brokenborough Tenbury Kidderminster Fosseway Bath ultrasonic Bathford Bitton Dunkerton Stanley Wellow Great Somerford Tellisford Frenchay Midford Gallica Bridge Currypool Farm Greenham Chiselborough Bishops Hull Bishops Hull Beggearn Huish Taw Bridge Woodleigh Somerton Lovington Fenny Castle Ashford Mill West Luccombe Swill Bridge Veraby Torrington Pen Mill Umberleigh LOCATION Þ $\ltimes \gg$ 00 < DDDA Ø DD Þ к к к Þ Þ Ð Э Þ >U Þ U U υ U U υ >O U 1134.4 202 213.1 74.8 261.6 148. 147.4 135. 82. 57. 157. 826 327.5 4325 1605 89.7 73.6 1595 16 78.5 1552 72.6 99.2 15.7 59. 90. 36. 87. 20.8 75. 71.4 53.7 663 NREA 324 262 119 303 48 ь ò m œ 41.15 43.38 35.94 33.87 28.87 **13.91** 66.05 47.37 21.66 14.92 18.59 20.09 SPR EVENTS ц ъъ 1014 12 ч 10 ω ശ ù œ .459 .603 .756 . 522 . 584 .579 .392 . 39] .417 .616 . 262 . 566 .709 .473 .373 .676 . 448 .407 .476 .641 .739 .624 .626 .453 .467 . 599 .519 .524 .588 .659 .659 .584 .638 .621 . 627 .717 . 393 . 577 567 424 BFI

. ...

NO	RIVER	LOCATION		AREA	SPR EVE	NTS	BFI
4010	Stour	Alscot Park	A	319	40.21	6	.503
4011	Salwarpe	Harford Mill	к	184	34.85	16	.646
4012	Tern	Walcot	Þ	852			.691
4013	Clywedog	Cribynau	Þ	57			4
4014	Severn	Abermule	υ	580			. 42
1015	Bow Brook	Besford Bridge	Þ	156			.397
9 T O	Roden	Rodington	P	259	27.05	7	.609
1018	Rea Brook	Hookagate	Þ	178			. 506
610	Avon	Stareton	×	347	40.68	ی ۲۰	. 477
1020	Perry	Yeaton	· ~	180.8	24.6	ۍ ا	.652
1022	Severn	Plynlimon flume	\geq	8.7	36.69	21	.317
1025	Dulas	Rhos-y-pentref	P	52.7			.375
1027	Frome	Ebley Mill	Þ	198			.862
1029	Teme	Knightsford Bridge	Ū	1480			.567
2032	Severn	saxons Lode			, , ,	I	
1034	Dowles Brook	LOWTES	2 Þ	30.8 70.8	34.66	ند	-416 -
4041	Tern	Eaton On Tern	≥ :	192			713
4043	Severn	Upton On Severn	U	6850			.547
1044	Tern	Ternhill	Þ	92.6			.759
1048	Dene	Wellesbourne	O	102			.446
1049	Leam	Princes Drive Weir	U	362			.366
1052	Bailey Brook	Ternhill	A	34.4			.652
1053	Corve	Ludlow	Ð	164			.568
1054	Onny	Onibury	Þ	235			.475
1055	Rea	Nean Sollars	U	129			.608
1057	Severn	Haw Bridge	ν	5685			.574
650	Allford Brook	Allford	P	10.2			.691
1060	Potford Brook	Potford	Þ	25			.761
1062	Stoke Brook	Stoke	×	13.7			.749
1065	Roden	Stanton	Ð	210			.664
9901	Platt Brook	Platt	A	15.7			.744
1083	Crow Brook	Horton	A	16.7			.727
1084	Cannop Brook	Parkend	Þ	31.5			.585
1085	Cannop Brook	Cannop Cross	A	10.4			.606
1087	Allford Brook	Childs Ercall	Þ	4.7			.663
8801	Little Avon	Berkelcy Kennels	N	134			.596
0601	Tanllwyth	Tanllwyth Flume	Þ	9	57.65	16	. 295
1091	Severn	Hatren Fiume	Þ				.39
1092	Hore	Hore Flume	Þ	3.2			.318

.

57004 57003 56015 56013 80095 56007 NWA_NO RIVER 56012 56010 56005 56003 55035 55033 11095 26006 56004 56002 55028 10095 55034 55029 5502 55026 55025 55023 55018 55014 55012 55005 1055 55016 55013 55010 55009 80055 55004 55002 54818 55015 11055 Taff Cynon Yscir Sirhowy Senni Monks Ditch Usk Lwyd Iago Usk wye Cyff Olway Brook Grwyne Usk Usk Lugg Honddu Ebbw МУе Lugg Trothy Wye Honddu Monnow Frome Chwefru Arrow Wye Wуе Monnow ₩ус Llynfi Frome Ithon Roden lrfon Ithon Wye Irfon Gwy flume Cyff flume Iago flume Olway Inn Millbrook Trallong Pont Hen Hafod Abercynon Tongwynlais Pontaryscir Wattsville Trostrey Weir Llanwern Ponthir Rhiwderyn Chain Bridge Grosmont Bishops Frome Carreg-y-wen Yarkhill Llandetty The Forge Brecon Ddol Farm Three Cocks Disserth Redbrook Butts Bridge Mitchel Troy Tafolog Titley Mill Cilmery Cefn Brwyn Rhayader Belmont Byton Llandewi Pant Mawr Kentchurch LOCATION Abernant Northwood σ Þ \mathcal{P} $\prec \gg$ DDK DD Ð U O ⊳ Þ 1895.9 216.5 62.1 543.9 486.9 927.2 76.1 82.2 62.8 105.1 911. 27.2 111.4 183.8 203. 10.55 166.8 126.4 244.2 357.4 15.4 98.1 19.9 174 4010 72.8 20.9 AREA 901 ພ ພ ພ • • ບ ມ ທ 4 132 142 144 371 ω 58 29 ശ 20.32 29.79 46.17 29.3 46.63 32.56 47.55 35.69 29.73 43.74 46.55 30.69 54.41 50.7 SPR EVENTS 17 12 13 14 12 41 œ .438 .497 .58 .516 .474 . 509 . 285 . 296 .381 .496 .507 . 562 .385 .471 .595 . 446 . 552 . 537 .472 .512 .668 .417 .593 . 503 .382 .516 577 539 . 34 .324 . ω 8 .373 . ω 8 1 .463 .573 ω Ο Π . 501 BFI

.

NWA_NO RIVER	LOCATION	Ø	AREA	SPR 3	EVENTS	BFI
57005 Taff	Pontypridd	ъ	454.8	39.4	10	.473
57006 Rhondda	Trehafod	٥	100.5	35.27	25	.421
57008 Rhymney	Llanedeyrn	۵	178.7			.506
57009 Ely	St Fagans	۵	145			.489
57010 Ely	Lanelay	Þ	39.4			.44
58001 Ogmore	Bridgend	A	158	29.74	14	.494
58002 Neath	Resolven	к	190.9	30.45	σ	.335
58003 Ewenny	Ewenny Priory	Y	62.9	33.88	11	.591
58005 Ogmore	Brynmenyn	A	74.3			.493
58006 Mellte	Pontneddfechan	Þ	65.8	44.47	ማ	.354
58007 Llynfi	Coytrahen '	7	50.2			.491
58008 Dulais	Cilfrew	A	43	55.26	7	.386
58009 Ewenny	Keepers Lodge	A	62.5	25.36	თ	.579
58010 Hepste	Esgair Carnau	>	11			.244
58011 Thaw	Gigman Bridge	>	49.2			. 699
59001 Tawe	Yynstanglws Tir v dail	90	227.7			.341
60002 Cothi	Felin Mvnachdv	Þ I	297.8	46.22	٥	422
60003 Taf	Clog-y-Fran	>	217.3	42.25	l	. 546
60004 Dewi Fawr	Glasfryn Ford	A	40.1			.531
60005 Bran	Llandovery	A	66.8			.354
60006 Gwili	Glangwil i	>	129.5	27.8	L	.456
60007 Tywi	Dolau Hirion	N	231.8	49.86	N	.331
60009 Sawdde	Felin-y-cwm	A	81.1			.336
60012 Twrch	Ddol Las	Ð	20.7			. 34
60013 Cothi	Pont Ynys Brechfa	A	261.6			.439
61001 Western Cleddau	Prendergast Mill	U	197.6	25.22	20	.65
61002 Eastern Cleddau	Canaston Bridge	U	183.1			.543
61003 Gwaun	Cilrhedyn Bridge	P	31.3	40.52	8	.568
61004 Western Cleddau	Redhill	Þ	197.6			.644
62001 Teifi	Glan Teifi	Ą	893.6			.532
62002 Teifi	Llanfair	A	510	55.17	ω	.486
63001 Ystwyth	Pont Llolwyn	Þ	169.6			.407
63003 Wyre	Llanrhystyd	A	40.6			.403
64001 Dyfi	Dyfi Bridge	Þ	471.3	48.34	თ	.363
64002 Dysynni	Pont-y-Garth	۵	75.1			.49
64006 Leri .	Dolybont	A	47.2			.445
65001 Glaslyn	Beddgelert	۵	68.6	30.74	14	.313
65004 Gwyrfai	Bontnewydd	A	47.9			.427
65005 Erch	Pencaenewydd	A	18.1			.529

LOCATION	Ø	AREA	SPR EVI	ENTS	BFI
Peblig Mill	A	74.4			.395
Garndolbenmaen	۵	52.4			.372
Tan-Yr-Alt	3	11.4	61.96	ω	
Pont-y-cambwll	P	404			. 599
Pant yr Onen	к	220	21.59	4	.451
Bodfari	₽	62.9	19.78	ო	.828
Ruthin Weir	Þ	95.3			.582
Pont-y-Gwyddel	- ·<	194	43.52	4	455
Cwm Llanerch	A	344.5	57.69	11	.284
Bala	Р	261.6			. 529
Llyn Brenig outflow	×	20.2	74.26	ጥ	.498
Brynkinalt Weir	A	113.7	24.92	4	54
Druid	Þ	184.7			.464
Pont-y-Capel	×	227.1	18.3	r	.564
Cynefail	Þ	13.1	46.73	12	. 259
Plas Rhiwedog Manlev Hall	ע כ -	010. 9.55			 4. 0
New Inn	ט.	53 .9			
Ashbrook	À	622			ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ
Rudheath	A	407.1			
Marshfield Bridge	` P	92.7			. 644
Audlem	A	207			თ
Hulme Walfield	A	150	43.21	თ	. 547
Lostock Gralam	U	148			54
Ford	Z	18.4	49.59	ч	
Sandbach	З	ហ 	41.58	8	
Huxley	A	49			.511
Bridge Trafford	A.	156			.47
Stanneylands	Ζ	51.8	36.57	თ	
Cheadle	3	67.3	27.22	2	
Wilmslow	۵	72.5	51.71	ω	.643
Partington	A	44.8	21.26	8	.586
Marple Bridge	A	183			.498
Newton Le Willows	З	32.8	59.4	ω	
Eccles	З	24.87	29.55	ማ	
London Road	σ	57.5			.536
Portwood	к	150	40.21	7	.562
Greens Bridge	к	47.9	48.44	8	.562
Helmshore	3	ω μ	37.24	9	
Woodhead	З	13	55.71	2	
	Peblig Mill Garndolbenmaen Tan-Yr-Alt Pont-Y-cambwil Pant yr Onen Bodfari Ruthin Weir Pont-Y-Gwyddcl Cwm Llanerch Bala Llyn Brenig outflow Brynkinalt Weir Druid Pont-Y-Capel Cynefail Plas Rhiwedog Manley Hall New I:n Ashbrook Rudheath Marshfield Bridge Hulme Walfield Lostock Gralam Ford Stanneylands Cheadle Wilmslow Partington Marple Bridge Newton Le Willows Eccles London Road Portwood Greens Bridge Helmshore	LOCATIONQPeblig Mill Garndolbenmaen Tan-Yr-Alt Pont-y-cambwil Pont-y-Gwyddel Cwm Llanerch Bala Llyn Brenig outflow Brynkinalt Weir Druid Pont-y-Capel Cynefail plas Rhiwedog Manley Hall New Imn Ashbrook Rudheath Hulme Walfield Bridge Audlem Huxley Bridge Trafford Stanneylands Cheadle Wewton Le Willows Eccles Eccles Bridge Marbed Bridge Marphe Bridge Marbed Bridge Marbed Bridge Marbed Bridge Marbed Bridge Addath Marshfield Bridge Addath Marshfield Bridge Addath A hulme Walfield A hulme Marshfield Bridge Addath A hulme Marbed Bridge Addath A hulme Marbed Bridge Addath A hulme Marbed Bridge A hullows Marbed Bridge A hulme Marbed Bridge A hulme Marbed Bridge A hulme Marbed Bridge A hulme Marbed Bridge A hulme Marbed Bridge A hulme Marbed Bridge A hulme A hulme Marbed Bridge A hulme Marbed Bridge A hulme A hulme Marbed Bridge A hulme A hulme	LOCATIONQAREAPeblig MillA74.4GarndolbenmaenM11.4Pont-y-cambwllM11.4Pont-y-cambwllY220BodfariA62.9Pont-y-GwyddclA261.6Llyn Brenig outflowA261.6Llyn Brenig outflowA261.6Llyn Brenig outflowA20.2Brynkinalt WeirA21.1Pont-y-CapelY227.1CynefailD1019.3Pont-y-CapelA113.7DruidA113.7Pont-y-CapelY227.1CynefailD1019.3Pont-y-CapelA13.9Manley HallA261.6Lostock GralamA1019.3FordA150Lostock GralamM12.7AdleeM150StanneylandsM150CheadleM51.8Marple BridgeA150StanneylandsM12.5PartingtonA14.8Marple BridgeA150London RoadM22.5PortwoodM22.6Greens BridgeM3.1MoodheadY150London RoadY150Greens BridgeM3.1MoodheadM13	LOCATIONQAREASpREVIPebligMillA74.4GarndolbenmaenD52.4Pont-y-cambwilP52.4Pont-y-cambwilA404Pont-y-cambwilA404Pont-y-cambwilA404Pont-y-cambwilA220BodfariA62.9Pont-y-GayddclA62.9Cwm DruidData201.6DruidBalaAPont-y-GayddclY194CynefailA201.6DruidA201.6DruidA201.7Pont-y-CapelA201.6DruidA113.7Pont-y-CapelA113.7Pont-y-CapelA113.7Pont-y-CapelA113.7Pont-y-CapelA113.7Pont-y-CapelA113.7Pont-y-CapelA113.7Pont-y-CapelA113.7Pont-y-CapelA13.1CynefaildB1019.3New ImnA207AudheathA207AudheathA207AudheathA1019.3Port-y-CapelA120SandbachA120FordA18.4StanneylandsM5.4AutheA18.4PortwoodA18.3StanneylandsM5.12CheadleA18.3 <t< td=""><td>LOCATION Q AREA SPR EVENTS Peblig Mill A 74.4 Garndolbenmaen D 52.4 1.96 Pont-Y-Alt A 74.4 61.96 3 Pont-Y-Capel A 62.9 19.78 5 Pont-Y-Capel Y 220 21.59 4 Llyn Brenig Outfilow A 344.5 57.69 11 Pont-Y-Capel Y 227.1 18.3 7 Cynefail A 31.4 6.73 12 Pont-Y-Capel Y 227.1 18.3 7 Cynefail D 1019.3 12 4 Manley Hall A 31.2 4 5.7 4 New Zinn A 1019.3 12 4 5.9 4 New Zinn A 100 1.2 4 5.9 1 A 13 1.2 A 1.2 4 5.9 <</td></t<>	LOCATION Q AREA SPR EVENTS Peblig Mill A 74.4 Garndolbenmaen D 52.4 1.96 Pont-Y-Alt A 74.4 61.96 3 Pont-Y-Capel A 62.9 19.78 5 Pont-Y-Capel Y 220 21.59 4 Llyn Brenig Outfilow A 344.5 57.69 11 Pont-Y-Capel Y 227.1 18.3 7 Cynefail A 31.4 6.73 12 Pont-Y-Capel Y 227.1 18.3 7 Cynefail D 1019.3 12 4 Manley Hall A 31.2 4 5.7 4 New Zinn A 1019.3 12 4 5.9 4 New Zinn A 100 1.2 4 5.9 1 A 13 1.2 A 1.2 4 5.9 <

NWA_NO RIVER 73011 73002 73804 73803 73010 73009 73007 73005 73003 73001 72820 71004 73008 72817 72009 72006 71010 71005 71003 71001 72818 72814 72811 72004 72003 72005 72002 71804 71009 1008 21006 70006 70002 72011 72008 71802 71011 70803 70004 12007 Mint Kent Brathay Kent Winster Wenning Ribble Newreed Leven Sprint Bela Crake Leven Burnes Gill New Mill Brook Barton Brook Calder Brock Rawthey Wyre Lune Dunsop Ribble Ribble Ribble Yarrow Troutbeck Brock Lune Wyre Pendle Hodder Calder Croasdale Tawd Ribble Douglas Lune Lune Bottoms Water Beck Brook Mint Bridge Newby Bridge Low Nibthwaite Brathay Hall Lobby Bridge Newby Bridge Sprint Mill Sedgwick Carvers Bridge Brigg Flatts Wennington Road Kirkby Lonsdale U/S A6 Halton West Beetham Troutbeck Bridge Burneside Tebay (M6) Hollowforth *iall* Sandholme Bridge Roe Bridge Garstang Killington New Bridge Caton St Michaels Halton Arnford Barden Lane Jumbles Rock Hodder Place Bottoms Beck flume Whalley Weir Samlesbury Croasdale flume Slate Farm Footholme Henthorn Newburgh Croston Mill Wanes Blades LOCATION Bridge Bridge 3 З $\boldsymbol{\mathcal{V}}$ ≫ Þ > $\exists \geq$ Þ Þ > \mathcal{P} 3 Þ Þ Þ > $\mathbf{\mathcal{P}}$ \geq Þ \mathcal{V} Ы Þ >υ ZZÞ σ Þ イン U \mathbf{P} U $\boldsymbol{\Sigma}$ Þ З Ö E \mathbf{Y} 219 507.1 994.6 247 65.8 20.7 57.5 34.6 209 23.6 73.6 64.5 37.3 24. 1053 10.6 1145 28.9 . 71 ₽ 8 . 10:4 74.4 AREA 131 31.9 241 142 114 886 275 80T 456 200 207 204 316 . . 61 20 0 ω 2 73 ഹ 34.97 43.67 25.47 36.51 61.31 60.48 59.95 28.92 59.16 39.74 54.05 32.88 38.52 35.32 64.3 SPR EVENTS 4 د H 14 50 24 œ м ωø ŝ ጥ m 'n m

.476

.161

.29

. 176 .316

. 241

.305

. 305

.352

. ນຊູ

.321

.323 .324

. 426

. 1.1

. 253

.287 . 211 .434 .321

. აკ

.417

. 554

BFI

.573

.453 . 332

. 372

. 504 . 504

98C

C.41

no

NWA_NO RIVER 80004 80001 79006 78003 78002 18001 77004 77003 77002 76014 76011 79005 78005 78004 77005 76010 75010 74007 74003 79004 79003 77001 76805 6009 8009 76007 76004 76002 75009 75007 75006 79002 76005 75017 75004 75003 75002 74005 74001 74002 Greenburn Nich Nith Urr Cluden Water Scar Water Nith Kinnel Kinnel Annan Ae Lyne Esk 王の不 Eden Glenderamackin Newlands Beck Ehen Liddel Coal Burn Eden Greta Cocker Esk Irt Annan Kirtle Water Force Beck Petteril Caldew Ellen Marron Derwent Derwent Duddon Irthing Eden Eden Lowther Ehen Water Water Water Dalbeattie Drumlanrig Fiddlers Ford Capenoch Hall Bridge Friars Carse Bridgemuir Redhall Cliff Bridge Rowanbur::foot Netherby Coalburn Sheepmount **Ouse Bridge** Loch Dec Brydekirk Elshieshields St Mungos Manse Mossknowe Canonbie M6 Shop Kirkby Stephen Holm Hill Greenholme Warwick Bridge Ullock Southwaite Bridge Cropple How Harraby Green Eamont Bridge Bullgill Low Briery Braithwaite Camerton Braystones Ennerdale Weir Galesyke Duddon Hall Temple Sowerby Threlkeld LOCATION Þ Þ ⋗ > \mathcal{P} σ Þ Þ U U ⊅ 30 U σ σ Þ Þ Þ Þ U Þ ⊳ Þ Ð Ū 00 O Þ 2286. 1366.7 158.5 616.4 841. 125.5 145.6 27.7 143.2 730.3 147. 334.6 116.6 85.66 925 76.1 69.4 33.9 44.2 64.5 70.2 44.2 191 AREA 471 319 495 201 2.6 199 142 238 155 799 229 2 160 363 663 <u>+-</u> 72 96 Ň 52.11 66.82 51.07 69 3 8 8 66 54.47 64.97 61.22 SPR EVENTS . 05 . ភូន . 88 26 N œ ~ -1 .351 .343 .383 .366 . 236 .175 .46 487 .368 48 48 .484 .375 .354 .411 .287 .325 .318 .347 .422 .493 .451 . 353 .266 41 . 474 .269 .383 . 313 . 275 .295 .279 .458 .278 . 27 .317 .321 . ה נו BFI . 39 •

C.42

:: B.

NWA_NO RIVER	LOCATION	0	AREA	SPR EVENTS	5 BFI
80005 Dargall Lane	Loch Dee	A	2.1		. 279
81002 Cree	Newton Stewart	A	368		.275
81003 Luce	Airyhemming	Þ	171		. 232
81004 Bladnoch	Low Malzie	V	334		.329
82001 Girvan	Robstone	A	245.5		. 333
82003 Stinchar	Balnowlart	>	341		. 299
83002 Garnock	Dalry	ĸ	88.8	50.1 1	.211
83003 Ayr	Catrine	A	166.3		.294
83004 Lugar	Langholm	A	181		. 244
83005 Irvine	Shewalton	Þ	380.7		. 269
83006 Ayr	Mainholm	A	574		.301
83007 Lugton Water	Eglinton	A	54,6		.247
83009 Garnock	Kilwinning	A	183.8		.234
84002 Calder	Muirshiel	к	12.4	60.48 4	1.15
84003 Clyde	Hazelbank	U	6.260T		. 496
84004 Clyde	Sills	IJ	741.8		.519
84005 Clyde	Blairston	U	1704.2		.444
840C6 Kelvin	Bridgend	7	63.7		.437
84008 Rotten Calder Wtr	Redlees	υ	51.3	57.76 7	7.32
84009 Nethan	Kirkmuirhill	A	66		.339
84011 Gryfe	Craigend	A	71		.304
84012 White Cart Water	Hawkhead	Þ	227.2	56.72 6	5.357
84013 Clyde	Daldowie	U	1903.1		.45
84014 Avon Water	Fairholm	Þ	265.5		.261
84015 Kelvin	Dryfield	A	235.4		.434
84016 Luggie Water	Condorrat	A	33.9		.397
84018 Clyde	Tulliford Mill	A	932.6		.524
84020 Glazert Water	Milton of Campsie	A	91,9		.311
84022 Duneaton	Maidencots	A	110.3	31.18 7	.446
84023 Bothlin Burn	Auchengeich	A	35.7		.507
84025 Luggie Water	Oxgang	U	87.7		.408
84026 Allander Water	Milngavie	D	32.8		. 333
84029 Cander Water	Candermill	٨	24.5		.272
85002 Endrick Water	Gaidrew	A	219.9	56.17 4	.311
85003 Falloch	Glen Falloch	A	80.3		.174
85004 Luss Water	Luss	٨	35.3		.277
86002 Eachaig	Eckford	A	139.9		.356
87801 Allt Uaine	intake	A	ω		. 145
89807 Abhainn A Bhealaich	Braevallich	A	24.1		. 232
90002 Creran	Taraphocain	U	66.1		. 212
	ſ				

- 25-

.

•	

. •

NWA_NO 90003	RIVER Nevis	LOCATION Claggan	0 0	76	.8	EA SPR	LEA SPR EVENTS
1001	Carron	New Kelso		A	A 137.8	A 137.8	A 137.8
4001	En Ko	Poolewe		A	A 441.1	A 441.1	A 441.1
95001	Inver	Little Assynt		A	A 137.5	A 137.5	A 137.5
10096	Halladale	Halladale		A	A 204.6	A 204.6	A 204.6
96002	Naver	Apigill		Ā	A 477	A 477	A 477
97002	Thurso	Halkirk		D	D 412.8	D 412.8	D 412.8
1001	Eastern Yar	Alverstone Mill		D	D 57.5	D 57.5	D 57.5
01005	Eastern Yar	Budbridge		,	D 22.5	ר ננ ד	D 22.5

.

. .

.

.

C.44

•

ì

--,

×.

(

.

