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8. Modelling Chemical Responses

B.1. Dynamic v Steady State Modelling

Two methods have been advanced for the calculation of critical loads for surface water,
namely; steady state empirical and steady state mass balance techniques which are termed
the level T approach and dynamic modelling, or level 1l approach. The steady state water
chemistry (Henriksen) method, based on an empirically dertved long term weathering rate for
a site, is time independent and assumes steady state conditions. The time scale over which
the new equilibrium at the biologically relevant chemistry will be achieved is irrelevant to the
calculation. Clearly, this assumes that the rate of recovery at a site is unimportant, even over
very long time frames {> 100 yrs) and. more crucially, that the site Is not only capable of
recovering to the biologically relevant chemistry level but also that prior to the onset of
acidification the water chemistry was equivalent to or less acidic than the blologically relevant
chemistry. Furthermore, the influence of the catchment soils, In particular their ability to
adsorb and desorb lons through time, is only implicitly Included in the empirical model which
assumes that in the very long, or equilibrium, timescale the sofl acidification process is
completely reversible. Soll chemical processes may mitigate or delay acidification through
sulphate adsorption and base catlon exchange or extend the acidification effect after acidic
deposition is reduced, through soll recovery processes whereby base catlons are adsorbed and

sulphate is desorbed.

Dynamic models, on the other hand, speclfically account for changes through time such as the
depletion of element pools in solls and changes in catchment land use. The long-term, process-
oriented, hydrochemical model MAGIC (Model of Acidification of Groundwaters In Catchments)
has been the main tool utilised for level 11 analysis within the framework of the UK freshwaters
critical loads exercise. The model has been used primarily to address a number of time related
questions In terms of future recovery of acidifled waters, namely; {i) to identify Lhe regional
characteristics that determine critical and target loads; {i1) to determine the time dimension
between achieving critical loads and ecosystem recovery; (Uii) to determine the consequences,

in terms of surface water, of not achieving a critical load: (iv) to examine the efllect of land use



change, tn particular forestry practice. on critical loads, and; (v) to determine the Interaction

between nitrogen and sulphur In the context of critical loads for total acidic deposition.

The real strength of these dynamic model applications In an applied sense within the
framework of Integrated Assessment Modelling and emissions reduction negotiations, however,
Is in answering key policy questions such as; what degree, in time and space, of soll and water
Tecovery can we expect from a given emissions reduction strategy ? and; what level of
emissions reduction is necessary to achieve a given level of soil and water recovery within a

given time scale ?

8.2. MAGIC and critical/target load calculation

MAGIC Is a process oriented, physically based, lumped catchment model in which several key
chernical processes are assumed to control responses of surface water chemistry to acidie
deposition. MAGIC is based on mathematical representations of: anion retention by catchment
soils (eg. sulphate adsorption); adsorption and exchange of base cations and aluminfum by
soils; alkalinity generation by dissoclation of carbonic acid with subsequent ecxchange of
hydrogen tons for base cations, and; control of inorganic aluminijum concentrations through
an assumed equilibrium with a solid phase of aluminium hydroxide. MAGIC uses these
process approximations within a framework of: a set of equations which quantitatively describe
the equilibriurn soil processes and the chemical changes that occur as soll water enters the
stream channel; a set of mass balance equations which quantitatively describe the catchment
input-output relationships for base cations and strong acld anlons in precipitation and
streamwater, and; a set of definitions which relate the variables in the equilibrium equations

to the variables In the mass equations.

MAGIC can be used to estimate critical loads by determining a time at which the defined
critical water/soll chemistry is to be achleved. Since the “true* definition of critical loads is
time independent and assumes equilibrium conditions in the future, the loads calculated using

MAGIC should be assumed to represent target loads although this term has a political



interpretation and so the term critical load s retained. To estimate criical loads the model is
calibrated to a catchment using available soll and water chemistry and land use data. The
model is then used In predictive mode to deterrnine the sulphur deposition required to achieve
some pre-defined critical chemistry in soll or surface water at some pre-defined time in the
future. Here, this critical chemnistry is taken as surface water alkalinity of zero and soll waler
Ca/Al molar ratio of 1.5, although in practice a critical load can be determined on any
chemical parameter in the soll-water system. The Ume scale used in the UK exercise Is taken
as 50 years as this Is the most appropriate timescale over which deposition reductions and
critical chemistry should be achievable. Again. in practice. any timescale can be chosen. The
level of deposition required is assumed to be reached immedlately and held constant at that

level for 50 years. Clearly, this represents a best case scenario since deposition reductions are

" not going to be achieved so rapidly. MAGIC Is then run repeatedly with different levels of

deposition until the critical chemistry is achleved at the selected time in the future. This
deposition is assumed to be the critical load for sulphur. For all cases it Is assumed that the
loading and catchment immobilisation of nitrogen compounds are not changed from present-

day conditions.

These concepts are [llustrated in a model applicalion to the Allt a Mharcaidh and Round Loch
of Glenhead (Figure 8.1). In the Alit a Mharcaldh (Figure 8.1a) current and past sulphur
deposition Is not sufflcient to depress stream alkallnity below zero or ralse Al/Ca ratio above
1.5. that is, the critical load is not currently exceeded at this site and so the sulphur
deposition is increased in the model to achieve alkalinity zero and thereby quantify the critical
load. At the Round Loch of Glenhead (Figure 8.1b) present deposition exceeds the critical load
for water and so must be reduced to achieve alkalinity zero, although the soll Is not as
sensitive. The importance of the time dependency is further emphasised in Figure 8.2. At the
Round Loch the critical load of sulphur increases as the timescale by which the critical
chemistry s required increases, the maximum being some equilibrium Ume in the future. At
Narrator Brook, an unacidified stream in SW England, the critical load is not currently

exceeded and so a very high sulphur load Is required to force surface water alkalinity Lo zero



within 10 years. Conversely, the required load to reach alkalinity zero in 100yrs is lower. This
emphasises the point that the total flux of deposited sulphur is rmore Important than the rate
at which it is deposiled and this has serfous Implications when planning emissions reduction

strategies for the future.

The MAGIC model] has been calibrated to 17 of the 22 sites in the UK Actd Waters Monitoring
Network (AWMN). Those sites excluded currently lack sufficiently detailed soll chemical data
for model caltbration. The AWMN sites represent a range of acid iImpaction and sulphur
deposition flux across the UK and calculated critical loads are currently exceeded at 7 sites
{Figure 8.3). The model reconstructions indicate that the 7 exceedance sites have not
historically suffered a greater acidification than those not presently exceeded but started from
a lower background alkalinity {Figure 8.3}. This ties {n with our knowledge of the factors

influencing sensitivity to acidic deposition which come together in these areas.

A further modelling exerclse has centred on a reglonal MAGIC miodel application to 39 lakes
in the Galloway region of SW Scotland. The lakes are confined within an area of about 120 km?
representing some sixteen 10km squares delineated in the UK freshwater critical loads
mapping exercise. This area has been identified as having a large proportion of acidified
surface waters following decades of acidic deposition. Many of the lakes and streams are
susceptible to acldic deposition because of the relatively slow weathering and low acid
neutralisation capacity of the bedrock, thin and acldic soils and extensive afforestation. Other
freshwater in the area, lying predominantly on less sensitive geology. have a high positive
alkalinity and are not currently acidifled. This wide range of sensilivity to acidic deposition,
with respect to both soils and waters, presents considerable problems for quantifying regional
crilical and target loads. To address this Issue, data from these lakes, sampled in 1979 and
again in 1988, was used in conjunction with detailed soll data obtained from the Macaulay
Land Use Research Institute (MLURI) and forest management history from the Forestry

Commission, to fortnulate a reglonal MAGIC application.



8.3. Comparison of Approaches

The comparison of empirical and MAGIC techniques for calculating critical loads demonstrate
the differences between the dynamic and equilibrium assumptions utllised In the two methods
(Figure 8.4). Across a wide range of critical loads, ranging from sensitive to extremely
insensitive, differences mainly occur at the least sensitive sites (1.e. high critical loads) where
the MAGIC critical load Is generally higher than the Henriksen empirical critical load whilst
at the most sensitive end of the range (i.¢. low critical loads) the opposite Is true. The less
sensitive sites are characterised by well buflered water chemistry with high pH and alkalinity,
influenced by solls which have retained a high acid buffering capacity. To deplete this soil store
of base cations will either take many years of acid deposition at a relatively low sulphur
loading, that is, as described by the equilibrium concept assumed in the emplirical critical load.
or fifty years of a higher critical load. that is, as described by MAGIC. Sensitive sites are
characterised by low pH and low, or in many cases negative, alkalinity and have solls with low
base saturation and a large adsorbed sulphate pool. At these sites the MAGIC critical load is
lower than the empirical critical load. This results from the fact that the empirical approach
assumes equilibrium conditions and an indefinite timescale for recovery and the dynamic
modelling approach assumes a finite {50 y1) time scale. The MAGIC critical load tends to be
lower, therefore, since these systems require longer than {ifty years to recover and the base
cation store in the catchment soils which have been depleted due lo many years of acidic
deposition and forest growth, must be replenished by weathering inputs before recovery can
occur. This Is further illustrated in Figure 8.5(a) which shows a comparison of critical loads
calculated from the two techniques for the 39 lakes in Galloway. At sites which are not
presently acidified no significant soll recovery occurs and MAGIC critical loads tend to be
higher than the empirical calculations at these sites. It must also be remmembered that the
critical load estimated using MAGIC represents the change in deposition flux which must be
made immediately to achleve zero alkalinity and so must be regarded as a best-case since
sulphur deposition is more likely to be reduced gradually over a long time period. The
implication for this region Is that even If a low critical load (around 20 meq m™ yr'') is set some

40% of the surface waters in the region will not have achieved zero alkalinity within fifty years



(Figure 8.5b).

The question of uncertalnty in critical load calculation is difficult to address stnce much of the
variance In surface water chemistry at a site is due to changing flow regime, and in particular,
the chemical changes associated with high flows. It must be remembered that the MAGIC
model simulates only mean annual chemistry and takes no account of these flow-chemistry
relationships. Uncertainty can be introduced into the model simulations, however, by
Incorporating known measurement errors and spatial variability in the parameters within the
catchment at the calibration stage. In this way, uncertainty bands for the model simulations
can be presented as maximum and minimum values for output varfables., Including critical
loads (Figure 8.6). A range of critical loads can also be calcilated empirically for samples
collected across a wide range of flows. The ranges calculated from the two techniques
demonstrate a good match (Figure 8.6) although these representations of uncertainty have
little statistcal or chemical significance and further work Is necessary, particularly to assess
the Importance of episodes to biological response and to relate the mean chemistry to extreme

events.

The relationship between soil critical loads calculated using MAGIC and the empirical
Skokloster soll critical load sensitivity classification is poor (Figure 8.7). The Skokloster
classification Is primarily based on weathering and the ability of solls to provide acid buffering,
In this application soils in the least sensitive class (critical load > 200 meq m™? yr') are set
criticat loads of 200 meq m™ yr™* thereby potentlally causing an artificial lowering of the critical
load classification for many catchments where base rich soils dominate. Nevertheless, even for
the more sensitive classes the relationship is poor. MAGIC critical loads. on the other hand,
are expected to be higher since a large soil calctum poo! exists which would have to be depleted
to reach the specified Al/Ca ratio. Furthermore, the Skokloster critical load classification Is
taken to represent only the top layers of the soil profile whercas MAGIC aggregates the
chemistry of the entire soil proflle. A two soll layer version of MAGIC s currently being applied

to a number of the AWMN sites which show sofl and water exceedences. Only the chemistry



of the upper box will be assessed for calculaling the soil critical load and this is expected to
substantially reduce the MAGIC critical load and lead to closer agreement with the Skokloster

soll sensitivity classification.

8.4. Assessment of Future Emissions Reduction Scenarios

At the 7 AWMN exceedance sites. the surface water chemistry tmpact of two future emissions
reduction scenarios have been assessed: (1) the Large Combustion Plant Directive {(LCPD)
emission strategy which calls for a 60% reduction In emissions by 2005 and it is further
assumed that emissions are held constant. thereafter, until 2039, and: {11) a more optimistic
emissions reduction strategy involving an 80% decrease by 2005. Depostition data. in response
to these emisstons scenarios were obtained from the atmospheric transport model based at the

University of Hull.

Taking posttive alkalinity to generally represent a biological threshold. or critical chemistry,
the model predictions for 2005 and 2039, compared to present day observations, show a
consistent picture (Figure 8.8). The reduction in sulphur deposition to these catchments in
response to the LCPD emissions reduction strategy (Figure 8.8a) is not sufficient to
significantly improve the water chemistry status of these acld Impacted sites. At the Round
Loch of Glenhead (SW Scotland) the LCPD scenario is Just sufficient to achieve an alkalinity
of zero by 2039. At Llyn Llagi (N. Wales), the deposition reduction is too small to even hall the
decrease in alkalinity which becomes negative by 2039. At Scoat Tarn (Lake District), on the
other hand, the alkalinity increases In rcspdrmc to the decrease In deposition to 2005 but this
Is only temporary and a further decline to beyond the present day level occurs. The deposition
reduction predicted from the LCPD is clearly not sufficlent at Old Lodge {South Downs) and
extreme acidification continues throughout the simulation period. Simulations for Afon Hafren
(mid Wales) and Loch Grannoch (SW Scotland) are similarly pessimistic but are complicated

by land use factors which are discussed in section 8.5.

The model results for the 80% emissions reduction scenario {ndicate a stabllising alkalinity



concentrations at present day levels. with some slight improvement at others (Figure 8.8b).
This is a pessimistic picture in terms of recovery since 1t Is unlikely that greater emissions

reductions can be achieved.

Simulation of water chemistry using the reglonal model applied in Galloway suggest that
acidified waters with negative alkalinities In the region will recover only marginally in response
to the emissions scenarios by the year 2005 (Figure 8.9) and the total percentage of lakes with
negative alkalinity (Figure 8.9a) and pH 5.0 (Figure 8.9b) will remain roughly the same. The
location of these lake sites which require a much more dramatic decrease in emissions is

mainly determined by the spatial extent of the underlying granitic geology.

8.5. Impact of Afforestation

Future land use policy within a catchment s another important factor in determining the rate
of recovery of acidified soils and water in response to emissions reductions. In this respect, the
role of trees in the critical loads concept requires careful consideration. As well as being
sensitive receptors for which critical loads need to be determined, they play a crucial role In
the soll and water acldification process by uptake of base cations during their growth,
changing hydrological behaviour of the catchment especially by decreasing water outflux, and
by filtering pollutants from the atmosphere thereby increasing the total deposition loading. No
account is taken In this exercise of the input of base cations and nutrients during the life of

the forest, for example dressing with calcium phosphate.

The model application at Loch Grannoch (SW Scotland) shows the more complicated situation
which occurs when considering the issue of future afforestation policy (Figure 8.10). In general,
two extreme future land use scenarios are possible; forest felled and replanted immediately
and forest felled with no replanting. The latter option produces the best prediction of water
chemistry recovery lrrespective of the future emissions strategy employed. Clearly, the
calculation of critical loads for soll and freshwater In areas where plantation forestry is a major

land-use require that these impacts be considered. It is (ronic that the areas where commerclal



afforestation Is presently concentrated in the UK largely coincide with the acid sensitive upland
terraln which receives high sulphur loads in exceedance of calculated soil and water critical
loads. These results underline the need to take land management into consideration in

assoclation with sulphur emission reduction strategics.

For the 39 lakes in Galloway, critical loads have been calculated under three afforestation
scenarlos in an attempt to quantify the forest effect (Figure 8.11). The base scenario represents
the best estimate of critical load for a catchment assuming that the area of forest remains
constant In the future and is harvested and replanted at 50 year interval. Critical loads
calculated under this scenario are compared with those calculated under two further land use
strategies. One assumes that all remaining land of forestry class 4, 5 and 6 is also planted to
provide a maximum afforestation scenario. An alternative assumes that as existing forest
stands reach 50 years age they are felled and not replanted to provide a minimum forestry
scenario whereby within the 50 year time frame of the target load calculation, only moorland
remnains. The results clearly demonstrate that an increase in aflorested area decreases critical

loads for both soil and water and vice versa (Figure 8.11).

8.6. Impact of Nitrogen

A further development of the dynamic modelling approach is now underway to enable an
assessment of the Influence of nitrogen dynamics in the context of critical loads for total
acidity and given the present and future commitments to nitrogen emissions protocols. In
general terms increased nitrate leaching from a calchment may occur as a result of increased
nitrogen deposition, decreased plant uptake of nitrate (perhaps due to sulphur induced stress
on the organisms), or through a change in climatic conditions leading to increased
mineralisation of nitrogen In the soll. As a "mobile anfon” it Is clear that if the nitrate
concentration increases in surface waters, without any concomitant decrease in sulphur
concentrations, the total anion load will increase with a resulting decreased pH and decreased
alkalinity. Taking this argument forward to critical loads it is Inappropriate that critical loads

for sulphur and nitrogen are considered Independently since the level of any one cannot be set



without consideration of the other. Although nitrogen Is dealt with in an extremely simplified
manner in MAGIC, uptake being modelled as first order functions, the model can be used to
illustrate the influence of nitrogen dynamics in calculating target loads for sulphur. The model
indicates that a "trade off” between the two critical loads, that s, lower sulphur deposition is
required to maintain alkalinity zero In the light of increased surface water nitrate
concentrations (Figure 8.12). It remains a task for the {uture to develop a long term dynamic
model for nitrogen which incorporates the major processes controlling catchment nitrate
leaching and coupled to the exdsting sulphur model so that surface water chemistry predictions

can be made in response to a range of total acidity emissions reduction strategies.

8.7. Summary of the Level I Approach

The dynamic modelling analysis indicates that recovery depends on the timescale over which
the emisstons reductions are made. It is also clear that whilst the critical load may be achieved
at a given site within a given time {rame. the water chemistry may at that time still be
unsuitable for aquatic organisms because of the inherent time lags in the catchment system
which slow the rate of recovery of surface water chemistry. In this respect. the model reinforces
the fact that the inherent neutralising ability of a catchment (weathering and ion exchange)
determines the degree and rate of reversibility of acidification but future land use policy might
conspire to modify the time lag between deposition reduction and ecosystem recovery.This has
Implications for the way in which the critical load exceedance maps for 2005 are interpreted.
It s possible that in areas where critical loads are currently exceeded but which are predicted
to be "protected’ under an emissions reduction strategy in the future {fe. whereby critical load
Is achleved), surface water chemistry will not have recovered to the designated biological

threshold.

At sites where large (c. 80%) reductions In emissions are not predicled to lead to a substantial
recovery in surface water chemistry, the question which should perhaps be addressed is
whether other mitigation techniques such as terrestrial source area liming might prove a cost-

effective supplement to the emissions reduction programme. Clearly the use of dynamic
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acldification models provides an invaluable insight into the environmental effectlveness of
proposed sulphur emisstons reductions and as such, have a clear role to play within the wider

concept of Integrated Assessment Modelling.

The level 1l analysis shows that it Is not possible to calculate a critical load for surface waters
without due consideration to the future land use policy within the catchment. Furthermore,
specification of a crilical load for sulphur in the absence of knowledge of how the nitrogen
dynamics within the catchment system might change In the future is Inappropriate since
employing the model to determine the rate and degree of ecosystem recovery in response to
some sulphur emissions reduction strategy demands assumptions regarding controls on
nitrogen dynamics in catchments. Such a change in nitrogen cycling may be brought about
by land use change and/or increased deposition of nitrogen species. Other environmental
factors could also be important, particularly, the potential for changing water flowpaths, soil
chemistry status and mineralisation rates assoclated with long term climate change. It is
clear, therefore, that nitrogen and sulphur emisslons strategles must be considered

simultaneously.

Further development of catchment scale models to explore scenarios relating to potential
changes in sulphur and nitrogen driving variables are now required to provide for integrated
assessment modelling of total acidity. At the same time, validation of dynamic models using
experimental manipulations and long term monitoring data is crucial if policy makers are to

be confident of the long term impact of their negotiations

List of Figures

8.1. The use of MAGIC to derive target loads for surface waters and soils at (a) Allt a

Mharcaidh, and (b) Round Loch of Glenhead.

8.2. The time dependency of critical loads Is reflected in the target year by which the critical



chemistry, in this case alkalinity zero, is to be achieved. Steady state refers to the model run

forward indefinitely until stream chermnistry is constant.

8.3. MAGIC reconstruction of surface water alkalinity at UKAWMN sites. The sites currently
showing a critical load exceedance (7 - Round Loch of Glenhead, 8 - Loch Grannoch, 10 -
Scoal Tarn, 13 - Old Lodge, 15 - Llyn Llagl, 17 - Afon Hafren, 18 - Afon Gwy) are characterised

by low background alkalinity.

8.4. Comparison of empirical and MAGIC calculated water critical loads at a range of sites In

the UK AWMN,

8.5. (a} Comparison of MAGIC and empirical critical loads for lakes in Galloway. The models
agree well at higher critical loads but differ at low values where MAGIC predicts that recovery
will take longer than 50 years or that greater deposition reductions are required, primarily due
to low weathering rates and acidified soils. (b) Cumulative frequency curves for MAGIC and
empirical models at 39 Galloway lakes. Note that even a low target load of 20meq S m? yr' for

the region will leave 40% of lakes with negative alkalinity by 2039.

8.6. Uncertainty estimates for MAGIC and empirical models at 6 AWMN sites. Uncertainty In
the MAGIC estimated critical load stems from consideration of measurement errors and spatial
variability in catchment physical/chemical parameters. For the empirical model the range

represents critical loads calculated for water samples collected over a range of flows.

8.7. Comparison of MAGIC soll critical loads and the empirical Skokloster sensitivity

classification.

8.8. MAGIC prediction of surface water alkalinity at AWMN sites where the critical load Is
currently exceeded. The three bars for each site represent the range of predicted

concentrations for 1989, 2005 and 2039 given the LCPD {a) and 80% (b) emissions reduction



strategy. Ranges represent uncertainty in fixed paramecter estimates and model calibration.

Emissions reductions of this order are Insufficient to stop continued acidification at most sites.

8.9. MAGIC prediction of surface water alkalinity {a) and pH (b} for lakes (n the Galloway reglon
of SW Scotland. The percentage of lakes with negative alkalinity changes only slightly in

response Lo the emissions reducton scenarios.

8.10. MAGIC prediction of surface water alkalinity at Loch Grannoch under two emissions
L]

scenarios (LCPD and 80% reduction) and two land use strategies (replant forest after felling

at age 50 yrs and no replanting after felling).

8.11. The effect of future afforestation policy on surface water critical loads at 39 lakes in
Galloway. Scenario 2 represents the steady state forestry option whereby on maturity at 50 yrs
forest stands are felled and an equal land area is replanted. Scenario 1 represents a
deforestation scenario where no replanting occurs after felling and scenario 4 an afforestation
scenario w};cre all land of forestry class < G Is planted immediately in addition to replanting
existing areas afler felling. Note that insensitive sites (critical load > 200 meq/m2/yr) are not

included.

8.12. MAGIC predictions of critical loads for surface water at the Round Loch of Glenhead
based on achieving alkalinity zero by 2039. Presently. NO, concentrations in surface waters
are low reflecting only direct input to the lake itself (100% immobilisation within the terrestrial
catchment) and the present S critical load (1) of ¢. 105 meq m? yr' is calculated under this
assumption. If NO, deposition increases, SO, critical load decreases tomaintain zero alkalinity
according to the relationship shown as line (2). If NO, inunobilisation in the terrestrial
catchment decreases to 50%, at the present level of NO, deposition the S critlcal load (3) would
fall to c. 70 meq m? yr’' to achleve zero alkalinity and if NO, deposition increased further

reductions in the S critlcal load would be necessary in accordance with line (4).
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