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OVERALL PROJECT OBJECTIVE

To assess the impacts of conifer harvesting and replanting on upland stream water quality with
a view to identifying "best practice" management strategies and the development of a model
and guidelines for environmental impact assessment.

OVERALL APPROACH

To undertake detailed water quality studies, structuring them in such a way that the results can
be applied on a regional basis.

Changes in surface water quality following from felling arc being examined for small
catchments which characterize the main U.K. upland soil types. For logistical reasons, most
of these catchments have been located at Plynlimon. Additional sites will also be used to
ensure that all major soil types are represented. In addition, dominant processes and flow
routing effects are being identified through study of the contributing hydrological components
(soil and groundwaters).

In parallel, a regional perspective on forestry effects will be attempted through collation and
analysis of existing data from the NRA and other sources. This will be used in conjunction
with results from the detailed studies allowing an overview of forestry effects in the U.K.

At a later stage current and proposed forest practice policies will be examined and assessed
to see how they might affect stream water response. This will involve integration of the
knowledge accumulated in the earlier stages and development of a simple regional
environmental impact model. From this, recommendations for minimising detrimental
environmental effects of forestry will be provided.

SPECIFIC OBJECTIVES

To study and model variations in relevant major, minor and trace element
concentrations and colour in streams, near-surface drainage (soil) water and
groundwaters during conifer harvesting and replanting, for catchment areas with
contrasting soil types and acidification potentials;

To identify flow routing pathways and contributing source areas to the stream using
chemical fingerprinting techniques;

To develop an environmental assessment model and guidelines to allow operational
NRA staff to assess the environmental impacts of forestry practice on stream water

quality;

To identify and evaluate strategies for ameliorating adverse environmental impact in
order to produce "best practice" guidelines for operational NRA staff and foresters
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which are sufficiently flexible to encompass a wide range of circumstances throughout

England and Wales;

(c) To produce an R&D Note containing the key findings, "best practice" management
strategies and a model and guidelines for environmental impact assessment.

4. SPECIFIC WORK

Iktailed sant • ants

(a) Continue to monitor, on a weekly basis, the streams draining the Hafren Forest,

Plynlimon: the Afon Hore, Afon Hafren and Tanllwyth. Collect weekly rainfall and

mist samples. Analyze samples for major, minor and trace elements and for alkalinity,

acidity and colour;

(h) Establish new sampling sites which represent the main soil types found in the UK

uplands. Examinc (he chemical changes in the soil and groundwater zones following

from felling by sampling shallow and deep groundwaters. For this. monitor near

surface drainage waters and obtain groundwater samples by drilling and sampling

boreholes. For each soil type, establish control sites, as well as the sites where felling

will occur. Sample both sites weekly aiming to obtain data for at least onc year prior

to felling operations:

Identify suitable sites for monitoring at locations with soil types not represented at

Plynlimon. Consider whether a site in the Pennines is feasible, in consultation with

Northumbria and Yorkshire region and linking in with IH's involvement in the LOIS

programme. Make full use of the ITS water quality work at Beddgclert site in North

Wales by providing two boreholes to obtain groundwater chemistries. Continue to

monitor waters draining the soil zone at south2hore, Plynlimon, thereby giving longer

term information on shallow chemical changes associated with clearfelling and

replanting;

In retation of detailed ckata

Use the data from the Plynlimon monitoring network to make a quantitative assessment

of the effects of changes in stream water quality following deforestation and

replanting. In particular, study long term effects of felling followed by replanting using

information from the Horc catchment. Study the effects of felling on a highly acid

sensitive, acidified base depleted catchment using the Afon Hafren (parts to be felled,

possibly in 1995 or 96). Examine the hydrogeochemisuy of an acid moorland area

using the upper Afon Hafren site;

(e) Use rainfall and stream water data to provide an overall view of the flux and dynamics

of chemical transfers through the hydrological cycle at Plynlimon. This will be aided

by continuous'ineaSUremérils-Of'eonduetiVity for the rainfalland streamwaters and flOw

and turbidity for the stream waters;
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(0 Assess the influence of subsurface water supplies on stream waterchemistry. Use the
changing soil and groundwater chemistry following harvesting as a natural tracer to
determine flow routing and contributing source areas to the stream. Establish the
dominant reactions occurring in the soil and groundwater zones. Use chemical mixing
equations to predict short and long term changes in surface waterquality;

Use the information gained from the field programme, with summary information on
hydrology and sediment yield for the catchments, to assess the mechanisms which
determine stream water quality.

Collationof otherMount data

Identify sites where detailed studies of felling have been undertaken and where pre-
and post-felling data exist. Examine this data in relation to soil type. Sites already
identified include Bcddgelert in Welsh Region, Kershopc in NorthWest England and
Balquhidder in Central Scotland;

Make full use of existing NRA data for regions where water chemistry may have been
measured before and after felling. For example consider Kielder in Northumbria &
Yorkshire Region, and the Afon Biga and Afon Llwyd in the UpperSevern area..0ther
sites in the various regions will be identified via a questionnairedirected to the.NRA
and associated bodies;

'rewardsfonnulati forest ent

Based on the detailed field studies and associated regional surveys, the following will be
undertaken:-

Development of a simple operational management model for use by NRA staff to
assess the impacts of harvesting and replanting on stream water quality at any acid
sensitive site in England and Wales;

(k) Assessment of a potential range of practicable ameliorative management strategies;
approaches will include i) varying the extent of felling in a catchment with regard to
the distance from the watercourse; ii) whole tree harvesting; iii) liming; and iv)
burning brash, the aim will be to produce "best practice" guidelines for NRA
operational staff which are sufficiently flexible to cover the wide range of
circumstances throughout England and Wales;

tqng

Reporting will be as follows,

an interim report will be produced after two years covering the resultsand key findings
and making any necessary case for an extension to the project;
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a project record containing all of the results of the study will be produced:

an R&D Note containing the key findings, "best practice" guidelines for ameliorative

management strategies will be produced together with a model and guidelines for

environmental impact assessment;

continued publication of new findings in peer reviewed scientific journals;

S. A REVIEW OF THE FIRST SIX MON'HIS

The work has focused on getting the detailed sampling programme fully operational. In

addition, investigation of existing NRA data has begun.

Iktailed sam • ants

Effort has centred on expanding the detailed monitoring work at Plynlimon. New sites have

had to be introduced and sampling schemes formulated. The work is in addition to the ongoing

collection and data analysis for the weekly sampling of rainfall, mist and stream waters at the

five major sites.

It has been necessary to locate and set up the sampling sites which characterise the main UK

soils of concern. For each of these sites we have aimed to establish a control site and an

adjacent site where felling is planned in about 12 to 18 months time. At each site, surface

runoff from small ephemeral streams and groundwater samples will be collected. The idea of

collecting data from such small streams is to obtain an integrated measure of the soil water

chemistry without the influence of groundwater inputs. Surface runoff is taken in preference

to direct soil water measurements owing to the very high degree of spatial variability in soil

water chemistry and the near impossibility of obtaining a representative sample using standard

collection devices. The groundwater samples necessitate the drilling of boreholes.

The main soil types which need to be studied are podzol, gley, brown earth and deep peat. Not

all of these types are present at Plynlimon and major effort has had to be placed in identifying

sites, even at Plynlimon: detailed discussions with forestry commission over sites, felling,

timing and practicalities, plus scrutiny of soil and land survey maps have been needed. Here

we detail our progress to date.

Gleys: sites have been located within the Tanllwyth catchment at Plynlimon (Figure I). This

represents an ideal choice area as the Tanllwyth is one of the major tributaries entcring the

Hafren, it is nearly completely forested and there is a large amount of background data - we

have undertaken sampling for the past four years as part of the ongoing monitoring

programmc and detailed flow records are available. The control and felling sites have been

located and sampling of ephemeral streams has begun. The associated boreholes have been

drilled but one of them (the control) cannot be used owing to contamination by a perched

aquifer. A new control boreholc.will be drilled in early July. Sampling for chemical analysis

will begin in August after the well has been developed: disturbance is inevitable during

borehole construction so water samples will only be analyzed after the boreholes have been
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Sampling sites

t,
Rainfall

Stream water

Boreholes

Hafren

IDK
3 holes

rani
iwyth

4 holes

Hore

SEVERN

Figure 1 Plynlimon sampling sites

thoroughly flushed and cleaned-- this will take about a month.

Podzol: sites have been located in the Hafren catchment. As with the gley sites, ephemeral
streams arc being sampled and boreholes have been drilled. The monitoring programme timing
is as for the Tanllwyth except that one of the boreholes has already beenestablished from the
previous years field programme and interesting results are already accruing (see next section).

• As mentioned above, borcholes will also be established at Beddgelert to supplement the
ongoing ITE study of deforestation and replanting of Sitka spruce at a very acidic site. Sites
for these boreholes have been established and details together with site description arc given
in Appendix I.

Brown earth: no site is available at Plynlimon but control and felling sites have now been
found next to Lake Vymwy (Figure 2). This arca can be sampled by the NRA for Us and
ephemeral stream monitoring will begin in July subject to NRA logistical support. Drilling of
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boreholes will proceed in July or August. Details of the site are provided in Appendix 2.

Deep peat: potential sites in the north of England ,in other parts of Wales and in Scotland
have been considered. However, no suitable area has yet to be found. Practical limitations may
mean that a site will have to be looked for at Plynlimon.

Interim results

Borehole results: Chemical data for one of the boreholcs cutting through podzols has been
monitored for the past 2 months. The borehole was drilled into mudstones to a depth of I I
metres. Water was initially struck during drilling at a dcpth of 5.3 m. The upper regions of
the borehole have been sealed to prevent downwards movement of soilwater into the borehole.
The bottom 3 metres of the hole have been screened so that ground waters at this depth can
be sampled. The results for watcr levels, pH and alkalinity are provided in Figure 3. We
appear to have found a water source which is hydrologically and chemically active, even
though this is an area where rocks are considered by many to be impermeable and
groundwaters are assumed not to exist. Waters levels have varied between 2.5 and 5.5 metres
during the last few months and the hole has been observed to refill quickly after emptying.

Previously, the presence of groundwater has been suggested by the baseflow chemistry of the
streams. Whereas stormflow stream chemistry is highly acidic and can be explained by
increased contributions from acidic soil waters, baseflow water is of moderate alkalinity and
relatively high pH and unlike any water type previously sampled within the catchment. The
chemistry of the borehole water samples is more alkaline than anything seen in thc soils and
may well prove to help explain the source of baseflow stream waters.

The increase in alkalinity seen during the period of sampling (Figure 3) corresponds to a time
of flow recession. As flows have decreased the chemistry of the borehole has moved towards
higher pli and alkalinity. High inorganic carbon levels (with visible degassing) have been
found - excess pCO2 values have been between 4 and 37 times atmospheric i.e. at times
significantly higher than in the stream.

Rainfall-stream water relationships: throughout the project emphasis has been placed on
interrogation of the data as it becomes available. Over the past six months two important sets
of analysis have been produced. Data from the south2hore site has been analyzed and the
effects of deforestation on near surfacc runoff from an ephemeral stream draining podzol have
been described. Deforestation has lead to an increase in nitrate, DOC and acidity: the
perturbations have, however, only lasted for about 3 years as regrowth of vegetation has
started to mitigate the changes. From a theoretical standpoint, the work casts doubt over the
applicability of the cation exchange equations which are commonly used in environmental
impact studies. This could well have important ramifications for the current environmental
impact models of acidic systems: the full text is given in Appendix 4. In the other study, we
have begun to examine the longer term aspects of stream water quality changes and have
examined trends in the Hafren stream waters and related these to rainfall inputs. The results
suggest that there is little evidence of further increases in acidity or of depletion of base
cations. However, we have found rises of DOC, bromide and iodine in the stream waters
suggesting that there may have been an increase in organic breakdown over the last decade:
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Borehole Water Time Series
•

Depth

40 60 80 100 120 140
Dayno

111
tri

•

pH

120 130 140 150

Alkalina;

120 130 140 150

•
pCO2

120 130 140 150
Dayno

Figure 3 Plynlimon borehole data. Lines show borehole results. Points show
corresponding measurements for thc Hafren stream. 4

•
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see Appendix 4 for further details.

Investigation of external NRA data: Two main areas have been covered during the past six
months.

First, data for the NRA sites of the upper Severn (Afon Biga and Afon Llwyd) have been
obtained and examined: the full data set is shown in Figure 4. The following was found.

I) In the last five years temperature, pH, conductivity, T.O.C., chloride, alkalinity,
sulphate and hardness have been measured. Rather more determinands were measured
for the period 1984 - 1989 but these have since been discontinued.

Only pH, conductivity and chloride have complete and regularly sampled data records
for the full period ( 1985 to 1994)

Sampling has been more frequent over the last five years but is still sparse
(approximately every month).

There is no recent data for many of the determinands of primary interest, eg. nitrate,
potassium, base cations, aluminium.

The data for the Afon Biga and the Afon Llwyd arc very similar.

We conclude that there is very little that can be done in terms of modelling of the data or
even establishing effects of felling.

Second, an attempt is underway to identify other UK sites where water quality is available.
A questionnaire has been designed which will be sent to the NRA regions (Appendix 3). Any
useful data which is located will be of value in providing a regional perspective on our
findings.

6. PRIORITYAREASFOR THE NEM SIX MONTHS

The main work for the next six months involves the following.

Continuing data collection for the present network of sites.
Completing the borehole network at Plynlimon (and Beddgelert).
Setting up sampling routines and drilling boreholes for the Vyrnwy brown earth sites.
Identifying, if possible, a deep peat site and commencing sampling.
Circulating questionnaires regarding existing data and beginning the collation of any
data identified,
Comparing data for the different streams, surface waters and boreholes after six
months data has been collected,
Examining the nature of groundwaters and investigating water movement by installing
continuous borehole-level recorders.
Reviewing stream sampling frequency at Beddgelert, in the light of the borehole
emplacement, and assessing the condition of hydrological structures at this site with

R&D Progress Report 502/I1W 9
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a view to reintroducing more regular sampling and refurbishing the structures.
9)	 determining the background catchment characteristics for Vyrnwy sites - ie catchment

area, altitude range, stream length, and information relating to site climate.
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APPENDIX l

B Tound information for lk rt forest

Since the spring of 1982, streamwater chemistry has been monitored at Beddgelert forest in

three small catchments located in a north-east facing. former glacial cwin 12 km from the

north Wales coast. Catchment D3 (4.7 ha) has remained asan unfelled control throughout this

period, but felling of 62% and 28% respectively of the catchments of the other streams, D2

(1.4 ha) and D4 (6.1 ha), took place in September and June 1984 respectively. The unfelled

control catchment has remained as closed-canopy spruce plantations throughout, with no

ground flora apart from scattered ferns and bryophytes and no forest management has taken

place. The catchments at Beddgelert have a similar geology and range of soils to those at

Plynlimon and were planted with Sitka spruce in the 1930's. The catchments are at an

altitude of approximately 400 m and receive an average annual rainfall of 2600 mm.

The streams at Beddgelert forest were sampled weekly from 1982 to 1992 and gauged with

V-notch weirs from which flows at the time of sampling were calculated. Subsequent to 1992,

samples have been collected monthly and the site has been kept running on a 'care and

maintenance' basis. Trees in the harvested catchments have.now reached canopy closure, with

a dense cover of re-planted and naturally regenerated Sitka spruce. The site is therefore well

advanced into the second rotation and should be incorporated within the remit of the study.

It is intended that the boreholes should he drilled at the site. The surface water sampling

frequency will also be reviewed with the possibility of weekly sampling being re-introduced.
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APPENDIX 2

Forett sites at LI Fl ...akeV

Following three visits to the Vyrnwy catchment, two sites have been selected for the study.
Whilst the relative locations of the sites may not be ideal, exhaustive discussions with the
local forester have shown that these are the only options available. A formal request for access
has been submitted to Mr Mike Duggleby (Lake Vyrnwy Estate Manager for Severn-Trent
Water Ltd). This should not present a problem. The local forester (Mr Neil Muir) is very co-
operative and is willing, as far as possible, to accommodate the project objectives.

Control sfte

The control site is a small steep, perennial stream flowing into the southern margin of the
lake. The stream is accessible from the roadside, and a small layby would provide a site for
a borehole. The site details are shown below and the forester has confirmed that no felling
will take place for the duration of the project.

Control site

Location Southem side of lake, NGR SH9822I3

Forest crop Sitka spruce planted in 1943 & 1955 Small area of Japanese larch
planted in 1955.

Thinning To be confirmed - 1:3 line thinning?

Windblow None of significance

Soils Brown podzolic

Altitude Mid point 350 m

Fellingsite

Felling site

Location Forest block to northeast of the lake, NGR SJ036219.

Forest crop Sitka spruce planted in 1963 Yield class 22.

Thinning One thinning in 1989/90

Windblow Western edge of block at head of stream has blown down and been
cleared.

Soils Brown podzolic, with some localised gleying.

Altitude Mid-point 340 m

R&D Progress Report 502/I1W 13



The felling site is located on a moderately steep, perennial stream. The stream is accessible

from a forest road and there is a suitable location for a borehole. At the head of the stream
is an arca of windblow that has been cleared and has now re-vegetated with grasses and rushes

(Juncus). Close inspection of the site by walking the length of the stream, has shown that this

area contributes relatively little water to the stream. The extensive vegetation cover should

also limit any nitrate leaching from the windblown area. Although not ideal, this is the only
option for a felling site on the Vyrnwy estate located on brown podzolic soils. It is our view

that the site should used and that the signal from clearfelling the remainder of the catchment

will not be significantly affected (if at all) by the windblow damage. Thc area is due to be

felled in 12 to 18 months time, although the forester has indicated that the exact timing can

be altered to fit in with the aims of the project.

The soils of the felling site are brown podzolics but there arc some areas whcre gleying occurs

at the surface of the brown podzolic profile. This reflects poorer drainage on some of the
shallower slopes. This should not materially affect the results of the study, and will still
provide a major contrast between the podzol, gley and deep peat soils at the other sites.

Rainfall collection

A bulk precipitation collector is required to monitor rainfall chemistry for the sites. There is

a conventional volumetric raingauge sited on high ground on the southern side of the lake,
about mid-way between the two forest sites. The exact location has to be confirmed as there
has been some confusion over the grid reference. The gauge is located in moorland above the
forest within square SJ000190. The site is fenced and will be visited soon to check its
suitability for a chemistry collector. Access is via a forest track and a short walk. Given the
location of this site, it is probable that only one chemistry collector will be required.

R&D Progress Report 502/I1W 14
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Chemical variations in near surface drainage water for an
acidic spruce forested UK upland area subjected

to timber harvesting: inferences on cation exchange
processes in the soil
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Abstract

Hydrochemical variations in the major, minor and trace element concentrations of first order gleam draining a plantation of
Nadi spruce (Pirea sarliensis (lkmg.) CAM), subjected to felling. Are described The stream w.ttrf is acidic and aluminium bearing as
the area drained comprises thin, acidic, organic-rich soils Thc chemical composition of the stream vanes with time and the data Ls
scattered owing io the complex hydrological, chemical and biological interactions involved None the less, the catchment has the
ability to damp down the chemical signal of the rainfall. Thar is no statistically significant correlation between rainfall and stream
water chemistry for any of the components measured Deforestation leads to inireased concentrations of N0j, K. H'. the major
elements and id together with a deacase in alkalinity. The changes last for 2-3 years conditions then reveft to pre-felling levels
These resulis fit well with previous findings in that deforestation lead!: to the disruption of the biochemical functioning of the
catchmeni (releasing nitrate and potassium and acidifying the soil waier). The major element changes arc linked to increased
leaching of the soil waters as a consequence of changing hydrology (evapotranspiration Lc probably reduced and the catchment soils
wet up). However, the variations in Al, dissolved organic carbon, Br and 1 are less than would the anticipated based on previous
results for a companion study of the main drainage area. Dissolved organic carbon, Fe. Qi. Y and LA show increases, but these
changes occur after the felling is complete and there has been no ieturn to pre-felling values 3 years on. The applicability of
classically used cation exchange theory for the soil, thc basis for many of the conclusions deiived in the soil acidification debate, is
questioned and found to be highly suspect

ICrywords: AUTHOR PLEASE SUPPLY 3-6 KEYWORDS

L Introduction

Much of the upland UK environment is acidic
and acid sensitive and there is concern over stream
water quality deterioration due to the effects of
acidic deposition and conifer afforestation

'Corresponding author. 


(UKAWRG, 1988; Whitehead et al., 1988). The
commonest land use change in these areas, this
century, has been the afforestation of acid grass-
land with conifers (Adamson and Hornung, 1990).
This was in response to a national need for in-
creased home-produced timber. While the earlier
plantations have now been harvested and re-
planted, there is an increasing need for forest
clearance: the major portion of the afforested
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areas are now almost of harvastable age, they
correspond with the peak rate of afforestation in
the 1960s, There is growing concern that such
deforestation will lead to a further decline in
stream water quality, particularly with regard to
nitrate, acidity, organic carbon and aluminium
levels (UKAWRG, 1988; Hornung et al, 1989;
Adamson and Hornung, 1990; Hughes et al., 1990;
Neal et al., I992a; 1992b). However, relatively
little published data is available and patterns of
change are not always uniform, while soil types
and underlying geology are very varied. Thus, our
understanding of the effects of deforestation has
not yet reached the stage where regionalised pre-
dictions can be made.

To add to the base knowledge, new information
is provided here on the water quality effects of
deforestation for a first order stream in the Hafren
forest, mid-Wales. The information presented re-
lates to that area of the catchment, the hillslope
soils, which (1) supplies the most acidic and lowest
quality water to the main streams (Neal et al.,
199(k) and (2) is most directly impacted by defor-
estation. This work complements a companion
study which deals with the progressive deforesta-
tion of the main drainage area and the added
hydrochemical complexity of groundwater supply
(Neal et al., 1992a; 1992b). The work also pro-
vides an important .example of the limitations of
presently used equations which describe cation
exchange reactions between the soil and its asso-
ciated solution. This aspect is of fundamental
importance for the production of lumped hydro-
chemical models which describe the impacts of
acidic deposition and land use change at the
catchment scale (Neal, 1992; Neal and Robson,
1993).

2. Location, sampling and chemical analysis

The work was conducted at the Institute of
Hydrology's Plynlimon catchments in mid-Wales
(Nev.son, 1976; Kirby et aL, 1990). Here, since
May 1983, there has been an extensive hydro-
chemical study of the upper parts of the River
Severn, draining sitka spruce (Picea sachensis
(Bong.) Carr.) plantation and moorland areas.
The approach taken has been to examine a wide 


variety of chemical determinands in rainfall,
throughfall, siemflow, mist and stream water. This
was undertaken in order to (I) describe the con-
sequence of timber harvesting on stream water
quality and (2) see if chemical fingerprinting tech-
niques can be used to provide information on
how rain water is transported to the stream at the
catchment wale (Neal et al., 1990a; 1990h; 199(k;
1992a; 1992h).

Weekly sampling of a first order stream drain-
ing a spruce forested hill-slope for a major, minor
and trace element study, began in May 1988. This
stream, south2-Hore, which is the major subject
of this paper, drains an area of 133 ha with an
average slope of 12. The soils are acidic. They
are comprised of stagnopodzol and stagnogley
soils, typically < 1 in thick, overlying imperme-
able slates and shales. South2-1Iore constitutes
one of the streamlets supplying water to the Mon
Fiore from the northern slopes of its catchment.
"lhe lower 75% of the main drainage area of the
tipper Severn was afforested in the 1930s;prior to
afforestation the area was acid mocwland. The
More catchment area was clearfelled over a 5-year
period (1985-1989) and the south2-11ore part of
it.was deadened in ihe autumn months of 1989.
With clearfelling, the stumps of the trees were
left on site, together with a considerable amount
of slash (needles and branches). This ensured that
the development of new vegetation was and cont-
inues to he severely hampered.

The south2-Hore waters sampled were filtered
in the field using 0.45 pm membranes. On imme-
diate return to the laboratory, electrometric de-
terminations were made for the p11, conductivity,
acidity and alkalinity (the latter two, using Gran
t it rations). Waters were stored in the dark at 4°C
in acid-washed polyethylene and glass bottles prior
to analysis of the other deterininands. For the
metal determinations, after filtration through 0.45
pm membranes, polyethylene bottle storage was
used and the samples were acidified with high
parity concentrated nitric acid to 1% v/v: this
minimised adsorption and precipitation reactions.
Analysis involved mainly automated-colourimetry
and inductively-coupled-plasma emission and
mass spectrometry techniques. For all the chemi-
cal determinations, quality control standards are
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included in the routine analyses. With each batch,
for ICPOES and ICPMS analysis, the Institute of
Hydrology's own quality control standards are
included. These standards are checked weekly
against international quality control referencas.
The Institute's lahoratory takes part in UK and
international inter-lahoratory annparison exer-
cises and a rigorous quality assurance system is
maintained.

3. Cation exchange modelling: rationale, model
and testing

Much emphasis has been placed within catch-
ment acidification research on describing soil
acidification in relation to the depletion of base
cations from the exchange fraction of the soil.
Hydrochemical and environmental management
models have used equations and concepts taken
from the classical soil science literature to de-
scribe these changes (Christophersen et al., 1982;
Cosby et al., 1985a; 1985h; Whitehead et al.,
1988; Jenkins et al., 1990). However, the validity
of the cation exchange formulations used must be
questioned on the basis of field evidence and
computer simulation (Neal et al., 199)h; Neal,
1992; Neal and Robson, 1993). In order to assess
the validity of the presently used cation exchange
equilibria at the catchment scale, fiekl based ex-
periments at a representative level are required
(Neal and Robson, 1993). Such experiments must
be enacted at field sites where the large spacial
variations in soil water chemistry are smoothed
out: multiple inputs to the stream (e.g. from soil
and groundwater sources) confuse the issue. The
data collected in this study provides a situation
for the testing of the cation exchange theory
given the drainage pattern and the absence of
groundwater sources.

Here, the cation exchange theory tested is a
simple mechanistic one taken from the classical
soil science text books and used within most of
the acidification models. The technique employed
follows directly from the approach taken by Reuss
(1980) and Christophersen et al. (1982) as ex-




tended by Neal (1992). It considers the soil as a
single homogeneous unit and that the amounts of
cations within the soil's cation exchange compo-
nents are much higher than the amounts in the
associated soil water solutions. For such a system,
simple relationships between the concentrations
of cations in the soil solution (strictly chemical
activities) hold. Thus, for monovalent (Mi, diva-
lent (M2' ) and trivalent ions (M3'), their con-
centrations follow the relationship that the ratios
IM*12/IM 24 /, 13/fM 3- I and
IM2* 13/1M3• )2 remain constant as anion con-
tent varies. In other words, for any two cations, M
and N, of respective charge m + and n + , their
concentrations are related to each other by the
power relationship —

alM"lb (1)

where a and h are constants and b = m/n. This
corresponds to the theory known as the 'mobile
anion concept' (Seip, 1980).As anion concentra-
tion increases, so also does the concentrations of
all the cation.s; the rates of cation increase are in
the order fhl < IM2' I < fM" 3(Reynolds et
al., 1988).

liere, these equations are examined against the
south2-Hore stream water data by linking the
cation concentrations with the soil water compo-
sition.s. This linkage is required since it is the soil
water rather than the stream water which is in
equilibrium with the soil's cation exchanger. As
the soil water enters the stream, CO2 degasses
and the hydrogen ion concentration decreases
while aluminium speciation changes. For this
study a hack calculation has been performed to
estimate the hydrogen ion concentration in the
soil water before testing the cation exchange for-
mulations. Aluminium speciation calculations
were required to determine the concentration of
Al'' present. To do so, a thermodynamic specia-
lion model, ALCHEMI (Schecher and Driscoll,
1988), was used. For each calculation, the total
aluminium concentration in the soil was set to the
stream water value and an allowance was made
for aluminium complexes with hydroxide, ail-
phate, silicate and organic matter as well as for
tempera tore.
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4. Results and preliminary discussion

The south2-1-lore streamlet has run-off charac-
terised by acidic and aluminium-hearing waters
with a variable major, minor and trace element
chemistry (Table I). As a starting point to de-
scribing the changes seen in the stream and relat-
ing them to the underlying processes, it is valu-
able to initially compare the average and ranges
in the chemistries of the rainfall input and stream
output and to describe the temporal changes in
the stream water chemistry. It is then appropriate
to examine the cation exchange controls on the
major cations.

As a large number of chemicals have been
determined and most of these are mentioned in
the text, it is appropriate to present the data for
all of them as a time series of plots (with the
exception of those components always near the
detection level). These plots are provided at the
end of this paper (Appendix la—e).

4.1. Chemical uaaarions in the south2-Hore stream
and their relationships to rainfall chernisay

Westerly winds bring rain to the Plynlimon
area from over the Irish sca and the North At-
lantic. Such rain is enriched in sea sans (Na, Mg,
CI and SO,) and components fractionated at the
air-sea interface with sea spray generation (Br
and 0. In contrast, air masses with a more com-
plex trajectory, particularly those passing over the
UK's industrial and agricultural areas, pick up
pollutant components (NH,, NO3 and SO,). Con-
sequently, rain falling at Plynlimon has a variable
chemical composition, the variability being de-
termined by the relative contribution of both the
maritime and pollutant components (Table I).

On transport to the stream, the rainfall signal
is modified and the variations in chemistry are
reduced (even with the added constraint of per-
turbation associated with deforestation): the only
exception to this is for aluminium, where its con-
centration in the stream is dominated by catch-
ment supplies (Table I). There is no statistically
significant relationship between the rainfall and
the stream water composition for any of the
chemical components measured (r < (L1 for a
= 205). In general, concentrations are higher in


the stream water than in the rainfall. This re-
flects, in part, evaporation of water: chemically
conservative components such as chloride average
—50% higher concentrations in the stream com-

pared with the . -or most 0 t e major compo-
nuns (K, Ca, Mg, SO,, NO3, SiO, and DOC),
many of the trace components (Al, Ba, Be, ('.o, F,
Fe, Li, Mn, Ni, Sc, Y and Zn), DOC and acidity,
there is a net supply to the stream from within
the catchment. This results from acidity genera-
tion by organic acid production, chemical weath-
ering within the soils and mobilization of the
easily hydrolysable transition metals. There are,
none the less, important exceptions. In the case
of sodium, there is a net input-output balance.
This reflects the limited degree of uptake/release
of this component from the vegetation and soils.
Also, there are some components which are taken
into the soil from the rainfall input. The most
noticeable of these are the nutrients NH,, PO,,
Br and I: the two main nutrients, NO, and K,
show an enrichment which is mainly associated
with the effect of deforestation, as discussed later.
There are also a few trace metals that show a net
absorption (Cd, Cr, Cu and Pb).

Because of the catchment controls and various
catchment supplies, there are similarities in the
patterns of behaviour for groups of chemicals
from hydrochemically similar environments. For
the sea salt components (Na, Mg and CD, which
are essentially derived from the atmosphere, there
are very high inter-correlations (r > 0.95, n =
205). Also, there are high correlations (r > 0.7,
n = 205) for many of the divalent metals (Ca, Sr,
Ba, Mn, Co and Ni) and these are correlated with
the sea salts and silica. K and NO, are also
correlated, with temperature, as arc Y and La.
All of these patterns are essentially the same for
the periods prior to felling, post felling and for
the full sampling period.

While flow has not been measured for the
south2-Hore stream, hydrology is clearly an im-
portant factor in determining the composition for
some chemical constituents in the stream (Fig. I).
This can be gauged using flow information for the
upper Hore gauging point. Inverse relationships
with flow are found for Ca, SO,, Si, Mn, Co and
Ni (there are also lower concentrations at high

riXtrN.
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5outh2-Hore slieam water omeentrations and ranges

RainStreamCatch
avgavgavg

(mg/1)(mg/1)(7,)

Rain
range

(mg/l)

Stream

range
(mg/1)




N A 2.86 4.19 - 2 0-21 2.3 -8.3K 0.13 0 52 62 0-2 0.5 -1.2Ca 0.21 0 52 41 0-2 0.2-1.2Mg 0.35 0 69 24 0-15 0.4-1.3
NH, 0.32 0.02 - 22211 0-2.7 0-0 3CI 5.37 8.05 0 0-41 4-19SO, 1.74 3.77 31 0-10 2-7NO3 0.79 2.45 52 0-10 0-9
PO, 0.03 0.01 - 345 0-1.2 0-0.5Si 0.13 0.94 79 0-20 0.3-1.8DOC 0.50 2.34 68 0-2.4 0.3 -5.6




( P8/D (pg/D ("X ) lpg/D ( pg/l)Al 7.11 365 65 97 0- IRO 155-596B 3.66 5 SO 5 0-44 2-18Ba 1.31 4 36 55 0-198 1.3-10.3lk GOO 014 100 0-0 2 0-0.13
Br 19.40 24.27 - 20 4-128 16-45Ca 0 19 0.19 - 5I 0-6 0-0 9Co 005 1 08 93 0-4 0 2-2.9Cr 1.70 1.35 - 89 0-15 01-7.7
Cu 1.13 1.21 -40 0-2N 0.3- 13.1 .17 20.14 .34 96 14 0-120 0-100;Fe 5.45 74 80 89 1-108 22-153I 1.35 1 23 - 65 0 6-4.6 0 7- 2.6
La 0.19 11.213 0 0-8 0-2Li 007 1.52 93 0-4 1-3Mn 1.15 64102 97 0-18 22-153Mo 0.17 0.26 0 0-40 0-2
Ni 0.68 2.55 60 0-16 1-5Ph 6.78 1.37 -639 0-160 0-7Si 0.02 0.04 31 0-0.8 0-1.6Sr 2.30 3,73 8 0-14 2-7
V 0.13 0.02 -906 0-3 0-1Y 0.01 0.08 85 0-1.4 0-2.4Zn 4.73 1111 36 0-126 7-2772 all an 12 0-6 0-1.5




(4E4/0 (pEq/1) (%) ( t46-1/0 ( pEq/1)Alk - 14.15 - 27.72 24 -463-3k - 52- - 10H Ion 14.94 25.55 12 0-436 5-64
The term 'catch aye pves an estimate of the percentage of a chemical in the stream associated with catchment supplies, asopposed to the atmospheric contribution. The calculation is based on the assumption that chloride is chemically conserved withinthc catchment and that the change in chloride concentration between rainfall and the stream is representative of evaporation. Forthe calculations, volume weighted averages ale used. The concentrations are expressed in mg/I or pg/I as the element/specieslisted in column 1 (e.g. NO, and SO, are expressed as mg NO3/I and mg SO4/1. respectively), except for alkalinity and H • whichare both given in sEq/1 units.
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flow for many of the major ions, but the scatter is
much higher than for the components shown in
Fig. 1). Positive relationships with flow occur for
Fe and DOC. These relationships occur because
of varying flow routing over time. Under drier
conditions, more water comes from the lower
soils which are more inorganic in nature with a
higher content of inorganic weathering compo-
nents. In contrast, under higher flow conditions,
more water is supplied from the upper soils which
are more acidic and enriched in organic acids.
However, flow is not the only determining factor
and there are two inter-related aspects to con-
sider.

(I) Felling related changes.The effects of defor-
estation are observed for NO3, K, alkalinity and
II NO3, K and I1 concentrations increase while
alkalinity decreases with felling. These changes
remain for 2-3 years post-felling, after which they
decline back to pre-felling values. The changes
are associated with the disruption of the biologi-
cal cycle with harvesting and the subsequent re-
generation of the vegetation (Neal et al., 1992a;
1992b). With harvesting, there is a reduction in
the nitrogen uptake by the vegetation. This leads
to increases in nitrate levels and enhanced acidi-
lication. As the biological controls re-establish
themselves, nitrate levels decline and thus acidi-
fication is reduced. For the major cations and
chloride, there are similar increases in concentra-
tion for the 1st year following felling: there is
then a reduction to background levels. In this
case, the changes are probably associated with a
flushing of salts from the eatchnient as tree loss
results in a reduction in evapotranspiration, wet-
ter conditions in the soil and increased leaching
of salts. There may be some limited increases in
concentration for aluminium for 2-3 years after
the onset of felling (10-30%) and a subsequent
decline to values lower than those encountered
prior to felling. In contrast to this, dissolved or-
ganic carbon, Fe, Cd, Y and La show increases:
the changes ocair mainly after the felling is com-
plete and there has been no return to pre-felling
values even 3 years on. Presumably these changes
reflect an increased supply of humic materials,
the metals associated with the dissolved organic 


carbon being related to metal-humic binding. For
many of the other chemicals, there may be a
small effect associated either with deforestation
or some longer term behaviour. This is evidenced
by small declining concentrations post-felling (e g.
fluoride): chromium is exceptional in that concen-
trations clearly decrease sharply following har-
vesting.

(2) Seasonal vananons.There are cyclical pat-
terns of behaviour observed for the nutrients
NO3, K, B, Br and 1, as well as for Cr and Li,
although there is much data scatter. Throughout
the study period, the concentrations for this group
of chemicals peak during the summer and early
autumn periods when biological activity is at its
highest and low flows predeminate. These varia-
tions probably come about due to the biological
controls for the nutrients and from increased
weathering of the bedrock for lithium.

4.2. Cation inter-relationships and the testing of
cation exchange theory as applied to the hilLslope
scale

For the major cations (Na', CA2' and Me' ),
chloride and the sum of the anions, there are
high inter-correlations (Fig. 2; r > 0.7, n =
205). These patterns are essentially the same for
the periods prior to felling, post-felling and for
the full sampling period. There is a poor correla-
tion between the major cations and the sum of
the anions with II' and trivalent-aluminium (Fig.
2). The results show that the concentrations of
Na', Ca2' and Me as well as the sum of the
anions are linearly correlated with near zero in-
tercepts (Fig. 2). Linear regression analysis of
logged concentrations give power terms (b), as
depicted by Eq. 1, which are quite different from
the theoretical values (Table 2). In the case of
H and AP', no well defined relation.ship occurs
between them or the major cations and the data
is highly scattered: as with the major cations, the
power relationships are far removed from those
given by theory (Table 2).

The results described here indicate that while
there is a broad relationship between the cation
concentrations and the sum of the major anions,
there is no compatibility with the mobile anion
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concept. For the major cations, the power rela-
tionships describing their co-variations lie
between the theoretical values and unity. This is
compatible with a recent theory for spacialy and
temporally heterogeneous cation exchange where
(a) simple cation exchange reactions ocair within
the micropores within the soils and (Non passage

to the stream, the soil water chemistry is not
modified by the soils cation exchanger (Neal,
1992). However, the decoupling of and AP'
from the major cations implies that these compo-
nents are not primarily determined by simple
cation exchange reactions in the soil as depicted
in the 'acid rain' literature. Indeed, previous work
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Table 2
Linear regressron data for logged concentration data for the tuth2.11ore stream

Gradient (11) Gradient CM
(regression) (theory)

Na • — Ca2 0.422 0 73 ± 0 12 0 50Na ' — Mg2' 0142R 0 78 ± 005 o5NA' — AP' 0.123 0 54 ± 0 20 33NA' — 11' 0 080 0 24 ± 0 11 100Ca2'Mg' ' 0.641 0 61 ± 1 00Ca2' — Ad" 0007 0.12 ± 0 20 0 67Ca:• — H' 0.018 0 10 ± 0 11 2 0014' — Al2' 0.271 0 64 ± 0 21 0 33
lhe gradienks conespond to the power relationships between cations (24 1) and the bracketed turns an twice them standarderror • n • 205. The term on the left hand side of column one is the independent variable.

at Plynlimon indicates that aluminium release to
drainage water can be associated with kinetic
'weathering type reactions involving proton con-
sumption (Reynolds and Hughes. 1989).

S. Discussion

The results provide a clear indication of a
deterioration in stream water quality following
tree harvesting that fit in well with previous
observations for NO3, K, and alkalinity
(Likens et al, 1970; Lawrence et al, 1987;
Lawrence, 1989; Stevens and Hornung, 1987;
Stevens et al., 1989; Hornung et al, 1989; Adam-
son and Hornung, 1990; Reynolds et at, 1991;
Neal et al., 1992a; 199Th). The disruption of the
natural biological cycles results in increased NO3
and K production in the soil water. This flux is
transferred from the soil to the south2-Hore
stream, quadrupling the concentrations for a pe-
riod of 2-3 years. At the same time, the stream
becomes more acidic and Al increases by -
10-30%, although the scatter is high. In part, the
changes observed are very similar to those found
for the main stream channels at Plynlimon for
H•, NO3 and K. However, the extent of the
increase is larger for NO3 and K and the changes
in the baseflow chemistry are different owing to
the very different groundwater inputs. It seems
that after a 2-year period, the initial deforestation
disturbance has essentially worked through the
system, eventhough the vegetation remains sparse.
There may, however, be a subsequent deteriora-




lion in water quality with forest regrowth. This
hypothesised longer term effect is associated with
base cation uptake into ihe developing biomass
and the depletion of base cations from the soils
chemical store (Jenkins et al., 1990). For the main
river, the deforestation eftects are of reduced size
and extended length for NO, and K owing to
progressive felling over a 5-yearperiod, compared
with the south2-1lore stream where the area was
felled over a few months. However, for Al, Br and
I, the changes ohserved in south2-Hore are
smaller than would be anticipated based on
changes observed in the main river. Also, for
dissolved organic carbon al south2-Hore, the in-
creases seem to he observed for a longer period
after felling than for the main stream. This
probably means that the soilsin different parts of
the Fiore catchment respond in different ways to
deforestation, for these components.

The present study re-emphasises that there are
major difficulties over the appropriateness of sim-
ple cation exchange formulations when dealing
with catchment scale modelling. Even under a
near ideal case for observing the equilibrium
process, it is clear that there is no evidence for
any equilibrium. Most disturbingly, there is a
general lack of a relationship between the base
cations and H • and Al. As the acidification mod-
els are driven by relationships between these
components, it seems that a mathematically sound
model is still required for determining the two
ecologically harmful components of the water that
need environmental modelling. H* and Al.
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Abstract.
Hydrochemical data have been collected for between 6 and 9 years from forest harvesting
experiments in small catchments (<10 ha) at Plynlirnon and Beddgelert, Wales, UK. Felling
resulted in rapid increases in nitrate and potassium concentrations at both sites. A maximum
of 3.2 mgN L'1 was observed at Plynlimon about one year after the start of felling.
Concentrations declined to control stream values (0.5 mgN L'') after 5 years. At Beddgelert,
nitrate concentrations in the manipulated catchments remained above those in the unfelled
control catchment for three years, before declining below control values. The nitrate pulse
was related to increased rates of mineralisation and nitrification in the soil after felling. The
initial increase in potassium concentration after felling at Plynlimon was followed by a slow
decline but concentrations were still above those in the control stream after 5 years. From
four to eight years after felling at Beddgelert, potassium concentrations fell below and then
generally remained lower than control values.

The nitrate pulse after felling at Plynlimon sustained inorganic anion concentrations above
those in the control stream for the first 18 months after felling. As the nitrate pulse declined,
inorganic anion concentrations decreased to below those in the control stream about four years
after felling. At Beddgelert, the smaller increase in nitrate concentrations had less effect on
inorganic anion concentrations which decreased after felling relative to values in the control
stream. The increase in nitrate was associated with temporary streamwater acidification in
the felled catchments due to the increased rates of nitrification and nitrate leaching. At
Plynlimon, streamwater aluminium concentrations declined after felling, but controls on
aluminium behaviour are complex and not explained by simple equilibrium relationships with
Al(OH)3 or by variations in inorganic anion concentrations. At Beddgelert, felling had no
effect on stream water Al(tot) concentrations.

Felling at Plynlirnon led to a large reduction in streamwater chloride, sodium and sulphate
concentrations. At Beddgelert reductions in sulphate and 'sea salt' ion concentrations were
less clear, reflecting the smaller proportions of the catchments which were harvested.

Felling had no deleterious effects on water quality, apart from a temporary slight further
decline in stream pH at Beddgelert. Increases in nitrate were short-lived and well below
drinking water standards. Aluminium concentrations were already higher than statutory
standards, but were not increased or decreased through felling.
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I. Introduction

Upland areas of the UK arc predominantly composed of a mosaic of agriculturally-

unimproved moorland and grassland on a range of mainly acidic soil types. Since the 1930's,

commercial forest plantations have been widely established, consisting of a variety of exotic

conifers, especially Sitka spruce (Picea sitchensis). Establishment of conifer plantations has

resulted in increased stream water concentrations of several major ions (e.g. Harriman and

Morrison, 1982; Stoner et al., 1984; Stoner and Gee, 1985; Reynolds et al., 1986; 1989). In

particular, concentrations of ions derived from marine sources and air pollution, such as Cl,

Na, Mg and SO, are usually higher in forest streams, which may also be more acid.

Evaporative conccntration resulting from rainfall interception by the tree canopy may explain

between 20% and 40% of the increased concentrations of ions derived from atmospheric

sources (Reynolds et at, 1988). The remainder is generally attributed to enhanced dry and

cloudwater deposition to forest canopies, compared with moorland vegetation (Fowler et al.,

1989). Of greater concern for water quality, however, is that aluminium concentrations arc

often highcr in forest streams, and at concentrations greater than specified water quality

standards (Commission of the European Communities, 1980; Howells et al,. 1990).

Large areas of these conifer plantations have now reached maturity and are being felled. In

the UK, clearfelling is normal practise, involving removal of entire stands of trees, but

generally only stems are harvested and other tree components such as branches and needles

remain on site to decompose. The effects of clearfelling have been extensively studied,

primarily in North America, and documented in bibliographies, (Blackie et aL, 1980; Gaskin

a al., 1983), conference proceedings (cg. Leaf, 1979) and accounts of specific sites such as

Hubbard Brook (Bormann and Likens, 1979; Likens a aL, 1977) and Coweeta (Swank and

Crossley, 1987). Responses to clearfelling in the UK may therefore be anticipated, resulting

in changes in soil water and stream chemistry as follows:-

1. Decreased rainfall interception, increased water yield, dilution of solutes and increased
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leaching through soils (Anderson et al., 1990; Rosen, 1984)

Reduced dry and cloudwater deposition of 502, NOx, NH3, NaCI etc. as a result of

canopy removal (Adamson et al., 1987; Adamson and Hornung, 1990; Fuller a al.,

1987; Mitchell a aL, 1989)

Removal of the vegetation 'sink' for nutrients, at least until natural re-vegetation and

replanting result in a significant plant cover. Most commercial conifer plantations

have non-existent or sparse ground vegetation cover at felling (in the UK, larch -

Larix spp. - is the exception). Available nutrients in the soil may be leached if no

other 'sink' is available (Johnson and Todd, 1987; Knighton and Stiegler, 1981;

Stevens and Hornung, 1988; 1990).

Losses of nutrients from felling debris and the accumulated forest floor, exacerbated

by the lack of a vegetation sink (Fahey a al., 1991a, 1991b; Neal a aL, 1992a; Titus

and Malcolm 1991; 1992)

Increased soil temperature and moisture resulting in faster rates of mineralisation of

soil organic matter and accumulated forest floor litter (Emmett and Quarmby, 1991;

Emmett et at, 1991a, 1991b; Rosen and Lundmark-Thelin, 1987)

Changes in hydrological pathways through the soil, resulting from increased water

fluxes, changes in soil structure and water infiltration etc. If a larger proportion of the

water reaching streams is channelled through acid, aluminium-bearing upper soil

horizons, there will be less opportunity for buffering from deeper soil horizons and

bedrock contact (Neal a al., 1992b; Reynolds a at, 1992)

The net result of these processes is therefore a scenario in which reductions in streamwater

concentrations of Na, CI, Mg, SO, and possibly inorganic-N occur as a result of reduced

atmospheric inputs and dilution. These effects should be accompanied by a decrease in Al
 

concentration associated with this reduction in soil water anion concentration. In contrast,

elimination of root uptake and release of nutrients from felling debris should result in
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increased K, P and possibly inorganic-N concentrations.

Data from the small number of clearfelling studies in the UK have generally confirmed these

predictions (eg. Adamson et al., 1987; Adamson and Hornung, 1990; Neal et al., 1992a,

1992b; Reynolds et cd., 1992). Exceptions have been the variable response of aluminium and

the consistently large pulse of nitrate after felling. The latter has been widely observed in

streams draining clearfelled areas in temperate regions of the world (eg.Bormann and Likens,

1979) and is the result of increased rates of nitrification in the soil after felling. The

behaviour of aluminium is less easy to understand, and is the subject of active research.

Published data from UK felling_studies present a comparatively short-term view of the effects

of felling. Most felled areas arc replanted in order to establish a second rotation plantation.

The process of felling, restocking and re-establishment of a second rotation crop takes 10 to

12 years, and data so far available encompass only the immediate post-felling period1' Since

model simulations of the effects of second rotation forestry predict increased soil and stream

water acidification (Jenkins et al., 1990), availability of stream chernistty throughout the phase

of establishment and development of the second rotation is of considerable significance.

This paper presents the results of analyses of stream water samples collected over periods of

9 and 10 years respectively, including 6 and 8 years after felling, at two experimentally

clearfelled sites in Wales, Hafren forest (Plynlimon) in Powys and Beddgelert forest in

Gwynedd.

2. Sites and Methods

The sites used for this study have been described in detail in previous papers (Reynolds et

al., 1986, 1988, 1992 for Plynlimon and Stevens et al., 1989 for Beddgelert) so only outline

descriptions will be given here.

The two catchments studied at Plynlimon are about 6 ha in area and contain a mosaic of acid

upland soils overlying lower Palaeozoic mudstones and shales. They were both entirely

planted with Sitka spruce in 1949. One catchment (A4) was completely clearfelled (stem-
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only harvested) between the beginning of July 1986 and the end of April 1987. The other

(B2) has remained as an unfelled control catchment unaffected by forestry operations during

the eight year period of observation. The stream draining the felled catchment is a tributary

to the Afon Hore whilst the control stream drains into the Afon Hafren. These rivers rise on

the eastern flanks of Plynlimon approximately 24 km from the west Wales coast and form a

part of the headwaters of the River Severn. The catchments are located at about 380 m above

sea level and receive an average of 2480 mm of rain annually.

Since the spring of 1982, streamwater chemistry has been monitored at Beddgelert forest in

three small catchments located in a north-cast facing, former glacial cwm 12 km from the

north Wales coast. Catchment D3 (4.7 ha) has remained as an unfelled control throughout

this period, but felling of 62% and 28% respectively of the catchments of the other streams,

D2 (1.4 ha) and D4 (6.1 ha), took place in September and June 1984 respectively. The

catchments at Beddgelert have a similar geology and range.of soils to those at Plynlimon and

were planted with Sitka spruce in the 1930's. The catchments are at an altitude of

approximately 400 m and receive an average annual rainfall of 2600 mm.

At both sites, the unfelled control catchments remained as closed-canopy spruce plantations

throughout this study, with no ground flora apart from scattered ferns and bryophytes. No

forest management took place in these control catchments during this period.

The streams at Beddgelert forest were sampled weekly and gauged with V-notch weirs from

which flows at the time of sampling were calculated. The Plynlimon streams were ungauged

and stream water samples wcre initially collected at fortnightly intervals and then every four

weeks for the last eighteen months of the study.

In the laboratory, sample pH was determined prior to filtration through Whatman UHF filters

for samples from Beddgelert and 0.45 um pore size membrane filters for those from

Plynlimon. Up to September 1984, nitrate, sulphate and chloride were determined by

continuous flow -autoanalyser using standard methods (Allen a al., 1974; Rowland et al.,

1984). Subsequently these ions were measured using ion chromatography. The old and new

methods were run concurrently for several months to ensure comparability. Total filtrable
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aluminium (Al(tot)) in samples from Beddgelert was measured by atomic absorption

spectrophotometry. At Plynlimon, labile monomeric aluminium (Al(inorg)) was determined

following the speciation scheme of Driscoll (1984). In most cascs, Al(inorg) accounted for

more than 85% of the total filtrable aluminium in the streamwater samples.

3. Results

Prior to felling, the streamwater chemistry of the two Plynlimon catchments was broadly

similar although some differences were apparent (years -2 and -I in Tables I and II). For

example, stream water at A4 had a higher pH than B2 and contained more nitrate, sodium,

chloride and magnesium. Larger Al(inorg) concentrations were observed in stream B2. At

Beddgelert, the chemistry of the three streams before felling was also broadly similar,

althouth sodium and chloride concentrations were higher in stream D2 (1982 and 1983 in

Table r11). Stream D3 had higher calcium concentrations and lower Al(tot) and nitrate-N

concentrations.

The effects of felling on annual mean stream water chemistry at Plynlimon are shown in

Tables I and II, and for Beddgelert in Table III. Trends in stream chemistry are shown in ": •

Figures 1 to 6.

3.1 INORGANIC NUTRIENTS

At both sites ortho-phosphate and ammonium-N were below detection limit in the stream

water samples. Data for the major inorganic nutrients are therefore restricted to nitrate-N and

potassium.

Clearfelling of catchment A4 at Plynlimon resulted in an immediate increase in streamwater

potassium and nitrate concentrations (Figures la and lb). The former reached a maximum

of 1.8 mg L-1 in the first year after felling with concentrations decreasing towards, though

remaining above those in the control catchment B2 after 5 years. Nitrate concentrations

increased to a maximum of 3.2 mgN L' about one year after the start of felling but declined

rather more slowly than potassium to reach concentrations similar to those in B2 after 5 years.
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However, since 1989, streamwater nitrate and potassium concentrations in the unfelled

catchment have been steadily increasing. The reason for this is unclear, but may relate to the

increasing age of the forest (Stevens et al., in press) or to the effects of dry summers in 1989

and 1990 (Reynolds et al., 1992).

At both Plynlimon and Beddgelert, stream water concentration data displayed wide seasonal

variations, short term storm event variability and fluctuations in response to changing

atmospheric inputs. These variations tend to obscure the effects of felling, especially at

Beddgelert where only pans of the catchments of 02 and D4 were felled. To clarify the

effects at Beddgelert, the time series plots are presented in such a manner that the results

from the two streams which drain clearfelled areas (D2 and D4) are 'normalised' with respect

to the 'control', unfellcd stream 03. This simply means that concentrations from D2 and D4

were subtracted from D3 values for each sampling occasion. If the figures obtained from this

exercise are positive, they indicate that concentrations in D2 and D4 were higher than in the

control, and lower than the control if negative.

The most dramatic effect of felling on stream water chemistry at Beddgelert was an increase

in K concentration (Figure 2a), although at no point did this exceed 1.7 mg LI. A slight

increase in the potassium concentrations in D2 immediately before felling was probably due

to preparatory clearance of access routes into the catchrnent, but for four years after felling,

K concentrations were significantly higher in D2 and D4. The effect was greater in 02, but

62% of this catchment was felled and only 28% of the D4 catchment. Between four and five

years after felling, potassium concentrations in the 'felled' streams dropped below those in

the control catchment and in general have remained smaller for up to eight years after felling.

In the 'felled' streams at Beddgelert, streamwater nitrate concentrations were ereater than

those in the control stream for three years after felling. Amounts of nitrate then declined and

have been lower than control stream values since (Figure 2b). At no point did nitrate-N

concentrations exceed 2.4 mgN lad and were normally well below 1.5 mgN LI. These values

are well below the EC Surface Water Directive standard of 11.3 mgN

3.2 SEASALTS AND SULPHATE
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The confounding effects of climatic variability on the stream response to felling are clearly

'demonstrated in the data for chloride at Plynlimon. Stream water chloride concentrations

increased in the unfelled B2 catchment over the period of study (Table II; Figure 3a),

probably as a result of large seasalt inputs during the winter of 1988-89 and a succession of

dry summers in 1989 and 1990. A similar, but more damped response was observed in

stream A4 where, after felling, streamwater concentrations were consistently lower than in B2.

Streamwater sodium concentrations followed a similar pattern to those of chloride but the

responses for magnesium and calcium were less obvious. Prior to felling, calcium and

magnesium concentrations in stream A4 were generally larger than those in the reference

stream B2 (Figure 4). This is believed to reflect inputs of base rich groundwater similar to
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those encountered elsewhere in the Plynlimon catchments (Neal 1993, unpublished data).

However, three w four years after felling, there was an increase in magnesium and, to a lesser

extent, calcium concentrations in the reference stream 132reflecting the effects of winter

1988-89 seasalt inputs and the 1989 and 1990 dry summers referred to above. .. In the tit If

manipulated stream calcium and magnesium concentrations remained relatively unchanged

compared to pre-felling values.

Streamwater sulphate concentrations at site A4 declined relative to those observed in B2,

becoming lower than those measured prior to felling (Table II and Figure 3b). In the

Beddgelert streams, chloride, sodium, magnesium and sulphate concentrations declined

slightly after felling, but the trends were not as marked as at Plynlimon.

The overall effect of the individual anion variations on the total inorganic anion (TIA)

concentrations is seen in Figures 5a and 5b. The nitrate pulse after felling in the catchment

of A4 at Plynlimon sustained TIA concentrations at around the same level, or above those in

control catchment B2 for the first 18 months after felling. As the nitrate pulse declined, TIA

concentrations also decreased at site A4, diverging substantially from those observed in 132

about four years after felling. A similar response was observed at Beddgelert (Figure 5b), but

the smaller increase in nitrate concentration after felling had only a small effect on TIA

concentrations, which decreased immediately after felling relative to values in the control

stream.
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3.3 ALUMLNIUM AND ACIDITY

The effects of felling on aluminium concentrations are partly obscured by the high degree of

variability in the data and the missing information for the control site at Plynlimon. Mean

streamwater aluminium concentrations at Plynlimon were larger in the control catchment prior

to felling and remained so throughout the study (Table I). However, the difference between

the two sites as a percentage of the mean concentration at B2 steadily increased after felling

from 23% in year 2 to 67% in year 5. This compares with differences of 16% and 15% prior

to felling.

Concentrations of Al(tot) in all three streams at Beddgelert increased from around 0.4 to 0.9

mg L'' in 1982-83 (before felling) to 0.9 to 1.2 mg 1.1 in 1986 (two years after felling in

catchments D2 and D4), but the changes were not attributable to felling. This is despite a

slight decrease in stream pH for five years after felling, an eventual increase in stream pH six

to eight years after felling (Figure 6), and a general decline in total inorganic anion

concentration (Figure 5). Clearly, some other factor is exercising significant control over

stream Al concentrations, and this is masking any effect of felling. Concentrations of Al at

these levels are clearly unacceptable for water supply (EC Drinking Water Directive for Al

is less than 0.2 mg L-5 and fisheries (recommended standard for soft waters less than 0.1 mg

- Howells et al., 1990).

Annual mean strearnwater pfl in the harvested catchment A4 at Plynlimon was consistently

higher than that in B2 (Table I). Maximum pH values in A4 (c. pH 6) were about one unit

higher than in B2 although minimum values were similar in both streams (c. pH 4.5). In the

two years after felling, however, the stream pH response in A4 was damped, with few peak

values exceeding pH 5. Four to five years after felling the streamwater pH of the felled

catchment increased, whilst in B2 stream water became more acid. The pH decline in B2

reflects the increase in nitrate concentrations and may relate to the increasing age of the forest

(Stevens et al., in press).

After felling.at_Bccidgelert,. pH dropped in the 'felled' streams by around 0.1 of a unit with. _

respect to the control stream, and remained at this level for five years (Figure 6).

Subsequently, pH gradually recovered in the 'felled' streams, and was higher than the control
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by around 0.1 pH unit eight years after felling. This recovery in pH may indicate that the

decline in stream pH with increasing plantation age observed in Welsh forests (Hughes et al.,

in press) is at least partly reversible after felling.

Statistical analyses of the effects of forest harvesting were investigated using the technique

of Randomised Intervention Analysis (RIA). This procedure was originally described by

Carpenter et at (1989) and its application to paired catchment water chemistry data is

discussed by Uddameri et al. (this volume). The RIA uses paired data points from a

manipulated and a reference catchment to test statistically the null hypothesis that changes

observed in the manipulated catchment have occurred at random. Rejection of this null

hypothesis indicates that a non-random change has occurred, although this does not

necessarily mean that the manipulation caused the change. The RIA was performed on

approximately 115 data pairs from Plynlimon and nearly 400 paired data points from

Beddgelert forest. These included more than two years pre-manipulation data and up to 8

years post-manipulation data.

The results of the RIA are shown in Table IV. At Plynlimon, sodium, potassium, magnesium,

nitrate-N, sulphate-S and chloride have rejection limits above 99%. Calcium has a rejection

limit of 97.5%, aluminium 75% and pll 42%. This implies that the null hypothesis can be

rejected with certainty for most solutes, but the rejection is uncertain for aluminium and

improbable for pH. For stream D2 at Beddgelert, the rejection limit of the null hypothesis

is above 99% for all solutes except pH (95%) and aluminium (75%). For stream D4,

rejection of the null hypothesis is "certain" (99%-95%) for sodium, potassium, chloride, pH

and nitrate-N. Rejection is uncertain for calcium and magnesium (75%) and very improbable

for aluminium and sulphate-S (30%). These RIA results indicate that felling at Plynlinion has

had little or no effect on stream water aluminium concentrations and pH. At Beddgelert, the

RIA indicates that felling probably had little effect on aluminium concentration in either

stream. Sulphate concentrations were also relatively unchanged after felling in the D4

catchment.

Loss of nutrients from soil is an inevitable consequence of forest harvesting. The loss of

nutrients in streams after felling is an additional loss which can be quantified at Beddgelert.
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For each year from two years before felling (year -2) to seven years after felling (year +7),

stream water K and NO3-N fluxes were calculated as the product of the annual discharge-

weighted mean concentration and the total stream discharge for the year. To obtain fluxes per

hectare from the felled areas of streams D2 and D4, it was assumed that the K and NO3-N

fluxes from the unfelled areas of these two catchments were equal to the fluxes from the

unfelled control catchment.

Stream K fluxes increased immediately after felling and were greatest in the second year after

felling in both D2 and D4 (Table V). Six years after felling, K fluxes had returned to values

similar to those in the control stream D3. In the latter, K fluxes remained fairly constant

throughout. Stream nitrate-N fluxes increased in the year immediately after felling and

remained higher for three and two years respectively forstreams D2 and D4. A slow decline

then occurred, such that control stream values were reached four years after felling.

4. Discussion

The felling technique used at Plynlimon ('windrowing') created lines of thick brash (felling

debris) separated by bare ground. The latter revegetated gradually, whilst the brash piles

remained free of vegetation until four or five years after felling. The felled catchments at

Becklgelert included areas which were harvested conventionally (CH; stem only removed,

debris left on site) and areas of whole tree harvesting (Wilk all above ground material

removed). Related soil studies at both sites showed that potassium was rapidly leached from

the felling debris and passed through the soils in to the streams. The pulse of potassium

lasted for approximately three years, and immobilisation in the re-establishing vegetation and

second rotation tree crop was one of the major sinks for this nutrient (Fahey et al., 1991a).

At Beddgelert, detailed analysis of soil exchangeable potassium indicated that almost 50% of

the potassium leached from the brash was retained in the soil, although this only represented

a small overall increase in the soil pool (Goulding and Stevens, 1988).

Thc pulse of nitrate-N in streams draining clearfelled areas has been widely observed in

temperate regions of the world (eg. Likens et at, 1977;Bormann and Likens, 1979; Vitousek
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et c2l., 1979) including the UK (Adamson and Hornung, 1990; Neal et al., 1992a), despite

earlier predictions that felling of conifers in the British uplands would result in only small

increases in stream water nitrate concentrations (Heal et al., 1982). The mechanisms

responsible for the nitrate pulse have been studicd in detail at Beddgelert (Emmett et al.,

1991a, 199 lb; Emmett and Quarrnby, 1991; Stevens and Hornung, 1988, 1990). Disruption

of the nutrient cycle by removing the trees will make more inorganic nitrogen available for

leaching, irrespective of the effects of soil nitrogen transformations. The brash was a net sink

for inorganic-N for three years after felling at Beddgelert, which was the period when the

nitrate pulse occurred, and was therefore not directly the source of the additional leached N.

The brash may have been a source of dissolved organic-N which, after mineralisation and

nitrification, could have generated the observed nitrate pulse. Decomposition of woody fine

roots after felling has also been suggested as a further source of nitrogen after felling (M.

Hornung, pers. comm., 1992).

Lysimeter experiments at Beddgelert forest indicated that the presence of brash induced

microclimatic conditions favourable to organic matter mineralisation and nitrification

(Emmett, 1989). Similarly in Sweden, maintenance of a more constant, higher moisture

content beneath the brash was identified as a particularly important microclimatic factor

leading to increased rates of nitrogen rnineralisation and nitrogen leaching beneath the brash

piles (Rosen and Lundmark-Thelin, 1987).

In areas of bare ground, microclimatic conditions are also more favourable for nitrogen

transformations compared with the pre-felling situation (Emmett, 1989). Since nitrate is a

very mobile anion leaching takes place, unless there is denitrification or uptake by vegetation.

The rapid re-establishment of vegetation on the whole tree harvest (WTH) plots at Beddgelen,

compared with those harvested conventionally (CH), was a major factor in reducing the

duration of the nitrate pulse in the WTH plots (Stevens and Hornung, 1990; Emmett et al.,

1991b), and may have been an important control on nitrate leaching losses from the bare

ground between the brash piles at Plynlimon. Vegetation also played an important role in the

Swedish study, as root uptake was much reduced under the brash piles, compared with clear

areas (Rosen and Lundmark-Thelin, 1987).
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The studies of nitrogen transformations at Beddgelert were conducted on the dominant, freely

drained podzol soils in which nitrification was active. These were also the dominant soils at

Plynlimon, which were actively nitrifying prior to felling (B. Emmett, pers. comm., 1993).

Both sites contain areas of less well drained peaty gley soils, and evidence from clearfelling

studies on peaty gley soils in northern England (Kjelder forest) suggests that these would have

responded very differently to felling (Titus and Malcolm, 1992). The soils at Kielder did not

nitrify freely, and much of the runoff occurred laterally below the forest floor, especially after

felling when the water table rose. Ammonium-N dominated the inorganic-N losses at this site

for at least 7 years after felling (Titus and Malcolm, 1992). In glcy soils at Plynlimon, soil

water ammonium and nitrate concentrations in the surface organic horizon increased after

felling, suggesting that nitrification was active. The presence of ammonium may indicate that

nitrification was periodically inhibited by waterlogging and anaerobic conditions resulting

from the rise in water table following felling (Reynolds a al., 1992). The Kieldcr site

remained virtually free of vegetation throughout the study period. In contrast, vegetation cover

was plentiful after only two years at Bedd2elert in both CH and, in particular the WTH areas,

despite the absence of ground flora before felling. At Plynlimon, the rate of re-vegetation

was slower, particularly on the gleyed soils and this may account for the more prolonged

release of nitrate from this site.

Nitrification releases H ions (Reuss and Johnson, 1986), and this will have contributed to the

observed temporary increase in stream acidity following felling. At Plynlimon, the

acidification of stream A4 was limited by an input of base-rich water from an unidentified

groundwater source. In.the absence of any buffering inputs, a more pronounced acidification

was observed at Beddgelert. A similar response was observed at Hubbard Brook, where

increased rates of nitrification following clearcutting resulted in stream acidification and larger

concentrations of aluminium (Lawrence et al., 1987).

The behaviour of aluminium in soil waters has been linked in earlier work to the variations

in total inorganic anion concentrations through the 'mobile anion' concept (Reynolds et al.,

1988, 1992). However, this simple relationship is not transferred to the streams. In common

with earlier findings (Neal a ed., 1989) and despite significant correlations between stream

water Al(inorg) and hydrogen ion concentrations (eg. A4: r = 0.691, r1/4o.0l; B2: r = 0.498,
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P<0.01), simple Al(OH)3 solubility relationships do not hold. At high pH (low H ion

concentration) the waters are approximately saturated with respect to amorphous Al(OH)3 and

oversaturated with respect to crystalline Al(OH)3 (Neal et al., 1989). At larger H ion

concentrations, the waters are undersaturated with respect to all but the most crystalline forms

of Al(OH)3. There is large uncertainty in the analytical determination of aluminium at low

concentrations which affects the reliability of the calculated saturation values. However, as

the data do not fall on any single line at any range of pH, it appears that Al(OH)3 solubility

controls do not operate in these streams. This highlights the complexity of aluminium

chemistry in acid upland catchments where concentrations are influenced by factors such as

mixing Of waters from different sources (Ncal et at, 1989) and interactions with suspended

sediments (Goenaga and Williams, 1990) and streambed material (Tipping and Hopwood,

1988). The data from Beddgelert also illustrate the difficulty in separating the effects of

felling from the underlying variability due to other factors.

The reductions in the concentrations of sulphate and the 'sea salt' ions (Na, Mg and.,0) can

be ascribed partly to dilution by the larger water flux through the catchments following felling

and partly to a reduction in atmospheric inputs caused by the removal of the forest canopy.

The less marked changes at Beddgelert reflect the smaller proportions of the catchments

which were felled. In addition, the exposure of a longer forest edge in the Beddgelert

catchments may have increased sea salt deposition, offsetting the effects of canopy removal.

In the manipulated stream at Plynlimon, only relatively small changes in calcium and

magnesium concentrations were observed following felling. However, this does not mean that

felling had no effect on these solutes as comparison with the reference stream indicates. It

is probable that the increased seasalt deposition in 1989/90 and the successive dry summers

offset the anticipated decline in divalent base cation concentrations following felling. It is

also possible that changes in hydrological pathways resulting from tree removal and increased

water fluxes, may have increased the groundwater contribution to the manipulated stream

although this cannot be substantiated.

Adsorption / desorption reactions in the soils have been proposed as an important control on
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stream water sulphate concentrations (Reuss and Johnson, 1986), whereby desorption in order

to re-equilibrate with reduced inputs, would delay any decline in the amounts of sulphate in

stream water. This does not appear to have happened at Plynlimon, where a very rapid

decrease in concentration was observed. There is evidence from Hubbard Brook that soil

water acidification due to increased nitrification can lead to greater sulphate adsorption on to

protonated variable charge surfaces (Fuller et al., 1987; Mitchell et al., 1989). In the gley

soils, sulphur may have been immobilised as sulphides under the anaerobic conditions induced

by the rise in water table.

5. Conclusions and Management Implications

In general, the effects of felling on stream water chemistry at both sites were as predicted.

However, the scale of the change was not as extreme as might have been expected, especially

with regard to those solutes derived from atmospheric sources, eg. sulphate, chloride, sodium

etc. From the management standpoint, harvesting had no notable deleterious effect on water

quality. Increases in NO3-N concentrations were short-lived and were well below drinking

water standards. Concentrations of aluminium were already above recognised standards and

were not substantially changed by felling.

At Plynlimon, the results from the study of the small subcatchments A4 and B2 confirm and

amplify findings from the investigation in the main Horc catchrnent at Plynlimon. At A4,

maximum monthly concentrations of nitrate (3.2 rngN were more than double and

potassium (1.8 mg 1,-') approximately three times those reported for the main Hore outflow

(Neal et al., I992c). The effects of felling were also less apparent in the Beddgelert

catchments compared with A4. At the former site, felling effects were less pronounced

(lower peak concentrations) in stream D4, where a smaller proportion of the catchment area

was felled compared with D2. These results may simply reflect differences in the

environmental conditions between the sites but it seems that the proportion, rather than the

size, of the catchment arca felled is a significant factor.

The complete felling of subcatchment A4 represents a 'worst case' scenario. Comparison
. __

t
. _ _ _

with the main Horc outflow and Beddgelert indicates hat dilution by runoff froin unfelled

and/or moorland parts of the catchment can ameliorate harvesting impacts. Future harvesting
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strategy should take account of this and seek to limit the proportion of the catchment felled

at one time so that water quality impacts are minimised.
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Table III. Annual flow-weighted mean concentrations (mg I)) in streams draining felled

catchments (D2 and D4) and control catchment D3 at Beddgelert forest. Felling in the •
catchments of streams D2 and D4 took place during 1984.

Year

02

pH

0403 D2

Na

D4 03 02

K

04 03




1982 4.21 4.244.29 7.0 5.4 59 0.21 0.21 0.24




1983 4.37 4.334.35 7.1 6.2 6.7 0 27 0.25 0.30




1984 4.41 4.38445 8.1 6.7 72 022 0.18 0.17




1985 4.46 4.484.58 6.1 4.5 5.1 042 0.35 0.17




1986 4.54 4.584 69 6 3 5.1 6.5 0 73 0.37 0.20




1987 4.61 4 644 72 4 7 4.3 50 041 0 21 0.16




1988 4.62 4 59 4 65 5.8 5 0 62 0.25 0.15 0.19




1989 4.58 4 614 66 6.9 5.5 7.4 0 29 0.19 0.22




1990 4.62 4.614.62 8.4 7.9 99 0.17 0.15 0.21




1991 4.62 4 514.58 8.0 6.9 88 0.12 0.15 0.27





Ca




Mg




Al





1:0 0403 D2 D4 03 02 D4 03




1982 0.86 0.961.82 0.81 0.76 093 0.9 0.6 0.4




1983 0.83 0.971.65 0.85 0.74 0.87 0.8 0.9 0.7




1984 0.81 0.8-41.48 0.94 0.81 0.92 1.0 0.9 0.7




1985 0.83 0.871.46 0.84 0.72 0.80' 1.1 0.9 0.7




1986 0.81 0.901.59 0.88 0.75 0.90 1.2 1.0 0.9




1987 0.72 0.741 45 0.69 0.64 0.79 1.0 1.0 0.9




1988 0.83 0.821.56 0.76 0.66 0.83 0.7 0.8 0.7




1989 0.88 1.001.80 0.69 0.63 0.94 0.7 0.7 0.7




1990 0.95 1.211.77 0.98 0.87 1.21 0.7 0.7 0.7




1991 0.79 0.831.64 0.89 0.84 1.15 0.5 0.5 0.6








•




NO3-N




SO.,-S




CI





02 04D3 02 04 03 02 04 03




1982 0.39 0.570.70 2.8 2.5 2.6 15.0 9.9 10.6




1983 0.64 0.930.89 2.5 2.3 2.3 11.7 9.8 10.3




1984 0.70 0.890.81 2.1 2.0 2.2 14.0 11.9 12.5




1985 1.01 1.170 84 2.0 2.0 22 10.3 7.3 8.4




1986 1.11 0.870 72 2.0 2.2 2.3 10.8 9.4 11.0




1987 0.80 0.710.66 2.0 2.1 2.3 7.5 7.2 8.4




1988 0.55 0.650.66 1.7 1.9 2.2 10.9 9.2 11.3




1989 0.62 0.820.81 1.7 1.8 2.6 13.5 10.6 13.4




1990 ..0A1 . 039_.0.93 1.6 1.7 2.1 20.6 16.8 19.4




1991 0.34 0.740.94 2.0 1.9. - 2.6 13.8 11.7 " 16.1




2 4



•4

Table IV. Results from randomised intervention analysis (RIA) on stream water data from
Plynlimon and Beddgelert.

Solute Probability (%) of rejection of null hypothesis

PlynlimonBeddgelertBeddgelert
Stream A4Stream D2Stream D4




Na 99 99 99




K 99 99 99




Ca 97 5 99 75




Mg 99 99 75




Al 75 75 30




NO3-N

SQ-S

99

99

99

99

95

30 c't x•r:

CI 99 99 99




pH 47 95 99
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Table V. Stream water K and NO3-N fluxes (kg ha.1yeaf') for two years before felling and
seven years after felling. The catchment of stream D2 was 62% felled and D4 28% felled.
Data are expressed per hectare of the felled area. Stream D3 drained the unfelled control
catchment. N.a. not available.

Year

D2

K

D4 D3 D2

NO3-N

D4 D3

-2 5.8 5.2 6.1 11.8 16.4 15.7

-1 1.7 2.6 2.9 6.7 11.4 10.9

+1 15.1 6.4 3.8 39.2 27.1 24.3

+9 29.2 11.6 3.3 35.7 27.8 12.7

+3 19.2 7.5 4.1 38.4 19.7 18.0

+4 6.5 3.8 3.1 11.5 12.1 12.7

+5 6.2 1.7 2.7 13.6 11.4 10.6

+6 3.3 1.4 2.0 7.1 10.6 11.3

+7 N.a. 1.0 4.4 N.a. 10.5 17.7
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Figures

Fig. 1 Concentrations (mg 11-1)of a) potassium and b) nitrate-N in streams at Plynlimon.
•

Fig. 2 Concentrations (mg of a) potassium and b) nitrate-N in streams at Beddgelert.
Data from stream D2 (catchment 62% felled) and D4 (catchment 28% felled) have
been 'normalised' with respect to stream D3 (control catchment, no felling).

Fig. 3 Concentrations (mg L'') of a) chloride and b) sulphate-S in streams at Plynlimon.

Fig. 4 Concentrations (mg1,•') of a) calcium and b) magnesium in streams at Plynlimon.
Data from stream A4 (clearfelled) have been 'normalised' with respect to the control
stream B2.

.4 Fig. 5 Total concentrations of inorganic anions (peq L'') in streams at a) Plynlimon and b)
Beddgelert. Data for Beddgelert are normalised as described in caption to Fig. 2.

Fig. 6 Stream water pH at Beddgelert. Data are normalised as described in caption to Fig.
2.

•
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