Article (refereed) - postprint

Brucet, Sandra; Pedron, Stephanie; Mehner, Thomas; Lauridsen, Torben L.; Argillier, Christine; Winfield, Ian J.; Volta, Pietro; Emmrich, Matthias; Hesthagen, Trygve; Holmgren, Kerstin; Benejam, Lluís; Kelly, Fiona; Krause, Teet; Palm, Anu; Rask, Martti; Jeppesen, Erik. 2013. Fish diversity in European lakes: geographical factors dominate over anthropogenic pressures. Freshwater Biology, 58 (9). 1779-1793.
https://doi.org/10.1111/fwb. 12167
© 2013 John Wiley \& Sons Ltd

This version available http://nora.nerc.ac.uk/id/eprint/15241/
NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at
http://nora.nerc.ac.uk/policies.html\#access

This document is the author's final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. Some differences between this and the publisher's version remain. You are advised to consult the publisher's version if you wish to cite from this article.

The definitive version is available at https://onlinelibrary.wiley.com/toc/13652427/2013/58/9

Fish diversity in European lakes: geographical predictors dominate over anthropogenic pressures

Brucet, S. ${ }^{1,2}$, S. Pédron ${ }^{3}$, T. Mehner ${ }^{4}$, T. L. Lauridsen ${ }^{5,6}$, C. Argillier ${ }^{3}$, I. J. Winfield ${ }^{7}$, P. Volta 8, M. Emmrich ${ }^{4}$, T. Hesthagen ${ }^{9}$, K. Holmgren ${ }^{10}$, L. Benejam ${ }^{2}$, F. Kelly ${ }^{11}$, T. Krause ${ }^{12}$, A. Palm 12, M. Rask ${ }^{13}, \&$ E. Jeppesen ${ }^{5,6,14}$

${ }^{1}$ European Commission, Joint Research Centre, Institute for Environment and Sustainability, 21027 Ispra, Italy
${ }^{2}$ Department of Environmental Sciences, University of Vic, Vic, 08500, Catalonia, Spain
${ }^{3}$ Irstea, UR HYAX, pôle Hydroécologie plans d'eau Onema/Irstea, 3275 Route de Cézanne, CS 40061,13182, Aix-en-Provence Cedex 5, France
${ }^{4}$ Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12561 Berlin, Germany
${ }^{5}$ Department of Bioscience, Aarhus University, DK-8600 Silkeborg, Denmark
${ }^{6}$ Sino-Danish Centre for Education and Research, Beijing, China
${ }^{7}$ Centre for Ecology \& Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, U.K.
${ }^{8}$ Consiglio Nazionale delle Ricerche, Institute of Ecosystem Study, 28922 Verbania Pallanza, Italy
${ }^{9}$ Norwegian Institute for Nature Research, P.O. Box 5685 NO- 7485 Trondheim, Norway
${ }^{10}$ Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of
Freshwater Research, Stångholmsvägen 2, SE-17893 Drottningholm, Sweden
${ }^{11}$ Inland Fisheries Ireland, Swords Business Campus, Swords, Co. Dublin, Ireland

[^0]
Summary

1. We aimed to distinguish the relative contributions of natural and anthropogenic local factors on patterns of fish diversity in European lakes at different geographical scales.
2. We compiled data from standardized fish monitoring using multi-mesh benthic gill nets and on lake morphometry, and geographical, climatic and anthropogenic pressure variables from 1632 lakes in 11 European countries. By means of regression trees we determined those natural and anthropogenic factors and their thresholds that best predicted local fish diversity, density and mean size. Generalized linear models were used to assess the influence of anthropogenic factors at smaller geographical and morphometric scales.
3. Local fish species richness and diversity were related mainly to morphometric and (bio)geographical/climatic variables. Larger and deeper lakes in warm areas tended to be the most species rich and diverse. Fish density was related mainly to anthropogenically driven productivity but also was sensitive to geographical/climatic factors. Thus, warmer and shallower lower-altitude European lakes, which are usually more eutrophic, had higher fish densities than cold and deeper higher-altitude lakes. Fish size increased with altitude and declined with increasing seasonality and temperature.
4. After controlling for the natural factors, productivity had a positive effect on fish species richness and diversity, whereas it negatively influenced fish size.

5. Our results suggest that macroecological patterns of lake fish diversity across Europe are

 best predicted by natural factors. The contribution of anthropogenic factors to fish diversity was evident only via by the effect of eutrophication at smaller geographical scales, whereas no effect could be found from hydromorphological pressures. From an applied perspective,79
these results suggest that bioassessment and biodiversity evaluation might be most effectively conducted and interpreted locally, where anthropogenic effects on biodiversity become more visible. At a macroecological scale, the strong effect of environmental temperature on most components of fish diversity suggests future changes in fish diversity as a consequence of climate change.

Introduction

Freshwater ecosystems hold an estimated 12% of the world's animal species and the biodiversity of these habitats is declining at an alarming and unprecedented rate due to anthropogenic activities (Abramovitz, 1996; Johnson, Revenga \& Echeverria, 2001; Sala et al., 2000). Determining the processes responsible for modifying of biodiversity patterns is a crucial issue for conservation strategies in the face of current and future global and regional anthropogenic impacts (Kerr, Kharouba \& Currie, 2007). However, there has been surprisingly little effort to distinguish the effects of natural and anthropogenic factors on macroecological patterns of freshwater diversity, because most studies focus on understanding 'natural' processes alone, disregarding the potential problems caused by the addition of current anthropogenic effects (La Sorte, 2006). Particularly, in densely-populated regions such as Europe, where aquatic systems are greatly affected by humans (Abramovitz, 1996; EEA, 2010), anthropogenic factors may well override the well-known effects of natural gradients on local and regional aquatic diversity.

Lakes, being natural relatively isolated ecosystems, can be considered as biogeographical islands and are thus ideal for studying the macroecological effects of local and regional processes on assemblage composition (Heino, 2011). For example, regional fish species richness generally declines from the tropics to the poles (Abell et al., 2008), but is modulated by historical effects on biogeography in European lakes (Griffiths, 2006; Jeppesen et al. 2010) that sometimes interact with climate. Similarly, richness and endemism of riverine fish faunas were higher in the Mediterranean regions than in Central, Eastern and Northern Europe (Reyjol et al., 2007). These studies point to a strong effect of regional factors on the composition of European fish assemblages.

Lake morphometry (area and depth) is considered the most important natural factor influencing local fish assemblage composition (Jeppesen et al., 2000; Olin et al., 2002; Mehner et al., 2005, 2007). Many studies have shown that local fish species richness in lakes is strongly linked to area, probably as a result of a higher complexity and stability of habitats in large lakes (e.g. MacArthur \& Wilson, 1967; Barbour \& Brown, 1974). In a study covering a wide latitudinal gradient in northeastern USA, lake morphometry even overrode the effect of regional processes on fish richness (Allen et al., 1999). In contrast, few studies have addressed the effect of anthropogenic factors on local fish diversity. Fish species richness was unimodally or positively related to anthropogenically increased productivity in Danish (Jeppesen et al., 2000) and Finnish lakes (Olin et al., 2002), respectively, and lake productivity was an important predictor of fish abundance and biomass in German lakes (Mehner et al. 2005).

The mean size of fish is another component of diversity which interacts with species richness and density (Magurran, 2004). Natural predictors of the life history traits of fish, such as body size, are primarily climatic factors and there is increasing evidence that the mean body size of fish declines with increasing mean annual temperature (Griffiths, 2006; Teixeirade Mello et al., 2009; Jeppesen et al., 2010). Simultaneously, anthropogenically enhanced productivity causes a decline in the mean size of fish, caused by density-dependent growth in highly productive lakes (Jeppesen et al., 2000). In addition to cultural eutrophication, hydromorphological alterations, explotation as fisheries and the use of lakes for recreation have been found to impact significantly fish species richness, density and body size (e.g. Jennings et al., 1999; Allan et al., 2005).

Studies on fish diversity in lakes suggest that there is presumably no single factor that simultaneously predicts diversity, size and density of fish across large spatial gradients.

Natural factors and anthropogenic pressures may strongly interact in determining the local fish assemblage in lakes. In the face of the freshwater biodiversity crisis (Dudgeon et al., 2006; Vörösmarty et al. 2010), it is therefore important to estimate the relative contribution of natural and anthropogenic factors on the macroecological patterns of fish diversity in lakes. However, to do this, large datasets are needed which have to be obtained by systematic sampling including fish species, density and size. Furthermore, the lakes included should cover broad geographical, climatic and morphometric gradients, and data on local anthropogenic pressures should be of sufficient precision.

Here we compiled a fish database consisting of standardized, multi-mesh sized gill-net catches from 1632 lakes from 11 European countries covering a wide latitudinal and longitudinal gradient. The lakes also represent a wide range of morphometric and environmental variables/stressors. Our overall aim was to assess whether current anthropogenic pressures have already changed large-scale macroecological patterns of fish diversity in European lakes. Specifically, we addressed the following questions: (1) Are local fish species richness and diversity in European lakes primarily determined by the latitudinal and morphometric gradients, or has the effect of locally enhanced productivity by humaninduced eutrophication disrupted these macroecological patterns? (2) Alternatively, is the effect of anthropogenic pressures on biodiversity visible only at smaller geographical scales? (3) Is the average size of fish primarily determined by environmental temperature, or has anthropogenic disturbance replaced the dominant effect of temperature? (4) Is the density of fish in lakes related primarily to productivity, or can other predictors explain a part of the variability observed over large spatial gradients?

Methods

Data set

We used a fish database including 1632 European lakes sampled from 1993 to 2009. The database was created as part of a Water Framework Directive 2000/60/EC Intercalibration exercise, supplemented by additional data from the authors. The database included 11 countries and covered a latitudinal gradient between 41.96 and $69.69^{\circ} \mathrm{N}$ (maximum distance between lakes of 3083 km) and a longitudinal gradient between -10.17 and $31.30^{\circ} \mathrm{E}$ (maximum distance between lakes of 3395 km) (Fig. 1). All lakes were sampled from June to September with Nordic benthic multi-mesh gill nets largely in accordance with the European standard (CEN 14757, 2005; Appelberg et al., 1995). Benthic gill nets (12 mesh sizes between 5.0 and 55 mm in a geometric series, each panel being 2.5 m long and 1.5 m high) were set in a random stratified sampling design in the benthic habitat. Nets were generally set for a 12-16 h period from before dusk and lifted after dawn. The total fishing effort per lake (number of benthic nets) was standardized by lake area and maximum depth according to CEN 14757 (2005). The sampling procedure employed in the German lakes differed slightly from the standard protocol, as the sampling was were split, with the first half of the effort (number of nets) set during late summer and early autumn and the second half set during the subsequent spring (Mehner et al., 2005). In that case, a sampling campaign is the sum of two sampling periods. The dataset ($\mathrm{n}=1632$ lakes) contained only lakes with $\mathrm{pH}>6$, to exclude the structuring effect of acidification on fish assemblages, which otherwise might obscure the effects of the main anthropogenic pressures assessed in this study, i.e. eutrophication and hydromorphological degradation. This was needed as a large part of the Nordic data were from lakes recovering from acidification.

Descriptors of fish assemblages

Species richness was calculated as the total number of fish species collected in a lake. Shannon-Wiener diversity (H) was calculated according to Shannon \& Wiener (1949) in Pielou (1969). Fish density was expressed as catch per unit effort, determined as the number per unit effort (NPUE, number of fish) and the biomass per unit effort (BPUE, wet mass of fish), standardized with respect to gill-net area $\left(\mathrm{m}^{2}\right)$ and fishing duration (h). Shannon-Wiener diversity was calculated from both fish numbers $\left(\mathrm{H}_{\text {NPUE }}\right)$ and biomass $\left(\mathrm{H}_{\text {BPUE }}\right)$. The biomass:number ratio (BPUE:NPUE) was estimated as a proxy of the average fish body size and hereafter called body size.

Environmental and anthropogenic pressure variables

Lake area $\left(\mathrm{km}^{2}\right)$, altitude (m) and maximum depth $\left(\mathrm{Z}_{\max }\right)$ were extracted from the national databases (Table 1). Climatic data were obtained from the climate CRU model (New et al., 2002). The amplitude of temperature ($\mathrm{T}_{\mathrm{amp}}$) (proxy for seasonality) was calculated as the difference between mean temperature ($\mathrm{T}_{\text {mean }}$) in July and January.

The anthropogenic pressures considered are listed in Table 1. Enhanced in-lake productivity (eutrophication) was estimated by annual mean $\mathrm{TP}\left(\mu \mathrm{g} \mathrm{L}^{-1}\right)$, and land use and population density in the catchment. Total phosphorus (TP) was measured as the mean of a minimum of four samples taken in a single year (one for each season) for all lakes (except a small number of Swedish lakes for which we selected TP data for another year matching the last fish sampling campaign as closely as possible). Land use was estimated as the percentage of natural and agricultural land cover in the lake catchment using Corine Land Cover. For a subset of the lakes, population density in the catchment was assessed according to expert judgment on a four-step scale (low, medium, high and very high) (Table 1). Morphometric
modification was estimated as the percentage of shoreline bank modified according to expert judgment and in application of the Lake Habitat Survey (Rowan et al., 2006) on a ranked scale (five classes, from 1 no modification, to 5 , highly modified).

Statistical analysis

We applied a two-step approach. First, we conducted regression tree analyses to explore which factors dominate in the prediction of fish diversity (richness, diversity, size, density) in the lakes. Second, for those fish descriptors that were influenced mainly by natural factors according to the regression tree analysis, we controlled for the dominant effects of these factors and then tested explicitly for the effects of anthropogenic factors by applying Generalized Linear Models (GLM). We $\log _{10}$-transformed all variables except pH , richness and diversity.

Regression tree analyses were performed to trace the relationship between the natural and anthropogenic variables (predictors) and fish diversity descriptors (responses) and to identify thresholds of the predictor variables best discriminating the resulting fish assemblage structure. Regression trees are a binary partitioning approach whereby a dataset is progressively split into subsets that most significantly reduce the variability of the response variable. This type of regression gives a clear picture of the structure of the data and provides a highly intuitive insight into the kinds of interactions between variables (Crawley, 2002). It simultaneously handles categorical and continuous data, is insensitive to outliers and multicollinearity (Breiman et al., 1984; De'ath, 2007), and is therefore highly suitable for the complex dataset we have accumulated here. Regression trees can also accommodate missing data in predictor variables by using other independent variables, known as surrogates, that best agree (i.e. classify the same subjects in the same way) with the original splitting variable
(Breiman et al., 1984). Surrogates are selected by the algorithm according to their performance in the percentage of agreement in the allocation of cases to the two groups. To avoid over-fitting, we 'pruned' the tree using a 10 -fold cross-validation and the one standard error (1-SE) rule (Breiman et al., 1984). A 10-fold cross-validation test consists in splitting the data, constructing a new model from a subset of samples and then testing the predictive accuracy of those sample(s) not included in its construction (Breiman et al., 1984; Bahn \& McGill, 2007). In more detail, the data were divided in 10 parts and one part was omitted. The tree was then estimated using 90% of the data and the omitted 10% were used to obtain a prediction error. This process was then repeated by omitting each of the 10 datasets in turn. We chose the 1-SE rule to estimate the best tree because this method usually results in smaller trees than suggested by the minimum cross-validated error, but with minimal increase in the estimated error rate (at most <1SE) (Breiman et al., 1984; Déath \& Fabricius, 2000).

We ran a separate regression tree for each of the six descriptors of fish diversity. Categorical predictors (Table 1) were included as nominal variables. We excluded highly redundant predictors from regression tree analyses (Table 2). Hence, since minimum temperature ($\mathrm{T}_{\mathrm{min}}$), $\mathrm{T}_{\text {mean }}$ and $\mathrm{T}_{\mathrm{amp}}$ co-varied strongly (Table 2; average Spearman's $r_{s}=0.9$), we subsequently included only $\mathrm{T}_{\max }$ and $\mathrm{T}_{\text {amp }}$. The percentages of natural and agricultural land cover were also strongly negatively correlated $\left(r_{s}=-0.9\right)$, so we included only the latter in the analyses.

Longitude was strongly correlated with $\mathrm{T}_{\mathrm{amp}}\left(r_{s}=0.7\right)$ and with precipitation $\left(r_{s}=0.7\right)$ and was therefore also excluded. Alternative splits (i.e. splits that had as many correct classifications as the original splitting variable) and surrogate variables were examined to obtain a more complete understanding of the dependencies and relationships within the data (Déath \& Fabricius, 2000). Thus, we inspected strongly competing alternative splits to test whether the resulting tree could better explain the data. Finally, when a variable with missing data was
selected, we checked to ensure that data were evenly distributed across response and predictor variables.

Since the initial database was dominated by Swedish lakes (Fig. 1), and this geographical bias could have influenced the results, we split the lakes into three categories (regions) based on latitude and four based on longitude and sub-sampled an equal number of lakes from each of the 12 sub-regions. Next, we re-ran regression tree analyses using this unbiased dataset (in total 272 lakes). Thereby, we significantly reduced the proportion of missing values for productivity variables (100% and 84% of data available for TP and percentage of agricultural land cover, respectively). Subsequently, we compared the results of these two approaches.

For those fish descriptors that were influenced mainly by natural factors according to regression tree analysis, we ran Generalized Linear Models (GLM; McCullagh \& Nelder 1989) for each of the two subsets defined by the primary splits of regression trees and by using anthropogenic pressures as predictors. Thus, if for example a fish descriptor was mainly influenced by $\mathrm{T}_{\text {max }}$, we took the two $\mathrm{T}_{\text {max }}$ categories defined by the primary tree split and calculated GLMs within each tree category. We compared the models with main effects of two anthropogenic predictors (TP and \% agriculture) and their interaction by using the Akaike Information Criterion corrected (AICc). We used a Poisson error distribution and a logarithmic link function for richness variable and Normal error distribution and identity link function for diversity and body size variables.

Regression tree analyses were performed in " R " version 2.9.1 (Development Core Team, 2009) using the Brodgar v. 2.7.2 statistical package (Highland Statistics Ltd., Newburgh, UK). GLMs were performed using SPSS 17.0 (SPSS Inc., 1989-2006).

Results

In the regression tree analysis of species richness, the primary split was defined by lake area, which was positively related to richness. Surrogate variables of lake area were maximum depth $\left(\mathrm{Z}_{\text {max }}\right)$ and latitude (positively and negatively related to fish richness, respectively). Lakes were further divided according to $\mathrm{T}_{\mathrm{max}}$, which in total contributed almost as much explanatory power as lake area (Table 3; Fig. 2). Surrogate variables for the three nodes related to $T_{\max }$ were precipitation, latitude and altitude, indicating a relationship between $T_{\max }$ and the geographical gradients.

Shannon-Wiener diversity based both on fish numbers $\left(\mathrm{H}_{\text {NPUE }}\right)$ and biomass $\left(\mathrm{H}_{\text {BPUE }}\right)$ was primarily affected by $\mathrm{T}_{\max }$, with both altitude and latitude as surrogate variables (Table 3). For $\mathrm{H}_{\text {NPUE }}$, a second split divided the lakes above and below the temperature threshold according to their area with surrogate $\mathrm{Z}_{\text {max }}$. For $\mathrm{H}_{\text {BPUE }}, \mathrm{T}_{\text {max }}$ and area again defined the second and third nodes, respectively (Table 3; Fig. 2).

The density of fish was primarily predicted by productivity (in-lake TP concentration) (Table 3, Fig. 2), with thresholds of $23.7 \mu \mathrm{~g} \mathrm{~L}^{-1}$ (number) and $20 \mu \mathrm{~g} \mathrm{~L}^{-1}$ (biomass). Surrogate variables for TP were altitude and pH , which were negatively and positively related to fish densitiy, respectively. A second node was defined by $T_{\max }$ for fish number and by $Z_{\max }$ for fish biomass. The interaction between TP and temperature in predicting fish numbers is shown in Fig. 3: for the same TP concentration, more fish numbers were found in warmer lakes $\left(\mathrm{T}_{\max }\right.$ $>15^{\circ} \mathrm{C}$). Fish body size was predicted by altitude, with $\mathrm{T}_{\max }$ as a surrogate. A second split divided lower-altitude lakes according to their $\mathrm{T}_{\text {amp }}$ (Table 3; Fig. 2).

Additional regression trees were trained using a geographically unbiased dataset (i.e. subsampling a similar proportion of lakes in three latitude and four longitude categories leaving 272 lakes in total). The results were similar to those obtained from the whole database suggesting that the strong dominance of Scandinavian lakes in the large dataset did not
influence the main conclusions. However, the variance explained increased for each regression tree, except for fish richness and $\mathrm{H}_{\text {CPUE }}$ (that remained similar; Table 4). The only differences occurred for fish species richness, which was mainly related to $T_{\max }$ and explained 30% of the variance for the model, and for body size, which was mainly positively related to precipitation. Nevertheless, lake area appeared at the second split for fish richness explaining 10% of the variance. The main surrogate variable for the first split was the percentage of agricultural land cover for all fish descriptors, except for fish size and number for which $\mathrm{T}_{\mathrm{amp}}$ and latitude were the main surrogates, respectively.

Generalized linear models showed that fish descriptors (richness, diversity and body size) were in all cases significantly affected by anthropogenic factors (TP and percentage of agricultural land cover) when accounting for the dominant effects of natural predictors, as found in the regression tree (Table 5; Fig. 4). The AICc indicated that TP was the main anthropogenic factor explaining changes in richness, $\mathrm{H}_{\text {NPUE }}, \mathrm{H}_{\text {BPUE }}$ and body size, except for richness in small lakes and fish body size in higher altitude lakes for which the percentage of agriculture land cover was more significant than TP (Table 5). Both factors were positively related to fish species richness and diversity, but negatively related to body size (Fig. 4).

Discussion

Our study of patterns of fish diversity in European lakes, based on probably the most comprehensive and large-scaled dataset ever produced in lakes, suggests that several of the well-documented statistical correlations between local fish diversity and natural gradients are still intact. Local species richness was strongly related to lake morphometry and environmental temperature, whereas average fish size and Shannon-Wiener diversity were
determined primarily by environmental temperature related to altitudinal and latitudinal gradients. Furthermore, the geographical gradients found in our analyses agree with a previous study of fish species richness in lakes at European scale that reported a decline in regional species richness in the northern and western regions due to influence of biogeographical aspects, such as barriers and glaciation events (Griffiths, 2006).

Primary productivity, as a measure of the amount of energy available at a base of the food webs, is presumably one of the major determinants of species richness and diversity (e.g. Currie, 1991), and primary productivity is strongly related to the TP-concentration in lakes. The increased energy available, and the greater food web complexity in more productive lakes, allow more species to coexist (Gaston, 2000). Here, we showed that agriculture in the catchment was the primary surrogate of natural predictors when using a geographically unbiased dataset (i.e. where Mediterranean and Scandinavian lake samples were more balanced), suggesting that anthropogenic stressors may have modified natural macroecological gradients of fish diversity in lakes. Similarly, when taking into account the most important geographical, climatic and morphometric differences between the lakes, both enhanced TP concentration and agriculture in the catchment contributed significantly to an increase in fish species richness and diversity. Thus, the anthropogenic effects on biodiversity become more visible at smaller geographical and morphometric scales whereas they are less obvious across larger spatial extents. This suggests that, even though global or continental bioassessment and evaluation of biodiversity is needed, they might be most effectively analysed and interpreted at smaller geographical scales (Heino, 2013).

Our results corroborate those of earlier studies covering smaller geographical gradients which revealed that the response of fish assemblages to changing productivity varies considerably depending on lake morphometry and fish species composition (Olin et al., 2002; Mehner et al., 2005, 2007). A dominant effect of lake morphometry over those induced by
anthropogenic descriptors was also found for broad-scale richness of benthic
macroinvertebrates, birds, and zooplankton (Allen et al., 1999). In turn, productivity was the main positive determinant of fish density in our study (Fig. 5), corroborating earlier studies on lake fish assemblages covering smaller geographical and trophic gradients (Jeppesen et al., 2000; Olin et al., 2002) and studies on zooplankton biomass at European scale (Gyllström et al., 2005). According to our results, a TP concentration of around $20-25 \mu \mathrm{~g} \mathrm{~L}^{-1}$ represents a threshold for a significant increase in lake fish numbers and biomass.

Our regression tree approach also detected some effects, hitherto poorly described, of temperature and lake morphometry on fish density. Thus, warmer and lower-altitude European lakes, which are usually more eutrophic, had higher fish density than cold and higher-altitude European lakes (Fig. 5). The temperature-related effects on fish density(both due to latitudinal or altitudinal differences) may act independently of lake trophic status since, for a similar TP concentration, we found generally a greater number of fish numbers in warm than in cold lakes. So far, similar findings had been found only for fish biomass in a comparative study of shallow subtropical and temperate lakes, showing a twofold higher fish biomass per unit of TP in the warmer subtropical lakes (Teixeira-de Mello et al., 2010).

With regard to fish body size, geographical and climatic factors remained the dominant predictors, but the effect of anthropogenic factors emerged when geographical differences between the lakes were taken into account. Most importantly, fish body size was larger in high-altitude than low-altitude lakes, and declined with increasing temperature (Fig. 5). These findings agree with previous studies on fish (Blanck \& Lamouroux, 2007; Jeppesen et al., 2010) and invertebrates [e.g. beetles, Vamosi \& Vamosi (2007);zooplankton, Gillooly \& Dodson (2000)] and support the predictions of the metabolic theory of ecology (Brown et al., 2004). Our results suggested a decrease in fish body size with enhanced eutrophication, which
is in accordance with previous local studies of fish and zooplankton (Jeppesen et al. 2000).
This decrease in fish body size with eutrophication was more obvious in higher altitude lakes, which are naturally more oligotrophic than those at lower altitudes, and suggests that, in the former, fish assemblages may be more sensitive to changes in lake productivity.

In our study, body size was also associated with the amplitude of temperature and precipitation, variables that are both highly correlated with longitude. The results suggest that lakes in Eastern Europe, normally exhibiting greater variations in temperature, and higher summer temperatures, tend to have smaller fish. Supporting this argument, Carlson, Olsen \& Vøllestad (2008) found that small body size could be an advantage for fish inhabiting strongly seasonal environments. The positive relationship between fish density and air temperature, and smaller fish in warmer lakes, agrees with the results of cross-comparisons of fish populations in Europe. They showed that fish species from lower latitudes are typically smaller, grow faster, mature earlier, and have shorter life spans and allocate less energy (as gonadosomatic index) to reproduction than populations and species at higher latitudes (Griffiths, 2006; Blanck \& Lamouroux, 2007; Jeppesen et al., 2010). Such changes are evident even in the same species along a latitudinal gradient (Blanck \& Lamouroux, 2007; Jeppesen et al., 2010).

Overall, our results indicated that larger and deeper lakes in warmer areas were the richest and most diverse in fish species (Fig. 5). The positive relationship between richness and lake area, depth or volume might reflect a greater environmental stability in large and deep lakes than in small and shallow lakes (Jeppesen et al., 2000; Irz, Argillier \& Oberdorff, 2004; Volta et al., 2011) and increased habitat heterogeneity favouring the coexistence of more species (MacArthur \& Wilson, 1967).

Differences in maximum temperature made a similar contribution to fish species richness as did lake area. Similarly, diversity indices were mainly influenced by maximum temperature which agrees with a recent model, supported by terrestrial, freshwater, and marine taxa data, that quantifies the role of biochemical kinetics in generating biodiversity (Allen, Brown \& Gillooly, 2002). According to this model, environmental temperature, through its effects on individual metabolic rates, influences the rates of genetic divergence among populations and rates of speciation in communities. In our analysis, lake altitude appeared as the main surrogate for the maximum temperature in the fish diversity regression trees. The effects of altitude on fish diversity can probably be attributed to its direct barrier effects on colonization and its indirect effects due to collinearity with temperature, which is in accordance with the findings in a previous study of lakes in China (Zhao et al., 2006).

Apart from eutrophication, we did not find any effect of anthropogenic alterations, such as hydrological and morphometric degradation, on fish diversity in lakes. This result agrees with a previous study in German lakes (Mehner et al., 2005). In contrast to our findings, previous studies restricted to North American lakes, in which lake shores were sampled by electrofishing (e.g. Jennings et al., 1999; Schindler, Geib \& Williams, 2000), have shown that fish richness declines in response to shoreline modifications and that the strength of the changes depends on the complexity of the artificially created habitats (Jennings et al., 1999). The weak effect of hydromorphological pressures on fish diversity in European may be attributable to the fact that, in some cases, our measures were based on expert judgment, which might be too coarse to detect subtle impacts. It could also be attributed to the fact that the respective information was available only for a small subset of lakes. Nevertheless, when the same analyses were carried out using only these lakes where the information was available, the main variables determining the fish diversity descriptors did not change. Therefore, the opposite outcomes between European and North-American studies suggest
that: (1) fish in European lakes are less sensitive or are more resilient to these anthropogenic pressures, or (2) the impact of these pressures is obscured by the effect of strong biological interactions, such as predation and competition, in European lakes, or that (3) a strong effect is only seen if a certain degree of pressure intensity is exceeded which was not the case for the lakes included here. Additionally, (4) we cannot exclude the possibility of an effect of hydromorphological pressures on some others traits that were measured in North American fish but were not measured in our study (e.g. small cyprinids). Furthermore, gillnet sampling may not be the most effective method to document the effects of hydromorphological pressures, since these pressures may mostly influence shoreline fish assemblages, which are more reliably monitored by electrofishing (Diekmann et al., 2005; Erős et al., 2009). It is highly likely that all these explanations strongly interact in causing the differing response of temperate fish diversity to anthropogenic stressors between Europe and North America. The regional fish diversity in Europe is highly depauperate compared to North America, mainly as a consequence of the relative importance of historical processes such as glaciations (Tonn et al., 1990, Griffiths, 2006). Therefore, the dominant fish species in Europe are less specialized, have broader niches, and a more flexible life history than their American counterparts (Tonn et al., 1990), making them less vulnerable to the effects of anthropogenic stressors. In turn, the fish diversity in European lakes is less variable, and hence less sensitive to local predictors, than is found in similar studies of North-American fish assemblages. Nevertheless, we cannot exclude that pelagic gillnet data used in this study could have led to an underestimation of fish richness and thus may not adequately represent total lake diversity (Erős et al., 2009).

Some models, particularly those obtained using the whole dataset, explained a low percentage of the variance (e.g. 20\% for body size) indicating that their predictive ability may be limited and thus conclusions should be carefully drawn. However, when cross-validating

477

by using smaller, more balanced training sets, better models were overall obtained, which allows for more robust ecological insights.

In conclusion, our results indicate that most components of lake fish diversity at a European scale are still mainly determined by natural factors. Some effects of anthropogenic stressors on fish diversity became particularly obvious when subsets of lakes with similar natural environmental factors were evaluated. In contrast, fish numbers and biomass responded to anthropogenically enhanced productivity even at a macroecological (here European) scale. From an applied perspective, these findings have important implications for unravelling the causes of freshwater biodiversity loss and for the development of fish-based systems for assessing the ecological status of lakes (i.e. in the implementation of the European Water Framework Directive, WFD). Our results confirm that (1) fish densities are sensitive to some anthropogenic pressures, which must be considered when developing biotic indicators, and (2) geographical and morphometric factors should be accounted for when attempting to quantify the effects of anthropogenic factors on fish diversity at large geographical scales (Argillier et al., 2013, Irz et al., 2007). This agrees with the WFD requirement of setting reference conditions for subsets of lakes defined by geography and morphometry (e.g. European Commission, 2010; Brucet et al., 2013). Our results also suggest that (3) temperature differences, mainly related to geographical gradients and lake morphometry, strongly predict most components of fish diversity, emphasizing the importance of temperature in determining broad-scale patterns of fish diversity in European lakes. Therefore, subtle changes of fish diversity in lakes may be early indicators of the effects of global warming, a process that presumably has only started to become visible.

Acknowledgments

This paper is a result of the project WISER (Water bodies in Europe: Integrative Systems to assess Ecological status and Recovery) funded by the European Union under the 7th Framework Programme, Theme 6 (Environment including Climate Change, contract No. 226273). The authors wish to thank all Lake Intercalibration experts who contributed to the realization of the database and, particularly, David Ritterbusch and Uwe Brämick (Germany), Otilia Mihail (Romania) and Robert Rosell (Northern Ireland). SB, EJ and TLL were also supported by EU REFRESH, and EJ and TLL by CLEAR and CRES. PV was also supported by INHABIT LIFE+ Project. KH was supported by the Swedish WATERS project. Some of the UK fish data provided by IJW were collected under funding from Countryside Council for Wales, the Environment Agency (England and Wales), Natural Environment Research Council and Scottish Natural Heritage. We thank Anne Mette Poulsen and Tinna Christensen for valuable editorial assistance; Simon Causse and Ayse Idil Cakiroglu for database and statistical support, respectively; two anonymous reviewers for constructive comments; and Prof. Hildrew for manuscript edition.

References

Abell R., Thieme M.L., Revenga C., Bryer M., Kottelat M., Bogutskaya N., et al. (2008) Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience, 58, 403-414.

Abramovitz,J. (1996). Imperiled waters, impoverished future: The decline of freshwater ecosystems. Worldwatch Paper No. 128. Worldwatch Institute, Washington, DC

Allan D.J., Abell R., Hogan Z., Revenga C., Taylor B.W. Welcomme R.L. \& Winemiller K. (2005) Overfishing of Inland Waters. BioScience, 55, 1041-1051.

Allen A.P., Whittier T.R., Kaufmann P.R., Larsen D.P., O’Connor R.J., Hughes R.M., et al. (1999) Concordance of taxonomic richness patterns across multiple assemblages in lakes of the northeastern United States. Canadian Journal of Fisheries and Aquatic Sciences, 56, 739-747.

Allen A.P., Brown J.H., Gillooly J.F. (2002) Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science, 297, 1545-1548.

Abramovitz J. (1996) Imperiled waters, impoverished future: The decline of freshwater ecosystems. World Watch Paper 128, Worldwatch Institute, Washington, DC.

Appelberg M., Berger H.M., Hesthagen T., Kleiven E., Kurkilahti M., Raitaniemi J. \& Rask M. (1995) Development and intercalibration of methods in Nordic freshwater fish monitoring. Water, Air and Soil Pollution, 85, 401-406.

Argillier C., Caussé S., Gevrey M., Pédron S., De Bortoli J., Brucet S., et al. (2013) Development of a fish-based index to assess the eutrophication status of European lakes. Hydrobiologia, 704, 193-211.

Bahn V. \& McGill B.J. (2007) Can niche-based distribution models outperform spatial interpolation? Global Ecology and Biogeography, 16, 733-742.

Barbour C.D. \& Brown J.H. (1974) Fish species diversity in lakes. American Naturalist, 108, 473-489.

Blanck A. \& Lamouroux N. (2007) Large-scale intraspecific variation in life-history traits of European freshwater fish. Journal of Biogeography, 34, 862-875.

Breiman L., Friedman J.H., Olshen R.A. \& Stone C.J. (1984) Classification and Regression Trees. Wadsworth International Group, Belmont, CA, USA.

Brown J.H., Gilloly J.F., Allen A.P., Savage V.M. \& West G.B. (2004) Toward a metabolic theory of ecology. Ecology, 85, 1771-1789.

Carlson S.M., Olsen E.M. \& Vøllestad L.A. (2008) Seasonal mortality and the effect of body size: a review and an empirical test using individual data on brown trout. Functional Ecology, 22, 663-673.

CEN 14757 Water quality - Sampling of fish with multi-mesh gillnets. European Standard (2005) European Committee for Standardization Ref. No. EN 14757:2005.

Crawley M.J. (2002) Statistical computing. An introduction to data analysis using S-Plus. Wiley, Chichester.

Currie D.J. (1991) Energy and Large-Scale Patterns of Animal- and Plant-Species Richness. The American Naturalist, 137, 27-49.

De'ath G. \& Fabricius K.E. (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology, 81, 3178-3192.

Diekmann M., Brämick U., Lemcke R., Mehner T. (2005) Habitat-specific fishing revealed distinct indicator species in German lowland lake fish communities. Journal of Applied Ecology, 42, 901-909.

Dudgeon D., Arthington A.H., Gessner M.O., Kawabata Z., Knowler D.J., Lévêque C., et al. (2006) Freshwater biodiversity: importance, threats, status and conservation challenges, Biological Reviews, 81, 163-182.

EEA (2010) Assessing biodiversity in Europe. EEA Technical Report No 5/2010. European Environment Agency, Copenhagen.

European Commission (2010) Guidance Document on the Intercalibration Process 20082011. Guidance Document No. 14. Implementation Strategy for the Water Framework Directive (2000/60/EC). Office for Official publications of the European Communities, Luxembourg.

Erős T., Specziár A. \& Bíró P (2009) Assessing fish assemblages in reed habitats of a large shallow lake-A comparison between gillnetting and electric fishing. Fisheries Research 96, 70-76.

Gaston K. J. (2000) Global patterns in biodiversity. Nature, 405, 220-227.

Gillooly J.F. \& Dodson S.I. (2000) Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnology \& Oceanography, 45, 2230.

Graham M.H. (2003). Confronting multicollinearity in ecological multiple regression. Ecology, 84, 2809-2815.

Griffiths D. (2006) Pattern and process in the ecological biogeography of European freshwater fish. Journal of Animal Ecology, 75, 734-751.

Gyllström M., Hansson L.A., Jeppesen E., García-Criado F., Gross E., Irvine K., et al. (2005) The role of climate in shaping zooplankton communities of shallow lakes. Limnology \& Oceanography, 50, 2008-2021.

Heino J. (2011) A macroecological perspective of diversity patterns in the freshwater realm Freshwater Biology, 56, 1703-1722

Heino J. (2013) The importance of metacommunity ecology for environmental assessment research in the freshwater realm. Biological Reviews, 88, 166-178

Irz P., Argillier C. \& Oberdorff T. (2004) Native and introduced fish species richness in French lakes: local and regional influences. Global Ecology and Biogeography, 13, 335344.

Irz P., De Bortoli J., Michonneau F., Whittier T.R., Oberdorff T. \& Argillier C. (2007). Controlling for natural variability in assessing the response of fish metrics to anthropogenic pressures for Northeast U.S.A. lakes. Aquatic Conservation: Marine and Freshwater Ecosystems, 18, 633-646.

Jennings M.J., Bozek M.A., Hatzenbeler G.R., Emmons E.E. \& Staggs M.D. (1999) Cumulative effects of incremental shoreline habitat modification on fish assemblages in north temperate lakes. North American Journal of Fisheries Management, 19, 18-27.

Jeppesen E., Jensen J.P., Søndergaard M., Lauridsen T. \& Landkildehus F. (2000) Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biology, 45, 201-218.

Jeppesen E., Meerhoff M., Holmgren K., Gonzalez-Bergonzoni I., Teixeira-de Mello F., Declerck A.A.J., et al. (2010) Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia, 646, 73-90.

Johnson N., Revenga C. \& Echeverria J. (2001) Managing water for people and nature. Science, 292, 1071-1072.

Kerr J.T., Kharouba H.K. \& Currie D.J. (2007) The macroecological contribution to global change solutions. Science, 316, 1581-1584.

La Sorte F.A. (2006) Geographical expansion and increased prevalence of common species in avian assemblages: implications for large-scale patterns of species richness. Journal of Biogeography, 33, 1183-1191.

MacArthur R.H. \& Wilson E.O. (1967) The theory of island biogeography. Princeton University Press, Princeton, NJ.

Magurran A.E. (2004) Measuring biological diversity. Blackwell Publishing, Oxford, 256 pp.

McCullagh P. \& Nelder J.A. (1989) Generalized linear models. Chapman and Hall/CRC.

Mehner T., Diekmann M., Brämick U. \& Lemcke R. (2005) Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human use intensity. Freshwater Biology, 50, 70-85.

Mehner T., Holmgren K., Lauridsen T.L., Jeppesen E. \& Diekmann M. (2007) Lake depth and geographical position modify lake fish assemblages of the European 'Central Plains' ecoregion. Freshwater Biology, 52, 2285-2297.

Muniz I.P. (1984) The effects of acidification on Scandinavian freshwater fish fauna. Philosophical Transactions of the Royal Society B, 305, 517-528.

New M., Lister D., Hulme M. \& Makin I. (2002) A high resolution data set of surface climate over global land areas. Climate Research, 21, 1-25.

Olin M., Rask M., Ruuhijarvi J., Kurkilahti M., Ala-Opas P. \& Ylonen O. (2002) Fish community structure in mesotrophic and eutrophic lakes of southern Finland: the relative abundances of percids and cyprinids along a trophic gradient. Journal of Fish Biology, 60, 593-612.

Pielou E.C. (1969) An introduction to mathematical ecology. Wiley-Interscience, New York.

Reyjol Y., Hugueny B., Pont D., Bianco P.J., Beier U., Caiola N., et al. (2007) Patterns in species richness and endemism of European freshwater fish. Global Ecology and Biogeography, 16, 65-75.

Rowan J.S., Carwardine J., Duck R.W., Bragg O.M., Black A.R., Cutler M.E.J., Soutar I. \& Boon P.J. (2006) Development of a technique for Lake habitat survey (LHS) with applications for the European Union Water Framework Directive. Aquatic Conservation-Marine and Freshwater Ecosystems, 16, 637-657.

Sala O.E., Chapin III F.S., Armesto J.J., Berlow E., Bloomfield J., Dirzo R., et al. (2000) Global biodiversity scenarios for the year 2100. Science, 287, 1770-1774.

Schindler D.E., Geib S.I. \& Williams M.R. (2000) Patterns of fish growth along a residential development gradient in North temperate lakes. Ecosystems, 3, 229-237.

Tabachnick B.G. \& Fidell L.S. (2000) Using Multivariate Statistics. Harper Collins, New York.

Teixeira-de Mello F., Meerhoff M., Pekcan-Hekim Z. \& Jeppesen E. (2009) Littoral fish community structure and dynamics differ substantially in shallow lakes under contrasting climates. Freshwater Biology, 54, 1202-1215.

Tonn W.M., Magnuson J.J., Rask M. \& Toivonen J. (1990) Intercontinental comparison of small-lake fish assemblages: The balance between local and regional processes. American Naturalist 136, 345-375.

Vamosi J.C. \& Vamosi S.M. (2007) Body size, rarity, and phylogenetic community structure: insights from diving beetle assemblages of Alberta. Diversity and Distributions 13, 110.

Volta P., Oggioni A., Bettinetti R. \& Jeppesen E. (2011) Assessing lake typologies and indicator fish species for Italian natural lakes using past fish richness and assemblages. Hydrobiologia, 671: 227.240.

Vörösmarty C.J., McIntyre P.B., Gessner M.O., Dudgeon D., Prusevich A., Green P., et al. (2010) Global threats to human water security and river biodiversity. Nature, 467, 555561.

Zhao S., Fang J., Peng C., Tang Z. \& Piao S. (2006) Patterns of fish species richness in China's lakes. Global Ecology and Biogeography, 15, 386-394.
Chin's lok

Table 1. Fish descriptors and explanatory variables analysed, their minima, means and maxima. The percentage of lakes for each level of the categorical variables is also shown (from 1, less pressure to 5 , more pressure). n, number of lakes; $\mathrm{H}_{\text {NPUE }}$, diversity based on fish number ; $\mathrm{H}_{\text {BPUE }}$, diversity based on fish biomass.
12
13
14
15 Fish descriptors

16Fish number (number fish net $\mathrm{m}^{-2} \mathrm{~h}^{-1}$)

0.09	<0.01	1.69	0.13	1632
3.20	0.01	29.09	3.04	1632
5.23	1	17	2.80	1632
1.20	0	2.78	0.59	1632
1.49	0	2.99	0.65	1632
55.79	0.76	981.56	68.47	1632

17Fish biomass (g fish net $\mathrm{m}^{-2} \mathrm{~h}^{-1}$)
${ }^{18}$ Richness
${ }_{20}^{19} \mathrm{H}_{\text {NPUE }}$
${ }_{21} \mathrm{H}_{\text {BPUE }}$
22Body size (BPUE:NPUE; g WW)
23
${ }_{25}^{24}$ Lake morphometry
${ }_{26}^{25}$ Lake area $\left(\mathrm{km}^{2}\right)$
27 Maximum depth (m)
28Mean depth (m)
29
${ }_{31}^{30}$ Climate
${ }_{32} \mathrm{Sum}$ of precipitation (mm)
33 Mean temperature $\left({ }^{\circ} \mathrm{C}\right)$
34Minimum temperature $\left({ }^{\circ} \mathrm{C}\right)$
35 Maximum temperature $\left({ }^{\circ} \mathrm{C}\right)$
${ }_{37}^{36}$ Amplitude temperature $\left({ }^{\circ} \mathrm{C}\right)$
38
39Location

40Latitude $\left(^{\circ}\right.$)	57.4109	41.9697	69.6972	4.28	1632	
${ }^{41}$ Longitude (${ }^{\circ}$)	1.3000	-10.1763	31.3019	7.43	1632	
${ }_{43}^{42}$ Altitude (m)	186.6	-1.00	1739	206.6	1593	
44						
45Pressures (continuous)						
46^{pH}	7.09	6.00	9.95	0.78	1214	
${ }^{4}$ Total phosphorus ($\mu \mathrm{g} \mathrm{L}{ }^{-1}$)	40.1	1.0	3334.0	128.6	918	
${ }_{49}^{48}$ Percentage agriculture land cover (\%)	22.7	0	100	27.5	727	
${ }_{50}$ Percentage natural land cover (\%)	72.0	0	100	30.2	732	
51Percentage of shoreline bank modified 52	17.2	0	100	25.4	111	
53 54	Percentage of lakes					
55	1	2	3	4	5	n
56Pressures (categorical)						
57Population density class	2.8	73.1	11.2	1.0	--	718
${ }_{59}^{58}$ Morphometric pressures (shoreline	36.9	2.0	0.6	0.3	1.3	668

655
656
657
658 659

707 Table 2. Correlation matrix of the environmental and anthropogenic pressure variables.
708 Spearman's r_{s} values above the diagonal and the corresponding P-values below the diagonal.
709 Values over 0.7 and variables not included in the detailed regression tree analysis with all 710 pressures are given in grey background. Lat (Latitude), Long (Longitude), $\mathrm{T}_{\max }$ (maximum

711 temperature), $\mathrm{T}_{\min }$ (minimum temperature), $\mathrm{T}_{\text {mean }}$ (mean temperature), $\mathrm{T}_{\mathrm{amp}}$ (amplitude of 712 temperature), Precip (Precipitation), Altit (Altitude), TP (total phosphorus), $\mathrm{Z}_{\max }$ (maximum

713 depth), \%agric (percentage of agricultural land cover), \%nat (percentage of agricultural land 714 cover).

715

| Lat | -- | 0.646 | -0.486 | -0.950 | -0.935 | 0.691 | -0.310 | 0.367 | -0.013 | -0.382 | -0.107 | -0.619 | 0.619 | -0.452 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Long | <0.001 | -- | 0.011 | -0.664 | -0.607 | 0.723 | -0.718 | 0.055 | -0.021 | -0.245 | -0.073 | -0.397 | 0.359 | -0.341 |
| $\mathrm{~T}_{\max }$ | <0.001 | 0.657 | -- | 0.487 | 0.603 | -0.269 | -0.298 | -0.580 | 0.063 | 0.369 | -0.104 | 0.428 | -0.422 | 0.337 |
| $\mathrm{~T}_{\text {min }}$ | <0.001 | <0.001 | <0.001 | -- | 0.981 | -0.929 | 0.325 | -0.499 | -0.012 | 0.422 | -0.114 | 0.603 | -0.554 | 0.438 |
| $\mathrm{~T}_{\text {mean }}$ | <0.001 | <0.001 | <0.001 | <0.001 | -- | -0.858 | 0.236 | -0.566 | 0.016 | 0.444 | -0.105 | 0.655 | -0.602 | 0.494 |
| $\mathrm{~T}_{\text {amp }}$ | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | -- | -0.457 | 0.344 | 0.057 | -0.349 | 0.123 | -0.477 | 0.432 | -0.303 |
| Precip | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | -- | 0.228 | -0.004 | -0.005 | 0.132 | 0.134 | -0.108 | -0.021 |
| Altit | <0.001 | 0.028 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | -- | -0.046 | -0.473 | 0.215 | -0.474 | 0.493 | -0.444 |
| area | 0.594 | 0.390 | 0.011 | 0.614 | 0.519 | 0.021 | 0.877 | 0.066 | -- | -0.071 | 0.411 | 0.107 | -0.047 | 0.182 |
| TP | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.881 | <0.001 | 0.032 | -- | -0.440 | 0.568 | -0.603 | 0.423 |
| Z | <0.001 | 0.004 | <0.001 | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | -- | -0.223 | 0.259 | 0.041 |
| magric | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.004 | <0.001 | <0.001 | -- | -0.912 | 0.663 |
| $\%$ nat | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.003 | <0.001 | 0.206 | <0.001 | <0.001 | <0.001 | -- | -0.656 |
| pH | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.472 | <0.001 | <0.001 | <0.001 | 0.157 | <0.001 | <0.001 | -- |

716
717
718
719
720
721
722
723
724
725
726
27
28 Total Variance
29 explained
30
31Node
33
34
35

27
28 Total Variance 30 31 Node 1
1
Threshold
Variance
explained

727 Table 3. Results of regression tree analysis ($\mathrm{n}=1632$ lakes) for each fish assemblage descriptor. Main variables, thresholds defining each node and percentage of variance explained are listed. For each node main surrogate variables (i.e. those with maximum agreement) are shown in brackets (first two main surrogates for the node explaining the highest variance and the first one for the rest of the nodes). Fish number (NPUE), fish biomass (BPUE), diversity based on fish number ($\mathrm{H}_{\mathrm{NPUE}}$), diversity based on fish biomass ($\mathrm{H}_{\text {BPUE }}$), and body size. TP (total phosphorus), $\mathrm{T}_{\text {max }}$ (maximum temperature), $\mathrm{T}_{\text {amp }}$ (amplitude of temperature), $\mathrm{Z}_{\text {max }}$ (maximum depth).

Regression Tree

2
Threshold

Variance explained

3
Threshold
$\underset{\text { (latitude) }}{\mathrm{T}_{\max }}$
$16.0^{\circ} \mathrm{C}$

$$
\begin{gathered}
\text { area } \\
\left(\mathrm{Z}_{\max }\right) \\
0.50 \mathrm{~km}^{2}
\end{gathered}
$$

Variance
explained

$$
14 \%
$$

$\mathrm{T}_{\max }$
(altitude)

$13.6^{\circ} \mathrm{C}$
(-)altitude
$\left(\mathrm{T}_{\max }\right)$
248.3 m

$$
\begin{gathered}
\text { area } \\
\left(\mathrm{Z}_{\max }\right) \\
0.67 \mathrm{~km}^{2}
\end{gathered}
$$

area
(precipitation)
$0.31 \mathrm{~km}^{2}$
5%
area
$\left(\mathrm{Z}_{\max }\right)$
$0.67 \mathrm{~km}^{2}$

(-)altitude
(latitude)

108.4
3%

$\mathrm{~T}_{\max }$
(altitude)
$12.4^{\circ} \mathrm{C}$

12
13

14	
15	736

$16 \quad 737$
$17 \quad 738$
$18 \quad 739$
$19 \quad 740$

20741
2
742
$23 \quad 743$
$24 \quad 744$
$25 \quad 745$
$26 \quad 746$
27
28
747
$29 \quad 748$
$30 \quad 749$
$31 \quad 750$
32751
33
34
35
36

37

38
39
40

52

22

 2324 25 27 otal variance $29 x p l a i n e d$ 28

```
29ode 1
```

30
31
32
33
34
35
36
37
38
39
40
41

Table 4. Results of regression tree analysis for each fish assemblage descriptor using a reduced dataset where lakes where evenly distributed among three latitude and four longitude categories ($\mathrm{n}=272$ lakes). The variables defining the first node and their thresholds are listed. Main surrogate variable is given in brackets. Fish number (NPUE), fish biomass (BPUE), diversity based on fish number $\left(\mathrm{H}_{\text {NPUE }}\right)$, diversity based on fish biomass $\left(\mathrm{H}_{\mathrm{BPUE}}\right)$, and body size. TP (total phosphorus), $\mathrm{T}_{\max }$ (maximum temperature), $\mathrm{T}_{\text {amp }}$ (amplitude of temperature), $\mathrm{Z}_{\max }$ (maximum depth).

Regression Tree

	Richness	$\mathbf{H}_{\text {NPUE }}$	$\mathbf{H}_{\text {BPUE }}$	Body size	NPUE	BPUE
xplained						

Table 5. Results of Generalized Linear Models on the effect of anthropogenic factors on fish diversity. Each fish descriptor variable was split into two data sets following the first node of the regression tree analysis (see Table 3). Each data set was tested for one (TP or percentage of agricultural land cover) or both anthropogenic factors together. The top-ranked models (lowest AICc) are highlighted in bold. Richness (species number), diversity based on fish number $\left(\mathrm{H}_{\text {NPUE }}\right)$, diversity based on fish biomass $\left(\mathrm{H}_{\text {BPUE }}\right)$, TP (total phosphorus), $\%$ agriculture (percentage of agricultural land cover).

Variable	data set	Factor	AICc	P value
Richness	$\begin{aligned} & \text { small lakes } \\ & <0.68 \mathrm{~km}^{2} \end{aligned}$	\lg TP	2484.14	0.539
		lg \% agriculture	1783.59	0.001
		\lg TP	6846.64	0.972
		$\lg \%$ agriculture		0.233
		$\lg \mathrm{TP} * \lg \%$ agriculture		0.230
	large lakes$>0.68 \mathrm{~km}^{2}$	\lg TP	2983.26	0.036
		lg \% agriculture	6620.03	0.011
		\lg TP	45166.61	0.561
		$\lg \%$ agriculture		0.159
		$\lg \mathrm{TP} * \lg \%$ agriculture		0.428
$\mathrm{H}_{\text {NPUE }}$	cold lakes$<15.7^{\circ} \mathrm{C}$	lg TP	1374.94	<0.001
		\lg \% agriculture	1949.45	<0.001
		\lg TP	8437.30	<0.001
		$\lg \%$ agriculture		<0.001
		$\lg \mathrm{TP} * \lg \%$ agriculture		<0.001
	$\begin{aligned} & \hline \text { warm lakes } \\ & >15.7^{\circ} \mathrm{C} \end{aligned}$	$\operatorname{lg~TP}$	989.13	<0.001
		$\lg \%$ agriculture	2467.83	<0.001
		\lg TP		<0.001
		$\lg \%$ agriculture		<0.001
		$\lg \mathrm{TP} * \lg \%$ agriculture		<0.001
$\mathrm{H}_{\text {BPUE }}$	cold lakes$<15.7^{\circ} \mathrm{C}$	\lg TP	1475.74	<0.001
		$\lg \%$ agriculture	1997.03	<0.001
		\lg TP	8439.77	<0.001
		$\lg \%$ agriculture		<0.001
		$\lg \mathrm{TP} * \lg \%$ agriculture		<0.001
	warm lakes$>15.7^{\circ} \mathrm{C}$	$\operatorname{lg~TP}$	1011.18	<0.001
		\lg \% agriculture	2490.04	<0.001
		\lg TP		<0.001
		$\lg \%$ agriculture		<0.001
		\lg TP * $\lg \%$ agriculture		<0.001
Body size	lower altitude	\lg TP	8542.74	<0.001
	$<484.2 \mathrm{~m}$ a.s.l.	$\lg \%$ agriculture	8568.76	<0.001
		\lg TP	28169.67	<0.001
		$\lg \%$ agriculture		<0.001
		$\lg \mathrm{TP} * \lg \%$ agriculture		<0.001

higher altitude	\lg TP	902.08	<0.001
$>484.2 \mathrm{~m}$ a.s.l .	lg \% agriculture	566.88	<0.001
	$\lg \mathrm{TP}$		<0.001
	\lg \% agriculture		<0.001
	$\lg \mathrm{TP} * \lg \%$ agriculture		<0.001

FIGURE LEGENDS

Figure 1. Geographical distribution of the 1632 lakes across 11 European countries (black circles) and balanced dataset with 272 lakes (white triangles).

Figure 2. Regression trees of fish assemblage descriptors for 1632 European lakes. The higher a variable in the tree, the more important it is for differentiating fish assemblage descriptors. Each node of the tree is described by the splitting variable. The longer the line, the higher the variance explained by the splitting variable. Each leaf is labelled with the mean rating and the number of observations in the group (in parentheses). For surrogate variables and explained variance see Table 3. Fish number (NPUE; number fish net $\mathrm{m}^{-2} \mathrm{~h}^{-1}$), fish biomass (BPUE; g fish net $\mathrm{m}^{-2} \mathrm{~h}^{-1}$), diversity based on fish number $\left(\mathrm{H}_{\text {NPUE }}\right)$, diversity based on fish biomass ($\mathrm{H}_{\text {BPUE }}$), and body size (BPUE:NPUE ratio; g wet weight). TP (total phosphorus), $\mathrm{T}_{\max }$ (maximum temperature), $\mathrm{T}_{\mathrm{amp}}$ (amplitude of temperature), $\mathrm{Z}_{\max }$ (maximum depth).

Figure 3. Box-plot showing the abundance of fish (NPUE) in different TP (total phosphorus) classes $\left(\mu \mathrm{g} \mathrm{L}^{-1}\right)$ for two lake categories defined by the regression tree in Table 3: cold lakes $\left(\mathrm{T}_{\max }<15^{\circ} \mathrm{C}\right)$ and warm lakes $\left(\mathrm{T}_{\max }>15^{\circ} \mathrm{C}\right)$. Minimum and maximum number of lakes within box-plots are one and 91, respectively for cold lakes, and 26 and 166, respectively for warm lakes. $\mathrm{T}_{\text {max }}$ (maximum temperature).

 ,

Figure 4. Effects of total phosphorus and agricultural land cover on fish descriptors (see Table 5 for statistical results). Estimated marginal means (Generalized linear models) for each fish descriptor are shown. Fish diversity based on fish number $\left(\mathrm{H}_{\text {NPUE }}\right)$, diversity based on fish biomass ($\mathrm{H}_{\mathrm{BPUE}}$).

Figure 5. Scheme showing changes (increase and decrease) for each fish assemblage descriptor in European lakes. Main variables driving changes in each descriptor are given in bold.

Figure 1

Figure 3

Figure 4

Figure 5

$160 \times 129 \mathrm{~mm}(287 \times 287$ DPI)

$215 \times 290 \mathrm{~mm}(300 \times 300$ DPI)

$65 \times 54 \mathrm{~mm}(300 \times 300$ DPI)

Freshwater Biology

$210 \times 276 \mathrm{~mm}(300 \times 300$ DPI)

$41 \times 21 \mathrm{~mm}(300 \times 300$ DPI)

[^0]: ${ }^{12}$ Centre for Limnology at IAES, Estonian University of Life Sciences, 181 Riia St, 51014
 Tartu, Estonia
 ${ }^{13}$ Finnish Game and Fisheries Research Institute, Evo Fisheries Research Station, FIN-16970
 Evo, Finland
 ${ }^{14}$ Greenland Climate Research Centre (GCRC), Greenland Institute of Natural Resources,
 Kivioq 2, P.O. Box 570 3900, Nuuk, Greenland

 Corresponding authors: Sandra Brucet (sandra.brucet@uvic.cat) and Erik Jeppesen (ej@)dmu.dk)

 Sandra Brucet
 University of Vic
 Sagrada Família, 7
 08500 Vic, Catalonia, Spain

 Running head: Fish assemblages along climatic and human pressure gradients

 Keywords: Fish assemblage, species richness, eutrophication, hydromorphology, biogeography

