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ABSTRACT1

The cost of determining particle size distribution (psd) of the soil can be significantly2

reduced by using statistical relationships between visible and near infra red diffuse re-3

flectance spectra (VNIR-DRS) and the proportions of the three size fractions (sand,4

silt and clay). The spectra contain information on the quantities of soil minerals which5

occur in these fractions. Statistical models for estimating psd based on a set of soil6

samples from common parent materials (PM) – with similar mineralogy – may provide7

more accurate predictions than more comprehensive, global models. The aim of this8

paper is to compare the performance of statistical models for the prediction of psd from9

VNIR-DRS for soils with differing types of parent material; specifically soils derived10

directly from bedrock (coal-bearing and mudstone-bearing strata) or from transported11

parent materials (glacial till, glacio-lacustrine deposits and alluvium) across eastern12

England. We assessed the accuracy of psd predictions using partial least squares re-13

gression (PLSR) models between two additive log ratios of the three size fractions14

and VNIR-DRS. We also formed a global PLSR model from all five soil groups. We15

used mean residual prediction deviation (RPD) from repeated (n=100) cross-validation16

to compare the performance of the models because it accounts for the magnitude of17

variation in the sample data. The most accurate models for the clay (RPD range18

1.82–2.33) and sand fractions (RPD range 1.71–1.94) were for soils developed over the19

transported PM; the models for soils developed over bedrock were substantially poorer20

(clay RPD range 1.33–1.68; sand RPD range 1.34–1.39). The RPD values for the silt21

fraction models were smaller, but the same distinction between transported (better;22

RPD range 1.4–1.88) and bedrock derived soils (poorer; RPD range 1.15–1.25) was23

observed. The global model had intermediate RPD values for the three size fractions24

(clay=1.75, silt=1.76 and sand=1.74). Of the five groups, the soils developed from25

glacio-lacustrine deposits had the largest mean sand size fraction (58%), but also the26

most accurate models for estimation of clay and sand size fractions. Due to sedimen-27

tary transport and deposition, the mineralogy of the soils developed from Quaternary28
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substrates may be more homogeneous than the bedrock-derived soils, which may in29

part account for the more accurate models developed for the former. To date we do30

not have sufficient evidence to demonstrate this unequivocally.31
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1. Introduction32

The ability of soil scientists to map the spatial variation of particle size distribution33

(psd) accurately at fine scales is important because psd contributes to the soil’s hy-34

draulic behaviour and water storage, its handling characteristics under tillage and its35

susceptibility to erosion. When psd is measured in the laboratory the results are often36

expressed as the proportions of three grain size-fractions (e.g. clay: <2�m, silt: 2–37

63�m and sand 63–2000�m) which sum to 100%. This is an example of compositional38

data which has constraints for certain statistical analyses (Aitchison, 1986). A large39

proportion of the spatial variation in psd typically occurs at scales between around 2040

and 200 metres (McBratney and Pringle, 1999), so many samples and costly laboratory41

measurements would be required to map psd accurately using conventional methods.42

Scientists have shown that remote sensors – ground-based or airborne – can provide43

effective covariates to aid mapping of soil psd fractions including gamma radiometry44

(Taylor et al., 2002), geophysical measurements of electrical conductivity (Robinson et45

al., 2008) and near infra red reflectance spectra (Selige et al., 2006).46

The visible and near infra-red (VNIR) diffuse reflectance spectrum (DRS) of a47

soil sample includes information on the quantities of the mineral phases it contains. It48

is assumed that each mineral phase or mineral coatings – iron-oxide coatings on silica49

(Scheidegger et al., 1993) or clay minerals (Caroll, 1958) – occur predominantly in one50

of the size fractions. The proportion of one size fraction – or all three fractions – in a51

set of soil samples are estimated from the VNIR spectra using multivariate statistical52

models by fitting them to laboratory measurements of psd. These multivariate models53

can then be used to estimate psd for other soils from the local area over which the54

original samples were collected. Four studies have been published where such models55

have been successful in predicting the proportions of particles in all three size-fractions56

(Chang et al., 2001; Shepherd and Walsh, 2002; Cozzolino and Moron, 2003; Sorensen57

and Dalsgaard, 2005).58

By applying laboratory-based VNIR-DRS to a range of samples from the USA,59
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Europe, Africa and Asia, Brown et al. (2006) developed a global model for estimation60

of a variety of soil properties including percentage clay fraction using VNIR-DRS. The61

authors improved their estimates of percentage clay by including measurements of the62

sand size-fraction based on sieving. To date, no published studies have compared the63

performance of local and global statistical models for the estimation of all three soil64

texture fractions based on VNIR-DRS. Soil scientists need to know whether prediction65

accuracies can be substantially improved if statistical models are based on a smaller66

subset of soil samples when compared to a regional or global dataset (Sankey et al.,67

2008).68

Remotely-sensed reflectance spectra have also been used to aid mapping of topsoil69

texture fractions at fine spatial resolutions (2 to 5 m) at farm scales (Barnes and Baker,70

2000) and over small regions using airborne sensors (Selige et al., 2006; Lagacherie et71

al., 2008; Gomez et al., 2008). The availability of satellite-based hyperspectral data at72

fine spatial (30-m pixel sizes) and spectral (10-nm) resolutions (e.g. www.enmap.org)73

could provide landscape-scale covariates to substantially improve our ability to map74

topsoil psd when combined with ground-based measurements, in areas where topsoil75

is sufficiently exposed. Soil scientists need to know where in the landscape the rela-76

tionships between soil psd and VNIR spectra are likely to be weak or strong – and the77

reasons for this – to assess the likely benefits of hyperspectral remote sensing to aid78

mapping psd.79

The prediction of psd fractions from VNIR-DRS is likely to be more accurate if80

statistical models are developed and applied to groups of soils with similar mineralogy,81

and therefore, VNIR spectra. Of the five soil forming factors, much of the variation82

in soil mineralogy – and also VNIR reflectance – is likely to be explained by parent83

material (PM) type (Rawlins et al., 2003). This is particularly the case in areas where84

Quaternary substrates are the dominant PM type, such as across large parts of north-85

ern Europe, where recently formed soils have strong associations with their PM. The86

Quaternary parent materials comprise a range of transported materials deposited by87
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glaciers (till), rivers (alluvium) and the wind (aeolian deposits). Where Quaternary88

materials are thin or absent, soils develop directly from bedrock. It might be beneficial89

to develop statistical models to predict soil texture fractions using VNIR-DRS, based90

on their PM type.91

The aim of this paper is to compare the performance of statistical models for the92

prediction of psd from VNIR-DRS for soils with differing types of PM; specifically soils93

derived directly from bedrock or from transported PM. We present statistical (partial94

least squares regression; PLSR) models used to estimate additive log ratios (Aitchison,95

1986) of two texture components (clay:sand and silt:sand) using VNIR-DRS for groups96

of soils developed from five PM types in part of agricultural eastern England. We97

also establish a single statistical model for all the soils from the five groups. Two98

of the groups of PM were sedimentary bedrock; the other three represent a range of99

Quaternary (transported) PM types. We compare the VNIR wavelengths which are100

significant predictors for the soil texture fractions in the local and global calibration101

models and compare their prediction accuracies using independent cross validation102

after back transformation to the three size fractions. We seek plausible explanations103

to account for the differences in the accuracy of the statistical models in predicting104

particle size fraction for soils over the different types of PM.105

2. Methods106

2.1 Study region and soil sampling107

The study region is the area of eastern England shown in Figure 1; the spatial dis-108

tribution of the soil sampling locations are highlighted. Bedrock in the region ranges109

in age from Carboniferous to Cretaceous comprising coals, limestones, sandstone, silt-110

stone, mudstone, chalk, marls and ironstones. There are a range of superficial deposits111

including glacial till, river and marine alluvium and a large region of lacustrine (lake)112

deposits formed by glacial meltwaters which predominantly give rise to Fluvisols. Soils113

developed from the two other parent material types are predominantly Cambisols and114
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Gleysols (IUSS Working Group WRB, 2006). Arable agriculture accounts for more115

than 90% of land use over the area from which samples were collected.116

Soil sampling was undertaken across the region at a density of 1 sample per117

2 square kilometres in the summers of 1994, 1995 and 1996 as part of a national-118

scale geochemical survey (Johnson et al., 2005). Sampling sites were chosen from119

alternate kilometre squares of the British National Grid by simple random selection120

within each square, subject to the avoidance of roads, tracks, railways, urban land and121

other seriously disturbed ground. At each site, surface litter was removed and soil was122

sampled from to a depth of 15 cm using five holes at the corners and centre of a square123

with a side of length 20 m by a hand auger and combined to form a bulked sample. All124

samples of soil were dried and disaggregated. They were sieved to pass 2 mm, coned125

and quartered.126

We selected only those soil sampling sites (n=738) over five dominant parent ma-127

terial (PM) types (see Figure 1). We did this by assigning to each sampling location a128

PM code (based on combinations of solid or superficial geology). These PM codes were129

derived from digital versions of the 1:50 000 maps of bedrock geology and superficial130

deposits of England, part of DigMap GB of the British Geological Survey (2006). The131

number of soil sampling sites in each of the PM groups was as follows. For soils devel-132

oped from two different types of bedrock parent material where there was little or no133

superficial material above the bedrock (coal-bearing strata; CM n=175 and mudstone-134

bearing strata; MDST n=47). For soils collected over PM types developed over thick,135

superficial deposits: alluvium (both marine and fluvial; ALV n=230), glacial till (TILL136

n=186) and lacustrine deposits (LDE n=100). The mineralogical composition – based137

on X-ray diffraction (XRD) analysis after removal of organic matter – for the different138

size fractions of selected soil samples over two of the parent material types (CM and139

LDE) are presented in Table 1. It is noteworthy that the soil developed over the la-140

custrine deposits has around twice as much kaolinite (33.6%) in the clay size fraction141

than the soil over the Coal Measures (16.8%), and that there is chlorite in the clay142
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(13%) and silt (7.1%) fractions of the Coal Measures soil, but this was not detected in143

the soil over the lacustrine deposits.144

2.2 Measurement of diffuse reflectance spectra and redness index145

Sub-samples of each soil were scanned in the visible-near infrared region (350–2500 nm)146

using an ASD (Analytical Spectral Devices, Boulder, CO) Agri-Spec NIR Spectrometer.147

In contrast to the sub-samples which were analysed to determine their psd (see below),148

organic matter (OM) was not removed from the sub-samples used for spectral analysis.149

The presence of OM – both as particulate carbon and coatings on mineral surfaces –150

will influence the VNIR spectra due to the occurrence of organic-related adsorption151

features. In some cases, the wavelengths of these adsorption features may coincide152

with adsorption features due to minerals in the texture fractions. This would lead to153

smaller regression coefficients at these wavelengths in statistical models formed between154

the spectra and the texture fractions. In our study, however, by not removing OM155

from the soil samples, the main benefit of VNIR-DRS – the rapid and cost-effective156

processing of samples – is preserved. In the wider context, remote sensing of soil in157

the VNIR region will always include adsorption features of OM in their spectra, so for158

its successful application, any interference caused by overlapping adsorption features159

must be overcome.160

A 20-g subsample from each original soil sample was placed in a holder with a161

quartz window for scanning. Soils were illuminated and scanned from below using the162

spectrometer connected to an ASD muglight with an internal tungsten–quartz–halogen163

light source and a 12 mm spot size. Data were collected every 1 nm and every spectrum164

was an average of 25 readings. Each sample was scanned twice; the second scan was165

made after rotating the sample in its holder through 90∘ whilst placed on the muglight.166

During scanning, a Spectralon 99% reflectance panel was used to optimize and white-167

reference the spectrometer after scanning every set of ten samples. We checked that168

both sides of the Spectralon panel gave consistent baselines. Before further statistical169
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analysis, we obtained an average of two spectra for each sample.170

In addition to the spectra, we computed the soil redness index (RI) for each171

sample as a potential predictor for particle size fractions. In many soil types, soil172

redness is dominated by the occurrence of iron-oxide minerals which form coatings on173

clay minerals (Carroll, 1958); so in certain soil types, RI may be strongly correlated174

with the proportions of the clay size fraction. The RI was computed as (Mathieu et175

al., 1998):176

RI =
R2

(B ×G3)
(1)

where R, G, and B represent the reflectance at the wavelength of red, green, and blue177

bands (700, 546, and 436 nm, respectively) recorded by the ASD spectrometer.178

2.3 Particle-size analysis179

The protocol for the particle size analysis was recently described in detail by Rawlins et180

al. (2009); here we provide a summary of its important features. Organic matter was181

removed from all sub-samples prior to psd determination by adding a combination of182

hydrogen peroxide and water to each sample and heating the mixture. Calgon solution183

was added to the samples to disperse them before analysis by laser granulometry. An184

8 �m threshold was used for the upper limit of the clay-sized fraction instead of the185

conventional 2 �m; this corrects for differences in measurements by sedimentation and186

laser-based methods for non-spherical particles (Konert and Vandenberghe, 1997). Du-187

plicated analyses (n=86) showed that the precision of the method was good; standard188

deviations were 2.1% for sand and clay, and 1.2% for silt.189

The psd for each of the samples in the study (n=738) is shown in Figure 2. There190

are substantial differences in the mean sand and clay compositions for each of the five191

groups; the mean clay content varies from 23 to 38% and the mean sand content from192

21 to 58% (Figure 2 and Table 2). The variation of psd within each of the five groups193

(standard deviations shown in Table 2) are quite similar; the TILL and CM group are194

somewhat less variable and, as might be expected, the ALV group (alluvial soil parent195
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material) has the most variable psd.196

2.4 Statistical analyses197

2.4.1 Additive log-ratio transformation198

The compositional constraints on data with distributions that are curtailed at the limits199

of 0 and 1 (or 0 and 100%) induces correlations among the components, in this case200

the particle size fractions. Linear regression models are not limited in this way, nor are201

their predictions constrained to sum to 1.202

Aitchison (1986) proposed a way out of this difficulty using the additive log ratio203

(alr). Suppose we have V variables, each with values lying between 0 and 1 and204

summing to 1, and that we choose V − 1 with values for each unit z1, z2, . . . , zV−1. We205

can transform these to206

qi = ln
(
zi
zV

)
for all i = 1, 2, . . . , V − 1 , (2)

where zV is the value of the remaining V th variable. The resulting values over all units207

have by definition a logistic normal distribution. This is the additive log ratio (alr)208

transform, and it allows us to analyse our compositional data as any other multivariate209

normal data.210

After estimating new values q̂i, i = 1, 2, . . . , V − 1, we want to return them to211

their original scale of composition, and we do so by the inverse transform, the additive212

generalized logistic transformation:213

ẑi =
exp (q̂i)

1 +
∑V−1

j=1 exp (q̂i)
for all i = 1, 2, . . . , V − 1

and ẑV =
1

1 +
∑V−1

j=1 exp (q̂j)
. (3)

As Aitchison showed, the results of this back-transformation are the same whichever214

variable we select as zV .215

In this study we formed partial least squares regression (PLSR) models for two216

alr-transformed variates and back-transformed these values to three size fractions. We217

note that the centre of the backtransformed distribution is equivalent to the median218
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on the original distribution (Pawlowsky-Glahn and Olea, 2004) not the mean, and so219

the backtransformed values include some bias. We then assessed the accuracy of the220

estimates using independent cross-validation.221

2.4.2 Partial least squares regression and cross-validation222

PLSR is a chemometric technique which is well-suited to multicollinear predictor vari-223

ables, such as reflectance measurements in infra red spectroscopy. The predictive re-224

gression model can be represented by:225

Y = b0 + b1X1 + bkXk + � (4)

where the observed response values (Y ; in this case the alr ratios) are approximated226

by a linear combination of the values of the spectral intensities (X), coefficients (b) -227

referred to as b-coefficients, and an error term (�).228

To determine the significant wavelengths for prediction of the alr ratios of the229

texture fractions, we used both the Variable Importance in the Projection (VIP)230

(Chong and Jun, 2005) and the PLS regression coefficients (b-coefficients; Haaland231

and Thomas, 1988). For an observed variable y, the VIP was calculated by:232

V IPk(a) = K
∑
a

w2
ak

(
SSYa
SSYt

)
(5)

where VIPk(a) gives the importance of the kth predictor variable based on a model with233

a factors, wak is the corresponding loading weight of the kth variable in the ath PLSR234

factor, SSYa is the explained sum of squares of y by a PLSR model with a factors,235

SSYt is the total sum of squares of y, and K is the total number of predictor variables.236

The wavelength is considered important if the values of both the b-coefficients and VIP237

are sufficiently large. In this study, thresholds for VIP were set to 1 (Chong and Jun,238

2005) and the standard deviation of the b-coefficients was applied as their threshold.239
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We used the pls package (Mevik and Wehrens, 2007) in the R environment (R240

Core Development Team, 2010) to form PLSR models based on the orthogonal scores241

algorithm. After taking alr ratios (Equation 2) using the compositions package (van242

den Boogaart et al., 2008) we fitted models to the two alr ratios for the soils from each243

of the five PM groups, and also to all the samples; twelve models in total. We investi-244

gated whether spectral pre-processing (first and second derivatives and Savitsky-Golay245

smoothing) improved model performance. In each case the untransformed reflectance246

data gave the best model performance so we used the original data in fitting all models.247

We used a truncated range (450-2450 nm) of wavelengths and the RI as predictors. We248

used cross validation to select the optimum number of components from which to form249

the models and also calculated the coefficient of determination (R2) to assess model250

performance. Prior to forming each model, 10% of the samples were selected randomly251

and were not used in model fitting. These samples were then used to assess the model252

performance by forming predictions, backtransforming the alr components to propor-253

tions of the compositions (Equation 3) and calculating the root-mean-squared-error of254

cross validation (RMSE-CV) for between 1 and 12 model components. The RMSE-CV255

is calculated as:256

RMSE-CV =

√√√⎷ 1

nV

nV∑
i=1

(ẑi − zi)
2 , (6)

where zi is the measured proportion of a particle fraction and ẑi is its predicted value.257

We selected the optimum number of components for each PLSR model based on min-258

imisation of the RMSE-CV.259

To assess the accuracy of the selected models more thoroughly, we undertook260

repeated (n=100) cross-validation by randomly selecting 10% of the samples from261

each group and calculating the mean of the RMSE-CV and the mean of the residual262

prediction deviation (RPD); the ratio of the standard deviation of the validation sample263

set and the standard error of prediction (Equation 6). This statistic provides a useful264
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indication of the quality of the model because it accounts for the variation in the size265

fractions in the validation dataset.266

3. Results and their interpretation267

3.1 Regression models and psd estimation accuracy268

Summary data for the PLSR models fitted to the two alr size-fraction ratios for each269

of the soils grouped by PM and all soils grouped together are presented in Table 3.270

The position of those wavelengths in the PLSR models identified as having significant271

predictive power – based on large b-coefficients and VIP scores – are presented in Fig-272

ure 3. For both size-fraction ratios, the global group and alluvial sediment group have273

the largest number (n=10 or 11) of orthogonal model components probably because274

they represent a greater diversity of soil types than the other individual soil groups.275

It is notable that RI was only a significant predictor for the CM soil group – this276

may partly be related to the colour associated with the range and age of iron-bearing277

mineral phases in the coal-bearing strata. The mineral pyrite is abundant (Spears et278

al., 1999) in the bedrock from which these soils formed and over time this weathers to279

form a range of iron-bearing minerals (hematite and goethite; also present in the host280

rock) of varying age. Soil samples containing differing proportions of these minerals281

will have quite different redness features which may account for its significance as a282

predictor in this soil group. This may in part be due to different ageing of iron oxyhy-283

droxides giving rise to differences in colour wavelengths (yellow, orange and red). For284

example, goethite reddens as it ages to hematite whilst lepidocrocite is dark brown or285

black and amorphous iron-oxide is between yellow and orange in colour. We cannot286

explain the significant wavelengths between 950 and 1050nm for the TILL and ALV287

models as these do not appear to relate to known absorption features in the near infra288

red spectrum.289

The significant predictive wavelengths are consistent with colour in the visible290

light range (450-700nm). The H2O adsorption bands at 750, 975, 1900–1950 and291
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2200nm are present as significant predictors in many of the PLSR models presumably292

associated with certain water-absorbing clay mineral phases. The H2O adsorption band293

at 1400 nm is absent from all but the global clay:silt ratio model; this demonstrates294

the potential problem in forming global calibration models which may be based on295

predictive wavelengths that would not be justified based on a groups of local models.296

Significant wavelengths for other adsorption bands associated with certain clay mineral297

phases which are common in British soils include 2204–2211 nm (illite, kaolinite),298

2340 nm (illite) and 2207 nm (smectite). Adsorption bands commonly associated with299

hematite (920 nm) and goethite (880 nm) are absent from all the models, although300

their effects through soil colour may be more significant in the visible wavelength301

range. There is substantially greater (n=58 wavelengths) overlap in the significant302

predictive wavelengths for the clay:silt size fraction ratio models (Figure 3a) for the303

five individual soil groups compared with the silt:sand ratio size fraction groups (n=7304

wavelengths; Figure 3b). The overlapping wavelengths in the clay:silt size fraction305

models are dominated by wavelengths centred around the water absorption feature306

at 1900-1950nm (illite) and smectite (2004-2211nm); the absorption feature which is307

common to all models between 2407 and 2420nm may be related to adsorption features308

associated with carbonate minerals; chalk bedrock underlies the TILL soils in the north-309

east of the study region (Figure 1).310

The results of repeated (n=100) 10% cross-validation for each of the models311

applied to the soil groups are presented in Table 2; the RMSE-CV and RPDs were312

calculated after back-transformation to the original three size-fractions. Overall model313

performance – based on RPD – is poorest for the silt size-fraction. This may be because314

this fraction shares a boundary with the two other size-fractions, whilst they each share315

only one. The intermediate, silt size-fraction is likely to comprise a larger proportion of316

uncommon minerals than the two other size-fractions. In terms of overall performance,317

the RPD values are larger (more accurate estimates) for the models relating to soils318

developed over the transported PM compared to those formed from bedrock. For the319
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clay size-fraction, the RPDs decline in the order: LDE > ALV > TILL > MDST >320

CM. With the exception of the last two groups which swap places in the order stated321

above, the same pattern also applies to the sand size-fraction. It is noteworthy that322

even though the LDE group has the largest mean sand-size content (58%; Table 2)323

it has the best overall model performance for the sand size-fraction. If, as is often324

the case, the sand fraction is dominated by quartz which has no absorption features325

in the NIR range (350-2500 nm), we might have expected model performance to be326

poor relative to the other groups. In the case of the silt size-fraction, soils over the327

transported PM again have the largest RPD values compared to those derived from328

bedrock: ALV > TILL > LDE > CM > MDST.329

In each size-fraction, the RPD for the PLSR models developed for all soils (global)330

generally has an intermediate value; greater than the soils over bedrock but less than331

those over transported PM types. In the case of estimating clay and sand size-fractions332

for soil over the transported PM types, if we rely on a global PLSR model the average333

error of our predictions would be substantially larger than if we had developed models334

for each PM group (Table 2). In the case of the silt size-fraction, only the overall335

model performance (RPD= 1.88) for the alluvial soils is greater than that of the global336

model (RPD= 1.76), with particularly poor overall performance for the MDST and337

CM models.338

4. Discussion339

Previous research has highlighted the importance of PM when estimating cation ex-340

change capacity of soil using VNIR-DRS across another part of eastern England (Sav-341

vides et al., 2010). Our analysis has shown that there are substantial differences in342

the performance of statistical models for prediction of particle size fractions based on343

VNIR-DRS for soils developed over different PM types across a large area of Eastern344

England. This highlights the importance of existing maps of soil PM or soil type to345

enhance the application of sensor-based covariates for producing digital soil maps.346

We currently have no direct evidence to account for the observed differences in347
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VNIR-DRS model performance for the different soil groups. Here we give further348

consideration to three possible reasons. The first is that soils derived from transported349

(allochthonous) PM types are likely to be more mineralogically homogeneous than350

those derived from in-situ weathering of bedrock because the former have undergone351

sorting processes associated with transport and redeposition, whilst the latter have only352

been subject to weathering in situ. For example, we know from direct observation and353

mineralogical analyses that there is considerable variation in the lithologies (mudstones,354

siltstone, sandstone, coal-bearing strata) which comprise the coal-bearing strata (CM)355

in our study area.356

A second explanation to account for the observed differences in model perfor-357

mance for the different soil groups concerns the relative abundance of iron-oxide coat-358

ings of soil clays which might lead to bias in the reflectance spectra; more or different359

types of iron-oxide coatings could diminish the clay mineral signatures and hinder360

VNIR-DRS model performance. We assume that total soil iron content – for which361

we have measurements for each soil sample from XRFS analysis (see Rawlins et al.,362

2009) is strongly correlated with iron-oxide concentrations. Soils developed over the363

coal-bearing strata contained the greatest median concentration of total iron (4.71%)364

and had the poorest overall model performance for size fraction prediction. However,365

the alluvial soils group was the next most enriched in total iron (median=3.91%) and366

VNIR-DRS model performance was reasonable, which confounds this theory if we as-367

sume that iron-oxides have similar associations with soil minerals in each of the soil368

groups (i.e. the proportion of iron-oxide coated clay mineral particles has a linear369

relationship with total iron content). The relationship between iron oxide coatings of370

minerals and VNIR-DRS warrants further investigation.371

Thirdly, the presence of widely differing proportions of quartz – which has no372

spectral adsorption features in the VNIR range (350-2500 nm; Ferraro, 1982) – in the373

different size fractions would weaken the statistical relationships with VNIR-DR spec-374

tra. Although this limitation of size fraction estimation from VNIR-DRS is recognised,375
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it has not been widely referred to in the soil science literature. Our analyses show376

that soils with greater, average sand-size (quartz-dominated) fractions do not in gen-377

eral have weaker correlations between VNIR-DR spectra and each texture fraction; the378

group with the largest mean sand size fraction had amongst the best (largest) RPD379

values. Further research is required to provide an unequivocal, evidence-based expla-380

nation for the observed differences in the strength of relationships between psd and381

VNIR-DRS for soils developed over transported and bedrock-derived PM types.382

Our results suggest that accuracy in mapping soil psd based on VNIR-DRS is383

likely to be substantially improved if local statistical models are developed compared384

to regional or global approaches. This is also likely to apply to the use of hyperspectral,385

remotely sensed data to map size fractions (Lagacherie et al., 2008) because the strength386

of the statistical relationships between the size fractions and spectral signatures will387

be similar.388

Our previous research showed that the total concentration of five elements in the389

soil (Al, Fe, Ni, Ti and Zr) could be used to accurately estimate soil psd across the same390

study region with substantially smaller RMSE-CV compared to the local VNIR-DRS391

models (clay 4.9% versus a range from 6.1 to 8.8 %, respectively; sand 8.8% versus392

a range from 9.7 to 13.1% respectively). Although these estimates are more accurate393

the cost associated with acquisition of geochemical data makes it far more costly when394

compared to the spectral approach. The latter also has the advantage for the potential395

application of exhaustive, remotely sensed data to improve estimates at fine scales396

(< 10 m).397

5. Conclusions398

Our analyses have shown that there are substantially stronger relationships between399

psd and VNIR-DR spectra for topsoils developed from transported parent materials400

(three groups) compared to those developed directly from bedrock (two groups) at the401

regional scale. Based on RPD values from repeated cross-validation, the statistical402

models developed between the additive log ratios of the psd fractions and VNIR-DR403

17



spectra for topsoils over the transported parent materials generally perform better404

than a global model developed for all five soil groups soils across the region. This405

has important implications for optimal strategies for mapping psd using field-based406

VNIR-DRS and the use of remotely sensed, hyperspectral data.407
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Figure captions508

Figure 1 Parent material and soil sampling locations across the study region.509

Figure 2 Particle-size distribution for groups of soils developed from five different510

parent material types across the study region. Figure 1 shows their spatial dis-511

tribution. The partitions of the triangle and class names are those in the Field512

Handbook of the Soil Survey of England and Wales compiled by Hodgson (1974).513

Figure 3 Wavelengths at which both variable importance in the projection (VIP)514

scores and regression (beta) coefficients are significant in partial least squares515

models of reflectance spectra for prediction of additive log ratios of texture frac-516

tions for soils grouped by parent material and for all soils: a) clay:silt, b) silt:sand.517

Bands which are significant in all five soil model groups are shown in grey.518
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Table 1 X-ray diffraction analysis of estimated mineralogic composition for three size519

fraction separates for single selected topsoil samples developed over coal-bearing strata520

(CM) bedrock and lacustrine deposits (LDE).521

Size fraction Sand Silt Clay
Parent material CM LDE CM LDE CM LDE

proportion of total mass (%) 8 58 23 26 69 15
albite na 3.2 3.9 5.4 nd <0.5
anatase na nd 0.5 <0.5 0.7 <0.5
∗kaolin na nd 7.5 9.1 16.8 33.6
K-feldspar na 7.2 3.4 5.6 nd <0.5
†mica na nd 27.5 13.7 58.2 57.7
quartz na 89.6 49.9 66.1 11.3 8.2
chlorite na nd 7.1 nd 13 nd

522

∗ kaolin: undifferentiated kaolin group minerals possibly including kaolinite, halloysite523

†mica: undifferentiated mica species, possibly including muscovite, biotite, illite and524

illite/smectite525

nd = not detected526

na = not analysed527

528
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Table 3 Features of partial least squares regression (PLSR) models formed between two533

alr ratio size fractions and VNIR-DRS for five sets of soil grouped by parent material534

type: a) number (n) of orthogonal PLSR components, b) coefficient of determination535

(adjusted R2), c) number (n) of wavelengths (�) in PLSR model which have VIP scores536

and beta coefficients greater than significance thresholds (see text).537

538

alr clay:silt alr silt:sand

Group (n) n components R2 n(�) n components R2 n(�)

Global (738) 11 0.64 523 11 0.60 217

ALV (230) 10 0.80 413 10 0.75 405

LDE (100) 8 0.86 411 8 0.77 225

TILL (186) 8 0.69 432 8 0.67 534

∗CM (175) 7 0.50 304 7 0.51 245

MDST (47) 5 0.59 379 5 0.60 441

539

∗ includes redness index (RI) as a significant predictor – without the RI the maximum540

R2 values of PLSR models between VNIR-DRS and the clay:silt and silt:sand fractions541

of the CM soils were 0.33 and 0.38, respectively.542
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Figure 2:
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Figure 3:

wavelength (nm)
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