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Executive Summary 

1. Esthwaite Water is one of the most nutrient-enriched lakes in the English Lake District 

and one of the best-studied lakes in the world. The purpose of this report is to produce a 

comprehensive overview describing the current ecological status of Esthwaite Water, 

how it has changed in response to external and internal pressures and to forecast how it 

may function in the future.  

2. The catchment of Esthwaite Water lies on Silurian slates, grits and Bannisdale slates 

overlain by glacial till. It drains into the South Basin of Windermere. It is a SSSI, a 

Ramsar site and the fen at the north end is a National Nature Reserve. It is 0.96 km2 in 

area, has a mean depth of 6.9 m and an average retention time of 91 days. 

3. Palaeolimnological records extending back to the end of the last glaciation, when the 

lake was formed, show how the catchment vegetation has altered in response to climate 

change and man‟s activities. There is clear evidence for nutrient enrichment that began 

around 1850 and accelerated after 1970. 

4. The main land cover in the catchment today is pasture (55%), coniferous forest (20%), 

broad leaved forest (13%) and natural grassland (11%). 

5. The average outflow from the lake is 0.85 m3 s-1 leading to an average discharge of 26.9 

Mm3 y-1, of which about 55% derives from Black Beck. 

6. The load of phosphorus, the main limiting nutrient, has varied over time in magnitude 

and source. The main sources of phosphorus to Esthwaite Water today are the 

catchment (fertilizers and septic tanks), rain, wastewater treatment works, the fish farm 

and internal load from the lake sediment. Before the WwTW and fish farm were in 

operation, the catchment was estimated to deliver 96% of the total load of 1378 kg TP y-

1. The total load had increased to 1541 kg TP y-1 in 1985-6 and the WwTW was the 

dominant source (37%). In 1992-3, the total load of 1677 kg TP y-1 was mainly 

contributed by the fish farm (48%), the catchment (29%) and the WwTW operations had 

declined to 20% as a result of tertiary P-removal at the Hawkshead works. In 2010 

following the closure of the fish farm and redirection of the discharge from near Sawrey, 
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the load was estimated to have fallen to 747 kg TP y-1 with the main contribution from 

the catchment (40%) and the WwTW (34%). Internal load is a small component of total 

load on an annual basis, but can be important in summer when inflow from the land is 

low. 

7. The lake sediment is over 5 m deep and the present day sedimentation rate, much 

greater than in previous years, is about 0.06 g cm-2 y-1, equivalent to about 0.6 mm y-1 

although there is a high degree of spatial variability in sedimentation rate in different 

regions caused by variation in physical mixing processes. 

8. The physical conditions on the lake are known from the CEH automatic water quality 

monitoring station on the lake and the longer-term weekly or fortnightly measurements 

that extend back to the 1940s. Many physical conditions are directly influenced by 

climate change. Surface water temperature has increased by about 0.27 oC per decade 

since 1957. The stratification strength (using an index of top minus bottom temperature) 

has increase by about 0.25 oC per decade over the same period. Stratification has also 

been starting earlier by about 7 days per decade and breaking down later by about 4 

days per decade.  

9. Average wind-induced water currents are about 5 cm s-1 at the lake surface. Wave-

mixed depths are about 0.5 m under average wind conditions and 2 m with strong winds, 

so a relatively small amount of the lake bed is directly affected by wind-induced mixing. 

10. Long-term records of water transparency, measured with a Secchi disc, show a strong 

seasonal pattern with clearest water in May, after the spring diatom bloom, and the most 

turbid water in the summer. There have been significant reductions in Secchi depth in 

most months between May and October. There has been a marked decline in annual 

average Secchi depth between 1972 and the present day with a downward step-change 

around 1987. Based on measurements with light-meters, the current average depth at 

which light is attenuated to 1% (rough indication of the photic zone) is 5 m. 

11. The composition of major anions and cations over the last 50 years is presented. The 

most noticeable change is the increase in alkalinity (acid neutralising capacity) linked to 

an increase in concentration of sulphate as a result of declining sulphate-deposition. 
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Esthwaite Water has a current average alkalinity of 431 mequiv m-3, placing it within the 

„medium alkalinity‟ category of the Water Framework Directive. 

12. Uptake of inorganic carbon in photosynthesis and production of carbon dioxide by 

respiratory process in the lake and catchment lead to rapidly-changing pH, especially 

during summer stratification. Minimum surface pH values are slightly below pH 7 and 

maximum values are over pH 10. Although at high pH the surface water is strongly 

depleted in carbon dioxide and taking up this gas from the atmosphere, over a year the 

lake is a source of CO2; in large part because it receives CO2-rich water from inflowing 

streams. 

13. The long-term record of soluble reactive phosphorus (SRP) extending back to 1945 

demonstrates the dramatic increase in winter concentrations. Summer concentrations 

are low then and now because of high biological demand for this limiting resource. The 

total phosphorus (TP) concentration has also increased but show indications of a 

reduction in the last decade.  

14. Nitrate-nitrogen has also increased, but less dramatically than for phosphorus. The late 

summer depletion may impose a transient nitrogen-depletion on the phytoplankton, 

although this may be overcome by growth of nitrogen-fixing cyanobacteria. 

15. Dissolved organic carbon is not measured routinely. Measurements indicate and annual 

average of about 3 g m-3; higher than many of the lakes in the English Lake District, but 

low on a national scale. 

16. There are strong depth-variation in water chemistry during summer stratification caused 

by a separation of photosynthesis in the upper well-lit epilimnion and respiration in the 

„dark‟ lower hypolimnion. Oxygen is close to zero in much of the hypolimnion in summer 

and this has been the case for the last 45 years. Nutrient concentrations are higher at 

depth because of regeneration by decomposition, and release from the sediment 

surface because of redox-changes linked to anoxia. 

17. Phytoplankton are the major primary producers in Esthwaite Water today. Chlorophyll a 

is the main photosynthetic pigment and its concentration is a convenient measure of 

phytoplankton density. Measurements extending back to 1964 show increased 
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concentration from May to July and in October. Over 500 taxa of phytoplankton have 

been recorded in Esthwaite Water over the last 66 years. Of these 190 have only been 

recorded once, while the diatom Asterionella formosa has been recorded each year, and 

four more species have been recorded in 64 years or more. In general, the number of 

phytoplankton taxa recorded each year has increased. Average seasonal patterns show 

light- and temperature-limited A. formosa and Aulacoseira subarctica in spring, and 

colonial green algae such as Coenochloris fottii in midsummer and dinoflagellates and 

cyanobacteria in late summer at times of nutrient depletion and strong stratifciation. 

18. Early studies on submerged macrophytes were carried out by W.H. Pearsall between 

1914 and 1916 when 22 species were recorded. Two rare species, Hydrilla verticillata 

and Najas flexilis, appear to be lost from the lake and the species number has declined 

to about eleven. Depth limits also appear to have declined with worsening light climate 

from about 3.6 m to 2.3 m in 2011. 

19. Protozoa are single-celled organisms that consume phytoplankton, bacteria and detritus 

and live in the water column and sediment. Esthwaite Water supports a diverse 

community of protozoa: over 120 species have been identified. They have large 

seasonal patterns of change, typically with peaks in spring-early summer. 

20. Esthwaite Water supports a diverse community of zooplankton which live in the open 

water or in association with sediments or vegetation. They occupy an important 

intermediate position in the food web as they consume phytoplankton and are consumed 

by fish. Twenty-four species of rotifers, 25 species of cladocerans, 11 species of 

cyclopoid copepods, one species of calanoid copepod and one species of harpacticoid 

copepod have been identified in Esthwaite Water. The numerically dominant 

cladocerans typically produce a large cohort in late spring and a much smaller cohort in 

late summer. The dominant species are Daphnia hyalina/galeata, Bosmina longirostris 

and Ceriodaphnia quadrangula.  

21. The different littoral and profundal habitats in Esthwaite Water support different types of 

benthic invertebrates. These include 81 insects, 3 crustaceans, 16 molluscs, 11 leeches, 
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6 flatworms, 10 oligochaete worms and some less-well identified species from other 

groups.  

22. The vertebrate fauna of Esthwaite Water has not been particularly well-studied. Brown 

trout (Salmo trutta), perch (Perca fluviatilis) and pike (Esox lucius) are the main species 

with Altantic salmon (Salar salar) passing though on migration and the cyprinids roach 

(Rutilis rutilis) and rudd (Scardinius erythrophthalmus) and their hybrids also present. 

The fish farm stocks the lake with rainbow trout (Oncorhynchus mykiss) but this will be 

phased out in the next few years. 

23. No amphibians or reptiles are recorded for Esthwaite Water and its environs, although 

they are likely to be present. The lake‟s waterfowl are of national and international 

importance and include a large number of species. Recently an osprey (Pandion 

haliaetus) has been observed hunting at Esthwaite Water. The otter (Lutra lutra), 

American mink (Mustela vison) and coypu (Myocaster copypus) are among the „aquatic‟ 

mammals recorded. 

24. Esthwaite Water, like many lakes, is sensitive to climate change. Regional weather 

patterns such as the North Atlantic Oscillation, the position of the Gulf Stream and 

Rossby breaking waves all affect the ecological functioning of the lake. Phenological 

changes have been linked to warming water temperature, but also to nutrient 

enrichment. Forecasts of future conditions using models suggest a greater 

preponderance of the potentially toxic cyanobacteria Anabaena and Aphanizomenon in 

response to warmer summers with lower rainfall and hence lower discharge. 

25. Esthwaite Water has clearly responded to Man‟s activity and past management actions 

within the catchment. More recently, the fish farm ceased in autumn 2009 and the 

Hawkshead WwTW upgrades should be completed in 2012. Although there are signs of 

recent improvement in water quality, these actions, as a minimum, will be needed to shift 

the lake from its current „Moderate‟ to „Good‟ Ecological Status under the Water 

Framework Directive. 
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1. Objective of the review 

Esthwaite Water is one of the most nutrient enriched lakes in the English Lake District, but 

recently two changes have been implemented to reduce nutrient loading to the lake: the 

removal of the fish hatchery on the lake and upgrading of the wastewater handling and 

treatment facilities at the Hawkshead Wastewater Treatment Work (WwTW). At the same time, 

it is experiencing changes linked to variable weather patterns and climate change that have the 

potential to have widespread effects on the way the lake functions. It is also one of the best-

studied lakes in the world with detailed scientific studies that extend back for around 100 years 

and is part of the Cumbrian lakes long-term monitoring programme undertaken by the Centre 

for Ecology and Hydrology. It has been the subject of numerous papers and report. The earlier 

ones have been summarised by Talling & Heaney (1983) so this review seeks to update this 

with the new data, publications and responses to recent pressures in the subsequent nearly 30 

years.  

 

The aim of this report is not to cite every paper or report produced on Esthwaite Water but to 

produce a comprehensive overview describing the current ecological status of Esthwaite Water, 

how it has changed in response to external and internal pressures and to forecast how it may 

function in the future.  
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2. Background to Esthwaite Water 

 

2.1 Basic features  

Esthwaite Water (54° 22‟ N, 2° 56‟ W) is situated in a side-valley that drains into the South 

Basin of Windermere in the English Lake District, Cumbria UK. It is about 2.8 km long and 0.547 

m at its widest (Pearsall 1917). It was formed at the end of the last glaciation, around 12,000 

year ago, and is held-up by morainic material. Priest Pot to the north (Finlay & Maberly 2000) 

and Out Dubs Tarn to the south were once part of the lake. Esthwaite Water is surrounded by 

an agricultural landscape of improved grassland with small copses and some deciduous forests 

(Fig. 2.1). Studies by Pearsall (1921a), 

Jones (1972) and Gorham et al. (1974) 

ranked Esthwaite Water as the most 

productive of the 20 major lakes in the 

English Lake District. It has extremely rare 

long-term data extending back consistently 

to 1945 but has relatively little information 

on fish populations. It lies within the Lake 

District National Park, is a Site of Special 

Scientific Interest (SSSI) for Natural 

England and an international Ramsar 

Convention site. The fen at the north end of 

the lake is a National Nature Reserve 

(Piggott & Wilson 1978). Talling (1999) 

provided a general overview of the lake. 

 

Esthwaite Water is a relatively small lake compared to many in the English Lake District (Table 

2.1): it has an area of 0.96 km2 (10 have a larger area) and a volume of 6.7 Mm3 (11 have a 

Figure 2.1 Aerial view of Esthwaite Water and its 

immediate surroundings. 
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larger volume). Its catchment is 17 km2 and is more low-lying (average 148 m) than most of the 

other major English Lake District catchments. The average discharge recorded between 1976 

and 2009 of 26.9 Mm3 y-1 (equivalent to 0.85 m3 s-1) gives an average retention time of 91 days. 

 

Table 2.1 Key characteristics of Esthwaite Water and its catchment. 

Catchment Value Lake Value 

Catchment area (km2) 17 Lake area (km2) 0.96** 

Maximum catchment altitude (m) 306 Altitude (m) 65 

Average catchment altitude (m) 148 Maximum depth (m) 16.0** 

Average slope (m km-1) 118 Mean depth (m) 6.9** 

Average rainfall (1961-1990; m y-1) 1.911 Volume (Mm3) 6.7 

Average discharge* (1976-2009; Mm3 y-1) 26.9 Average retention time (d) 91 

* See Section 4 on hydrology. ** New bathymetric survey Mackay et al. (2011). 

 

The lake is divided into three main basins. The northern basin is the largest in area and also the 

deepest with a maximum depth of 16 m (Fig. 2.2). This deep point is where the long-term 

monitoring samples are collected. A sill at about 5 m separates this from a smaller central basin 

with a maximum depth of around 12 m and another sill at about 6 m separates this central basin 

from a small southern basin that has a maximum depth of around 10 m. The main inflows enter 

the lake to the north and the ouflow is to the south from the southern basin. The mean depth of 

6.9 m places Esthwaite Water in the „shallow‟ depth-category within the Water Framework 

Directive (2000/60/EC). 
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Figure 2.2 Bathymetry of Esthwaite Water, from Mackay et al. (2011). 
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Figure 2.3. Hypsographic curves for Esthwaite Water showing a) area and b) volume calculated 

from data in Mackay et al. 2011. Results are based on 1 m depth intervals and areas and 

volumes are plotted against the mid-depth for each ‘slice’. The trendline shown in red is a third-

order polynomial equation fitted to the data (equation shown). 

 

2.2 Weather 

The English Lake District is situated close to the western seaboard of north-west England and 

receives predominantly westerly or southwesterly winds from the North Atlantic, giving the 

region a relatively equitable maritime climate. The rainfall is generally high because as the 

Atlantic air rises over the mountains and cools, water condenses and falls as rain or snow. 

Meteorological data collected at Ambleside, about 8 km away, illustrates the average seasonal 

weather pattern (Fig. 2.4). None of the weather variables show any long-term trends at the 

annual scale between 1965 and 2010, apart from air temperature which has increased on 

average by 0.04 oC y-1 (Fig. 2.5). 
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Figure 2.4. Average monthly weather- patterns at Ambleside (8 km NW of Esthwaite Water) 

between 1965 and 2010 showing: a) air temperature; b) wind speed, c) rainfall; d) calculated 

daylength; e) sunshine hours and f) cloud cover. 

 

 

Figure 2.5. Long-term average annual air temperature at Ambleside (8 km NW of Esthwaite 

Water). 
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2.3 Pre-historical & historical changes 

Palaeolimnological studies based on material preserved in the lake sediment (see Section 6.1) 

have allowed the past conditions in the catchment and the lake to be inferred. At the end of the 

last glaciation the retreat of the glaciers into the central mountains exposed bare ground that 

became colonised by sedge tundra and arctic-alpine shrubs such as Betula nana and Salix 

herbacea. As the climate warmed, copses of Betula pubescens and B. verrucosa developed but 

did not form a closed canopy (Franks & Pennington 1961). In subsequent cold periods the 

Betula copses reduced or disappeared and grass and sedge with Betula nana and Salix 

herbacea returned. Within the lake there are early records of the aquatic moss Fontinalis and 

later Myriophyllum alterniflorum, M. spicatum, Littorella uniflora and Nuphar sp. and diatoms 

such as Melosira arenaria (possibly a synonym for Ellerbeckia arenaria (Moore ex Ralfs)) 

(Round 1961). During the warmer post-glacial period, a Pinus-Betula woodland developed with 

increasing amounts of Corylus. Later, Quercus, Ulmus and Tilia appeared and Alnus became 

increasingly dominant. As Betula and Pinus declined a mixed Quercus forest developed around 

8500 years ago (Franks & Pennington 1961; Pearsall & Pennington, 1947).  

 

At the time of the colonisation of the lake district by megalithic people about 4000 years ago 

(Pearsall & Pennington, 1947) the oak forest would have been the dominant vegetation 

intermixed with Festuca-Agrostis grasslands and boggy valley bottoms with Alnus and Salix. 

Later Neolithic people appear to have mainly occupied the upper areas above the tree-line or in 

upland woods with little understory vegetation. The Roman invasion appeared not to have 

influenced the vegetation greatly and from about 3500 to 1100 years ago the main influence of 

man on the vegetation was the reduction of upland pine-heaths. The colonisation by Norse 

populations (around 900 to 1000 AD) led to the valley Alnus-boggy land to start to be cleared to 

provide land to graze sheep, a process that later expanded under the influence of the Cistercian 

abbeys. An additional reason for the destruction of the woodland was to provide fuel, especially 

to produce charcoal for smelting iron ore. By 1600 – 1700 AD deforestation was perhaps at its 

greatest and the large forges were forced to move to western Scotland where timber for 

http://www.algaebase.org/search/species/detail/?species_id=31936
http://www.algaebase.org/search/species/detail/?species_id=31936
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charcoal was plentiful. The period following, up to the start of the Second World War, saw some 

reforestation as a result of the „Romantic‟ influence and the start of commercial forestry. During 

the 1800s populations began to expand helped perhaps by the building of the railway line which 

reached Windermere in 1847 and increased access and tourism in the area. The period from 

1850 onwards sees a steady expansion and intensification of agriculture (Dong et al. 2011a). 

 

Although the focus in the above has been on land-use changes, there are additional, linked, 

changes in climate. For example, the period from 880 to 1350 AD is referred to as the „Medieval 

Warm period‟ that was followed, 1350 – 1800 AD, by the era known as the „Little Ice Age‟ (Dong 

et al. 2011a). Since around 1990, there is clear evidence for warming air and lake water 

temperatures in Cumbria, and elsewhere in Europe (Hari et al. 2006). There have also been 

recorded changes in precipitation in Cumbria over the last 200 years (Barker et al. 2004) with 

lower than average annual means between 1850 and 1900 and slightly higher than average 

precipitation between 1920 and 1960. 

 

Recently, Esthwaite Water has been particularly heavily influenced by human activity. The 

potentially major recent impacts include: 

 1973 (November) input of sewage from the Wastewater Treatment Work (WwTW) 

serving Hawkshead 

 1981 (March) lowering the lake level by about 0.5 m 

 1981 introduction of a fish farm on the lake 

 1986 implementation of tertiary phosphorus removal at Hawkshead WwTW 

 1993 output from Near Sawrey WwTW redirected into Cunsey Beck below Esthwaite 

 2009 closing of the fish farm 

 2011-12 planned upgrade to Hawkshead WwTW 
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3. The catchment & its land cover 

3.1 Geology & soils 

Esthwaite Water has a catchment area of about 17 km2 (Table 2.1). The underlying geology of 

the catchment comprises Silurian slates, grits and Bannisdale slates (Fig. 3.1) with the lower 

slopes covered in glacial tills of varying thicknesses. A thin band of Coniston limestone runs 

through the north of the catchment. The lake itself is underlain by Silurian slates (Fryer, 1991). 

 

Figure 3.1. The underlying geology of the English Lake District (based on Sutcliffe, 1998). The 

approximate catchment area of Esthwaite Water is outlined in red. 
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3.2 Land cover 

In 1988, the Lake District National Park Authority (LDNPA, Kendal) provided land cover data for 

the Esthwaite Water catchment in 38 different categories. These were aggregated into the 12 

composite land cover groups shown in Figure 3.2 (May et al. 1995).  

 

Figure 3.2. Land cover groups in the catchment of Esthwaite Water in 1988 based on data 

provided by the Lake District National Park Authority. 

 

An alternative, further simplified, land cover categorisation of the land cover in the catchment of 

Esthwaite Water is that based on the European Corine Land Cover map 

(http://www.ceh.ac.uk/sci_programmes/BioGeoChem/CORINELandCoverMap.html). The areal 

coverage of each category is shown in Table 3.1. These data show that pasture contributes just 

over half of the total land area within the catchment and the two types of woodland about 

another third. 

 

http://www.ceh.ac.uk/sci_programmes/BioGeoChem/CORINELandCoverMap.html
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Table 3.1. Areal coverage of Corine land cover types within the Esthwaite Water catchment 

(excluding the lake). 

Corine Gridcode Land cover type Area (ha) % area 

231 Pasture 867 55 

311 Broad leaved forest 210 13 

312 Coniferous forest 315 20 

321 Natural grassland 170 11 
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4. Hydrology 

The main national gauging station downstream of Esthwaite Water is at Eel House Bridge on 

Cunsey Beck (NGR SD369941), about 1.2 km below the main ouflow from the lake and below 

the small (1.1 ha) pond, Out Dubs Tarn. The gauging station drains a slightly larger catchment 

than Esthwaite Water of about 18.6 km2 but in the period 1961 to 1990 had a slightly lower 

average rainfall of 1.899 mm y-1. Consequently, the estimated outflow from Esthwaite Water is 

0.92 of that at Eel House Bridge and this value has been used to convert all discharge data to 

appropriate values for Esthwaite Water. The National River Flow Archive (NRFA) at the Centre 

for Ecology & Hydrology (http://www.ceh.ac.uk/data/nrfa/index.html) archives these flow data 

and provides summary statistics. 

 

Table 4.1. Summary time series data for site 73006 - Cunsey Beck at Eel House Bridge and 

equivalent values for the outflow from Esthwaite Water at Ees Bridge. All flow data as m3 s-1. 

Statistic 
Value at Eel House 

Bridge 

Value at Ees 

Bridge 

Period of Record: 1976 - 2009 - 

Percent Complete: 90 % - 

Base Flow Index: 0.41 - 

Mean Flow: 0.928 0.85 

95% Exceedance (Q95): 0.041 0.038 

70% Exceedance (Q70): 0.263 0.242 

50% Exceedance (Q50): 0.5 0.46 

10% Exceedance (Q10): 2.269 2.088 

http://www.ceh.ac.uk/data/nrfa/index.html
http://www.ceh.ac.uk/data/nrfa/data/derived_flow.html#DFSPeriodofRecord
http://www.ceh.ac.uk/data/nrfa/data/derived_flow.html#DFSPercentageDataComplete
http://www.ceh.ac.uk/data/nrfa/data/derived_flow.html#DFSBaseFlowIndex
http://www.ceh.ac.uk/data/nrfa/data/derived_flow.html#DFSMeanFlow
http://www.ceh.ac.uk/data/nrfa/data/derived_flow.html#DFSFlowPercentiles
http://www.ceh.ac.uk/data/nrfa/data/derived_flow.html#DFSFlowPercentiles
http://www.ceh.ac.uk/data/nrfa/data/derived_flow.html#DFSFlowPercentiles
http://www.ceh.ac.uk/data/nrfa/data/derived_flow.html#DFSFlowPercentiles
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Figure 4.1. Flow-duration 

curve from the UK NRFA for 

station 73006 at Eel House 

Bridge showing annual 

(black line), December to 

March (blue line) and June 

to September (red line) 

curves. 

 

The long-term hydrology is summarised in Fig. 4.2. The format used here will be used 

throughout the report for all the long-term records. The upper panel (a) shows the actual long-

term record. Panel (b) shows changes in the annual mean value with error bars representing 

the annual standard deviation. Panel (c) shows the monthly seasonality with error bars 

representing the monthly standard deviation and also shows the correlation coefficient for long-

term change in a particular month. This shows whether there has been a long-term increase or 

decrease in a value in a particular month and coloured circles on the correlation-plot show the 

statistical significance of the correlation.  
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Figure 4.2. Discharge leaving Esthwaite Water, based on data from Eel House Bridge, 

corrected to outflow at Ees Bridge, see text. a) long-term record from 1976 to 2010; b) annual 

mean (error bars show standard deviation); c) monthly mean (error bars show standard 

deviation) plus long-term correlation of monthly change (dashed line), none of the correlations 

are statistically significant. Data kindly provided by the Environment Agency. 

 

The discharge from Esthwaite Water has no consistent long-term change at an annual or 

monthly level, although there is a clear inter-annual variation, but the large error bars show the 

large range in discharge each year. There is a strong seasonal pattern with greatest discharge 

in the spring between March and June and lowest discharge in the autumn between September 

and November. 
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On the basis of catchment area, over half the catchment, and hence likely half the discharge, 

will derive from Black Beck that enters Esthwaite Water at the northernmost end of the lake 

(Table 4.2, Fig. 4.3). Elder Gill and Smooth Beck contribute around another 10 and 8 % 

respectively. 

 

Table 4.2. Proportion of the total catchment drained by different streams. 

Stream Proportion of 

Catchment area 

Black Beck 0.546 

Elder Gill 0.096 

Smooth Beck 0.083 

Esthwaite Hall Beck 0.062 

Howe Beck 0.061 

Esthwaite Intake 0.028 

Other 0.124 
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Figure 4.3. Map of Esthwaite Water showing the main inflowing streams and the proportional 

area of the different sub-catchments in parentheses. The location of the Hawkshead WwTW is 

shown in green, the long-term monitoring buoy is shown in white, the automatic monitoring buoy 

(see Section 7.2) on the lake is shown in orange and the sampling for phosphorus-loads from 

streams is shown in pink. 
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5. External & internal phosphorus loads to Esthwaite 

Water 

5.1 Introduction 

It is intrinsically very difficult to estimate nutrient loads to a lake because of the high degree of 

temporal variation in load and because a large number of different sources need to be taken 

into account. Nevertheless, a large number of studies on nutrient load to Esthwaite Water have 

been undertaken and the extensive in-lake information provides a way of testing the accuracy of 

the load estimates. The main external sources of nutrients to Esthwaite Water are: the load 

leaving the land, which includes losses from septic tanks and farming activities, the load from 

centralised Wastewater Treatment Works (WwTW), the load from the fish farm (external in the 

sense that the food is derived from outside the lake) and direct rainfall also carries a 

phosphorus load. In addition, because of the long history of nutrient enrichment of the lake, 

there is the possibility that nutrients in the sediment can be released back into the overlying 

water under some conditions, constituting an internal load. This review has focussed on 

phosphorus as it is the main element limiting productivity in the lake. 

 

5.2 Wastewater Treatment Works (WwTW) 

The new WwTW that had been constructed at Hawkshead in 1973 was estimated to be 

discharging about 409 kg y-1 of total phosphorus (TP) into the main inflow to Esthwaite Water 

(i.e. Black Beck) by Agar et al. (1988). However, May et al. (1997b) suggested that, while 

making a significant contribution to the total nutrient load into the lake, its net effect in terms of 

altering the overall TP load to the lake was probably relatively small at first. This was because it 

replaced many on-site sewage treatment facilities, such as septic tanks, that were in the vicinity 

of Hawkshead and which had previously discharged nutrient laden waste into Black Beck 

(Talling & Heaney, 1983). There was, however, a long-term advantage associated with this 

development in that it converted a diffuse source of TP (septic tanks) into a point source of TP 

(sewage effluent pipe); discharge from the latter could be controlled relatively easily at a later 
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date. In 1986, North West Water (NWW) addressed this issue by introducing TP stripping by 

chemical precipitation into the treatment process at the Hawkshead works. Initially, this was 

carried out between April and October, only, but from 1989 onwards TP stripping was carried 

out all year round. This reduced the TP-load to the lake from this source by about 60%. 

 

United Utilities are currently implementing further improvements to their wastewater treatment 

and handling processes. Currently, about 90 kg TP y-1 is estimated to reach the lake from 

overflow of untreated wastewater during times of high rainfall. The capacity of pumping stations 

and storage of wastewater for subsequent treatment is being increased to eliminate this source 

of phosphorus in the future. In addition, the tertiary treatment is being upgraded so that the 

consent annual average concentration of TP is reduced from 1.5 to 1.0 g m-3. In practice, the 

actual averages are already below than the consent limit so it is not easy to estimate the 

reduction in TP-load from the WwTW in the future: but this has been conservatively estimated 

as 50 kg TP y-1 (Steve Rimmer, pers. comm.). 

 

In addition to the above, Talling & Heaney (1983) also noted that, in the 1970s, the sewage 

effluent from the villages of Near Sawrey was also piped into the lake. Agar et al. (1988) 

estimated the TP-load from this source to be about 70 kg y-1 (April 1985 to March 1986; about 

8% of their estimated TP-load from the Hawkshead WwTW). 

 

5.3 The Fish Farm 

A fish farm was established in the lake in 1981. This cultivated rainbow trout in floating cages 

positioned near the outflow. In the years that followed, fish production increased and this is 

thought to have been the main reason for the increasing autumn-winter soluble reactive 

phosphorus (SRP) levels that were recorded within the lake from the mid-1980s onwards 

(Section 8.5). Although exact figures were unknown, the total annual biomass of fish produced 

by this fish farm was estimated to be to be about 100 tonnes y-1 by Hall et al., 1993. On the 
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basis of this figure, and of work carried out on an experimental fish cage, Hall et al. (1993) 

estimated the likely TP-load to the lake from this source to be about 812 kg TP y-1. The authors 

also noted that, as it was not possible to treat the effluent from floating fish cages to remove TP, 

any reduction in TP-load from this source would depend on good, environmentally friendly 

management and the use of low phosphorus fish food. From 1998 to 2008, smaller amounts of 

fish-food have been used at the fish farm in the switch to organic rearing of fish, although the 

food probably had a slightly higher P-content (N. Woodhouse, pers comm.). In autumn 2009, 

the fish cages were removed from Esthwaite Water so the direct input of food from this source 

will subsequently have been dramatically reduced. Based on the reductions in fish-food 

application, TP-load from the fish farm is roughly estimated as 338 kg y-1 in 2008, 135 kg y-1 in 

2010 and a rough forecast of 100 kg y-1 in 2013. At the start of the fish farm operation less fish 

were being reared and the TP-load is estimated as 433 kg y-1. 

 

5.4 The catchment 

Although the nutrient loads to the lake from the WwTW and fish farm were fairly well 

documented, May et al. (1997b) found that nutrient losses from land-based, diffuse sources 

were less well understood. Hall et al. (1993) had monitored the TP input to the lake from its six 

main feeder streams, but this had only given composite runoff figures for the TP-load from each 

sub-catchment; no information about catchment sources had been collected. May et al. (1997b) 

used a GIS-based export coefficient approach to investigate the potential catchment sources of 

these inputs by combining the land cover data for 1988 supplied by the LDNPA (Fig. 3.2) with 

nutrient export coefficients (Table 5.1), to estimate the TP-load. 

 

5.4.1 Long-term changes in concentrations of phosphorus from Black Beck 

The Centre for Ecology & Hydrology (and earlier the FBA) has been monitoring the nutrient 

concentrations at the main inflow to Esthwaite Water, Black Beck, for a number of years. This 

monitoring point is at Pool Bridge and so is downstream of Hawkshead village but upstream of 

the Hawkshead WwTW and so represents the major catchment input to the lake. The results in 
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Figure 5.1 show that there has been a marked decline in the concentration of both available 

SRP and TP over a number of years. Comparing the mean concentrations from 1986 to 1990 

with those from 2006 to 2010, the mean concentration of SRP has fallen 2.2-fold from 22 to 10 

mg m-3 and the concentration of TP has fallen 1.8-fold from 42 to 23 mg m-3. The precise cause 

of this reduction is unknown but will relate to changes in application of fertilizer to the fields in 

the catchment and improved management of human waste from septic tanks. Since Black Beck 

contributes about 55% of the total hydraulic load to the lake and 86% of the estimated TP-load 

(Table 5.2), this reduction is likely to have had a significant effect on the phosphorus budget to 

the lake. 

 

It is notable that the concentrations of SRP for June 1968 to June 1969 presented in Table 3 of 

Talling & Heaney (1983) are much higher than current values. The average was 81 mg m-3 and 

was strongly seasonal with summer concentrations reaching 540 mg m-3 in August 1968. These 

high concentrations presumably derive from high visitor numbers in summer and discharge from 

septic tanks, much of which is now processed at the WwTWs. 

 

 

Figure 5.1. Long-term changes in annual mean concentration (mg m-3) of a) SRP and b) total P 

in Black Beck at Pool Bridge. 
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5.4.2 Measured phosphorus load to the lake 

The TP-load to Esthwaite Water from its inflows was estimated from measurements of 

concentration and discharge from June 1992 to May 1993, at a series of field sites collected at 

4-weekly intervals from locations close to the mouths of the following feeder streams (Fig. 4.3): 

1) Esthwaite Intake (Ridding Wood Beck) 

2) Esthwaite Hall Beck 

3) Elder Ghyll 

4) Howe Beck 

5) Black Beck (above the WwTW effluent discharge) 

6) Smooth Beck 

The results of this survey are summarised in Table 5.1. They showed that most of the inflows 

were small, each contributing less than 20 kg TP y-1 to the lake. The exception was Black Beck, 

the main inflow, which accounted for an annual TP-load from diffuse (land) sources of more 

than 400 kg y-1. Hall et al. (1993) concluded that the total annual TP-load to the lake from 

diffuse sources within the catchment in 1992/1993 was about 480 kg y-1. However, it should be 

noted that this value excluded any TP runoff from land close to the shore that drained directly 

into the lake and any TP input from rain falling directly onto the surface of the lake. 

 

Table 5.1. Estimated annual TP-load to Esthwaite Water from its 6 main inflows and 2 main 

point sources, 1992 to 1993 (after Hall et al., 1993). 

 

Source 

TP-load 

(kg TP y-1) 

TP-load 

(%) 

(1) Esthwaite intake (Ridding Wood Beck) 10.9 0.8 

(2) Esthwaite Hall Beck 6.0 0.4 

(3) Elder Ghyll 18.1 1.2 

(4) Howe Beck 14.5 1.0 

(5) Black Beck (above the WwTW effluent discharge) 415.8 28.4 

(6) Smooth Beck 16.9 1.2 

Total 482.2 33.0 
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5.4.3 Export-coefficient estimate of phosphorus load 

May et al. (1997b) used a GIS-based analysis to attribute the measured TP-load to likely 

sources within the catchment. The 38 land cover classes within the original dataset, which was 

compiled in 1988, were reclassified into 12 composite land cover groups, as described by May 

et al. (1995). The reclassified data were then summarised for each land cover group in terms of 

their areal coverage within each sub-catchment. The TP-load to the lake from each sub-

catchment was estimated as the product of the areal extent of each land cover group and its 

associated TP export coefficient (Table 5.2). The TP losses from land cover within the 

catchment as a whole were calculated by summing the individual estimates for each of the sub-

catchments and for the un-gauged catchment. The TP-load from rain falling directly onto the 

lake surface was estimated from the mean annual rainfall at Ambleside and the estimated TP 

concentration of freshly fallen rain. This value was added to the estimated total TP-load for the 

lake. 

Table 5.2   Land cover categories and related export coefficients (after May et al., 1997a). 

Land cover category 

TP Export coefficient 

(kg ha-1 yr-1) Reference 

Urban/rural settlement 

(runoff, only) 
0.83 

Bailey-Watts, Sargent , Kirika & Smith 

(1987) 

Upland moor 0.1 Harper & Stewart (1987) 

Improved pasture 0.38 May et al. (1997a) 

Coniferous forest 0.15 May et al.  (1997a) 

Cleared/new forest 0.2 May et al. (1997a) 

Broadleaved forest 0.15 Dillon & Kirchner (1975) 

Mixed forest 0.15 Hancock (1982); Dillon & Kirchner (1975) 

Bogs & peat 1.0 Casey et al. (1981) 

Inland bare rock 0.1 May et al. (1995) 

Rough grazing 0.07 Cooke & Williams (1973) 

Arable 0.25 Cooke & Williams (1973) 

Other 0.1 May et al. (1995) 
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The TP losses from different land cover sources within the catchment, as estimated by May et 

al. (1997b), are summarized in Table 5.3. The TP-load from the „ungauged‟ area of the 

catchment was estimated to be about 83 kg y-1 and a further 40 kg y-1 were found to come from 

rain falling directly onto the surface of the lake. These TP inputs were not included in the study 

of Hall et al. (1993), so the overall TP-loading estimate of 482 kg TP y-1 from the catchment that 

they gave may have underestimated the external TP-load to the lake by about 120 kg TP y-1. Of 

the different land use categories, improved pasture and forestry were the greatest contributors 

to TP-load. Overall, the direct measurements from stream flow and the estimate from land cover 

gave similar, but not identical, estimates of TP-load to Esthwaite Water 

 

Table 5.3. Estimated annual TP-load to Esthwaite Water based on land cover (after May et al., 

1997b). 

Source 

Area TP-load to lake 

(ha.)  (%) (kg y-1) 

Urban/rural settlement (runoff only) 54.2 3.5% 45.0 

Upland moor 52.2 3.3% 5.2 

Improved pasture 704.2 45.0% 267.6 

Forestry 638.8 40.8% 100.9 

Rough grazing 108.3 6.9% 7.6 

Other 0.1 0.0% 0.0 

Subtotal 1557.8 99.5% 426.3 

Rainfall   40.5 

Total   466.8 

  

5.5 Internal load 

The phosphorus present in lake sediments can be released back into the lake water by physical 

and chemical processes. In shallow sediments, physical disturbance by wind and wave can mix 

the interstitial water, relatively rich in phosphate, into the overlying water. In Esthwaite Water, 
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for example, interstitial concentrations of SRP can reach 400 to 600 mg m-3 (Drake & Heaney, 

1987). Chemical conditions at the sediment surface, particularly pH and redox potential, can 

also regulate nutrient release via their effect on iron chemistry (Bostrom et al., 1988). Ferric iron 

(Fe3+) is present in oxic conditions and this binds phosphate effectively. If the oxygen 

concentration at the sediment surface falls, the redox potential also falls and ferric ions change 

to ferrous (Fe2+) ions that no-longer bind phosphate. This phosphate is then free to diffuse out of 

the sediment into the overlying water. This principle was originally demonstrated by Mortimer 

(1941, 1942) while working on Esthwaite Water. An additional chemically-mediated mechanism 

leading to the release of phosphorus from sediments is the effect of elevated pH. Drake & 

Heaney (1987), working on Esthwaite Water, showed that rates of phosphorus release 

increased rapidly with increasing pH. Since high pH can be present in the surface of Esthwaite 

Water in the summer as a result of inorganic carbon depletion (see Sections 8.3 and 8.4), this 

could be an important additional mechanism of internal P-loading. 

 

Quantifying the internal load of phosphorus to a lake is even more difficult than quantifying the 

external load. Unpublished work carried out by Helen Miller as part of her PhD thesis (Miller 

2008) attempted to estimate the internal load from the hypolimnion to the epilmnion in Esthwaite 

Water. Detailed measurements of depth-profiles of SRP were combined with depth-profiles of 

stability and estimates of eddy-diffusion (the process leading to the transport of an ion from high 

to low concentration). The calculations suggested that in August and September when SRP 

concentrations at depth are high, the internal load can contribute a large proportion of the total 

SRP supply (Fig. 5.2). On an annual basis, this is equivalent to about 16 kg. Although relatively 

small, it could be important ecologically, as in summer phosphorus is in short supply and in 

particular potentially-harmful cyanobacterial blooms are most likely to occur then. 
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Figure 5.2. Estimated internal load of phosphorus from the hypolimnion to the epilimnion of 

Esthwaite Water, a) daily SRP-load from external sources (blue lines) and from the hypolimnion 

(red lines) in 2004 (solid lines) and 2005 (dashed lines) and b) as a monthly percent of total load 

as an average of the two years. Miller (2008). 

 

5.6 Source apportionment 

The different contributing sources of TP to Esthwaite Water are brought together here to 

estimate the total load, and their percent contribution to the total, based on the numbers 

discussed in Sections 5.2 to 5.5 which are largely based on measurements in 1992-93. The 

total estimated load for that period is 1677 kg TP y-1 (Table 5.4) of which, roughly, 29% derives 

from the catchment, 20% derives from the WwTW and their operation in aggregate and 48% 

derives from the fish farm. 
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Table 5.4. Source apportionment of the estimate annual TP-load to Esthwaite Water 1992-3. 

Source Annual TP-load 

(kg y-1) 

Percent total 

load 

Notes 

Catchment 482 29 Table 5.1 

Direct rain 41 2 Table 5.3 

Hawkshead WwTW 166 10 Section 5.2 

Hawkshead intermittent 

discharge 

90 6 Section 5.2 

Near Sawrey WwTW 70 4 Section 5.2 

Fish farm 812 48 Section 5.3 

Internal load 16 1 Section 5.5 

TOTAL 1677 100  

 

5.7 Changes in phosphorus load and effect on lake TP concentration 

This section attempts to reconstruct the phosphorus load to Esthwaite Water for six time 

periods: 

i) 1968-1969, before the WwTW and fish farm were in operation;  

ii) 1985-1986, based largely on the report of Agar et al. (1988) and immediately before 

the implementation of the tertiary treatment at the Hawkshead WwTW; 

iii) 1992-1993, after tertiary treatment and a time period for which load data are 

available (Table 5.4); 

iv) 2008, a year when the intensity of the fish farm was reduced; 

v) 2010 after the closure of the fish farm; 

vi) forecast for the future after the upgrade to the WwTW (2013). 

 

It is apparent from the sections above that estimating nutrient loads is extremely 

approximate so all the values used below are best approximations and not absolute 

numbers. 
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Table 5.5. Approximate loads of phosphorus (kg y-1) to Esthwaite Water from various sources in 

different time periods. The column and row identifiers provide a link to the notes below the table. 

 Column identifier A B C D E F 

Row 

identifier Source 1968-9 1985-6 1992-3 2008 2010 

Forecast 

2013 

1 Catchment 1321 482 482 257 299 278 

2 Direct rain 41 41 41 41 41 41 

3 Hawkshead WwTW 0 409 166 166 166 115 

4 
Hawkshead 

intermittent discharge 
0 90 90 90 90 0 

5 Near Sawrey WwTW 0 70 70 0 0 0 

6 Fish farm 0 433 812 338 135 100 

7 Internal load 16 16 16 16 16 16 

 TOTAL 1378 1541 1677 908 747 550 

Notes 

A1, derived from weekly measurements on Black Beck in Talling & Heaney (1982) 

B1, based on C1 and annual mean TP concentration in Black Beck (Fig. 5.1b) 

C1, Table 5.2 

D1, based on C1 and annual mean TP concentration in Black Beck (Fig. 5.1b) 

E1, based on C1 and annual mean TP concentration in Black Beck (Fig. 5.1b) 

F1, Average of D1 and E1 

A2-F2, Table 5.3 

A3, Before Hawkshead WwTW commissioned 

B3, Agar et al. (1988) 

C3-E3,Table 5.4 

F3, Steve Rimmer, pers. comm. & Section 5.2 

A4, Before Hawkshead WwTW commissioned 

B4-E4, from Steve Rimmer pers. comm.& Section 5.2 

F4, After upgrades to pumping station & tank capacity (Steve Rimmer, pers. comm.) & Section 5.2 

A5, Before Near Sawrey WwTW commissioned 

B5-C5, Agar et al. (1988), Steve Rimmer pers comm. & Section 5.2 

D5-F5, After Near Sawrey WwTW re-routed below the Cunsey Beck outflow 

A6, Before fish farm in operation 

B6, Based on C6 and reduced fish food application, Section 5.3 

C6, Table 5.4 

D6, Based on C6 and reduced fish farm application, Section 5.3 

E6, Based on C6 and reduced fish farm application, Section 5.3 

F6, Based on C6 and reduced fish farm application, Section 5.3. 
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The results are shown in Table 5.5 along with the assumptions made to produce them. The 

results are also presented graphically as total load (Fig. 5.3a) and percent load (Fig. 5.3b). The 

results show that before the operation of the WwTWs and the fish farm, the catchment supplied 

most of the phosphorus to the lake, some of which will have derived from inputs from septic 

tanks. With the operation of the WwTWs, in the mid 1980s, the sum of loads from the catchment 

plus WwTWs is about 1051 kg TP y-1, which on the face of it implies that about 270 kg TP y-1 is 

removed at the WwTWs. The operation of the fish farm imposed a large additional load of TP to 

the lake, in both absolute and relative terms (Fig. 5.3), reaching a peak in the early 1990s 

before declining. Estimated loads in 2010 derive mainly from the catchment (40%), the WwTWs 

(34%) and the fish farm (18%). 

 

 

Figure 5.3. Proportion of the total annual load of TP to Esthwaite Water from different sources at 

different periods of time. Derived from values in Table 5.5. 

 

It is possible to estimate the in-lake concentration of TP from the nutrient load, hydrology and 

bathymetry of a lake. A number of different formulations exist, all are approximations. One that 

has been shown to work well for Windermere (Maberly 2009) is that of Kirchner & Dillon (1975):  
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)1(*)/( RqLP sp
        Equn 1 

 

where: P is in-lake concentration of TP (g m-3), Lp = annual TP-load (g m-2 y-1), qs = water 

discharge height (m y-1) and R is a dimensionless retention rate calibrated using the following 

equation: 

 

qsZmqsZm eeR /*00949.0/*271.0 574.0426.0      Equn 2 

 

where Zm is mean depth (m). Zm is derived from Table 2.1, as is qs and this was not altered to 

take account of inter-annual variation in hydrology. 

 

There is a reasonable agreement between estimated and measured annual average 

concentration of TP (Fig. 5.4). Based on the measured concentrations, in 1968 and 1985 the 

loads may be a slight overestimate, while in 2010 they appear to be an underestimate of the 

real value.  

 

Figure 5.4. Comparison between annual mean concentrations of TP measured in the long-term 

monitoring (blue line) and estimated from the annual loads using the formula of Kirchner & 

Dillon (1975). 
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6. Sediment 

6.1 Variation with depth 

When Esthwaite Water was forming by the retreat of glaciers and ice sheets around 12,000 

years ago (Section 2.3), the base of the lake will have comprised bedrock covered by recent 

glacial till that was accumulating from in-wash of easily-transportable boulders, gravel, sand and 

clay from the surrounding moraines and catchment. The rapid inflow of material from the 

catchment could have produced a lake with a relatively high nutrient concentration and 

productivity. Since those post-glacial times, the sediment in the lake has been gradually 

accumulating and the inorganic fractions supplemented by organic carbon produced within the 

catchment and the lake itself. In the deepest parts of the lake the sediment is over 5 m deep 

and, at about 5 m, comprises greyish silts and clays that were laid down in the late glacial 

period (Round 1961). These are overlain by brown lake muds and clays up to a depth of 3 m 

which derive from the Boreal and Atlantic periods and the top 3 m comprise brown lake mud 

from the post-Atlantic period (Round 1961). More recent studies of sediment accumulation 

(Bennion et al. (2000) and especially the detailed study of Dong et al. (2011a) who analysed an 

86 cm core where the base represent about 780 AD give greater detail. There have been large 

fluctuations in chemical composition and rate of sedimentation over the last 1200 years. 

Sedimentation rate was about 0.02 g cm-2 y-1 in 800 AD, increasing to about 0.04 g cm-2 y-1 in 

the 1800s and it has been about 0.06 g cm-2 y-1 in the last thirty years. These and other changes 

can be attributed to changes in land-use in the catchment from earlier forest clearing and 

commencement of agriculture around 800 AD, more extensive clearance after 1700 AD and 

intensification of agriculture after around 1880 AD. The current sedimentation rate is in the order 

of 0.057 cm y-1 based on a density of 1.05 g cm-3 (Hilton & Gibbs 1984).  

 

Sediments also preserve fossilised algal, plant and animal remains. These can be identified and 

enumerated and used to infer past conditions within the lake and its catchment. There is an 



42 
 

extensive literature on the palaeolimnology and Round (1961), Bennion et al. (2000) and Dong 

et al. (2011a) give examples of the powerful information that can be learnt from this approach. 

 

Bennion et al. (2000) analysed a core taken in 1995 from the deepest point of Esthwaite Water 

that dated back to about 1740 and calculated sediment accumulation rates to be 0.0379 ±0.002 

g cm-2 y-1 up until around the mid 1850s but contemporary rates were two to three times higher 

indicating a large increase in input of material to the lake in recent times or an increased input 

by production in the lake, or both. A more recent palaeolimnological study on a core collected in 

2006 dated back to 780 AD also estimated concentrations of TP from the diatom composition 

(Dong et al. 2011a). There was little change in inferred TP concentration up until 1850, with an 

average concentration of 10 mg m-3 (Fig. 6.1). This was followed by a slow but steady increase 

in TP concentration up to around 1970 when it had reached about 19 mg m-3. This was followed 

by a dramatic increase in concentration to around 60 mg TP m-3 at the top of the core in 2006. 

While the inferred TP concentrations overestimate the actual TP concentrations compared to 

actual measurements in the lake, the timing and rates of change are likely to be very reliable 

and the dramatic increase in concentration around 1970 matches the installation of the WwTW 

works serving Hawkshead in 1973. These data show that Esthwaite Water has been influenced 

by Man‟s activities for several centuries, but the largest and most rapid change has occurred 

within the last 40 years. 
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Figure 6.1. Long-term changes in the Total phosphorus concentration inferred from diatom 

samples (blue line) and flux of phosphorus to the sediment (red line) to Esthwaite Water from 

AD780 to the present day. The inset shows values from 1900 onwards. Dong et al. 2011a & 

Dong, Maberly, Sayer, Bennion & Battarbee (unpublished). 

 

6.2 Horizontal variation 

Although there has been a tendency to study vertical patterns within a core from a single 

location within a lake, there is also a large amount of horizontal heterogeneity in chemical 

composition (Hilton & Gibbs, 1984). Based on an extensive survey of 116 samples, Hilton & 

Gibbs (1984) found that the average (standard deviation) density was 1.05 g cm-3 (0.03), the 

percent dry solids was 9.2% (2.8%) and as a percent of dry solids, the organic matter content 

was 33.3% (5.5%) the carbon content was 15.9% (3.2%) and the nitrogen content was 1.29% 

(0.43%). The P2O5 content was 1.15% (0.61%) of the ash. Different elements were distributed 

differently in the lake. For example, dry weight as percent of wet volume tended to be greater in 
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the northern and western part of Esthwaite Water whereas organic carbon and its correlates 

such as N and P tended to be greatest in deeper water.  

 

Table 6.1. Characteristics of the surface sediments in Esthwaite Water (Mackay et al. 2011). 

Sediment characteristic Mean Standard 

deviation 

Coefficient of 

variation (%) 

Water content (%) 86.5 4.0 4.6 

Clay (<2 µm) 1.8 0.4 19.4 

Silt (2 – 63 µm) 82.9 10.4 12.6 

Sand (63 – 1000 µm) 15.3 10.6 69.5 

Total phosphorus (g kg-1) 3.14 1.48 47.3 

 

A recent study provided average sediment characteristics for Esthwaite Water based on 

samples from 29 sites (Mackay et al. 2011). This also showed that while water content was very 

constant among sites, sand and TP content were very variable (Table 6.1). In the case of 

phosphorus, the content increased markedly with water depth (R2 = 0.82): values in shallow 

water were about 1 g kg-1 increasing to about 5 g kg-1 at 14 to 15 m.  

 

The spatial patterns of sediment characteristics result from physical mixing processes (Section 

7.5). Wind-induced, water-current driven resuspension and transport of small particles, which 

often have a high phosphorus-content, is the main cause of the spatial patterns in sediment 

characteristics observed in Esthwaite Water (Mackay et al. 2011). 
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6.3 Rôle of sediments in the phosphorus budget of the lake 

The sediment is a site where material can be stored or released back to the water. The material 

can be brought in from the catchment (allochthonous) or produced within the lake 

(autochthonous). A recent, spatially-resolved, study by Mackay et al. (2011) estimated a 

contemporary phosphorus burial rate of 1000 kg y-1. The samples were taken in 2009 from the 

top 2 cm which represents roughly 35 years based on an accumulation rate of 0.057 cm y-1 

(Section 6.1). With an average discharge of 26.9 Mm3 y-1 (Table 2.1) and an average TP 

concentration from 1974-2009 of 30.5 mg m-3, the average loss of phosphorus from the lake is 

about 820 kg y-1, implying that about 55% of the phosphorus load is retained within the 

sediment. 

 

Early pioneers within the Freshwater Biological Association recognised the importance of the 

sediment as a record of past change and as a source of material to the water. The seminal work 

of Mortimer (Mortimer 1941-2) was based largely on Esthwaite Water. He showed that when the 

sediment surface becomes anoxic, the redox-potential becomes negative and iron changes 

valence from ferric (3+) to ferrous (2+). The significance of this is that Fe3+ is able to bind 

phosphate ions whereas Fe2+ is not so that, under reducing conditions, phosphate in the 

interstitial water is free to diffuse across the sediment surface into the hypolimnion. This can 

then recycle phosphorus within the lake constituting an internal load (Sections 5.5, 8.5). The 

internal load of phosphorus to the epilimnion via eddy-diffusion from the hypolimnion is a small 

proportion of that deposited to the sediment but could be ecologically important (Section 5.8). 
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7. Physical characteristics: meteorology, temperature, 

water movement & light attenuation 

 

7.1 Introduction 

Physical processes can have a large effect on lake function and are the link between many of 

the responses of a lake to climate change. This section draws on much new and unpublished 

information and so the way the data were collected is briefly described.  

 

7.2 Data sources and calculations 

Meteorological and in-lake temperature measurements have principally been taken from two 

sources: an automated monitoring station deployed on the lake since 2004 and a long-term 

monitoring programme started just prior to 1950. The long-term monitoring records included 

temperature profiles taken weekly or fortnightly at the deep point within the north basin of the 

lake. Although the earlier profiles did not regularly penetrate deep into the water column, since 

summer 1956 vertical profiling became the norm. Analysis here has therefore been restricted to 

the period from 1957 to 2010, inclusive, between 0 m („surface temperature‟) and 14.5 m 

(„bottom temperature‟). These temperature profiles have been linearly interpolated between 

depths when necessary to fit a 1 m vertical grid, and then linearly interpolated between 

sampling times to form a daily grid. This 1 m daily grid has then been used for the analysis 

below. 

 

The automated monitoring station in the north basin of Esthwaite Water consisted of a set of 12 

in-lake temperature sensors (Thermospeed, Bolton, UK) hanging each metre between depths of 

0.5 m and 11.5 m, and a suite of meteorological instruments on a mast approximately 2.5 m 

above the water surface. These instruments included a pyranometer (CM3, Kipp & Zonen, Delft, 

Holland) to measure short-wave radiation, an anemometer (SKH2012, Skye Instruments, 
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Llandrindod Wells, Wales) measuring wind speed at 2.9 m, an air temperature sensor (A100L2-

WR, Vector Instruments, Rhyl, North Wales) and a relative humidity sensor (Hobo Pro 

RH/Temp, Onset Computer Corporation, Pocasset, USA) both initially sited at 1.5 m, but raised 

to 2.1 m in April 2007. The short-wave radiation, air temperature and wind speed were 

measured every minute, the in-lake temperatures every two minutes and the relative humidity 

every four minutes. All data were then automatically averaged each hour and recorded, and 

ultimately then daily averaged. As there are inevitably gaps in this type of automated data, extra 

meteorological data have been obtained from an array of additional sources; mainly a 

meteorological station located on the shore of the north basin of the lake, but also from 

meteorological stations based at neighbouring Blelham Tarn, at Windermere and at The Ferry 

House. The shore station was also used as the source for wind direction data because the lake 

buoy is not a rigidly-fixed platform. Additional relative humidity data were taken from British 

Atmospheric Data Centre meteorological stations at Shap, Walney Island and Keswick, 

particularly for 2004 when there was no relative humidity instrument on the lake or the shore 

station. Data obtained from these other sources were regressed against the Esthwaite Water 

monitoring buoy data during periods when both data sets were available, and these regressions 

then used to correct the additional data. In total 97.5 % and 2.3 % of air temperature data were 

taken from the Esthwaite lake buoy and the Esthwaite shore station respectively, as were 92.9 

and 6.4 % of wind speed data, 73.6 and 23.4 % of short-wave radiation data and 77.7 and 2.7 

% of relative humidity data. In-lake temperatures were all but continuous from start 2004 to end 

2009 and linearly interpolated through time when missing, but no data were recorded in 2010, 

so monitoring buoy data have been analysed from January 1st 2004 to December 31st 2009. 

Cloud cover data were taken by Mr Bernard Tebay at Ambleside, twice daily during the period. 

 

The buoy data were used to derive some relevant secondary parameters, most notably the 

principal fluxes of heat to the lake. These fluxes, in combination with mixing from the wind, drive 

the temperature structure of the lake and are the mechanism for which any change in climate 

will initially impact on a lake. There are a number of these fluxes, each dependent on a different 



48 
 

combination of meteorological and in-lake parameters. Of these the most obvious is the solar 

radiation (sunlight) usually referred to as short-wave radiation as it occupies a characteristic 

band in the electromagnetic spectrum. This has been directly measured by an instrument on the 

buoy. A proportion of this radiation, dependent on the time of year, is reflected from the surface 

of the lake. This reflected short-wave radiation has been calculated from Cogley (1979). Both 

the atmosphere and the lake emit radiation, but in the longer part of the electromagnetic 

spectrum. The upward long-wave radiation from the lake depends on the surface temperature of 

the lake, whilst the downwelling long-wave radiation from the sky may be estimated from 

atmospheric temperature, atmospheric relative humidity and cloud cover. Both types of long-

wave radiation have been calculated from Josey et al. (2003). There are also two so-called 

„turbulent‟ fluxes of heat which are driven by the turbulent motion of fluid at the water-air 

interface. One, the sensible heat flux, that is heat that can be sensed, may be calculated from 

the speed of the wind, and the temperature gradient between the air and the surface water. The 

other, the latent heat flux depends on the evaporation of water and may be estimated from the 

wind speed, the temperatures of the lake surface and the air and the relative humidity of the air. 

Both these turbulent fluxes may be calculated from standard formulae (e.g. Gill, 1982), but do 

require a complex iterative procedure for estimating the effects of atmospheric stratification on 

the process. Here the procedure outlined in MacIntyre et al. (2002) has largely been followed, 

although parameterisations from the review by Högström (1996) have been used, as well as a 

neutral 10 m transfer coefficient of 1.0 x 10-3. Here downward heat fluxes are denoted as 

negative and upward fluxes are denoted as positive. Therefore, negative heat fluxes would 

warm the lake and positive heat fluxes would cool the lake. 

 

The mixed layer of the lake has been defined as the shallowest depth which has a temperature 

more than 1 oC less than the surface temperature. Similarly, the lake has been defined to be 

stratified so long as the surface temperature is more than 1 oC higher than the bottom 

temperature. The strength of the stratification has been estimated from the difference between 

the top and bottom temperatures from the long-term monitoring data. As the buoy does not 
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record temperatures at the very bottom of the lake a separate measure of the temperature 

gradient (i.e temperature difference divided by distance) between the shallowest (0.5 m) and 

deepest (11.5 m) temperature sensors has been calculated from the high resolution data. 

 

Wave-theory (see Smith and Sinclair, 1972) has been used to estimate the depth of the wave-

mixed layer, indicative of the depth to which wave mixing may impact the lake bed. The wave-

mixed layer depends on both wind speed and „effective fetch‟, estimated as a weighted 

averaged of fetches from a small directional segment. Effective fetch was calculated in ESRI 

ArcMap using the USGS Wind Fetch Model (Finlayson, 2005; Rohweder et al., 2008) and wave-

mixed depth then calculated following Spears & Jones (2010) as detailed by Mackay et al. 

(2011). 

 

Average current speeds in the lake may be estimated from the wind speed, following Smith 

(1979), using the assumptions that the surface current will be a proportion of the wind speed, 

there will be an exponential decay in this current through the water column, and to conserve 

mass, a return current equally spread throughout the depth. 

 

7.3 Temperature & stratification 

The annual surface water temperature of the lake has risen since 1957 in a statistically 

significant manner at an average rate of 0.27 oC per decade (Fig. 7.1). In contrast the 

temperature at 14.5 m in the lake has remained unchanged on average, with a result that the 

volume-averaged temperature of the lake has risen in a statistically significant manner, but at a 

slower rate, 0.17 oC per decade, than the surface temperature. Despite this secular change in 

temperatures it is worth noting that the interannual variability in both the annually averaged 

surface and bottom water temperature was somewhat larger than the yearly trend (Fig. 7.1). 
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Figure 7.1. Annually averaged surface (red squares), average (blue diamonds) and bottom 

(green triangles) temperatures for Esthwaite Water from 1957 to 2010. 

 

As the surface temperatures have been slowly but steadily rising, whilst the bottom 

temperatures have remained largely unchanged there has been an associated statistically 

significant increase in the strength of stratification in the lake (Fig. 7.2). The increase in annually 

averaged top-minus-bottom temperature has been 0.25 oC per decade. Similarly, the annually 

averaged mixed layer depth has also been shallowing at a statistically significant rate of 0.29 m 

per decade. Again interannual variability was larger than the yearly trend (Fig. 7.2). It should be 

noted that these results are annual averages and therefore include several months of the year 

when the lake is isothermal with a mixed depth of 14.5 m and a top-minus-bottom temperature 

difference of 0 oC. 
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Figure 7.2. Annually averaged temperature difference between the top and bottom of Esthwaite 

Water (blue diamonds and left hand axis) and annually averaged mixed layer depth of 

Esthwaite Water (red squares and right hand axis) from 1957 to 2010. 

 

The interpolated daily grid of temperature data may be used for estimating when stratification 

starts and ends each year and the corresponding length of summer stratification (Fig. 7.3). 

Whilst there was always a period of continuous stratification in the summer, this was 

occasionally preceded or followed by shorter periods of temporary stratification following 

particularly clement weather in the spring or autumn. As these occasional periods of 

stratification may occur at almost any time of year we have focussed solely on the period of 

continuous summer stratification. Since 1957, this summer stratification has been starting 

earlier, at a statistically significant average rate of nearly seven days per decade and finishing 

later at a statistically significant average rate of over four days per decade. In total summer 

stratification now lasts about 50 days longer than it did in the late 1950s, typically starting at the 

beginning of April and overturning towards the end of October (Fig. 7.3). 
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Figure 7.3. Day of start of continuous stratification (blue diamonds), end of continuous 

stratification (red squares) and total number of continuously stratified days (green triangles) for 

Esthwaite Water from 1957 to 2010. 

 

Average daily surface and bottom temperatures from the 1960s‟ decade and the 2000s‟ decade 

(Fig. 7.4) are noticeably different. Surface temperatures in the 2000s were greater than those in 

the 1960s throughout the year, with differences approaching 3 oC at times. In contrast, though 

bottom temperatures in the 2000s were substantially warmer in the winter during isothermal 

conditions than those in the 1960s, they were usually a little cooler in the summer (Fig. 7.4). 
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Figure 7.4. Average daily surface (thick lines) temperature and bottom (thin lines) temperature 

for the 1960s (red lines) and 2000s (blue lines) for Esthwaite Water. 

 

A much more detailed picture of typical modern conditions emerges from the high resolution 

data from the automatic monitoring buoy. Data from 2006 are used here to show a typical 

annual pattern in the recent thermal structure of the lake. Daily averaged temperatures from the 

12 different depths showed isothermal conditions throughout the winter and early spring with 

occasional signs of reverse stratification when the surface temperature fell below 4 oC (Fig. 7.5). 

In about mid-April the greater heating of the surface waters than the bottom waters enabled 

stratification to develop. Although this separation in temperature between the shallow and deep 

water tended to increase through the summer and then decrease towards autumn it was 

extremely variable with noticeable periods of substantial reductions in stratification (Fig. 7.5). 

Final overturn took place towards the end of October and the lake remained isothermal for the 

remainder of the year. 
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Figure 7.5. Daily average temperatures at 12 depths at metre intervals from 0.5 to 11.5 m for 

Esthwaite Water in 2006. 

 

The pattern seen in the full thermal structure (Fig. 7.5) may be usefully parameterised by 

looking at the mixed layer depth and the temperature gradient between 0.5 and 11.5 m (Fig. 

7.6). The mixed layer depth can be seen to have shoaled and then deepened dramatically at 

the start and end of the stratified period. It was typically about 4 m deep through the summer, 

but at times was as shallow as 1.5 m or as deep as 7.5 m, with a large degree of variability 

throughout the stratified period. The typical temperature gradient between 0.5 and 11.5 m was 

between 0.5 and 1.0 oC m-1, although at times reached over 1.3 oC m-1 (Fig. 7.6). 
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Figure 7.6. Daily average temperature gradient (oC m-1) between 0.5 and 11.5 m (left hand axis, 

blue line) and daily averaged mixed layer depth (right hand axis, green line) for Esthwaite 

Water in 2006. 

 

7.4 Average meteorological conditions from 2004 to 2009 

Daily averaged meteorological parameters measured on the buoy were all highly variable (Fig. 

7.7). The average daily wind speed from 2004 to 2009 was about 2.3 m s-1. There was little 

systematic seasonal pattern with summer wind speeds only being a little less than winter ones. 

The standard deviation in daily averaged wind speed over the six years was typically 

comparable to the actual wind speed (Fig. 7.7a). In contrast there was a clear and expected 

seasonal cycle in air temperature, varying from, on average, less than 5 oC in the winter to more 

than 15 oC in the summer, but with much day-to-day variation (Fig. 7.7b). The relative humidity 

was continuously high, averaging approximately 85 %, and virtually never dropping below 60 %, 

with late spring humidities typically being a little less than winter ones (Fig. 7.7c). 
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Figure 7.7. Daily averages from 2004 to 2009 and standard deviation over the six years of a) 

wind speed (m s-1), b) temperature (oC), and c) relative humidity (%). 
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By examining the hourly data over the six year period the diel cycle in meteorological 

parameters may be diagnosed (Fig. 7.8). It is clear that wind speed, air temperature and relative 

humidity all changed systematically through the day. The most interesting change was possibly 

that in the wind speed which was characterised by late afternoon wind speeds being more than 

50 % greater than night-time wind speeds. Temperatures on average rose by about 3 oC from 

the early morning to the mid-afternoon, while relative humidities correspondingly dropped by 

about 15 %. 

 

Figure 7.8. Hourly averages from 2004 to 2009 of wind speed (left hand axis, green triangles), 

air temperature (left hand axis, blue squares), and relative humidity (right hand axis, red 

diamonds). 

 

7.5 Water currents in Esthwaite Water 

Indicative average wind-induced currents in the lake would be a little more than 5 cm s-1 in the 

surface of the lake, but less than 1 cm s-1 in the deeper waters (Fig. 7.9). The negative values at 

depth in Figure 7.9 indicate water flowing in the opposite direction from that at the surface. 
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Figure 7.9. Indicative wind-induced current speeds calculated from average wind speeds for 

Esthwaite Water. 

 

Wind direction is particularly relevant to the lake due to its elongated morphology, and showed 

an association with wind speed (Fig. 7.10). The prevailing winds came from a southerly to 

south-westerly direction. A much smaller proportion came from the north west although these 

were typically a little stronger. The lake appeared to be sheltered from easterly winds (Fig. 

7.10). 
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Figure 7.10. Hourly wind rose for Esthwaite Water from 2005 to 2009. 

 

The combination of wind speed and wind direction data allowed wave-mixed depths to be 

calculated, both from the average wind speeds for 2005 to 2009 (Fig. 7.11a) and the maximum 

wind speeds over this period (Fig. 7.11b). As the prevailing winds were southwesterlies, wave-

mixed depths were usually greater in the north east part of the lake, but were only about half a 

metre depth or less during average winds, and less than 2 m depth even in the strongest winds. 

It is of particular interest to note that little of the lake bed would be impacted by the wave-mixed 

depths generated by either the average or maximum wind speeds (Fig. 7.12).  
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Figure 7.11. Wave-mixing layer for Esthwaite Water from 2005 to 2009 for a) average wind 

speeds, and b) maximum wind speeds. 

 

 

Figure 7.12. Area of lake bed impacted by 

average and maximum wave-mixing 
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7.6 Heat budget 

There was a recognisable seasonal cycle in the average daily heat flux over the six year period, 

but there was a huge daily and interannual variation in this total heat flux (Fig. 7.13a). This great 

variation was a result of the total heat flux being the sum of many component parts, 

representing both heat fluxes out of the lake (typically upward long-wave radiation, latent and 

sensible heating) and heat fluxes entering the lake (typically short-wave and atmospheric long-

wave radiation). It is worth noting that the radiative fluxes were each much larger individually 

than the total heat flux (Fig. 7.13b). Although usually smaller than the radiative fluxes, the two 

turbulent fluxes are important as they can both be either warming or cooling fluxes depending 

on the air-water temperature difference. As such they act as a feedback mechanism, cooling the 

lake if it becomes warmer than the overlying air and warming the lake if it becomes cooler than 

the air. By monthly averaging and combining the fluxes into net short-wave, net long-wave, and 

turbulent parts, the seasonal cycle becomes more evident. Heat can be seen to be leaving the 

lake at the start of the year, but starts entering the lake around March, reaching its maximum in 

April-May and then starts leaving the lake again in September (Fig. 7.14). As the total heat flux 

is the sum of its constituent parts the seasonal cycle was not necessarily the same as any of the 

individual heat fluxes. In particular the seasonal cycle of total heat flux was typically different 

from that of the short-wave radiation. 
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Figure 7.13. a) Total daily heat flux (W m-2) for Esthwaite Water for each year 2004 to 2009 and 

for the daily average (black line) over the six years, and b) daily average individual heat fluxes 

(W m-2) for 2004 to 2009. 

 

a)

b)
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Figure 7.14. Monthly average heat fluxes from 2004 to 2009 and yearly standard deviations. 

 

 

7.7 Light attenuation 

The simplest and most widespread measure of light attenuation in lakes is that measured by the 

Secchi disc. This is a white 30 cm diameter disc that is lowered down the water column. The 

Secchi depth is depth between the depths where it disappears and appears. Regular Secchi 

depths are available from Esthwaite Water since the early 1970s (Fig. 7.15a) and the average 

Secchi depth over the period of record is 2.64 m. There has been a significant decrease (i.e. 

deterioration in light climate) over the 38 years analysed (long-term correlation -0.62, P<0.001) 

with a step-change reduction around 1987 (Fig. 7.16b). The monthly pattern of change is for 

relatively clear water in May (mean 3.8 m) representing a „clear water phase‟ between the 

spring diatom bloom and summer bloom of cyanobacteria and other species (Fig. 7.16c). On 

average, August and September had the poorest water clarity with mean Secchi depths of 

around 1.6 m. The months with the greatest decline in Secchi depth are May, June, July and 

October.  
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Secchi depth gives a convenient measure of water clarity but is not directly quantitatively linked 

to light attenuation or spectral attenuation (i.e. the differential loss of different wavelengths of 

light). Extensive measurements of light attenuation in different spectral bands were made by 

Talling (e.g. Talling 1971). More recently, the attenuation coefficient for photosynthetically active 

radiation (PAR, 400 – 700 nm) has been measured in parallel with Secchi depth. Fig. 7.16 

shows the relationship between these two variables and highlights that while they are related, 

they are not measuring exactly the same thing. The range of attenuation values measured in 

Esthwaite Water equate to a depth at which light reaches 1% of the subsurface (the bottom of 

the photic zone) of between 2.9 and 9.9 m with a mean of about 5 m. This is slightly shallower 

than a mean computed from measurements made by Pearsall in August 1915 with an 

attenuation of 0.71 m-1 that is equivalent to a 1% depth of 6.5 m (Pearsall 1917), i.e. deeper 

than the current mean. It is hard to infer whether or not there has been a real increase in light 

attenuation in the intervening years since the value in 1915 is within the recently-measured 

range and the methods of measurement differ. 
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Figure 7.15. Secchi depth measurements in Esthwaite Water. a) long-term Secchi depth record 

from 1972 to 2010; b) annual mean (error bars show standard deviation); c) monthly mean 

(error bars show standard deviation) plus long-term correlation of monthly change (dashed line), 

green circle P<0.05, yellow circle P<0.01, red circle P<0.001. 

0

1

2

3

4

5

6

7

8

9

1970 1975 1980 1985 1990 1995 2000 2005 2010

S
e
c
c
h

i d
e
p

th
 (

m
)

Date

a)

0

1

2

3

4

5

6

1970 1980 1990 2000 2010

S
e
c
c
h

i 
d

e
p

th
 (

m
)

Year

b)

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0

1

2

3

4

5

6

0 3 6 9 12

C
o

rr
e
la

ti
o

n
 (
r)

S
e
c
c
h

i 
d

e
p

th
 (

m
)

Month

c)



66 
 

 

Figure 7.16. Comparison between Secchi depth and attenuation coefficient for 

photosynthetically active radiation (PAR, 400 – 700 nm) in Esthwaite Water between 2006 and 

2009. The equation is given for the linear regression between the two measures. 

 

Measurements of spectral attenuation show least rapid attenuation between 500 and 600 nm 

and greater attenuation in the blue region from 400 to 500 nm. The attenuation is much greater 

in the UV-A region from 320 to 400 nm and even more in the UV-B for wavelengths up to 320 

nm (Fig. 7.17). The rapid attenuation in the blue region is consistent with the relatively high 

concentration of dissolved organic carbon (DOC) measured in Esthwaite Water (Tipping et al. 

1988), although concentrations are low on a national scale and much of the DOC may not be 

coloured (Section 8.8). 
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Figure 7.17. Spectral attenuation in Esthwaite Water on 21/06/1995. Redrawn from Olesen & 

Maberly (2000). 
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8. Water chemistry 

8.1 Introduction 

Esthwaite Water is one of the most ionically-rich lakes in the English Lake District, but on a 

national or global scale it is relatively dilute because it drains land which is slow to weather and 

yields relatively few ions. There is little base material in the catchment, apart from a thin band of 

Coniston limestone in the north of the catchment. The chemistry of Esthwaite Water is one of 

the best studied in the world. The earlier work is summarised in Talling & Heaney (1983), 

Heaney et al. (1986) and Talling (1999). Most of the water chemistry data analysed here has 

been obtained from an integrated 0 to 5 m water sample collected over the deepest point, with 

the exception of the long-term alkalinity and pH data which derive from a sub-surface sample. 

 

8.2 Major cations & anions 

Sodium and calcium are the major cations and bicarbonate, chloride and sulphate are the major 

anions in Esthwaite Water (Table 8.1). Over the last 35 years there has been a decrease in 

conductivity (P<0.05), and a very large reduction in the concentration of sulphate (P<0.001). 

Conductivity is strongly related to the total ionic concentration (Fig. 8.1) and using this 

relationship to subtract the effect of sulphate concentration on conductivity, the reduction in 

conductivity is largely caused by the reduction in sulphate concentration. This reduction has 

been caused by the large reduction in atmospheric sulphur deposition as a result of legislation 

to reduce acid-deposition: emissions of sulphur dioxide declined by 92% between 1970 and 

2010 and deposition declined by 80% between 1986 and 2006 (ROTAP 2011). There has been 

a slight increase in alkalinity. Although the change is not quite statistically significant, about 70% 

may be explained by the reduction in sulphate deposition. Further information on the ion 

chemistry of Esthwaite Water can be found in Gorham et al. (1974), Carrick & Sutcliffe (1982), 

Sutcliffe et al. (1982), Sutcliffe (1998). 
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Table 8.1. The major ions in Esthwaite Water. Data derived from four measurements a year 

during in ‘Lake Tours’ apart from the data from 194-5 and 1974-8 which are derived from 

Carrick & Sutcliffe (1982). Concentrations of anions and cations as mequivalent m-3. 

 

Cations  Anions Conduct-

ivity (µS 

cm-1) 

Ionic 

strength 

(mol m-3) Year Na+ K+ Ca2+ Mg2+ 

 

Cl- SO4
2- HCO3

- NO3
- 

1954-5 202 23 412 116  214 197 306 13 

 

1.10 

1974-8 249 25 526 123  282 231 386 31 

 

1.37 

1984 303 27 544 122  417 214 320 61 116.8 1.44 

1991 325 34 554 129  459 180 405 42 124.9 1.49 

1995 279 27 514 109  314 141 440 38 105.3 1.31 

2000 254 23 478 110  317 120 425 28 102.8 1.23 

2005 302 26 547 122  375 111 463 33 - 1.38 

2010 267 22 467 95  294 98 431 25 92.6 1.18 

 

 

 

8.3 Alkalinity & pH 

Alkalinity, or more correctly acid-neutralising capacity, represents the sum of the anions of weak 

acids and controls the ability of a water to buffer change in pH (Stumm & Morgan 1996). In the 
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Figure 8.1. Relationship between 

conductivity and total ionic concentration 

in Esthwaite Water between 1974 and 

2010. Data derived from Table 7.1. 
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English Lakes, bicarbonate is the main form of alkalinity and of the major lakes, Esthwaite 

Water and Blelham Tarn have the highest alkalinity, although alkalinity is low from a UK and an 

international perspective since there is little base-generating material within the catchment. As 

was identified in the previous section, alkalinity (expressed as the concentration of bicarbonate 

in Table 8.1) has increased in Esthwaite Water. Based on weekly or fortnightly measurements, 

annual mean has increased statistically significantly (Fig. 8.2a; P<0.001). There is an indication 

in the data that alkalinity has stabilised since the start of the 2000s. There is a very regular 

seasonal pattern of alkalinity change, alkalinity is greatest at the end of the growing season in 

September and alkalinity and lowest in February and March, probably largely as a result of 

inflowing concentrations influenced by dilution by varying amounts of rainwater. The average 

alkalinity between 1984 and 2010 of 0.42 equiv m-3 places Esthwaite Water in the „medium 

alkalinity‟ category within the Water Framework Directive (UKTAG 2008). 

 

In productive lakes, pH can be highly variable. This results from variation in the supply and 

demand for inorganic carbon. Large crops of phytoplankton can remove inorganic carbon faster 

than it can be resupplied from reserves at depth, inflow from influent streams or exchange with 

the atmosphere across the air-water interface. Net carbon uptake in photosynthesis thus causes 

the concentration of total inorganic carbon (CT) to decrease causing pH to increase and the 

equilbrium between the different forms of inorganic carbon to shift away from CO2 and towards 

HCO3
- and CO3 

2- (Fig. 8.3). Conversely when respiration predominates (for example at night) or 

when input of CO2 from depth or by transport across the air-water interface exceeds 

photosynthetic carbon uptake, the concentration of CT rises, pH falls and the equilibria between 

the different forms of inorganic carbon shift towards CO2 and away from HCO3
- and CO3

2-. 
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Figure 8.2. Alkalinity in Esthwaite Water. a) long-term alkalinity record from 1974 to 2010; b) 

annual mean (error bars show standard deviation); c) monthly mean (error bars show standard 

deviation) plus long-term correlation of monthly change (dashed line), green circle P<0.05, 

yellow circle P<0.01, red circle P<0.001. 
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Figure 8.3. The carbonate system in freshwaters. Transfer across the air-water interface and 

equilibria between the different forms of inorganic carbon are shown by double-headed arrows. 

 

The large crops of phytoplankton during summer stratification cause substantial drawdown of 

inorganic carbon and hence causes pH to increase (Fig. 8.4; Talling 1976; Maberly 1996). At 

the end of summer stratification there is a rapid reduction in pH as conditions become less 

favourable for phytoplankton photosynthesis and the CO2 produced at depth by microbial 

respiration becomes entrained into the surface water. There is an indication that demand for 

inorganic carbon was lower in the summers of 2008, 2009 and to a lesser extent 2010, as 

summer pH values were relatively low. However, the long-term average pH has not changed 

significantly annually or in any of the study months (Fig. 8.4). This might be partly because 

episodes of high pH are often short-lived and tend to occur during calm, warm weather. 

Increasing pH                    Decreasing pH 
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Figure 8.4. pH in Esthwaite Water. a) long-term pH record from 1974 to 2010; b) annual mean 

(error bars show standard deviation); c) monthly mean (error bars show standard deviation) plus 

long-term correlation of monthly change (dashed line), none of the correlations are statistically 

significant. Averages of pH were calculated geometrically because pH is a logarithmic number. 

 

Because pH is so dynamic, a better picture of the variability is gained by high frequency 

measurements. Since the end of 1992, pH has been recorded every 15 minutes at the surface 

of Esthwaite Water (Maberly 2006). An example of this high resolution record, degraded to daily 

means, is shown in Fig. 8.5a. The true scale of the variability can be seen in Figure 8.5b. 
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Figure 8.5. Daily change in pH in the surface of Esthwaite Water in; a) 1993 (Maberly 1996). 

and (b) from 1993 to 2002. 

 

Diel changes in pH (not shown in the above figures above based on daily means) can be 

extensive. Most frequently they are 0.1 to 0.2 pH units per day, driven by changes in the 

balance between photosynthesis (pH increase) and respiration (pH decrease) but much larger 

changes of around 1 pH unit can occur during particularly active photosynthesis by dense 

populations of phytoplankton (Fig. 8.6a) and occasionally a large pH change can occur of over 2 

pH units that is usually caused by a large drop in pH caused by an extremely large mixing event 

(Fig. 8.6b). 
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Figure 8.6. Example of pH change in Esthwaite Water over 8 days (a) and frequency of diel 

variation in pH (b). 

 

8.4 CO2 & inorganic carbon 

The alkalinity is a major descriptor of the amount of inorganic carbon in a freshwater. However, 

the concentration of inorganic carbon, and in particular the form of inorganic carbon that 

constitutes the total is strongly dependent on pH (Figs 8.3, 8.7). Inorganic carbon comprises 

dissolved CO2 and carbonic acid (together taken as free CO2- or just CO2 for short), bicarbonate 

and carbonate.  

 

The 15-minute records of surface pH and temperature, plus weekly or fortnightly measurements 

of alkalinity can be used to calculate the concentration of CO2. The example record in Fig. 8.8 

shows that in the summer the concentration of CO2 falls close to zero and the lake is then taking 

CO2 up from the atmosphere. For much of the year however Esthwaite Water is losing CO2 to 

the atmosphere, particularly immediately after the breakdown of stratification when CO2 trapped 

in the hypolimnion is mixed into the whole water column. Esthwaite Water has been a source of 

CO2 to the atmosphere in every year when measurements have been made (Fig. 8.9). 
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Figure 8.8. Calculated change in the concentration of CO2 in the surface water of Esthwaite 

Water (red-line) based on automatic 15-minute readings (Maberly, 1996). The temperature-

dependent air-equilbrium concentration is shown as a black line.  
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Figure 8.9. Annual estimates of CO2-excess in Esthwaite Water over ten-years. The horizontal 

line signifies a balance between carbon-uptake and carbon-loss. 

 

For most of the year bicarbonate is the dominant form of inorganic carbon in the surface of 

Esthwaite Water. However, during episodes of high summer pH the equilibria shift so that 

carbonate becomes increasingly important (Fig. 8.10). Although the carbonate solubility 

coefficient can be exceeded at times, there is no indication for episodes of calcite precipitation 

(Maberly 1996). 
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Figure 8.10. Calculated carbon speciation in the surface of Esthwaite Water based on automatic 

15-minute readings (Maberly, 1996). 

 

8.5 Phosphorus 

In many larger lowland lakes, the element phosphorus (P) is in short supply and can limit 

phytoplankton productivity. Two forms of phosphorus are commonly distinguished. The first is 

clearest: total phosphorus is the total amount of this element in a given volume of water. This 

will include dissolved inorganic P, dissolved organic P, particulate P such as that associated 

with inorganic particles and the biota themselves, although this excludes larger life forms such 

as fish. Not all of these fractions (such as those bound to clay particles for example) are 

available as a resource to phytoplankton or other microbes. The second fraction is variously 

called Soluble Reactive Phosphorus (SRP), Dissolved Reactive Phosphorus (DRP), or 

Molybdate Reactive Phosphorus (MRP) and is defined operationally as the fraction that passes 

through a filter (pore size around 1 µm) and reacts with the reagent, molybdate used to 
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measure phosphate. It is generally regarded as the fraction that is available to phytoplankton 

although in reality it is not necessarily just the concentration but also the rate of turnover in the 

„microbial-loop‟ that will determine availability. 

 

 

Figure 8.11. Concentration of total phosphorus (TP) in Esthwaite Water. a) long-term record 

from 1946 to 2010; b) annual mean (error bars show standard deviation); c) monthly mean 

(error bars show standard deviation) plus long-term correlation of monthly change (dashed line), 

green circle P<0.05, yellow circle P<0.01, red circle P<0.001. 
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irregular decline and a remarkably steep decline since 2006 to the mean value in 2010 of 21 mg 

m-3, very close to the first measurement in 1946. The typical seasonal pattern is rather muted, 

with the lowest concentrations occurring in May, possibly as a result of loss of TP to the 

sediment following decline and fall of the spring diatom populations. There has been a 

statistically significant increase in almost all months, apart from in September, the month of 

peak concentration (Fig. 8.11c). The lack of a long-term trend and the peak concentration itself 

probably result from erosion and breakdown of summer stratification releasing phosphorus, 

produced at depth from decomposition and sedimentary release, into the epilimnion. 

 

 

Figure 8.12. Patterns of seasonal changing total phosphorus concentration in Esthwaite Water 

in different decades. 
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Figure 8.13. Concentration of soluble reactive phosphorus (SRP) in Esthwaite Water. a) long-

term record from 1946 to 2010; b) annual mean and winter (DJF) mean (dashed line) (error bars 

show standard deviation); c) monthly mean (error bars show standard deviation) plus long-term 

correlation of monthly change for annual data (dashed line), green circle P<0.05, yellow circle 

P<0.01, red circle P<0.001. 

 

The concentration of SRP has been measured since autumn 1945 (Fig. 8.13a). There is a 

strong seasonal pattern with highest concentrations in winter and lowest concentrations during 

the growing season (Fig. 8.13c). The annual mean concentration in 1946 (the first year with a 
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concentrations remained relatively stable until 1974 when the annual mean was 2.8 mg m-3 and 

the winter mean had jumped from 2.6 mg m-3 in 1973 to 6.0 mg m-3 in 1974. This step-change 
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increase up to an annual mean of 8.8 mg m-3 in 1998 and a winter mean of 17.8 mg m-3 in 2001. 

Both measures subsequently declined and in 2010 the annual and winter means were 3.1 and 

10.3 mg m-3 respectively. Over all the available data, SRP comprises about 10% of TP, but this 

percentage is lowest during the summer growing season when demand is high and bioavailable 

phosphorus is in short-supply and largely bound up in the biota. The tertiary treatment 

introduced at the WwTW at Hawkshead did not have a discernible effect on winter or annual 

mean SRP, indicating either that the treatment was not very effective or that other factors, such 

as the expansion of the fish farm on the lake, masked any beneficial effect of the removal of this 

source of P. 

 

8.6 Nitrogen 

Nitrogen is an important requirement for growth of phytoplankton and aquatic macrophytes. In 

balanced growth it is required in 16-times greater amount than phosphorus on a molar basis 

(about 7.2-times on a mass-basis). Nitrogen can be an important limiting or co-limiting nutrient 

in upland lakes, including Cumbrian tarns (Maberly et al. 2002) and lowland shallow lakes 

(James et al. 2003). Although it is possible that nitrogen was more important in the past in 

controlling lake productivity before extensive man-made nitrogen deposition (Bergström & 

Jansson 2006), in many temperate low-elevation lakes it is often less important than 

phosphorus in controlling productivity and leading to eutrophication.  

 

The long-term record shows that, like phosphorus, there has been an increase in nitrate 

concentration over the period of record (Fig. 8.14). This appeared to start in the 1960s, i.e. pre-

dating the operation of the Hawkshead WwTW, and so is possibly linked to application of 

nitrogenous fertilizers to the improved pasture in the catchment, or possibly to atmospheric 

deposition. There are marked interannual variations in annual mean and annual maximum 

concentrations of nitrate that are linked to regional weather patterns such as the North Atlantic 

Oscillation (see Section 14.2 for more details). Since the 1980s the concentration of nitrate has 
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shown no tendency to increase further (Fig. 8.14b). Like phosphorus, nitrate shows a strong 

seasonal pattern of change. Concentrations fall steadily from around March and reach a 

minimum in August and September (Fig. 8.14c). As a rule of thumb, when the concentration of 

nitrate-nitrogen falls below around 80 or 100 mg m-3 and in the absence of substantial 

ammonium as an alternative nitrogen source, there is a possibility of nitrogen-limitation (Maberly 

& Carvalho, 2010; Elliott et al. 2010). Inspection of Figure 8.14a shows that this concentration is 

reached in many, although not all, summers and so there may be a transient period of nitrogen-

limitation at the end of the summer in Esthwaite Water. The possible consequences of this for 

the phytoplankton are discussed in Section 9. 

 

Figure 8.14. Concentration of nitrate-nitrogen in Esthwaite Water. a) long-term record from 1946 

to 2010; b) annual mean (error bars show standard deviation); c) monthly mean (error bars 

show standard deviation) plus long-term correlation of monthly change for annual data (dashed 

line), green circle P<0.05, yellow circle P<0.01, red circle P<0.001. 
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Ammonium is generally present at lower concentration than nitrate, although it is a preferred 

nitrogen source for many phytoplankton. Annual mean concentrations are typically between 20 

and 80 mg m-3 and annual maxima generally less than 300 mg m-3 (Fig. 8.15). Since around 

1997, annual mean concentrations have fallen and monthly means show significant long-term 

decline in winter but it is not clear why this may have occurred. Ammonium concentrations are 

low throughout most of the year (Fig. 8.15c) but peak in October and November following the 

breakdown of stratification when ammonium at depth is entrained into the surface water.  

 

Figure 8.15. Concentration of ammonium-nitrogen in Esthwaite Water. a) long-term record from 

1962 to 2010; b) annual mean (error bars show standard deviation); c) monthly mean (error 

bars show standard deviation) plus long-term correlation of monthly change for annual data 

(dashed line), green circle P<0.05, yellow circle P<0.01, red circle P<0.001. 
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8.7 Silica 

Silica is required in large amounts by an important group of phytoplankton, the diatoms, and in 

smaller amounts by some other species such as the chrysophytes. Typically, winter 

concentrations are between 2500 and 3500 mg m-3 (as SiO2) and in summer silica falls to very 

low concentrations, although in the 1940s and early 1950s summer minima were higher than 

later in the record (Fig. 8.16a). This difference is consistent with a lower demand for silica at the 

start of the record because of a lower productivity in the lake. The strong seasonal pattern with 

minima in May, June and July reflects the uptake and growth by spring phytoplankton that is 

dominated by diatoms. These low concentrations may be one of several reasons why diatoms 

are not present in great abundance in early summer. The subsequent net replenishment in late 

summer and autumn results from lower demand for silica because diatoms are less abundant 

and inflow of silica from the catchment.  

 

Figure 8.16. Concentration of silica in Esthwaite Water. a) long-term record from 1945 to 2010; 

b) annual mean (error bars show standard deviation); c) monthly mean (error bars show 

standard deviation) plus long-term correlation of monthly change for annual data (dashed line), 

green circle P<0.05, yellow circle P<0.01, red circle P<0.001. 
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8.8 Dissolved Organic Carbon (DOC) 

In many northern lakes, concentration of dissolved organic carbon can be very high. In these 

lakes the DOC is usually derived from breakdown of terrestrial plant material and is often highly 

coloured. It can have a significant effect on the underwater light climate, sometimes reducing 

lake productivity (Karlsson et al. 2009) but also contributing fixed carbon that can be used by 

the lake microbes. DOC can also be produced within a lake and then it tends to be less highly 

coloured. Concentrations of DOC are tending to increase in many lakes as catchments recover 

from acidification (Monteith et al. 2007). 

 

DOC is not measured as part of the long-term monitoring programme and most lakes in the 

English Lake District are not coloured and have low concentrations of DOC with measured 

values between 0 and 6.2 g m-3 for thirteen lakes (Tipping et al. 1988). Esthwaite Water had 

DOC concentrations varying from 1.4 to 6.2 g m-3 over the study period of May to November 

1986, with an average value of 2.6 g m-3. Fourteen inflowing streams had mean DOC 

concentrations of between 0.6 and 3.4 g m-3 over the same time period, suggesting that at least 

some of the DOC in Esthwaite Water is produced within the lake and this is further supported by 

higher concentrations in summer than winter (Tipping et al. 1988). Furthermore, the absorption 

of the DOC in summer at 340 nm is relatively low, suggesting that it is not coloured DOC 

derived from the catchment but DOC produced within the lake with low colour. 

 

8.9 Depth-variation in water chemistry 

The water chemistry reported above is largely derived from an integrated water-sample from the 

top 5 m, reflecting surface conditions. However, in stratified productive lakes, the combination of 

a strong separation into an upper epilimnion and lower hypolimnion during much of the summer 

(Section 6.3), with rapid attenuation of light with depth (Section 7.7) leads to zones of 

production and consequently nutrient and CO2 depletion and oxygen production in the 

epilimnion and zones of decomposition and consequently nutrient generation and oxygen 
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consumption in the hypolimnion. These depth variations have been studied extensively in 

Esthwaite Water, especially by J.F. Talling and S.I. Heaney who summarised much of their work 

in Heaney et al. (1986). One of the major variables that can change with depth in stratified lakes 

is the concentration of dissolved oxygen. In unproductive lakes, such as in Wastwater in the 

west of the English Lake District, oxygen concentrations vary little with depth because biological 

activity in low. In productive lakes, however, the surface is typically saturated or super-saturated 

with oxygen as high light levels allow photosynthetic oxygen production. Light decreases with 

depth (Section 7.7) and so the rate of oxygen production declines until respiration exceeds 

photosynthesis at low light levels. During stratification, water within the hypolimnion is effectively 

separated from oxygen replenishment from the atmosphere and from photosynthetic production, 

and decomposition processes cause the oxygen concentration to decline. There is a strong 

relationship between the minimum oxygen concentration at depth and the productivity of the 

lake (Fig. 8.17). 

 

Figure 8.17. Depth variation in annual minimum concentration of oxygen at depth versus annual 

mean concentration of chlorophyll a (log scale). Data from the 20 lakes in the Lakes Tour 

(Maberly et al. 2011). The red symbols represent data from 2010, the blue symbols data from 

1984, 1991, 1995 2000 and 2005. The five circled symbols derive from Brothers Water. 
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In Esthwaite Water, in the summer, oxygen concentration decline with depth and are typically 

less than 50% of air-saturation below about 6 m (Fig. 8.18). Oxygen concentrations have 

declined with depth even in the earliest records from the last 1960s (Fig. 8.18) and from earlier 

studies in 1939 and 1940 (Mortimer 1941-2). 

 

 

Figure 8.18. Changes in average oxygen concentration (as percent of air-saturation) with depth 

in Esthwaite Watrer for five different decades.  

 

There is a large amount of year-to-year variation in the long-term annual minimum 

concentration of oxygen (Fig. 8.19), but there has been a tendency for this concentration to 

decline since 1982 (correlation coefficient = -0.54, P<0.01). This is supported by the monthly 

analysis showing that there has been a significant decline in oxygen concentrations, for much of 

the summer (Fig. 8.19). 
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6.3). Other water chemistry variables that increase at depth include conductivity, alkalinity, 

concentrations of iron and manganese (Heaney et al. 1986, Talling 1999). These depth-

changes also affect the distribution of phytoplankton, zooplankton (Heaney et al. 1986) and 

presumably by analogy with Windermere (Jones et al. 2008), fish. 

 

 

Figure 8.19. Minimum concentration of oxygen in Esthwaite Water: a) long-term record from 

1968 to 2010; b) annual minimum; c) monthly mean of the minimum (error bars show standard 

deviation) plus long-term correlation of monthly change for annual data (dashed line), green 

circle P<0.05, yellow circle P<0.01, red circle P<0.001. 
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Figure 8.20 shows and example depth- profile taken in July 2005. In the upper 4 m which 

represent the epilimnion, concentrations of nutrients are low and probably limiting. At depth, 

concentrations of ammonium, TP and SRP all increase, in the case of the phosphorus forms, 

the increase only occurs below 10 m while ammonium shows elevated concentrations higher in 

the water column, below about 6 m. Nitrate concentrations are more complicated with mid-depth 

maxima at about 8 m. Lower concentrations at depth probably results from the conversion of 

nitrate to ammonium in dissimilatory nitrate reduction and denitrification of nitrate to nitrogen 

gas. 

 

Figure 8.20. Example of depth-profiles of Esthwaite Water on 26/07/2005 showing temperature 

(red line), oxygen concentration (black line), nitrate-N concentration (brown line), ammonium-N 

concentration (green line), SRP concentration (dark blue line) and TP concentration (light blue 

line).  
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9. Phytoplankton 

9.1 Introduction 

The phytoplankton are a phylogenetically disparate group of eukaryotic algae plus prokaryotic 

cyanobacteria. Along with macrophytes, they form the base of the food-chain in most lakes (a 

few rely partly on production by photosynthetic bacteria). In Esthwaite Water today, 

macrophytes are relatively scarce and the phytoplankton are the main primary producers. They 

are also one of the most visible symptoms of nutrient enrichment as some, particularly certain 

cyanobacteria can form surface scums and be potentially toxic. All cause a reduction in light 

attenuation and when they decompose and settle into the hypolimnion can provide the organic 

material for microbial decomposition that results in oxygen depletion at depth. 

 

9.2 Chlorophyll a 

All types of photosynthetic algae produce chlorophyll a as the main light harvesting and 

processing pigment in addition to the group-specific accessory pigments such as chlorophyll b, 

c, fucoxanthin and phycocyanin. It is therefore a very useful „chemical‟ measure of 

phytoplankton abundance although it does not necessarily relate directly to other measures of 

phytoplankton abundance such as biovolume or biomass.  

 

Chlorophyll a has been measured in Esthwaite Water since 1964 (Fig. 9.1) as a result of the 

pioneering work of Jack F Talling of the FBA. In the period from 1964 to 1969, the mean 

concentration was 16 mg m-3 (Fig. 9.1b). Mean concentrations in subsequent decades were 

higher at 22, 20, 25 and 20 mg m-3 for the 70s, 80s, 90s and 2000s respectively. In the 1970s in 

particular some very high concentrations were recorded, with a maximum spot reading of 344 

mg m-3 in September 1973 and a monthly maximum of 199 mg m-3 in the previous month. It is 

likely that these very high concentrations of chlorophyll a are at least partly the result of local 

concentrations of algae, mainly the dinoflagellate Ceratium sp and the cyanobacterium 
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Microcystis. sp.. The seasonal pattern over the period of record is for a spring bloom peaking in 

April followed by a small decline to May and a subsequent large increase to late summer annual 

maxima in August and September of between 40 and 50 mg m-3. Over the period of record 

there have been statistically significant increases in concentration of chlorophyll a in May, June, 

July and October and a significant reduction in September (Fig. 9.1), probably as a result of 

changed phytoplankton species composition over the years.  

 

Figure 9.1. Concentration of phytoplankton chlorophyll a in Esthwaite Water. a) long-term record 

from 1964 to 2010; b) annual mean (error bars show standard deviation); c) monthly mean 

(error bars show standard deviation) plus long-term correlation of monthly change for annual 

data (dashed line), green circle P<0.05, yellow circle P<0.01, red circle P<0.001. 
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tendency for the spring bloom to be occurring earlier (see also Section 14.3). In contrast to the 

1960s, summer and autumn populations of phytoplankton were larger in the 1970s. Some of the 

changes appear to slightly pre-date the commissioning of the Hawkshead WwTW in November 

1983 (Fig. 9.1), but it is possible that nutrient inputs were increased in the months leading to its 

full operation. A feature of the 1970s to 1990s is greater mid-summer populations. Fig. 9.2 

shows that there has been a slight reduction in summer and early autumn phytoplankton 

chlorophyll a in the 2000s compared to the 1990s. 

 

Figure 9.2. Patterns of seasonal changing chlorophyll a in Esthwaite Water in different decades. 
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ratio in these two months but inspection of the raw data shows that this is largely the result of 

high ratios in the 1970s (not shown).  

 

Figure 9.3. The ratio of concentration of phytoplankton chlorophyll a to total phosphorus in 

Esthwaite Water. a) long-term record from 1970 to 2010; b) annual mean (error bars show 

standard deviation); c) monthly mean (error bars show standard deviation) plus long-term 

correlation of monthly change for annual data (dashed line), green circle P<0.05, yellow circle 

P<0.01, red circle P<0.001. 
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Asterionella formosa, Aulacoseira subartica (= Melosira subartica) and Fragilaria crotonensis, 

the colonial green algae, Coenochloris fottii and Dictyosphaerium pulchellum, the two 

dinoflagellates Ceratium hirundinella and Peridinium sp. and the cyanobacterium Planktothrix 

mougeotii (=Oscillatoria agardhii f. isothrix).  

 

Table 9.1. Phytoplankton recorded in more than half the 66 years of record from Esthwaite 

Water. 

Phytoplankter Number of years 

Asterionella formosa HASSALL 1855 66 

Aulacoseira subarctica (O MÜLLER) E Y HAWORTH 1988 65 

Coenochloris fottii (HINDÁK) TSARENKO 1990 65 

Fragilaria crotonensis KITTON 1869  65 

Ceratium hirundinella (OF MÜLLER) DUJARDIN 1846  64 

Dictyosphaerium pulchellum WOOD 1874 63 

Peridinium EHRENBERG 1832 sp.  62 

Planktothrix mougeotii (BORY EX GOMONT) ANAGNOSTIDIS ET KOMÁREK 1988 62 

Staurastrum chaetoceras (W & GS WEST) GM SMITH 1924 59 

Tabellaria flocculosa var. asterionelloides (GRUNOW) KNUDSON 1952 55 

Scenedesmus MEYEN 1829 sp. 54 

Botryococcus braunii KÜTZING 1849 53 

Gymnodinium STEIN 1878 sp. (large) 51 

Staurastrum cingulum (W & G.S.WEST)  G.M.SMITH 1922 51 

Dinobryon divergens IMHOF 1887 50 

Gymnodinium STEIN 1878 sp. (small) 50 

Mallomonas caudata IVANOV 1899 49 

Anabaena solitaria KLEBAHN 1895 46 

Cosmarium abbreviatum RACIBORSKI 1885 45 

Aphanothece clathrata  WEST & G.S.WEST 1906 44 

Microcystis aeruginosa (KÜTZING) KÜTZING 1846 44 

Peridinium EHRENBERG 1832 sp. (medium) 44 

Anabaena flos-aquae BRÉBISSON EX BORNET & FLAHAULT 1888 SENSU KOMÁREK & ETTL 1958 43 

Gymnodinium helveticum forma achroum SKUJA 1948 42 

Trachelomonas varians DEFLANDRE 1924 42 

Anabaena circinalis &/or flos-aquae 40 

Monoraphidium contortum (THURET) KOMÁRKOVÁ-LEGNEROVÁ 1969 40 

Cryptomonas EHRENBERG 1838 spp. 'large' (C. curvirostrata) 39 

Gymnodinium STEIN 1878 sp. (medium) = Gymnodinium helveticum 39 

Cryptomonas EHRENBERG 1838 spp. 'medium' (C. ovata ) 37 

Peridinium lomnickii WOLOZYNSKA 1916 37 

Cryptomonas EHRENBERG 1838 spp. 35 

Anabaena circinalis RABENHORST EX BORNET & FLAHAULT 1888 SENSU KOMÁREK & ETTL 1958 34 

Chlorella BEIJERINCK 1890 sp. 34 

Peridinium cinctum (OF MÜLLER) EHRENBERG 1838 34 
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Figure. 9.4. Number of phytoplankton taxa in different phylogenetic groups in Esthwaite Water 

from 1945 to 2010. 

 

9.5 Seasonal changes in phytoplankton 

In addition to seasonal changes in chlorophyll a (Figs 9.1 and 9.2) the species that make up the 

phytoplankton community also change. Figure 9.5 shows average monthly patterns for the eight 

most consistently recorded taxa. The two diatoms Asterionella formosa and Aulacoseira 

subarctica produce maxima in spring. Their growth is controlled by physical factors such as 

water temperature and light availability which is the reason the size of the spring bloom has 

been relatively unaffected by changes in nutrient availability. Diatoms have dense silica cell 

walls and their rapid decline in late spring corresponds to when silica runs out (Section 8.7) and 

the lake stratifies (Section 7.3) and water currents are not sufficient from keeping them 

suspended in the water column. The colonial green alga Coenochloris fottii produces a mid-

summer population peak and another colonial green algal produces a broader peak slightly later 

in the year on average. The two dinoflagellates Ceratium spp. and Peridinium spp. tend to 
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produce late-summer maxima at times of usually severe nutrient limitation, but their motility 

gives them the opportunity to exploit nutrients diffusing out from below the thermocline.  

 

Figure 9.5. Long-term average seasonal patterns in the eight most consistently recorded taxa 

(Table 9.1) based on data from 1945- 2010. Values show monthly average cell density (cell cm-

3) apart from Dictyosphaerium pulchellum (colony cm-3) and Planktothix spp. (filament cm-3).  
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10. Macrophytes 

10.1 Introduction 

Macrophytes are an ecological group that comprise flowering plants, mosses and fern-allies and 

large-celled green algae (charophytes). They are mainly rooted in the sediment, although some 

are free-floating in the water column for at least part of their life-cycle. They grow along a 

gradient, depending on species and water-level from completely submerged, species with 

floating leaves, emergent species in water and fringing species whose roots are permanently in 

waterlogged soil but that otherwise act as terrestrial plants. This latter group will not be included 

in the review. In shallow lakes, macrophytes are often the main primary producers in the lake 

although disturbance, often nutrient enrichment, can shift the lake from a macrophyte-

dominated clear water lake to an alternative „stable-state‟ with turbid water and dominated by 

phytoplankton (Scheffer 1997). In deeper and more exposed lakes, the macrophyte-dominated 

zone can be restricted by unsuitable substrate and high wave exposure in shallow water and 

low light levels at depth, so that macrophytes contribute little to the primary productivity of the 

lake. Even when this is so, macrophyte beds can be ecologically important in intercepting 

nutrient runoff from the land, facilitating exchange of nutrients between the sediment and water, 

stabilising sediment, altering the physico-chemical conditions within a macrophyte stand, acting 

as conduits for loss of gases to the atmosphere, especially the greenhouse gas methane, and 

providing structured habitat that can be used by zooplankton, macroinvertebrates and fish. 

 

10.2 The macrophyte flora of Esthwaite Water 

One of the earliest scientific ecological studies on macrophytes was carried out between 1914 

and 1916 by W.H. Pearsall on Esthwaite Water (Pearsall 1917). He recorded 22 species of 

submerged or floating-leaved macrophytes in addition to several emergent species. He 

produced detailed maps of aquatic plant communities around Strickland Ees, in the 

northernmost bay and around the Ees south of Elter Holme. Subsequent surveys were made by 

Stokoe (1983) between 1974 and 1980. Wade carried out a survey in 1982 specifically to look 
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for Najas flexilis (Wade 1994) and the most recent published survey is that carried out by 

Darwell in 1999 (Darwell 2000). A list of species recorded in these different surveys is shown in 

Table 10.1.  

 

Pearsall recorded 22 species including five species that have not subsequently been recorded:  

Hydrilla verticillata, Najas flexilis, Potamogeton alpinus, P. perfoliatus and Ranunculus truncatus 

(probably R. aquatilis). Of these, H. verticillata (sometimes known as Esthwaite Waterweed) is 

one of the most celebrated. It was found in Esthwaite Water by Pearsall in 1914 and observed 

over several years (Pearsall 1921b, 1936) and last seen in 1941. H. verticillata is native to north 

east Europe and is has been suggested that it was carried to Esthwaite by birds. Potamogeton 

alpinus and P. perfoliatus are both plants of mid-depth water, P. perfoliatus slightly deeper than 

P. alpinus, both are fairly widespread in the UK and it is not clear why these species should 

have been lost. P. perfoliatus is fairly abundant in nearby Windermere. Najas flexilis grows in 

deep clear water in mesotrophic lakes (Preston & Croft 1997). It was recorded as abundant by 

Pearsall in 1914 growing in stands with linear-leaved Potamogetons Nitella flexilis and Elodea 

canadensis at depths of around 1.5 to 2.6 m. It is a rare species in the UK and Esthwaite Water 

was its only English location. It is regarded as being vulnerable to eutrophication, but the 

precise sensitivity of this species is not known. Despite an extensive search by an experienced 

surveyor (Darwell, 2000) it now appears to be extinct in Esthwaite Water. Pearsall (1917) notes 

that this species produces abundant seeds so it is possible that viable seeds may still exist in 

the sediment. 
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Table 10.1. Species of submerged and floating-leaved macrophytes recorded in Esthwaite 

Water in 1914 (Pearsall 1917), 1974-1980 (Stokoe 1983) and 1999 (Darwell 2000). 

Species 1914 1980 1999 Notes 

Callitriche hamulata     

Callitriche hermaphroditica    C. autumnalis in Pearsall 

Callitriche spp.     

Chara delicatula     

Elodea canadensis     

Elodea spp.     

Fontinalis antipyretica     

Hydrilla verticillata var. pomeranica     

Isoetes lacustris     

Lemna trisulca     

Littorrella uniflora     

Lobelia dortmanna     

Myriophyllum alterniflorum     

Najas flexilis     

Nuphar lutea     

Nitella flexilis/ sp.     

Nymphaea alba    Castalia alba and C. minor in Pearsall 

Potamogeton alpinus     

Potamogeton berchtoldii    
Pearsall recorded as P. pusillus var. 

tenuissimus 

Potamogeton crispus    
Pearsall also recorded P. crispus var. 

serratus 

Potamogeton gramineus     

Potamogeton natans     

Potamogeton obtusifolius    Includes Pearsall‟s P. sturrockii 

Potamogeton perfoliatus     

Potamogeton pusillus     

Ranunculus peltatus     

Ranunculus aquatilis    Pearsall recorded as R. truncatus 

Sparganium erectum     

Sparganium natans    Recorded as S. minimum before Darwell 

Total number of species 22 22 11  
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There appears to have been a dramatic loss of species in Esthwaite Water in recent years. 

Pearsall‟s survey around 1914 and surveys by Ralph Stokoe in the late 1970s and 1980 both 

recorded 22 species of submerged and floating-leaved macrophytes (although not the same 

species). A re-survey in 1999 only recorded eleven species, so the species richness appears to 

have halved. A survey carried out by S.C. Maberly and I.J. Winfield on 27 July 2011 (report in 

preparation) found a similar low number of species and the non-native species Elodea nuttallii 

was by far the most dominant and widespread species.  

 

Species loss is a typical response to nutrient enrichment and increasing abundance of 

phytoplankton via an effect of the phytoplankton on light attenuation and carbon-dioxide 

depletion. One species that is particularly sensitive to the effects of nutrient enrichment is the 

isoetid Lobelia dortmanna. This was last recorded in the 1974 to 1980 surveys by Stokoe (1983) 

although it was subsequently seen flowering, and in good condition, in 1983, but in a small bay, 

Robin‟s Wyke, that is partly separated from the main lake (Maberly S.C. pers obs). It was 

absent in a subsequent visit in the early 2000s. Small low-growing species may be able to 

survive carbon-depletion by growing close to the sediment surface where concentrations of CO2 

are higher than in the overlying water. This was shown to allow the survival of the aquatic moss 

Fontinalis antipyretica in the shallow water of the northern bay (Maberly 1985a,b). Depth limits 

for macrophytes noted by Pearsall appeared to be about 3.6 m and this was recorded for Nitella 

flexilis. Maberly (1993) recorded the same depth as the limit for Potamogeton obtusifolius in 

1982. However, the macrophyte survey in July 2011 found a depth limit of about 2.3 m, 

substantially less than in earlier studies. The balance of probabilities is that light attenuation will 

be poorer now than in previous years, accounting for the reduced depth-limits, and this is borne 

out by the records of Secchi depth that show an annual reduction (Fig. 7.15b), especially since 

about 1986, and significant long-term reductions in May, June and July (Fig. 7.16c), which are 

critical months for macrophyte growth. 
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11.  Protozoa & zooplankton 

11.1 Protozoa 

The protozoa are a community of microscopic, single-celled, organisms that inhabit both open 

waters and sediments in aquatic environments. These organisms consume phytoplankton, 

detritus, bacteria and each other and may indeed be significant grazers in aquatic systems. 

They are also consumed by the multi-cellular members of the zooplankton; the rotifers and 

crustaceans. In Esthwaite Water, studies of protozoan communities have focussed largely on 

spatial and temporal variations in abundance with a particular emphasis on the effects of 

seasonal changes in water column structure and oxygen concentrations. 

 

11.2 Protozoan community composition 

Esthwaite Water supports a diverse community of benthic protozoa, including representatives of 

the amoebae, flagellates and ciliates. In an intensive survey of sediments at different depths in 

the lake Webb (1961) found more than 120 distinct species, the majority of which (approx. 90 

species) were ciliates. It is perhaps as a result of this diversity that much of the subsequent 

research on the protozoan community of Esthwaite Water has focussed upon this group. The 

species present in the lake differ in their ecological requirements, particularly with respect to 

their tolerance of oxygen depletion. Indeed, Webb (1961) distinguished three categories: i) 

species found under oxygenated conditions, ii) species that aggregate under conditions of 

oxygen depletion (though not complete anoxia) and iii) species that can be found in completely 

anoxic conditions.  

 

The protozoan, particularly ciliate, community of Esthwaite Water has been used as a model 

system to test hypotheses relating to the mechanisms behind community assembly, and 

therefore diversity. The genus Loxodes has been a particular focus for studies of interspecific 

competition. In Esthwaite Water closely related L. magnus and L. striatus coexist, with no 
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evidence of intense competition for resources (Goulder 1974a, 1980). This coexistence could 

be mediated by among-species differences in food resources; the larger L. magnus has a larger 

mouth and can therefore consume larger prey (Finlay & Berninger 1984).   

 

11.3 Protozoan seasonal dynamics 

Populations of benthic protozoa show marked temporal variation, with seasonal peaks in 

abundance that differ greatly in timing and magnitude from one year to the next (Goulder 1974b, 

1980). For many of the common species of large ciliate, peak abundances in sediments are 

detected during periods when oxygen concentrations are high in the bottom waters of the lake. 

These changes in abundance do not necessarily imply mass mortality of all common benthic 

species under conditions of anoxia, as some species migrate from the sediment surface into the 

overlying water column when bottom waters become deoxygenated (Finlay 1981, Laybourn-

Parry et al. 1990b). Due to these migrations, these organisms simply cannot be captured in 

great numbers in sediments during the anoxic period. An intensive survey of the wider 

protozoan community in the sediments suggested that abundances of flagellates and amoebae 

vary rather less than those of large ciliates during deoxygenation, and the subsequent return of 

high oxygen concentrations when the lake mixes in the autumn (Bark 1981).  

 

Due to the migrations of benthic ciliates, it is possible to distinguish two communities in the 

water column of Esthwaite Water; a truly planktonic assemblage and a collection of benthic 

migrants (Laybourn-Parry et al. 1990b). Planktonic ciliate populations show equally pronounced 

seasonal variations in abundance (Bark 1981, Laybourn-Parry et al. 1990a), presumably as a 

result of temporal changes in the physical and chemical attributes of the water column. Total 

planktonic ciliate numbers typically peak in the spring-early summer after a period of very rapid 

population growth, with constituent species differing in the precise timing of their maximal 

abundances (Laybourn-Parry et al. 1990a). Some taxa are free-swimming whilst others, such as 

Vorticella, live attached to phytoplankton cells. When in the water column, protozoans can be 
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important grazers and have the potential to bring about collapses in populations of 

phytoplankton. For example Canter & Lund (1968) observed that Pseudospora can infest 

colonies of some phytoplankton species and ingest the constituent cells. Observations from 

Esthwaite Water indicated that populations of prey species frequently collapsed after these 

protozoans were first detected feeding upon them.   

 

11.4 Protozoan spatial distribution 

The highest abundances of benthic ciliates are found in flocculent material at the sediment-

water interface (Webb 1961, Goulder 1971, 1980) while flagellates and amoebae can be found 

deeper, at a depth of 8 cm within the sediment (Bark 1981). It has been suggested that surface 

sediments are a favourable habitat due to the presence of interstitial spaces that can 

accommodate the ciliate fauna, and the likely higher food abundances at the sediment surface 

(Goulder 1971, 1980). There is a high degree of spatial heterogeneity in abundance across the 

sediment surface. Spatial variations in sediment density and food quality/quantity are believed 

to account for observations of higher abundances of ciliates at the surface of deep sediments 

(Goulder 1974b, 1980). As this flocculent material is readily disturbed by water currents, 

aggregations of protozoa can be broken up under windy conditions or after storm events (Webb 

1961).  

 

Water column ciliate communities show marked spatial variations in association with patterns of 

thermal stratification and correlated vertical variations in oxygen concentrations. During anoxia-

driven seasonal migrations from the sediment surface to the overlying water, many large ciliates 

(>150 µm) aggregate around the vertical oxygen gradient (Bark 1981, Finlay 1981). However, 

these species are still found throughout the anoxic zone, perhaps indicating that they migrate 

periodically between the sediment and oxygenated waters, spending much of this time in anoxic 

waters. Whilst some taxa (Brachonella, Caenomorpha, Metopus) appear to be restricted to 

anoxic bottom waters, others (Vorticella, Epistylis) are equally restricted to oxygenated surface 
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waters (Bark 1981). There is also evidence that, when in the water column, some ciliate species 

aggregate around vertical layers of high bacterial abundance (Guhl et al. 1996) or are 

associated with high abundances of flagellates (Laybourn-Parry et al. 1990a), both important 

food resources. 

 

11.5 Zooplankton 

In an earlier section of this review, existing knowledge on the protozoan fauna of Esthwaite 

Water was summarised. The lake also supports a diverse community of multi-cellular 

zooplankton, which were studied intensively in the 1950s-1960s. These organisms live either 

suspended in the open water of the lake, or in association with sediments and vegetation. They 

occupy an important intermediate position in the aquatic food web; they consume phytoplankton 

(and each other), and are consumed by fish and larger invertebrates. Therefore, the 

zooplankton are an important conduit for the transfer of energy and materials through the lake 

food web.  Research has focussed upon spatial and temporal patterns in the resident 

populations and has yielded much useful baseline information to which the results of 

contemporary and future studies could be compared.  

 

11.6 Zooplankton species composition 

Esthwaite Water supports populations of cladocerans, copepods and rotifers. The available 

literature provides a more exhaustive listing of the taxonomic composition of the planktonic 

crustacea (cladocera and copepods), than of the rotifers. Much of the existing information on 

the species composition of the planktonic crustacea of Esthwaite Water originates from samples 

collected in the 1920s (Gurney 1923), 1950s and 1960s (Goulden 1964, Smyly 1968a, Smyly 

1972). Comparisons of community structure over the time period encompassed by these early 

surveys suggested that relatively little compositional change had occurred. A species list 

compiled from these surveys, and from a few other sources, is presented in Table 11.1. Only 

one species of calanoid copepod has been recorded in Esthwaite Water, and only two species 
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of pelagic cyclopoid copepods (Cyclops strenuus, Mesocyclops leuckarti). The coexistence of 

the two cyclopoids in Esthwaite Water appears to be unusual for the Lake District lakes and 

may suggest that these species occupy different spatial and/or temporal niches as a way of 

avoiding competition or predator-prey interactions (Smyly 1978).  Of the extensive list of 

cladocera recorded at the site, only a few were reported as numerically abundant (Daphnia 

hyalina/galeata, Bosmina longirostris and Ceriodaphnia quadrangula). Molecular genetic studies 

of extant populations of Daphnia in the lake and of resting eggs in sediment samples suggest 

that, while in the early surveys both D. hyalina and D. galeata coexisted in the lake, 

contemporary populations are dominated by D. galeata (Reid et al. 2000). Based upon a 1920s 

survey of many of the larger Lake District lakes (Gurney 1923), Esthwaite Water would appear 

to have had a comparatively diverse zooplankton community including a number of species that 

were considered to be “warm water” taxa (Diaphanosoma brachyurum, Ceriodaphnia spp., 

Mesocyclops leuckarti). Collections of crustacean fauna in the open waters of the lake typically 

also contain small numbers of, strictly, non-planktonic species that are associated more closely 

with littoral or benthic habitats (Ceriodaphnia megalops, Polyphemus pediculus, Sida 

crystallina). 

 

Table 11.1. Zooplankton species recorded in Esthwaite Water based upon Edmondson (1965), 

Galliford (1948), Galliford (1950), Gurney (1923), Goulden (1964), Harding & Smith (1974), Reid 

et al. (2000), Ruttner-Kolisko (1989), Scourfield & Harding (1966), Smyly (1968a), Smyly (1972) 

and Tinson & Laybourn-Parry (1985). Species marked with asterisks are those believed to be 

more closely associated with littoral and benthic habitats. 

Rotifera 

Asplanchna priodonta 

Chromogaster ovalis 

Chromogaster testudo 

Collotheca mutabilis 

Collotheca libera 

Kellicottia longispina 

Notholca foliacea 

Notholca longispina 

Notholca striata 

Polyarthra trigla 

Polyarthra vulgaris 
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Collotheca pelagica 

Conochilus unicornis 

Conochiloides dossuarius 

Filinia terminalis 

Gastropus stylifer 

Keratella cochlearis 

Keratella quadrata 

Synchaeta kitina 

Synchaeta oblonga 

Synchaeta pectinata 

Trichocerca capucina 

Trichocerca porcellus 

Trichocerca similis 

Cladocera 

Alona affinis* 

Alona guttata* 

Alona rectangula* 

Alonella excisa* 

Alonella exigua* 

Alonella nana* 

Alonopsis elongata* 

Bosmina coregoni 

Bosmina longirostris 

Bythotrephes longimanus 

Ceriodaphnia megalops* 

Ceriodaphnia pulchella 

 

Ceriodaphnia quadrangula 

Chydorus piger* 

Chydorus sphaericus 

Daphnia hyalina 

Daphnia galeata 

Diaphanosoma brachyurum 

Eurycercus lamellatus* 

Graptoleberis testudinaria* 

Leptodora kindtii 

Peracantha truncata* 

Polyphemus pediculus* 

Scapholeberis mucronata* 

Sida crystallina* 

 

Cyclopoida 

Acanthocyclops viridis* 

Cyclops dybowskii* 

Cyclops fuscus* 

Cyclops strenuus  

Diacyclops bicuspidatus* 

 

Eucyclops agilis* 

Eucyclops macruroides* 

Eucyclops macrurus* 

Macrocyclops albidus* 

Mesocyclops leuckarti 

Paracyclops fimbriatus* 

Calanoida 

Eudiaptomus gracilis 

 

Harpacticoida 

Canthocamptus staphylinus* 
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11.7 Zooplankton temporal dynamics 

Most information on the temporal dynamics of the zooplankton of Esthwaite Water derives from 

a period of monitoring in the 1950s, 1960s and early 1970s. As in other temperate lakes, there 

are pronounced seasonal variations in the crustacean zooplankton community. Furthermore, 

the dominant species differ markedly in their seasonal life history strategies. The numerically 

dominant cladocerans Daphnia hyalina and Bosmina longirostris and the rotifer Filinia terminalis 

typically show a single population maximum in spring (Smyly 1968a, George et al. 1990, 

Ruttner-Kolisko 1989, Talling 2003). For Daphnia this follows a period of overwintering as active 

individuals in the water column (Smyly 1979). In the case of Daphnia, additional summer 

population maxima occur in some years (Smyly 1979). These patterns are believed to be driven 

by bouts of rapid reproduction in response to seasonal “windows of opportunity” typified by 

pulses in the production of readily ingestible phytoplankton taxa during periods of high water 

temperature (George et al. 1990). At these times, the grazing pressure exerted by Daphnia 

populations may be considerable and is believed to contribute to seasonal declines in 

phytoplankton biomass (Talling 2003). These conditions of warm water and high abundances of 

smaller phytoplankton also promote population growth for the lakes rotifers (Edmondson 1965). 

In contrast to Daphina and Bosmina, the cladocerans Diaphanosoma brachyurum and 

Ceriodaphnia quadrangula produce defined summer-late summer maxima (Smyly 1968a, 1974, 

Heaney et al. 1986). 

 

Life-cycles of the resident copepods are longer and more complex. Detailed studies of the 

omnivorous cyclopoid Mesocyclops leuckarti (Fryer & Smyly 1954, Smyly 1961, 1968a) have 

shown that the Esthwaite Water population typically produces two generations per year. In the 

spring, adults produce offspring that form the basis of a later summer adult population. The 

progeny of these summer adults enter a period of arrested development, lying dormant at the 

sediment-water interface over winter, before resuming development the following spring. 

Cyclops strenuus, however, typically produces one generation each year with the main period of 

reproduction in the spring, giving rise to progeny that overwinter as juveniles in a dormant state, 
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before emerging to breed the following spring (Smyly 1973). The calanoid copepod 

Eudiaptomus gracilis does not typically show such rigid seasonality and adults may be 

abundant throughout the year. For this species breeding occurs throughout much of the year, 

though peak numbers of eggs are often produced in the spring (Smyly 1968b). A variable 

number of generations can be produced from one year to the next (Smyly 1968a).  

 

At present our knowledge of interannual variations in the zooplankton community, and of long-

term trends, is limited to a period up until the early 1990s. It would appear that there were few 

qualitative changes in the community structure (i.e. species presence/absence) of the 

crustacean zooplankton over this period (Gurney 1923, Smyly 1968a, George et al. 1990). 

However, interannual changes in the abundance of dominant taxa have been recorded during 

this time. A combination of paleaolimnological evidence and water column sampling showed an 

increasing abundance of Daphnia during the 1950s and 1960s, as the lake was becoming more 

enriched with limiting nutrients (Goulden 1964, Smyly 1972). At the same time, fewer ephippia 

were produced by these organisms, suggesting a switch in reproductive mode from sexual to 

asexual. It was believed that this was a response to nutrient enrichment but later studies did not 

show evidence for a trend of increasing abundance in winter and spring (George & Hewitt 1999, 

George et al. 2000). As yet, contemporary zooplankton samples have not been analysed to 

reveal whether a long-term trend in annual mean abundance is indeed apparent over a longer 

time scale.  

 

As well as changing lake trophic status, weather patterns are thought to have a strong influence 

upon zooplankton dynamics. Weather-driven interannual variations in water temperature, water 

column structure and mixing are thought to drive year-to-year fluctuations in the abundance of 

Daphnia and Eudiaptomus by affecting the growth of phytoplankton food resources (George & 

Hewitt 1999, George et al. 2000). Predator-prey interactions may also have a role in shaping 

temporal dynamics. Smyly (1972) suggested that interannual variations in Cyclops strenuus 
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abundance may be affected by the predation pressure exerted by the phantom midge larvae 

Chaoborus, which feeds on the larval stages of this species. 

 

11.8 Zooplankton spatial distribution 

The zooplankton of Esthwaite Water are rather patchily distributed throughout the open water 

zone. To date, research has focussed upon depth-related variations in zooplankton abundance, 

driven by seasonal changes in stratification and deep anoxia. Whilst zooplankton might be 

distributed throughout much of the water column during conditions of overturn in winter and 

early spring, most species appear to avoid the anoxic deep waters during the summer months, 

inhabiting the warmer food rich surface waters (Heaney et al. 1986, Thackeray et al. 2005). 

Species differ in their depth selection behaviour within these surface waters, with both 

Eudiaptomus gracilis and Cyclops strenuus occupying deeper strata than Daphnia hyalina 

(Thackeray et al. 2005). During calm conditions small-scale “swarms” of Daphnia hyalina have 

been observed in the surface waters, perhaps generated by behavioural responses of the 

animals to each other and the surrounding environment (George 1981). 

 

Some species do inhabit deeper deoxygenated waters, though they do avoid complete anoxia. 

The small cladoceran Ceriodaphnia quadrangula is typically most abundant in the region of the 

thermocline and associated oxygen gradient, and has been observed in the oxygen depleted 

waters below (Heaney et al. 1986, Smyly 1974). Benthic copepods such as Acanthocyclops 

viridis, Macrocyclops albidus, Eucyclops agilis, Paracyclops fimbriatus and Diacyclops 

bicuspidatus may also tolerate low oxygen concentrations until complete anoxia drives them to 

migrate into surface waters or laterally towards shallow, more oxygenated waters in the littoral 

zone (Laybourn-Parry & Strachan 1980, Tinson & Laybourn-Parry 1985). The rotifer Filinia 

terminalis has also been observed at very high population densities at the sediment-water 

interface during the early stages of seasonal oxygen depletion, before the onset of complete 
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anoxia, perhaps as a result of mass emergence from benthic resting eggs (Ruttner-Kolisko 

1980, 1989).  

 

11.9 Long-term changes in zooplankton density 

During the collection of phytoplankton for analysis of concentration of chlorophyll a, some 

zooplankton are trapped on the filter and their numbers are counted. The water for the 

chlorophyll analysis has been collected from 0 to 5 m but in the summer relatively small 

volumes of water are filtered so the estimates of zooplankton abundance are imprecise. 

Nevertheless, this provides a consistent method to assessing changes in zooplankton density. 

The data (Fig. 11.1) show relatively small changes in zooplankton density between 1967 and 

2010. Peak abundance annual average density was recorded in 1987 followed by a decline to a 

low average density in 1998 (Fig. 11.1b). Densities between 2005 and 2010 have generally 

been low. The average seasonal pattern is a single large cohort centred around May (Fig. 

11.1c). There have been statistically significant long-term reductions in density in June, July, 

October and November.  
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Figure 11.1. Zooplankton density in Esthwaite Water. a) long-term record from 1967 to 2010; b) 

annual mean (error bars show standard deviation); c) monthly mean (error bars show standard 

deviation) plus long-term correlation of monthly change for annual data (dashed line), green 

circle P<0.05, yellow circle P<0.01, red circle P<0.001. 
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12. Benthic invertebrates 

12.1 Introduction 

The benthic invertebrate community of Esthwaite Water has been studied over a number of 

decades. Much of the published work on these communities reports the results of faunistic 

surveys that aimed to provide information on the species that can be found in the lake, in a 

variety of benthic environments. As there are few studies detailing species interactions and 

temporal dynamics within the lake, this review has been structured in a way that best represents 

the existing literature; outlining findings on community composition in different major habitat 

types. Published species records are listed in Table 12.1. It should however be noted that the 

present review focusses only on published records and that there may, of course, be 

unpublished records that would serve to augment the species list that is presented.  

 

12.2 Community composition on rocky shores & in vegetation 

Within Esthwaite Water are a number of distinct habitat types, each of which is home to a 

variety of macroinvertebrate species. In shallow waters, invertebrate collections have been 

made within aquatic plant beds and on bare stony substrates, with the latter having been more 

intensively sampled. Beds of emergent Phragmites and Carex rooted in sediments rich in 

organic matter provide a habitat for corixids (Macan 1938, Frost & Macan 1948, Macan 1956). It 

is believed that, within this community, both Sigara falleni and S. semistriata are species that 

are indicative of the highly productive nature of the lake (Macan 1970). Submerged plant beds 

also accommodate various oligochaete worms (e.g. Dero limosa, Nais pseudoobtusa, Stylaria 

lacustris, Cernosvitov 1945), mayflies (e.g. Siphlonurus lacustris, Caenis horaria, Kimmins 

1943, Macan 1970), the limpet Acroloxus lacustris (Geldiay 1956) and the leech Helobdella 

stagnalis (Mann 1955).  

 

Stony substrata accommodate a diversity of fauna, including insects, crustacea, molluscs, 

oligochaete worms and flatworms (Cernosvitov 1945, Macan 1980). By comparing 
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macroinvertebrate samples collected on these substrates in Esthwaite Water with samples from 

a number of other, less productive, Lake District lakes, Macan (1970, 1980) showed that the 

former supports higher numbers of organisms but a qualitatively different community that is 

poorer in insect species [e.g. Ephemeroptera (mayflies) and Plecoptera (stoneflies)] but richer in 

Crustacea and Platyhelminthes (flatworms). The stony substratum of the lake is also inhabited 

by the freshwater limpet Ancylus fluviatilis (Geldiay 1956) and leeches such as Erpobdella 

octoculata (Mann 1955). This habitat type may be preferable due to the presence of food 

organisms; epilithic algae in the case of Ancylus and chironomids/trichopterans in the case of 

Erpobdella. Stony substrates just above the water‟s edge are an important habitat for the leech 

Haemopis sanguisuga which feeds upon terrestrial organisms such as earthworms (Mann 

1955), and is capable of swallowing smaller invertebrate prey whole (Elliott & Mann 1979).  The 

other species of leech found in Esthwaite Water are known to demonstrate a variety of feeding 

habits (Elliott & Mann 1979); some are parasitic on fish (e.g. Piscicola geometra), water birds 

(e.g. Theromyzon tessulatum), molluscs (e.g. Glossiphonia heteroclita) and even other leeches 

(e.g. Glossiphonia complanata) whilst others are carnivores that prey on a range of 

invertebrates (e.g. Erpobdella octoculata). 

 

A currently abundant member of the Crustacea, Asellus aquaticus, is believed to have invaded 

Esthwaite Water after the mid 1940s (Moon 1968). Specimens of Asellus were first collected in 

the Phragmites beds at the north end of the lake in 1944 and, over a period of approximately 18 

years, this species dispersed around the shoreline of the whole lake. While it was speculated 

that anthropogenic modification of the lake ecosystem, or human activities in the catchment, 

were at the root of this invasion the precise mechanisms behind the colonisation remain largely 

unknown. 
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Table 12.1. Macroinvertebrate species recorded in Esthwaite Water according to Cernosvitov 

(1945), Brinkhurst (1964), Elliott (1995), Fryer (1991), Geldiay (1956), Grey et al. (2004a), 

Kimmins (1943, 1972), Macan (1938, 1950, 1955, 1956, 1970, 1977, 1980), Mann (1955), 

Reynoldson (1978, 1990), Smyly (1972) and records collected between 1999-2005 and held by 

the Environmental Change Network. 

Alderflies 

Sialis lutaria 

 

Beetles 

Agabus spp. 

Elmis aenea 

Esolus parallelepipedus 

Ilybius spp. 

Haliplus lineatocollis 

Haliplus lineolatus 

Haliplus ruficollis 

Hydraena gracilis 

Hydraena riparia 

Hydrophilidae 

Nebrioporus depressus 

Noterus clavicornis 

Oulimnius tuberculatus 

Caddis flies 

Agapetus fuscipes 

Agraylea multipunctata 

Agrypnia spp. 

Anabolia nervosa 

Chaetopteryx villosa 

Cyrnus trimaculatus 

Halesus spp. 

Limnephilus extricatus 

Limnephilus lunatus 

Limnephilus marmoratus 

Molanna angustata 

Mystacides azurea 

Polycentropus flavomaculatus 

Tinodes waeneri 

Damselflies  

Enallagma cyathigerum 

 

Flies 

Ablabesmyia monilus 

Ceratopogonidae 

Chaoborus spp. 

Chironomus anthracinus 

Chironomus plumosus 

Cladotanytarsus atridorsum 

Cladotanytarsus mancus 

Corynoneura lacustris 

Dixella spp. 

Endochironomus albipennis 

Microtendipes chloris 

Microtendipes pedellus 

Parachironomus baciliger 

Pericoma spp. 

Polypedilum spp. 

Procladius spp. 

Tanytarsus glabrescens 

Tanytarsus holochlorus 

Tanytarsus lugens 

Tanytarsus samboni 

Tipulidae 

Mayflies Electrogena lateralis 
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Baetis rhodani 

Caenis horaria 

Caenis luctuosa 

Centroptilum luteolum 

Cloeon dipterum 

Cloeon simile  

Ecdyonurus dispar 

Ephemera danica 

Leptophlebia marginata  

Leptophlebia vespertina 

Paraleptophlebia submarginata 

Serratella ignita  

Siphlonurus lacustris 

Stoneflies 

Chloroperla torrentium 

Leuctra hippopus 

Nemoura avicularis 

Water bugs 

Callicorixa praeusta  

Corixa dentipes 

Corixa punctata 

Cymatia bonsdorffi  

Hesperocorixa linnei  

Hesperocorixa sahlbergi 

Notonecta glauca 

Sigara distincta   

Sigara dorsalis 

Sigara  falleni  

Sigara  fossarum  

Sigara lateralis 

Sigara  semistriata 

Sigara striata 

Sigara scotti 

Crustaceans 

Asellus aquaticus 

Crangonyx pseudogracilis 

Gammarus pulex 

Molluscs 

Acroloxus lacustris 

Ancylus fluviatilis 

Bathyomphalus contortus 

Hippeutis complanatus 

Lymnaea  palustris 

Lymnaea peregra 

Physa fontinalis 

Planorbis albus 

Planorbis contortus 

Potamopyrgus antipodarum 

Radix auricularia 

Radix balthica 

Sphaeriidae 

Stagnicola palustris 

Valvata piscinalis 

Valvata cristata 

Leeches 

Batracobdella paludosa 

Dina lineata 

Erpobdella octoculata 

Erpobdella testacea 

Glossiphonia complanata 

Glossiphonia heteroclita 

Haemopis sanguisuga 

Helobdella stagnalis 

Hemiclepsis marginata 

Piscicola geometra 

Theromyzon tessulatum 

Flatworms 

Bdellocephala punctata 

Dendrocoelum lacteum 

Dugesia lugubris  

Dugesia polychroa. 

Polycelis nigra 

Polycelis tenuis 
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12.3 Community composition in deep sediments 

Soft sediments below the lake are home to dense communities of oligochaete worms, 

dominated by a different assemblage of species to those found in submerged plant beds in 

shallow waters. Limnodrilus hoffmeisteri, Potamothrix hammoniensis and Tubifex tubifex are all 

common species in deep sediments, the latter being widespread across the Lake District 

(Brinkhurst 1964, Reynoldson 1990). It is likely that growth and reproduction of the oligochaetes 

is restricted to the spring and autumn in Esthwaite Water, when deep waters are sufficiently 

warm but not deoxygenated (Reynoldson 1987). Abundances of the worms show significant 

spatial variation across the sediment surface. The abundant chironomid larvae in the deepest 

sediments (Mundie 1956, Grey et al. 2004a) also show marked spatial heterogeneity, and were 

particularly numerous below the cages of the commercial fish farm (Grey at al. 2004b). There is 

also an inshore-offshore gradient in the abundance and diversity of chironomid larvae with 

maximum densities and more species being found in the structurally diverse substrates of the 

shallower littoral zone, than in the more homogenous deep profundal zone (Fryer 1991). Both 

oligochaetes and chironomid larvae are likely to feed on bacteria in sediments and organic 

material that has settled from overlying waters. 

 

Studies of invertebrates living in the deep sediments of Esthwaite Water have yielded significant 

insights into patterns in the transfer of energy and matter through the lake food web. A particular 

focus has been on elucidating less well known sources of nutrition to macroinvertebrates; 

Oligochaete worms 

Aulodrius pluriseta 

Dero limosa 

Limnodrilus hoffmeisteri 

Lumbricidae 

Nais pseudoobtusa 

Nais variabilis 

Potamothrix hammoniensis 

Stylaria lacustris 

Stylodrilus heringianus 

Tubifex tubifex 

Other groups 

Hydridae 

Hydracarina 

Nematoda 

Ostracoda 
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methane-consuming bacterial communities and materials derived from food pellets given to 

rainbow trout at the fish farm that was present in the lake until recently. While benthic 

chironomid larvae may depend upon water column production for much of the year, feeding 

upon sinking phytoplankton and detritus, they show a seasonal shift in their use of food 

resources and ingest methane-consuming bacteria in surface sediments during periods of 

anoxia and subsequent overturn (Grey et al. 2004a, Grey et al. 2004c, Deines et al. 2009). 

However, below the fish farm, chironomids appeared to derive a significant proportion of their 

food resources from sedimenting food pellets given to the rainbow trout confined in the cages 

(Grey et al. 2004b). The nutrition provided by these pellets was not restricted to the chironomids 

and also appeared to “fuel” many additional food web components, including zooplankton and 

roach. 
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13. Vertebrates 

13.1 Introduction 

In contrast to the preceding subjects of this review, the vertebrates of Esthwaite Water and its 

immediate environment have been subjected to little scientific study.  Consequently, in addition 

to the limited relevant primary scientific literature that does exist, the following sections have 

also drawn on a number of secondary and semi-popular articles, and on unpublished data 

holdings.  Key amongst these are the publications of Horne & Horne (1985), Frost (1989), 

Talling (1999) and Armsby (2010), together with unpublished data held by the Cumbria 

Biodiversity Centre (CBDC), Cumbria Wildlife Trust (CWT) and the Environment Agency (EA). 

 

13.2 Fish 

In contrast to the long-standing and extensive studies of the fish populations of nearby 

Windermere (reviewed, for example, by Le Cren (2001)), those of Esthwaite Water and its 

immediate environment have received only very limited and intermittent scientific attention.  One 

of the most authoritative, but still brief, descriptions of the fish community of this lake is that 

provided by Frost (1989), who noted that brown trout (Salmo trutta), perch (Perca fluviatilis) and 

pike (Esox lucius) were the main species present, with Atlantic salmon (Salmo salar) passing 

through on migration and with the cyprinids roach (Rutilus rutilus) and rudd (Scardinius 

erythrophthalmus) and their hybrid also present.  In addition, the same author observed that 

roach and rudd also occurred in Priest (or Priest‟s) Pot, a small pond at the north end of the 

lake.  A morphological study of roach, rudd and their hybrid in Esthwaite Water was provided by 

Wheeler (1976). 

 

Taking into account the, with the exception of minnow (Phoxinus phoxinus), very restricted 

distribution of cyprinids in the Lake District as a whole where the then still limited populations 

had occurred „within the past ninety years‟, Frost (1989) concluded that the apparently recent 
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appearance of such populations was the result of live-baiting activities by anglers.  Somewhat in 

contrast, Le Cren et al. (1972) suggested that this local occurrence of cyprinids may be related 

to the fact that the fisheries of Esthwaite Water were historically owned by monks, who have a 

long history of cyprinid cultivation and stocking.  Le Cren et al. (1972) commented specifically 

on the locally unusual occurrence of roach and rudd in Esthwaite Water and Priest Pot and, 

given the potential for downstream emigration from the former by the connecting Cunsey Beck, 

expressed some surprise that roach, at least, was not a more prominent feature of the 

Windermere fish community at the time of writing.  Smyly (1957) recorded the presence of 

bullhead (Cottus gobio) in the Esthwaite Water catchment, although this species is unlikely to 

inhabit the lake itself.  Finally in terms of a historical perspective on the Esthwaite Water fish 

community, Pennington & Frost (1961) found salmonid vertebrae and scales within a sediment 

core taken from the lake.  Although the species from which the materials originated could not be 

identified with certainty, it did appear to be either brown trout or Arctic charr (Salvelinus alpinus).  

As there is no historical evidence for the occurrence of Arctic charr in the lake, nor for that 

matter of the coregonids vendace (Coregonus albula) and schelly (Coregonus lavaretus), it 

seems most likely that the materials originated from brown trout. 

 

Two further species were noted in the Esthwaite Water fish community a review by Talling 

(1999), i.e. stone loach (Barbatula barbatula), which extends some way into the lake from an 

inflow where its biology has been studied (Smyly, 1955), and eel (Anguilla anguilla).  With 

respect to the latter species, Talling (1999) made particular reference to 1940s studies of eel 

local growth (Frost, 1945), diet (Frost, 1946) and diel migratory behaviour (Lowe, 1952).  The 

migration of maturing eel from Esthwaite Water along Cunsey Beck to Windermere was also 

briefly considered by Bagenal (1970). 

 

The fish community of Priest Pot has itself also received some attention, with Frost & Le Cren 

(1957) providing brief comment on the local occurrence of rudd and Bagenal (1974) and Hewitt 

(1979) using this small pond as a location to develop a method for the quantitative sampling of 
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larval roach, rudd and their hybrids.  Venugopal & Winfield (1993) investigated the spatial 

distributions of juvenile roach, rudd, roach-rudd hybrids and perch with respect to macrophyte 

beds around the pond‟s perimeter, and also noted the presence of pike and the probable local 

occurrence of eel. 

 

Talling (1999) also described the establishment in 1981 of a cage-based fish farm for rainbow 

trout (Oncorhynchus mykiss) near the outflow of Esthwaite Water.  In addition to producing fish 

for the market, a component of annual production was used to stock the lake in a successful 

put-and-take fishery which subsequently developed a national reputation amongst the trout 

angling community.  The lake is also frequently visited, particularly during the winter months, by 

anglers seeking specimen pike which have probably benefitted from the local stocking activities.  

However, for many years concerns have been expressed over nutrient loading to the lake from 

the fish farm.  In addition to general eutrophication effects considered elsewhere in this review, 

Grey et al. (2004b) used stable isotope analyses to study the fate of waste pelleted food and 

tentatively concluded that roach were probably partly short-circuiting the lake‟s food chain by 

directly consuming significant amounts of particulate pellet material, such that over 80% of their 

body carbon may be ultimately derived from pellet material.  In addition to these wider 

environmental concerns, in the early 2000s the fish farm‟s stocking activities became 

incompatible with the then newly-developed Environment Agency National Trout & Grayling 

Fisheries Strategy (Environment Agency, 2003).  Following extensive discussions, in early 2009 

the owner of Hawkshead Trout Farm agreed to remove the cages as part of a voluntary 

agreement with Natural England.  The agreement reached saw the removal of the cages in late 

2009, with Esthwaite Water planned to become an all brown trout fishery by 2013.  The shift 

from stocking with rainbow trout to stocking with brown trout will be a gradual transition and the 

2012 season will see the last stockings of rainbow trout.  The stocked brown trout will be high 

quality triploids.  In 2015, a fish screen at the outflow of Esthwaite Water originally installed to 

retain stocked rainbow trout will be removed to allow the free passage of native salmonids.  In 
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addition, Natural England and the Lake District National Park Authority have agreed to work 

with the fishery to ensure it remains a successful rural business. 

 

Finally, the most recent information on the fish of Esthwaite Water and its immediate 

environment is that provided by unpublished electrofishing surveys of its streams made 

between 2005 and 2010 by EA and an unpublished gill-net survey of the lake itself conducted 

jointly on 23 September 2009 by EA and the Centre for Ecology & Hydrology (CEH) (EA and 

EA/CEH, unpublished data).  In 2005, electrofishing at a site (Hawkshead) in Black Beck 

recorded brown trout fry at a population density of 16.96 individuals 100 m-2 and brown trout 

parr at a population density of 12.19 individuals 100 m-2, together with non-quantified numbers 

of eel, minnow, perch, stone loach and rainbow trout.  In 2008 and 2010, electrofishing at three 

sites in Cunsey Beck (Cunsey Bridge, Ees Bridge and Eel House Bridge) produced brown trout, 

eel, minnow, perch, pike, stone loach and roach.  The brown trout were present as fry at 

population densities between 0.94 and 6.77 individuals 100 m-2 and as parr at population 

densities between 0.50 and 7.65 individuals 100 m-2.  The gill-net survey comprised single 

survey gill nets set at inshore, offshore surface and offshore bottom locations and resulted in 

the sampling of a total of 192 fish, comprising 6 brown trout (fork length range 290 to 380 mm), 

124 perch (fork length range 45 to 310 mm), 6 rainbow trout (fork length range 370 to 415 mm) 

and 56 roach (fork length range 50 to 325 mm).  The inshore gill net contained 112 perch and 

36 roach, while the offshore surface net contained 6 brown trout, 12 perch, 6 rainbow trout and 

20 roach.  The offshore bottom gill net, which was set in a typical offshore area of low oxygen 

availability at depth, did not catch any fish. 

 

13.3 Amphibians 

CWT data from 1984 to 1999 covering „significant species‟ recorded at Esthwaite Water and its 

immediate environment include no records for amphibians (C. Cornish, CWT, pers. comm.).  

However, the habitats offered by Esthwaite Water and its immediate environment are very likely 
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to be good for such species, with common frog (Rana temporaria) and common toad (Bufo 

bufo) almost certainly present (S. Griffin, Hesketh Ecology, pers. comm.). 

 

13.4 Reptiles 

CWT data from 1984 to 1999 covering „significant species‟ recorded at Esthwaite Water and its 

immediate environment include no records for reptiles (C. Cornish, CWT, pers. comm.).  

However, the habitats offered by Esthwaite Water and its immediate environment are very likely 

to be good for such species and records of grass snake (Natrix natrix) do exist for the general 

area (S. Griffin, Hesketh Ecology, pers. comm.).  Furthermore, adder (Vipera berus), common 

lizard (Lacerta vivipara) and slow worm (Anguis fragilis) may be expected in suitable habitat and 

CWT will be co-ordinating a grass snake survey of Cumbria in 2011 which may also generate 

information on other reptile species (S. Griffin, Hesketh Ecology, pers. comm.). 

 

13.5 Birds 

Very old records exist for crossbills (Loxia curvirostra) (Armitt, 1894a) and pied flycatcher 

(Ficedula hypoleuca) and wood warbler (Phylloscopus sibilatrix) (Armitt, 1894b) in the vicinity of 

Esthwaite Water, while the roosting of house martins (Delichon urbica) in a reed bed at the lake 

was observed by Airey (1951).  Atkinson (1977) briefly reviewed the ornithological importance of 

Esthwaite Water‟s waterfowl in national and international contexts, while Delaney (1993) 

reported the local presence of pink-footed goose (Anser brachyrhynchus) in the summer of 

1991.  CWT data from 1984 to 1999 covering „significant species‟of birds recorded at Esthwaite 

Water and its immediate environment include the cuckoo (Cuculus canorus), curlew (Numenius 

arquata), dunnock (Prunella modularis) and tree pipit (Anthus trivialis) (C. Cornish, CWT, pers. 

comm.).  CBDC records for birds specifically at Esthwaite Water comprise bittern (Botaurus 

stellaris), dipper (Cinclus cinclus), golden eagle (Aquila chrysaetos), great crested grebe 

(Podiceps cristatus), mallard (Anas platyrhynchos), mute swan (Cygnus olor), pochard (Aythya 

ferina), teal (Anas crecca) and whooper swan (Cygnus cygnus) (M. Grose, CBDC, pers. 
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comm.).  Species monitored by the Wetland Bird Survey from 1960 to the present (D. 

Shackleton, Cumbria Bird Club, pers. comm.) include as regular records, great crested grebe, 

grey heron (Ardea cinerea), greylag goose (Anser anser), lapwing (Vanellus vanellus), lesser 

black-backed gull (Larus fuscus), little grebe (Tachybaptus ruficollis), mallard, moorhen 

(Gallinula chloropus), mute swan, oystercatcher (Haematopus ostralegus), pochard, teal and 

tufted duck (Aythya fuligula), as sporadic species they include common sandpiper (Actitis 

hypoleucos), curlew, great black-backed gull (Larus marinus), pink-footed goose (Anser 

brachyrhynchus), and red-breasted merganser (Mergus serrator), and as rare species they 

include barnacle goose (Branta leucopsis), gadwall (Anas strepera), herring gull (Larus 

argentatus), kingfisher (Alcedo atthis), long-tailed duck (Clangula hyemalis), shelduck (Tadorna 

tadorna), snipe (Gallinago gallinago), water rail (Rallus aquaticus), white-fronted goose (Anser 

albifrons), whooper swan and wigeon (Anas penelope).  Finally, an osprey (Pandion haliaetus) 

has been observed hunting at Esthwaite Water (S.C. Maberly, pers. obs.). 

 

Talling (1999) provides a useful summary of information on Esthwaite Water‟s water birds, for 

which the lake is designated as an internationally important Ramsar site, based on records of 

winter and summer birds maintained since 1967.  Winter duck numbers have increased since 

1981, when fish farming began and, presumably coincidentally, the lake level was lowered by 

approximately 0.5 m.  This trend has been particularly marked for tufted duck, which Talling (op. 

cit.) suggested was the result of birds benefitting from an increase in food supply associated 

with the operations of the fish farm.  Cormorants have also increased and individuals now 

frequent the lake all year round, whereas in earlier years they were usually only winter visitors.  

Finally, Talling (op. cit.) comments that great crested grebes have one of their Cumbrian 

strongholds on Esthwaite Water. 
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13.6 Mammals 

CWT data from 1984 to 1999 covering „significant species‟ recorded at Esthwaite Water and its 

immediate environment include the mammals otter (Lutra lutra), pipistrelle bat (Pipistrellus 

pipistrellus) and red squirrel (Sciurus vulgaris) (C. Cornish, CWT, pers. comm.).  CBDC records 

for mammals specifically at Esthwaite Water include American mink (Mustela vison), coypu 

(Myocaster coypus) and red squirrel, with otter reported for nearby Priest Pot (M. Grose, CBDC, 

pers. comm.).  In addition, Ellison (1968) also makes reference to the presence of coypu at 

Esthwaite Water. 
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14. Weather & climate change 

14.1 Introduction 

Palaeolimnological records have shown the general sensitivity of Esthwaite Water to broad 

changes in climate (e.g. Dong et al. 2011a, Dong et al. 2011b) and analysis of historical records 

for lakes around Europe also show that lakes are generally sensitive to climate (George 2010). 

Part of the sensitivity derives from the potential for short-term weather events to have a long-

term effect on a lake. For example, in a stratified lake, a period of cold and windy weather can 

break down, or markedly reduce, summer stratification with major consequences for the light 

climate, mixing nutrients (including CO2) regenerated at depth into the epilimnion and resetting 

the succession of phytoplankton back to a composition more typical of late spring (Reynolds 

1997).  

 

14.2 Regional weather patterns 

Analysis of lake response to weather patterns gives insights into how lakes may respond to 

climate change. Esthwaite Water has been shown to respond to a variety of regional weather 

patterns such as the North Atlantic Oscillation Index (NAOI). This primarily affects winter 

weather in western Europe. When the NAOI is positive, there is a strong flow of air from the 

Atlantic bringing mild, wet and windy winters. In contrast, in years with a negative NAOI, there is 

a stronger flow of air from continental Europe bringing cold, dry and relatively calm winter 

weather. Long-term data (de-trended to remove long-term changes) from Esthwaite Water as 

well as nearby Blelham Tarn and the two basins of Windermere were analysed by George et al. 

(2004). Water temperature was strongly positively correlated with the NAOI in all four lake 

basins as a result of the changing air-temperature. Winter nitrate concentration was strongly 

negatively correlated with the NAOI in all four basins, and was also linked to winter air-

temperature, possibly indicating lower uptake by the catchment during cold winters. Winter 

phosphate responded differently to the NAOI in the four basins. There was no significant effect 

in the two basins of Windermere but in Esthwaite Water and Blelham Tarn concentrations were 
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higher in a positive NAOI winter and the response was positively correlated with rainfall. Winter 

concentrations of phytoplankton chlorophyll a were also affected by the NAOI in the two smaller 

basins and the driving meteorological link appeared to be high rainfall diluting winter 

phytoplankton populations. The sensitivity of Esthwaite Water and Blelham Tarn to rainfall was 

linked to their shorter average retention time, (91 and 42 days respectively) compared to the 

North and South Basins of Windermere with average retention times of 100 and 185 days 

respectively. This example shows that different types of lakes will be sensitive to different 

aspects of changing weather and climate: Esthwaite Water will be sensitive to changes in 

rainfall affecting flushing rate. George (2000) showed that the winter abundance of the calanoid 

copepod Eudiaptomus gracilis was linked to the NAOI via an effect on water temperature with 

higher abundance in warmer winters where the NAOI was positive. The proposed mechanisms 

is that warm winters disfavour competing Daphnia as they cannot obtain enough food to support 

their metabolism.  

 

Linked to the NAOI is the position of the Gulf Stream in the north Atlantic. George & Taylor 

(1995) showed that the position of the north-wall of the Gulf Stream had a teleconnexion via 

weather patterns that influenced stratification and zooplankton strength in Windermere. George 

(2000) showed that the summer abundance of Daphnia is also affected by the position of the 

Gulf-Stream in Esthwaite Water.  George (2002) showed that the position of the Gulf Stream 

also affected the magnitude of the summer concentration of chlorophyll a in Esthwaite Water. 

This correlation is caused by the effect of the Gulf Stream on the depth of the thermocline. 

Years where the thermocline is deep are associated with higher concentrations of phosphate 

entrained from the hypolimnion (Section 8.9) and hence higher phytoplankton biomass.  

 

Another weather pattern, but of generally shorter duration, that also can control lake 

characteristics is the pressure distribution schemes devised by Lamb (1972). There is a strong 

relationship between surface temperature and Lamb weather patterns (George et al. 2010a) 

and nitrate concentrations and Lamb weather patterns (George et al. 2010b).  
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Recently, a larger-scale weather phenomenon linked to the position of the jet stream, Rossby 

breaking waves, has been shown to strongly control the surface temperature of the Cumbrian 

lakes, including Esthwaite Water (Strong & Maberly 2011). Unlike the NAOI, this effect operates 

in all seasons. It is probably the factor that controls the NAOI and the position of the Gulf 

Stream. 

 

As mentioned above, short term changes in weather conditions can alter lake conditions and 

phytoplankton biomass. They have also been shown to alter phytoplankton species richness. 

Madgwick et al. (2006), showed that species richness was negatively correlated with the 

strength of stratification, estimated as the Schmidt stability.  

 

14.3 Long-term change linked to climate 

One of the most frequently observed biological responses to climate change is an altered 

phenology, the seasonal timing of life-history events. Thackeray et al. (2010) showed that 

phenological change is widespread in marine, freshwater and terrestrial environments in spring 

and summer. In freshwaters across all taxa, the average rate of advancement from 1976 to 

2005 has been about 0.25 day y-1 for phytoplankton, 0.35 day y-1 for invertebrates and 0.45 day 

y-1 for vertebrates.  The difference in rate of advance leads to the possibility of „trophic-

mismatch‟, i.e. production of a consumer population before or after its food is fully available. 

While the high-level of consistency in advancement across disparate organisms and 

environments is consistent with the effect of large-scale drivers, such as climate change, not all 

the changes appear to be linked to climate. For example, Thackeray et al. (2008) showed that 

of two spring-blooming diatoms in Windermere, earlier growth of Cyclotella spp. was linked to 

water temperature and earlier stratification while earlier growth of Asterionella formosa was 

linked to phosphorus enrichment and lake warming. This conclusion has been reinforced by 

recent work, including phytoplankton from Esthwaite Water. Feuchtmayr et al. (2011).  
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14.4 Responses to future climates 

Currently, forecasts of future UK weather have been generated by UKCP09   

http://ukclimateprojections.defra.gov.uk/content/view/12/689/. For 2050 and the medium 

greenhouse gas emissions scenario, the north west of England is forecast to have warmer air 

temperatures in winter and summer, by about 1oC, slightly wetter winters (up to a 10% increase 

on current conditions) and substantially drier summers (about 30% decrease on current 

conditions).  

 

George et al. (2007) combined data from the long-term measurements on Esthwaite Water with 

outputs from Regional Climate Models, produced before the UKCP09 outputs mentioned above, 

but with similar general trends, again using 2050 as the date in the future. Average water 

temperature in Esthwaite Water was forecast to increase in the winter from 4.00 oC in 1961 – 

1990 to 5.09 oC in 2050 (an increase of 1.09 oC) and in the summer from 17.2 oC to 19.37 oC 

(an increase of 2.17 oC). Retention time in winter was projected to decrease from 63.4 days in 

1961 – 1990 to 58.4 days in 2050 (an increase of 5 days) and in summer to increase from 151.6 

to 156.0 days (a reduction of 4.4 days). 

 

A process-based model, PROTECH (Elliott et al. 2010) has recently been applied to Esthwaite 

Water to investigate the likely effects of future changes in retention time and water temperature 

on the production of phytoplankton and, especially, cyanobacteria (Elliott 2010, 2011). The 

model suggested that the vernal bloom, dominated by the diatom Asterionella formosa, was 

relatively unaffected by the two variables. This is perhaps unsurprising as light availability is a 

key factor determining growth rate and success at the start of the year and daylength is 

constant and cloud cover was not modelled to vary (and is unlikely to vary- see Section 2.2). In 

contrast, in the summer two genera of cyanobacteria, Anabaena and Aphanizomenon 

responded to the climate-change drivers. The combination of low flow and higher temperatures, 

in particular, promoted the abundance of these species, both in absolute terms and as a 

proportion of the total phytoplankton biomass. Part of the ecological advantage of Anabaena 

http://ukclimateprojections.defra.gov.uk/content/view/12/689/
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and Aphanizomenon is that they are favoured by the strong stratification that often develops 

when surface water temperature is high, but also have the ability to fix atmospheric nitrogen and 

so are at an advantage in late summer if inorganic nitrogen as nitrate of ammonium is depleted 

(See Section 8.6). Another characteristic of some cyanobacteria, such as Anabaena and 

Aphanizomenon is the ability to produce toxins. The World Health Organisation (WHO) has set 

precautionary guidelines for „safe‟ cyanobacterial levels at 10 mg chlorophyll a m-3. The 

modelling work suggests that the threshold was exceeded for more days a year under low flow 

(Elliott 2010). 
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15. Lake management 

15.1 Management change & lake response 

In the United Kingdom, lake management has largely taken the approach of reducing input of 

nutrients from diffuse catchment sources (agricultural fertilizers and septic tanks) and point 

sources such as WwTWs and, in this lake, the fish farm. Much work has already been 

undertaken in the Esthwaite Water catchment to reduce nutrient load, the major points of which 

are detailed in Section 2.3.  

 

United Utilities, and their predecessor North West Water, have instigated a number of changes 

to reduce the impact of nutrients from waste water on the lake. These include: 

 introducing tertiary treatment at the Hawkshead WwTW in 1986 to reduce 

concentrations of phosphate in the final effluent to 1.5 g m-3 as an annual average 

 redirecting the output from the Near Sawrey WwTW to Cunsey Beck below Esthwaite 

Water which removed a load of about 70 kg P y-1 to the lake; 

 

United Utilities are in the process of implementing further improvement to their waste-handling 

procedures.  These include: 

 In March 2010, two small feeder pumping stations within the catchment at Esthwaite 

Lodge and Foldgate were upgraded. This is estimated to remove 4 kg P y-1. 

 Upgrading the tertiary treatment at the Hawkshead WwTW from a final effluent 

phosphate concentration of 1.5 g m-3 to 1 g m-3 as an annual average and to increase 

the capacity to treat high flows. This should be completed in early 2012. 

 Upgrading the Hawkshead pumping station to transfer more flow to the WwTW. This 

should be completed in early 2012. Currently 90 kg P y-1 reaches the lake from the 

intermittent discharges resulting from low capacity from the pumping stations and the 

wwTW. 
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In addition, Natural England bought out the fish-farm activities of the trout farm located in the 

southern basin of the lake in autumn 2009. The enterprise where caged rainbow trout were 

reared in the lake and then sold for consumption has now ceased and with it the major 

phosphorus input from fish feed (see Section 5.3).  

 

In a recent report to Natural England, Maberly et al. (2011) reviewed the water quality in 

Esthwaite Water in comparison to the previous decade. There is evidence for an improvement 

in water quality between 2008 and 2010 (Fig. 15.1). Concentrations of TP, SRP and nitrate 

were below the annual average for 2000 to 2009 in 2009 and 2010 and chlorophyll a 

concentrations and Secchi depth showed an improvement compared to the 2000 to 2009 

average in 2009. While this is very welcome, it must be borne in mind that the long-term record 

shows that year-to-year variation, driven by variability in the weather can be substantial. 

Furthermore, it is not clear exactly what the cause of this apparent improvement might be. The 

chemical improvement pre-dates any management actions at the waste water handling plants 

and pre-dates the closure of the fish-farm. However Mr Nigel Woodhouse, the owner of the fish-

farm, has mentioned that the fish-farm activities were being reduced from 2007 to 2009 so this 

could be cause of the improved water quality. Unfortunately, no records of fish-food application 

now exist to test this contention. 
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Figure 15.1. Seasonal and annual 

comparison of conditions in 

Esthwaite Water in 2010 compared 

with the previous ten years. left-

hand columns, seasonal 

comparison, individual years 2000 to 

2009 shown in grey, 2010 shown in 

black with dots for monthly mean 

and the red lines show the upper 

and lower 95% confidence intervals 

for 2000 to 2009 based on monthly 

means; right-hand columns,  long 

term annual trend; the red lines 

showing the upper and lower 95% 

confidence intervals based on 

annual means (Maberly et al. 2011). 
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15.2 Water quality and the Water Framework Directive 

The Water Framework Directive is the key legislative driver to improve the water quality of the 

lake. The long-term annual averages for TP and chlorophyll a are shown in Figure 15.2, based 

on the current boundaries for Esthwaite Water. Even at the start of the record in 1945 (TP) and 

1964 (Chl a), Esthwaite Water would only have been at Moderate ecological state, although TP 

was close to the Good:Moderate boundary. Both TP and chlorophyll a showed a deteriorating 

ecological state with the worse water quality for both measures in the 1990s when the 

ecological state was firmly in the poor category. There was an improvement in ecological status 

in the early 2000s bringing Esthwaite to around the Moderate:Poor boundary and the 

improvement noted above for recent years places the lake in Moderate ecological status. 

 

 

Figure 15.2. Long-term change in annual (geometric) average concentrations of total 

phosphorus (TP) and phytoplankton chlorophyll a (Chl a) in comparison to current Water 

Framework Directive boundaries for ecological status. 

 

Clearly Esthwaite Water is not at the good ecological status that the Water Framework Directive 

requires it to be by 2015. The effect of the improvements to the WwTW need to be monitored 

and inputs quantified as precisely as possible. Inputs of phosphorus from septic tanks on the 
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non-sewered parts of the catchment could be evaluated and improved where found to be sub-

standard. 

 

The current macrophyte flora is dominated by Elodea nuttallii. A greater diversity of species will 

hopefully be promoted as the nutrient levels decrease. The return of Najas flexilis will probably 

require active intervention. It is possible that seed are still present in sediment at locations 

where the historic populations grew and, these could be collected and germinated to see if 

viable and then re-established in the lake. 

 

Current and future climate change is likely to make the management of Esthwaite Water more 

difficult as the forecast higher summer temperatures and lower summer rainfall are likely to 

promote the development of cyanobacteria, which have the potential to be toxic. The local 

actions that can be taken to counter the effects of climate change are to reduce the phosphorus 

load entering the lake. Some of these actions are underway, but their effect is unlikely to be 

immediate as several years, or more, may be needed before a sustained improvement is 

realised. 

  



136 
 

16. Suggestions for future research 

Esthwaite Water is one of the best-studied lakes in the world, but nevertheless more research is 

needed to understand fully how the lake will respond to future change at the local, regional and 

global scale. Some of the key areas of work to take into the future include: 

 Continued detailed fortnightly monitoring of the lake to establish extent and rate of 

improvement to management carried out in the catchment; 

 Detailed survey of the fish populations in the lake; 

 Improved external phosphorus budget for the lake; 

 Greater quantification of internal phosphorus sources to the phytoplankton from 

entrainment from depth and input from the littoral region; 

 Investigation of the feasibility of recovering native populations of Najas flexilis from 

seedbanks within the sediment;  

 Studies to understand better the role of zooplankton in the trophic web of the lake and 

their control on water quality; 

 Modelling studies to elucidate further the possible response of Esthwaite Water to drier 

and warmer summers; 

 Development of short-term forecasts of water quality using data from the automatic 

water quality monitoring station, medium-range weather forecasts and PROTECH. 
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