1 Technical Note:

2 3

4

12

A Rapid Method for Determining Apparent Diffusion Coefficients in Chalk and other Consolidated Porous Media

5 *Daren C Gooddy¹, David G Kinniburgh¹, John A Barker²

6 7 ¹British Geological Survey, Maclean Building, Wallingford, Oxon, OX10 8BB, UK

8 ²School of Civil Engineering and the Environment, University of Southampton, SO17 1BJ, UK.

9 *Corresponding author. Tel +44-1491-692328

10 Fax +44-1491-692345

11 *E-mail address*: <u>dcg@bgs.ac.uk</u> (D.C. Gooddy)

13 Abstract:

14 The development of a method for the determination of the apparent diffusion coefficient, D_A , 15 for chloride in saturated Chalk cores is described. The method is rapid compared with other 16 approaches, taking typically less than 24 hours for a single determination. Cylindrical Chalk cores approximately 25 mm high by 25 mm in diameter, which are routinely used in porosity 17 18 and permeability measurements and which had been pre-equilibrated with a 200 mg/L 19 chloride solution, were sealed at both ends and attached to a slowly rotating spindle 20 suspended in a reservoir. A chloride ion selective electrode (ISE) connected to a data logger 21 was used to record chloride diffusion out of the core. D_A was estimated by analysing the 22 change in chloride concentration in the reservoir with time. Diffusion coefficients were estimated for six Chalk samples from a range of Chalk lithologies. Sample porosities for these 23 Chalks ranged from 32-48% and gas permeabilities from 0.3-8.2 $\times 10^{-9}$ m². The D_A was found 24 to vary from $3.1-8.7 \times 10^{-10}$ m²/s, a similar range to that observed by others. A bromide ISE 25 was also used on one sample and found to give a similar D_A to that obtained for chloride. This 26 27 approach, which combines a rigorous mathematical model of diffusion with a relatively 28 simple practical method, could easily be adapted for other ions and for other consolidated 29 porous media.

30

31

32 1. INTRODUCTION

33

34 1.1 Background

The Chalk is the major aquifer in the UK accounting for 70% of groundwater used and 33% of the total water used in England and Wales (UK Groundwater Forum, 2003). The mechanisms of movement of water and solutes through the Chalk are complex, although the nature of the overall groundwater flow regime has been well documented (Foster and Milton, 1974; Price, 1987).

40 The Chalk is a soft microporous fractured limestone and can be conceptualised as having 41 three components of porosity and permeability: (i) the Chalk has high intergranular porosity 42 (25–45%) (Bloomfield et al., 1995) but only low intergranular permeability since the pore-43 neck sizes are typically less than 1 μ m (Price et al., 1976); (ii) primary fractures that have low 44 porosity (0.1-1%) but which can, depending on frequency, increase the hydraulic conductivity 45 by two or three orders of magnitude (MacDonald and Allen, 2001), and (iii) secondary fractures that result from the solution and enlargement of primary fractures and which can
 account for the bulk of the flow in the saturated zone (Price et al., 1982).

3 The major physical processes controlling the movement of solutes in the secondary fractures

4 are generally assumed to be advection and dispersion, whereas in the matrix these processes

5 are assumed to be insignificant. However, movement of solutes can take place in the matrix 6 by diffusion.

7 Diffusion in solution is the process whereby ionic or molecular constituents move from an area of high concentration (strictly activity) to an area of low concentration (strictly activity) 9 under the influence of the random kinetic motion of the constituent molecules or ions. 10 Diffusion occurs without any bulk water movement. If the solution is flowing, diffusion is a 11 mechanism (along with mechanical dispersion) that can cause the mixing of ionic and 12 molecular constituents. Diffusion ceases only when there is no longer a concentration

13 gradient, i.e. it continues until there is a uniform concentration everywhere.

14 The rate of diffusion is of great importance for pollution studies. For example, although the 15 dominant flow in the Chalk is through secondary fractures, contaminants in the fracture water can diffuse into the relatively immobile matrix water. The matrix will, therefore, partially 16 17 attenuate a contaminant plume. The effectiveness of this depends, amongst other factors, on 18 fracture aperture, spacing and geometry (Barker and Foster, 1981). However, once the 19 contaminant plume has passed through the fractures, the concentration gradient will reverse 20 so that the matrix porewater contaminants will diffuse out from the matrix and into the 21 fracture water. This effect prolongs the remediation of contaminated Chalk (Fretwell et al., 22 2005).

23 There have been many studies to determine diffusion coefficients in sediments. Van Rees et 24 al. (1991) compared laboratory techniques based on three approaches: (i) diffusion from a 25 spiked reservoir into sediment; (ii) diffusion from a spiked sediment into a reservoir, and (iii) 26 diffusion from a spiked sediment into an unspiked sediment: (i) above is the most 27 straightforward in practice. A study by Myrand et al. (1992) used such an approach to study 28 the diffusion of a range of volatile organic compounds through clay with experiments lasting 29 up to 30 days. The study by Hill (1984) adopted a slightly different approach. He measured 30 the diffusion of a range of anions from a reservoir, across a Chalk disk, and into another reservoir. These experiments lasted approximately 40 days. Feenstra et al (1984) used a 31 similar approach to Hill (1984) and determined diffusion coefficients for chloride by fixing 32 33 sandstone discs between a two compartment diffusion cell. Measurements were made 34 periodically during the seven day duration of the tests using an ion-selective electrode. Barone et al (1992a) used a similar design of diffusion cell to obtain diffusion coefficients for a range 35 of organic compounds through clay plugs. In the cells a source solution was allowed to 36 37 diffuse through the plug of test material and into a collector solution for a period of 14 days. During this time samples were taken from both the source and collector reservoirs. Similar 38 39 approaches have been used more recently by Polak et al. (2002) and Witthüser et al. (2003).

40

41 In a different series of experiments Barone et al (1992b) determined diffusion coefficients for 42 diffusion out of chloride rich mudstones into a reservoir of distilled water. These tests were 43 run for up to 34 days after which time the sample was sectioned and the chloride porewater concentration profile measured. Van der Kamp et al (1996) and Novakowski and van der 44 45 Kamp (1996) use a radial diffusion method to determine effective diffusion coefficients. The diffusion cell comprised a cylindrical sample of saturated porous material encased in a rigid 46 47 impermeable tube, with rigid impermeable seals at top and bottom. A hole was drilled along 48 the axis of the sample to create a central reservoir for the test solution. Samples were taken 1 from the reservoir for chemical analysis over a period of at least 40 days. The change in 2 concentration of solutes in the reservoir enabled the determination of the effective diffusion 3 coefficient. Sophisticated tomographic procedures have also been recently used to monitor 4 diffusion in aquifer materials (Betson et al., 2005).

5

6 In this paper we present a method for determining the apparent diffusion coefficient for 7 chloride in consolidated porous media. Using an ion selective electrode we measure the 8 change in concentration with time in an aqueous reservoir surrounding a cylindrical core plug 9 that has been pre-equilibrated with a chloride solution. As chloride diffuses out of the core the 10 concentration in the reservoir increases. This new method is both experimentally rapid, taking 11 less than 24 hours, and is simple to carry out with relatively unsophisticated equipment.

12

13 *1.2 Diffusion Coefficients*

14 Diffusion obeys Fick's first and second laws and is described by a diffusion coefficient. There are several different types of diffusion coefficient. The first major distinction is the phase or 15 phases involved: gas, liquid and solid. The second distinction defines the type of medium 16 involved: self-diffusion (one molecule amongst similar ones), tracer diffusion (a minor 17 18 constituent within a major one), or interdiffusion (diffusion between two or more different 19 reservoirs). With ions, there is also the issue of whether local charge neutrality is maintained 20 or not. There is therefore significant room for confusion over the meaning of the term 21 diffusion coefficient. Several related parameters are in common use reflecting the different 22 types of diffusion and the precise meaning of the term being used is often not clear. A brief 23 summary of the various definitions is given below for the case when surface diffusion is 24 negligible and the concentration is low so that diffusion is independent of concentration and 25 the activity coefficient is close to one.

Fick's first law applied to the diffusion of a solute in water (or any other solvent) relates the diffusive flux, J_{Diff} directly to the gradient of the concentration, *c*. For one-dimensional transport in the *x* direction for steady state diffusion:

$$J_{Diff} = -D_T \frac{dc}{dx} \tag{1}$$

30 where D_T is normally termed the '**tracer**' (or free-water) diffusion coefficient. (The term 31 'self-diffusion' applies only to the diffusion of solutes in the presence of identical solutes, but 32 is often erroneously used to refer to free-water diffusion).

The above equation also applies to a saturated porous medium, but a smaller diffusion coefficient, D_E , must be used because of the impediment to transport caused by the matrix. The terms 'effective' and 'intrinsic' have been used to describe the coefficient, D_E .

36

37 Another value, the '**apparent**' diffusion coefficient, D_A , arises when time-dependent 38 diffusion in a porous medium is described by Fick's second law:

39

40

$$\frac{\partial c}{\partial t} = D_A \frac{\partial^2 c}{\partial x^2} \tag{2}$$

41

42 Our usage is closer to that used in fields such as chemical engineering than the common usage 43 in the environmental science literature. In order to avoid ambiguity with definitions, it is 44 advisable to ensure that the appropriate diffusion equation is closely associated with diffusion 45 coefficient data, e.g. as a footnote. 1

2 While D_T , D_E and D_A are perhaps best regarded as empirical parameters, their interrelations 3 are often expressed in terms of other parameters of porous medium: a thorough treatment is 4 provided by Ohlsson and Neretnieks (1995) and by Grathwohl (1998). For example we could write, $D_E = D_T \phi_t \delta / \tau^2$ where ϕ_t is the transport porosity, δ is the constrictivity, and τ is the 5 tortuosity. When there is linear sorption, characterized by a distribution coefficient K_d and 6 density ρ , some authors would write $D_A = D_E / (\phi + \rho K_d)$ where and ϕ is the accessible (or 7 8 'storage') porosity. (The two porosities, ϕ and ϕ_t , can differ significantly due to the presence 9 of dead-end pores.) The consideration of surface diffusion and nonlinear sorption result in 10 more complex relationships

11 12

1.3 Mathematical Model

13

14 We make the following assumptions about the behaviour of the diffusion cell:

15

32

- 16 1. Diffusion in the core is described by Fick's laws with a constant diffusion coefficient;
- 17 2. Diffusive exchange takes place only across the cylindrical surface of the core, the planar
- 18 end surfaces being sealed;
- 19 3. The water in the vessel outside the core is well mixed;
- 20 4. Measurements of concentration in the vessel water are made passively (i.e. without
- 21 affecting the concentration or volume of solution);
- 22 5. The water within the matrix of the core is immobile;
- 23 6. Sorption is negligible.

These assumptions lead to the following equation for the variation of concentration, $c_c(r,t)$, at a radial distance *r* from the axis of the core at time *t*:

$$26 \qquad \frac{\partial c_c}{\partial t} = \frac{D_A}{r} \frac{\partial}{\partial r} \left(r \frac{\partial c_c}{\partial r} \right) \tag{3}$$

where D_A is the apparent diffusion coefficient. This equation is an example of Fick's second law. The following equation describes the rate of change on concentration, $c_V(t)$ in the vessel:

29
$$V \frac{\partial c_V}{\partial t} = 2\pi R L D_E \frac{\partial c_c}{\partial r}\Big|_R$$
 (4)

30 where V is the annular volume, R is the core radius, L is the core length, and D_E is the 31 effective diffusion coefficient. The last term is essentially Fick's first law.

33 The initial conditions are that the concentration is constant both in the vessel:

$$34 c_V(0) = c_{V0} (5)$$

35 and in the core pore water

$$36 c_c(x,0) = c_{c0}. (6)$$

37 Finally, there is the boundary condition of equal concentrations at the face of the rock core:

1
$$c_c(0,t) = c_v(t)$$
 (7)

2

3 The solution of the above five equations is readily obtained as the Laplace transform with 4 respect to time of the external solution concentration in the vessel:

5
$$c_V(t) = c_{c0} + (c_{V0} - c_{c0}) f\left(\frac{t}{t_c}, \sigma\right)$$
 (8)

6 where the function *f* represents the pore water concentration relative to the difference between 7 the initial concentrations and declines from $f(0,\sigma)=1$ to $f(\infty,\sigma)=1/(1+\sigma)$ in an infinitely long 8 experiment This function has a Laplace transform:

9
$$\overline{\mathbf{f}}(p,\sigma) = \int_{0}^{\infty} e^{-p\tau} \mathbf{f}(\tau,\sigma) d\tau = \frac{1}{p[\mathbf{1} + \sigma \mathbf{B}(\sqrt{p})]}$$
 (9)

10 where

$$11 t_c = \frac{R^2}{4D_A} (10)$$

$$12 \qquad \sigma = \frac{\pi R^2 L D_E / D_A}{V} \tag{11}$$

13 and

14
$$B(x) = \frac{I_1(2x)}{xI_0(2x)}$$
(12)

15 where I_0 and I_1 are modified Bessel functions.

16 The dimensionless quantity σ can be interpreted as the ratio of water volumes in the core and 17 vessel since the ratio $D_{\rm E}/D_{\rm A}$ should equal the accessible porosity, ϕ , assuming negligible 18 sorption. The time t_c represents the characteristic time for diffusion across the core. 19

The function B(x) was described by Barker (1985a, 1985b) in general terms. In particular, it
is readily shown that the above solution can be translated to the solution for other 'core'
geometries by: (a) replacing the function B(x) with an expression appropriate to the particular
geometry; (b) defining
$$t_c$$
 in more general terms as b^2/D_A where b is the ratio of core volume to
surface area in contact with the vessel water, and (c) retaining σ as the ratio of vessel to pore
water volumes.

26

27 For small times the following approximation is obtained

28
$$f(\tau,\sigma) \approx 1 - 2\sigma \sqrt{\frac{\tau}{\pi}} = 1 - 2\sqrt{\frac{t}{\pi t_V}}$$
 (13)

$$30 t_V = t_c \,/\,\sigma^2 (14)$$

1 This new characteristic time, t_V , is of the order of magnitude of the time for diffusion into a 2 matrix volume equal to that of the water in the vessel. This approximation provides a simple 3 method of data analysis if required. 4

2. METHOD

5 6

7

8 Our apparatus was designed to use the Chalk plugs commonly used for determining porosity 9 and permeability. In principle, our technique can be used to measure the diffusion coefficient 10 of any solute, but here we describe its use only for chloride and bromide ions.

The apparatus (Fig.1) consists of a reaction vessel, maintained at 25.0 ± 0.1 °C by a circulating 11 water bath with the temperature controlled by a solid-state thermostat and heater. A chloride 12 13 (Model Orion 9317, Thermo Electron Corporation) (or bromide, Model Orion 9635, Thermo 14 Electron Corporation) ion selective electrode (ISE) and double junction reference electrode 15 (Model Ref 451, Radiometer Analytical), both interfaced to a PC-based data logger, were suspended in the vessel. This enabled the continuous monitoring of chloride ion activities (or 16 concentrations). The calomel reference electrode was separated from the reaction vessel by a 17 pumped salt bridge containing 0.01M KNO₃ in order to avoid cross-contamination. An 18 approximately 25 mm × 25 mm diameter cylindrical Chalk plug was suspended within the 19 vessel and driven by a small electric motor. The Chalk plug was attached to the motor by 20 specially-made plastic connectors attached with a non-reactive adhesive. This also formed a 21 22 complete seal. Such seals were applied to both end surfaces. The relatively small changes in 23 concentration involved mean that the apparatus is best suited to monitoring diffusion out of a

core rather than diffusion into it.

As most UK groundwaters are relatively dilute electrolyte solutions – conductivities are typically in the range 500-1500 μ S/cm (Edmunds et al., 1989) indicating ionic strengths of approximately 10-20 mmol/L) – variations in ionic strength were assumed to have no significant effect on the apparent diffusion coefficient.

- 29 2.1 Core Saturation
- 30 All samples were taken from a single borehole drilled in the south of England into the Chalk 31 aquifer. Basic aquifer properties of the tested samples are given in Table 1.
- 32 Chalk-saturated water and calibration standards were prepared and stored in a room 33 maintained at 23° . The use of Chalk-saturated water minimised any subsequent dissolution of 34 the Chalk matrix. The difference in temperature between this temperature and the temperature 35 of the experiment (25.0°C) had a minimal impact on the estimated diffusion coefficients. The 36 equilibrated solution was filtered through a 0.45 um filter to exclude any large particles
- 36 equilibrated solution was filtered through a 0.45 μ m filter to exclude any large particles.
- 37 Small-diameter cores were cut and then dried in an oven at 60°C for approximately 1 week.
- 38 The core was placed in a desiccator and evacuated for 2 days. The sample was then saturated
- 39 (as the vacuum was released) with a 200 mg/L chloride solution and allowed to equilibrate for
- 40 5-6 days before being finally weighed to ensure saturation.

41 2.2 Electrode Calibration

42 KCl calibration solutions were prepared in decade intervals ranging from 10^{-1} - 10^{-4} molar 43 using Chalk-saturated water. This 'matrix matching' ensured that readings from the chloride 44 ISE could be converted directly to concentrations. Calibration solutions were placed in a 50 45 ml reaction vessel maintained at 25.0°C. Each solution was placed in the reaction vessel in 46 turn, mV responses being noted after the electrode had stabilized (<0.02 mV/min). Further 47 datails of the data logging equipment are given in Kinniburgh et al. (1005)

1 2.3 Experimental Method

2 After calibration of the electrode, the reaction vessel was filled with sufficient Chalk-3 saturated distilled water to just cover the electrodes when the Chalk plug was placed in the 4 vessel. This normally required ~26 ml although this varied depending on the precise size of 5 the core. The greater the ratio of matrix pore volume to exterior solution volume, the greater 6 and the more rapid the monitored increase in concentration. The Chalk plug was removed from the chloride solution in which it had been equilibrating and excess water carefully 7 8 removed with a dry tissue. The Chalk was then suspended in a reservoir by a rod to a stirrer 9 and allowed to rotate slowly. The electrode response was then monitored. The data logger was 10 configured to take a reading every 30 seconds for the first hour and every minute thereafter. The experiment was deemed to have ended when the measured concentration was within 70% 11 12 of the theoretical maximum concentration. This generally took approximately 20 hours and 13 never exceeded 30 hours.

- At the end of the experiment, the calibration solutions were again measured in order to determine the amount (if any) of electrode drift that had occurred during the experiment. The short experiment times generally resulted in minimal electrode drift, generally <0.5mV between pairs of calibration solutions at the experiment start and end and with no systematic increase or decrease in response for any given experiment . Experiments were carried out on duplicate cores, that is, two cores taken adjacently from the same chalk block in an attempt to minimise the effects of any natural heterogeneity.
- The use of ISE's to monitor solute concentrations in the exterior solution has the advantage that no sample needs to be removed from the reaction vessel for analysis. This simplifies the subsequent data analysis.
- 24 2.4 Calculation of D_A
- 25 The apparent diffusion coefficient (D_A) was estimated by fitting the measured chloride data to 26 Eqn (8). The optimization was carried out using a derivative-free nonlinear least squares 27 algorithm based on Powell's VA05 algorithm from the HSL Archive (HSL Archive, 2005). 28 This uses a hybrid approach based on a combination of Newton's method, steepest descent and the Marquadt-Levenberg algorithm. Input parameters for the model were the 29 30 concentration of the saturating solution, the core dimensions in terms of radius and length and 31 the core porosity. Only D_A was adjusted for best fit. Optimisation was most effective when 32 based on fitting $\log D_A$ rather than D_A directly.
- 33
- Equation (13) can be used as an alternative method of analysis to check the results obtained with the least-squares analysis. A plot of concentration against the square root of time has a slope given by

$$37 \qquad s = -\frac{2}{\sqrt{\pi t_V}} \tag{15}$$

Note that once t_V has been estimated, the apparent diffusion coefficient can be obtained from: 39

$$40 D_A = \frac{1}{t_V} \left(\frac{V}{2\pi R L D_E / D_A} \right)^2 = - \left(\frac{\pi s V}{4R L \phi} \right)^2 (16)$$

41 uation (11) can be used

1 **3. RESULTS**

Fig. 2 shows a typical set of results with the fitted curve shown based on Eqn (4) and the estimated D_A . The line marked at 43.9 mg/L is the theoretical maximum concentration that can be achieved when both solutions (i.e. the matrix pore water and the external solution in the annulus) are fully mixed. The fitted curve asymptotically approaches this value. All model fits gave an R² of greater than 0.99. Such good fits give confidence that normal Fickian diffusion is occurring.

8 The results (Table 2) are similar to those found by Hill (1984), although our data have been 9 obtained in a much shorter timescale compared with Hill (1 day compared with 40 days). Hill 10 (1984) found a clear linear relationship between log ϕ and D_A and a similar relationship is 11 observed here even if the samples with the highest D_A fall off the linear trend. A much better 12 positive correlation is observed between gas permeability and D_A . In this case the whole data 13 set can be well described by by a second order polynomial with an R² greater than 0.99.

14 A similar experiment to that described above was also carried out on sample 6 using a 15 bromide ISE. D_A for bromide of $3.5 \times 10{\text{-}}10 \text{ m}^2/\text{s}$ was found compared with an average of 3.416 $\times 10^{-10} \text{ m}^2/\text{s}$ for chloride. The literature tracer diffusion coefficient for chloride is 17 $0.199 \times 10^{-10} \text{ m}^2/\text{s}$ and that for bromide $0.202 \times 10^{-10} \text{ m}^2/\text{s}$ (Robinson and Stokes, 1968) and 18 so the lack of a significant difference in our estimated D_A 's is not surprising. The difference in 19 molecular size between the chloride and bromide ions (181 pm compared with 196 pm) 20 therefore has no observable effect on D_A .

Residual errors are very small although in the example shown (Fig. 2) the residuals clearly show a systematic trend. This either indicates a shortcoming in the model or a systematic error in one of the experimental or model parameters. We found that other experimental runs did not always show this trend. Four possible sources of error are: (i) random and systematic errors in the measurement of chloride by an ISE; (ii) the assumed porosity; (iii) the assumed initial chloride concentration (based on a gravimetric method of preparation), and (iv) the measured dimensions of the Chalk plug.

Model simulations show that a 2% absolute error in porosity measurement (i.e. 49% porosity against 50%) can alter the calculated diffusion coefficient by approximately 5%. A 2% error in measuring the core radius (for cores of this size \pm 0.2mm) also leads to a 5% change in the calculated D_A . A 1% error in measuring the initial concentration (i.e. 198 mg/L chloride as opposed to 200 mg/L) leads to a 3% change in the calculated D_A . Cumulatively these errors are less than the error between duplicates (Table 2), which are still in themselves, reasonable and fit for purpose.

The random error is minimised in the procedure by the large number of observations while the systematic error (drift) is minimised by the short duration of the experiments. The 70% of maximum concentration threshold chosen provides a good compromise which ensures that sufficient data are collected while keeping the overall experimental time, and the electrode drift, to a minimum.

40

41 **4. CONCLUSIONS**

42 A method has been developed that enables the rapid determination of the apparent diffusion

43 coefficient of a solute, D_A , in Chalk rock. D_A ranged from $3.1-8.7 \times 10^{-10}$ m²/s in six Chalk

- 44 samples which varied in porosity from 32-48% and whose gas permeability ranged from 0.3-45%
- 45 $8.2 \times 10^{-9} \text{ m}^2$.

1 The approach has been shown to work using both chloride and bromide ISEs, and in its 2 current form could be used for determining diffusion coefficients for any consolidated porous 3 medium and for any solute whose concentration can be accurately monitored in situ. The 4 method might also be simplified by removing the ISE and taking 3-4 small (0.5 mL) sub-5 samples of water from the annulus surrounding the core at key time intervals (e.g. 4, 6, 8 and 6 16 hours). The outward diffusion of solute would not be so well characterised but a good 7 estimate of the apparent diffusion coefficient could still be obtained with a relatively small 8 effort. This would enable D_A to be determined for almost any ion or indeed a cocktail of 9 possibly competing ions. Such an approach lends itself to 'mass production'.

10

11 Acknowlwedgements

The authors are grateful for a helpful review by John Bloomfield of BGS Wallingford.
D C Gooddy and D G Kinniburgh publish with the permission of the Executive Director of
the British Geological Survey.

15

16 **REFERENCES**17

- Barker J A, Foster S S D 1981. A diffusion exchange model for solute movement in fissured
 porous rock. Quarterly Journal of Engineering Geology 14, 17-24.
- Barker J A 1985a. Block-geometry functions characterizing transport in densely fissured
 media. J. Hydrol., 77: 263-279.
- Barker J A 1985b. Modelling the effects of matrix diffusion on transport in densely fissured
 media, paper presented at Hydrogeology in the service of man 18th congress of the
 Intl. Assoc. Hydrogeologists., IAHS publication, Cambridge, UK.
- Barone F S, Rowe R K, Quigley R M 1992a. A laboratory estimation of diffusion and
 adsorption coefficients for several volatile organics in a natural clayey soil. Journal of
 Contaminant Hydrology 10, 225-250
- Barone F S, Rowe R K, Quigley R M 1992b. Estimation of chloride diffusion-coefficient and
 tortuosity factor for mudstone. Journal of Geotechnical Engineering 118, 1031-1046.
- Betson M Barke, J, Barnes P, Atkinson T 2005. Use of synchrotron tomographic techniques
 in the assessment of diffusion parameters for solute transport in groundwater flow.
 Transport in Porous Media 60, 217-223.
- Bloomfield J P, Brewerton L J, Allen DJ 1995. Regional trends in matrix porosity and dry
 density of the Chalk of England. Quarterly Journal of Engineering Geology 28, S131 S142.
- Edmunds W M, Cook J M, Kinniburgh D G, Miles D L, Trafford J M 1989. Trace element
 occurrence in British Groundwaters. British Geological Survey Research Report
 SD/89/3.
- Feenstra S, Cherry J A, Sudicky E A, Haq Z 1984. Matrix diffusion effect on contaminant
 migration from an injection well in fractured sandstone. Groundwater 22, 307-316
- Foster S S D, Milton V A 1974. The permeability and storage of an unconfined Chalk
 aquifer. Hydrological Sciences Bulletin 19, 485-500.
- Fretwell B A , Burgess W G, Barker J A, Jefferies N L. 2005. Redistribution of
 contaminants by a fluctuating water table in a micro-porous, double-porosity aquifer:

1 2	Field observations and model simulations. Journal of Contaminant Hydrology 78, 27- 52.
3 4	Grathwohl P 1998 Diffusion in Natural Porous Media: Contaminant Transport, Sorption/Desorption and Dissolution Kinetics, Kluwer, Boston.
5 6	Hill D 1984. Diffusion coefficients of nitrate, chloride, sulphate and water in cracked and uncracked Chalk. Journal of Soil Science 35, 27-33.
7	HSL Archive 2005. Routine VA05 by M J D Powell (http://hsl.rl.ac.uk/contentshslarc.html).
8 9 10	Kinniburgh D G, Milne C J, Venema P 1995. Design and construction of a personal- computer-based automatic titrator. Soil Science Society of America Journal 59, 417- 422.
11 12	MacDonald A M, Allen D J 2001. Aquifer properties of the Chalk of England. Quarterly Journal of Engineering Geology and Hydrogeology 34, 371-384.
13 14 15	Myrand D, Gillham R W, Sudicky E A, O'Hannesin S F, Johnson R L 1992. Diffusion of volatile organic compounds in natural clay deposits: Laboratory tests. Journal of Contaminant Hydrology 10, 159-177.
16 17 18	Novakowski K S, van der Kamp G 1996. The radial diffusion method 2. A semianalytical model for the determination of effective diffusion coefficients, porosity, and adsorption. Water Resources Research 32, 1823-1830.
19 20 21 22 23	Ohlsson Y, Neretnieks I 1995. Literature survey of matrix diffusion theory and of experiments and data including natural analogues. Svensk Kärnbränslehantering AB Technical Report 95-12. Polak A, Nativ R, Wallach R 2002. Matrix diffusion in northern Negev and fractured Chalk and its correlation to porosity. Journal of Hydrology 268, 203-213.
24 25	Polak A, Nativ R, Wallach R 2002. Matrix diffusion in northern Negev and fractured Chalk and its correlation to porosity. Journal of Hydrology 268, 203-213.
26 27	Price M, Bird, M J, Foster S S D 1976. Chalk pore-size measurements and their significance. Water Services 80, 596-600.
28 29 30	Price M, Morris B L, Robertson A S 1982. A study of intergranular and fissure permeability in Chalk and Permian aquifers, using double-packer injection testing. Journal of Hydrology 54, 401-423.
31 32 33	Price M 1987. Fluid flow in the Chalk of England. In Fluid Flow in Sedimentary Basins and Aquifers, edited by J C Goff and B J P Williams, Geological Society Publication No.34, 141-156.
34	Robinson R A, Stokes R H 1968. Electrolyte Solutions. Butterworths, London, UK.
35 36	UK Groundwater Forum 2003. Groundwater: Challenging tiems. Water and Sewerage Journal 4, 41-42.
37 38 39	van der Kamp G, Van Stempvoort D R, Wassenaar L I. 1996. The radial diffusion method 1. Using intact cores to determine isotopic composition, chemistry, and effective porosities for groundwater in aquitards. Water Resources Research 32, 1815-1822.
40 41 42	Van Rees, K C J, Sudicky, E A, Rao, P, S, C, Reddy K R 1991. Evaluation of laboratory techniques for measuring diffusion coefficients in sediments. Environmental Science and Technology 25, 1605-1611.

Witthüser K, Reichert B, Hötzl H 2003. Contaminant transport in fractured Chalk: Laboratory
 and field experiments. Ground Water 41, 806-815.

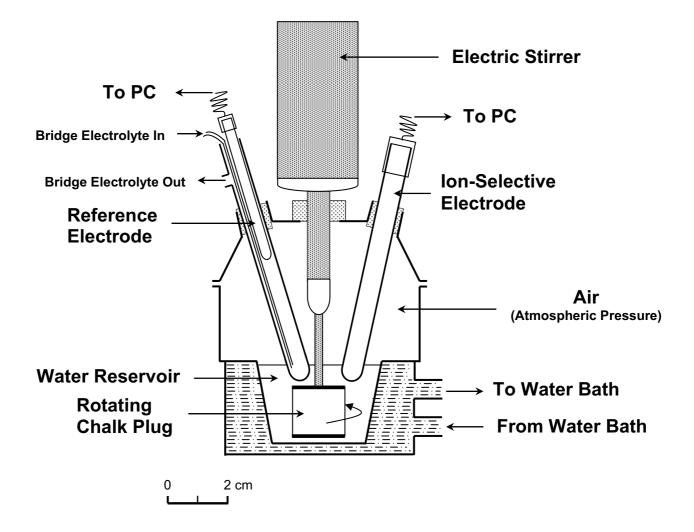


Figure 1. Schematic representation of analytical equipment used to determine diffusion of chloride (or bromide) from consolidated porous plugs.