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Summary 

This report describes work carried out by the British Geological Survey to resolve the long-
standing issue of ‘foundered strata’ on the 1:50,000 scale geological map of Bath (Sheet 265), 
and to investigate the nature of landsliding and cambering on the slopes around the city of Bath. 
The report describes the accompanying landslide map and explains the methodology behind it.
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1 Introduction 

What are ‘Foundered strata’? 

The term ‘Foundered strata’ is used to describe areas where extensive landsliding and 
cambering have occurred, but beneath which the solid geology could not be determined by the 
mapping geologist. Foundered strata are shown on BGS 1:50,000 geology maps as horizontal 
black hachuring on a pale green background (Figure 1). This is distinct from the normal 
‘landslide’ symbol of vertical hachuring on a white background, with the solid geology shown as 
dotted lines (Figure 1). Cambering is not depicted on BGS 1:50,000 maps. More recently, the 
term ‘foundered strata’ has been used to mean “collapsed strata . . . areas subject to natural or 
man-induced subsidence where no new deposits are produced, for example areas of collapse 
resulting from evaporate dissolution or extraction” (BGS, 2000). 

 

The study area covered by this report, and shown in Figure 1, is that to the north and north-east of 
the city of Bath, covered by a large tract (45 km2) of, what is referred to on the British 
Geological Survey (BGS) 1:50,000 geology map, as ‘foundered strata’. This forms part of the 
1:50,000 scale ‘Bath’ geology map (265), which the BGS is currently re-mapping. As the use of 
‘foundered strata’ is anomalous in terms of current geological usage, an attempt has been made 
in this report to re-interpret this area and hence resolve the anomaly. This work is a continuation 
of work which formed part of an environmental geology project for the then Department of the 
Environment (DoE) carried out in 1984/5 by BGS (Forster et al, 1985), covering the city of Bath 
and its environs, and for which a series of black and white ‘thematic’ maps was produced. One 
of these maps (No. 15 at 1:25,000 scale) was a re-interpretation by R.J. Wyatt in 1985 of part of 
the study area covering the central and southern parts of the zone of ‘foundered strata’ (Figure 2). 
This map does not show solid geology beneath the landslipped ground. It also does not show, in 
common with normal published BGS geology maps, the outline of individual landslides. BGS 
field-slips do, however, show and name some individual landslides. 

The objective of the current work is to re-interpret the whole ‘foundered strata’ area, based on 
the previous work, described above, and on more recent developments in remote sensing and the 
understanding of cambering. This has not included mapping or remapping the geology of the 
area. 
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Figure 1 Part of BGS 1:50, 000 scale ‘solid & drift’ geology map – Bath (265)  
The map shows ‘foundered strata’ (pale green with horizontal hachuring), landslide deposits (white with vertical 
hachuring), and solid geology (colour) 
 

Site investigations for the re-alignment of the A46 trunk road on the eastern side of the 
Swainswick Valley were carried out during the 1970’s and 1980’s, and supplied valuable 
geological, geomorphological, and geotechnical data to the DoE project, and subsequently to the 
current project. Construction of the A46 re-alignment took place during the 1990’s, and included 
extensive landslide stabilisation measures (Gosney et al., 1997). 

The aerial photography currently available consists of a black & white set at 1:10,000 scale, 
flown in April/May 1975, and a colour set at 1:25,000 scale, flown in October 1997. 

The geology of the study area was first systematically surveyed on the 1 inch to the mile scale 
and published on the Old Series Geological Survey maps between 1857 and 1873. Prior to that, 
several geological pioneers had been concerned with the rocks of the district, beginning with 
William Smith's work prompted by the construction of local canals in the late 18th century 
(Phillips, 1844; Winchester, 2001). Smith’s famous circular geology map of Bath, dated 1799, is 
shown in Figure 3. The area was not mapped by the Geological Survey on the 6 inch to the mile 
scale until 1944-58. The results of that survey were included on the 1 inch New Series sheets 265 
(Bath) and 281 (Frome) published in 1965.  
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Figure 2 Extract from R. Wyatt’s map depicting landsliding and cambering (Forster et al., 1985) 
The map shows landslide deposits (vertical hachuring), cambering (arrows), and solid geology (dotted lines) 
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Figure 3 William Smith’s 1799 map of Bath 
The map reproduced above shows the country 5 miles around Bath (originally) at 1½ inches to the mile scale, and 
was ‘coloured geologically’ in 1799 by William Smith. It was presented to the Geological Society in 1831, and is 
believed to be the first map ever produced showing accurately the outcrop of strata according to an ordered 
stratigraphic sequence. Lias (blue), Great Oolite (yellow), Trias (red) 

 

An important contribution to the interpretation of slopes in the Bath area was made during the 
1970’s by R. Chandler, G. Kellaway, A. Skempton and R. Wyatt (Chandler et al., 1976). This 
paper described in some detail the cambering geomorphology, hydrogeology, and likely 
mechanisms of slope failure for selected sections, based on trial pit and borehole data. 

The undulating countryside characteristic of the study area is underlain mainly by Middle and 
Upper Jurassic clays, with subordinate limestones and sands. The massive limestones of the 
Great Oolite Group commonly form plateaux at elevations of between 120 and 160 m above the 
valley floor, whilst those of the Inferior Oolite Group give rise to subdued bench-like outcrops 
on mid-level valley slopes. The area is dissected by the incised valleys of the River Avon and its 
tributaries, which cut down through the Lias Group clays of the Lower Jurassic. Typically, the 
valley slope forms a concave cross-section. The shallower angled slopes (9o) are characteristic of 
cambering and shallow landsliding, while the steeper slopes (14o) are characteristic of deep-
seated landslides (Chandler et al., 1976). Structurally, the Jurassic rocks dip gently to the east-
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south-east and are cut by several west-south-west trending normal faults. Where the outcrops 
have slipped or cambered, they commonly display considerable dips at variance with the 
regional trend. 

The valley slopes have, in the past, been affected by shallow mass movements, which make 
ground conditions potentially unstable. The landslides mostly date from late glacial times and are 
commonly degraded. Some slides and mudslides are more recent in origin, however, and show 
fresh morphological features; a few being active at the present day. Evidence of small, shallow 
landslides tends to be rapidly removed by degradation produced by natural processes and by 
farming. Thus many slopes are likely to have been subject to many stages of shallow landsliding 
over the centuries. Cambering of the characteristic massive Great Oolite Group limestones, 
forming the plateaux caprock, is widespread and may be accompanied by ‘dip and fault’ 
structures, with open fractures or gulls, which may have solution cavities associated with them. 
Cambering of the more subdued mid-slope Inferior Oolite Group limestones is present in parts, 
but is more difficult to identify as it is highly degraded and obscured by shallow landsliding and 
solifluction Head deposits. In the valley floors, there has been limited evidence of valley bulging 
in the less competent clay strata. 

Instability due to the extensive (18 ha) derelict freestone mines, in particular those underlying 
Combe Down, has been addressed (Stacey, 2002). These room and pillar mines remain for the 
most part open, unsupported, and only a few metres below ground surface, in built-up parts of 
the city of Bath. 

 

2 Geology 

The solid geological formations present in the study area are indicated in Table 1. 

 

Table 1 Summary of stratigraphy on the Bath sheet 

Member Formation Group Former name 

 Forest Marble F. (Fmb) 

Great Oolite G. 
(GtO) 

Forest Marble 

Bath Oolite M. 

Chalfield Oolite F *. 

Bath Oolite 

Twinhoe Beds Twinhoe Beds 

Combe Down Oolite M. (CoDo) Combe Down Oolite 

Upper Fuller’s Earth M. [27m] 
Fuller’s Earth F. (FE) 
[41m] 

Upper Fuller’s Earth 

Fuller’s Earth Rock M. (FER) 4m Fuller’s Earth Rock 

Lower Fuller’s Earth M. [10m] Lower Fuller’s Earth 

 Salperton Limestone F. Inferior Oolite G. 
(InO) 

Inferior Oolite 

 Bridport Sand F. (BdS) 
31m 

Lias G. (Li) 

Midford Sands 

 Dyrham F. (DyS) Dyrham Silt 

 Charmouth Mudstone F. 
(ChM) 

Lower Lias Clay 

Rugby Limestone M. 
Blue Lias F. (BLi) 

Blue Lias 

Saltford Shale M. Blue Lias, Unit B 

(* proposed formation name, Wyatt & Cave, 2002) 
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2.1 FOREST MARBLE FORMATION 

The Forest Marble Formation consists of mudstone with lenticular beds of limestone (shell-
fragmental, ooidal grainstone and sandy limestone, often argillaceous, typically cross-bedded 
and forming banks and channel-fills) especially in the lower part. 

The upper boundary is defined generally by mudstone in the upper part of the Formation, 
overlain sharply and non-sequentially by rubbly, ooidal shelly wackestone/packstone of the 
Cornbrash Formation. The lower boundary is defined (in the Cotswold region) as the base of 
limestone/mudstone resting on purer, less argillaceous ooidal or micritic limestone of the White 
Limestone Formation of the Great Oolite Group. It is marked (south of Mendips) by the Boueti 
Bed, a fossiliferous marl, resting on mudstone of Frome Clay/Upper Fuller's Earth. 

2.2 CHALFIELD OOLITE FORMATION 

The proposed Chalfield Oolite Formation consists (in ascending order) of the Combe Down 
Oolite Member, the Twinhoe Beds Member, and the Bath Oolite Member. These limestones, 
particularly the upper and lower members, have formed the basis of the Bath stone industry and 
were extensively mined as freestone around the city. The Combe Down Oolite Member rests 
with slight unconformity on the Fuller’s Earth Formation. The Member is about 18 m thick at 
Combe Down. The Twinhoe Beds Member has three distinct shelly and pisolitic limestone 
lithologies. They are up to 13 m thick. Finally, the Bath Oolite Member, up to 17 m in thickness, 
is a uniform oolitic limestone with few shells, though becoming a detrital limestone towards the 
margins. A key difference between the freestones obtained from the Combe Down Oolite and the 
Bath Oolite is the latter’s relatively high microporosity and water content. This makes it more 
susceptible to frost damage (Forster et al., 1985). 

2.3 FULLER’S EARTH FORMATION 

The Fuller’s Earth Formation contains a bed of ‘commercial’ fuller’s earth about 2 m thick and 
located about 10m below the top of the formation. This contains clay of ‘extremely high’ 
plasticity, which is highly susceptible to landslide movement. The bed is not present throughout 
the area (information about its location is held by the Laporte Corporation). The Fuller’ Earth 
Rock Member is about 4m thick, separates the upper and lower parts of the formation, and 
consists of rubbly, shelly limestones with thin marl bands. The Lower Fuller’s Earth Member 
contains a thin nodular argillaceous limestone midway. Clays of the Fuller’s Earth Formation 
play a key role in landslide development. The clays are typically of high plasticity and low shear 
strength (Hawkins et al., 1986). De-calcification is proposed as a factor in residual shear strength 
reduction, and hence landslide re-activation, in the Fuller’s Earth Formation clays (Hawkins & 
McDonald, 1993). 

2.4 SALPERTON LIMESTONE FORMATION 

This limestone represents the Inferior Oolite Group in the area. It consists of pale grey to brown 
rubbly, fine- to coarse-grained ooidal, peloidal and finely shell-detrital packstone to grainstone 
(Clypeus Grit Member), generally with very shelly and coarsely shell-detrital ooidal grainstone 
and packstone (Upper Trigonia Grit Member) at base ( Cambering tends to increase the downslope 
extent of the formation thus increasing its apparent thickness. 
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Figure 4). The formation is typically between 10 and 15 m in thickness and is generally well 
jointed (Chandler et al., 1976). The formation outcrops around Toghill, to the southwest and 
southeast of Fuddlebrook, and to the west of Tadwick, though there is little exposure in any of 
these locations. The presence or otherwise of cambering in the Salperton Limestone Formation is 
a major issue for mapping. Cambering tends to increase the downslope extent of the formation 
thus increasing its apparent thickness. 

 

 

 

 

 

 

Figure 4 Apparently uncambered Salperton Limestone Formation exposed below Soper’s Wood [37480 
16810]. 
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2.5 BRIDPORT SAND FORMATION 

The Bridport Sand Formation, formerly known as the ‘Midford Sands’ or ‘Upper Lias Sands’, 
consists of up to 31 m of yellow-brown homogeneous silty sand, with several bands of cemented 
calcareous sandstone known as ‘doggers’. Grey, weathering yellow or brown, micaceous silt, 
very fine sand and fine sand, locally with calcite-cemented sandstone beds and lenses, variably 
sandy clay/mudstone at base, including the Downcliff Clay [Member] of the type area. 

The upper boundary is non sequential: at the base of the lowest limestone (commonly sandy) of 
the Inferior Oolite Group resting on sand/silt or mudstone. The lower boundary is at the base of 
sand/silt or mudstone, resting non-sequentially on limestone of the Beacon Limestone 
Formation. 

The Bridport Sand Formation outcrops principally in the Limpley Stoke valley to the south-east 
of Bath, and to a limited extent in the Swainswick Valley to the north-east of Bath. 

2.6 DYRHAM FORMATION 

Formerly known as the ‘Middle Lias Silts’ (or Clays) or ‘Dyrham Silts’, the Dyrham Formation 
consists of pale to dark grey and greenish grey, silty and sandy mudstone, with interbeds of silt 
or very fine sand (locally muddy or silty), weathering yellow. It is variably micaceous with 
impersistent beds or doggers of ferruginous limestone (some ooidal) and sandstone, which tend 
to occur at the top of sedimentary cycles. Sporadic large cementstone nodules are found. 

The upper boundary is at the base of ferruginous limestone or ironstone of the Marlstone Rock 
Formation or Marlstone Member of the Beacon Limestone Formation. The lower boundary is at 
a marked or gradational downward change from silty mudstones to smoother argillaceous 
sediments of the Charmouth Mudstone Formation. This commonly coincides with negative 
changes of slope and/or lines of seepage that may correspond with a sandy bed. 

The Dyrham Formation is poorly exposed in the study area, this being limited to the lower slopes 
of the escarpment at Freezing Hill and Toghill to the north of Bath. 

 

2.7 CHARMOUTH MUDSTONE FORMATION 

Formerly known as the ‘Lower Lias Clays’, the Charmouth Mudstone Formation consists of dark 
grey laminated shales, and dark, pale and bluish grey mudstones. It is locally concretionary and 
has tabular limestone beds, and abundant argillaceous limestone, phosphatic or ironstone 
(sideritic mudstone) nodules in some areas, organic-rich paper shales at some levels, and finely 
sandy beds in lower part in some areas. 

The upper boundary is at a marked or gradational upward change to coarser siliciclastic deposits 
of the Dyrham Formation. In the type section (Dorset), this is at the base of the Three Tiers 
Sandstone. The lower boundary is at the top of the Blue Lias Formation or Scunthorpe Mudstone 
Formation. The top of the Blue Lias Formation coincides with a marked upward decrease in 
frequency, thickness and lateral persistence of limestone beds. 

The Charmouth Mudstone Formation is exposed in the west of the city of Bath, and in the area 
around Lower Hamswell, to the north-west of Bath, and in the Limpley Stoke valley. 

 

2.8 BLUE LIAS FORMATION 

The Blue Lias Formation consists of thinly interbedded limestone (laminated, nodular, or 
massive and persistent) and calcareous mudstone or siltstone (locally laminated). Individual 
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limestones are typically 0.10-0.30m thick. In some areas, intervening mudstone units with 
relatively few limestone beds. Also includes littoral limestone facies of the Radstock Shelf - 
Mendip area and South Wales. 

The upper boundary is defined at the base of the Charmouth Mudstone Formation. In any one 
section, this coincides with marked upward decrease in abundance of limestone beds, locally 
associated with marked decrease in their individual thickness and lateral persistence. The lower 
boundary is defined at the base of grey limestone or mudstone sharply overlying an irregular 
surface of pale grey or bluish and greenish-grey or reddish brown mudstone of the Cotham 
Member (Lilstock Formation) or eroded, commonly bored, locally conglomeratic surface of pale 
porcellanous limestone of Langport Member (Lilstock Formation). The lower boundary 
coincides with the base of the Lias Group, which is commonly markedly non-sequential. 

 

3 Mass movement 

The mass movements that have taken place in the study area consist of cambering, landsliding, 
and soil creep. Whilst these processes are interrelated, their timing is not necessarily 
synchronous. It is likely that several phases of cambering and landsliding have taken place. 
These have been interspersed with periods of inactivity and degradation. The periods of activity 
coincided with the cycles of glaciation and associated periglaciation, particularly at those points 
where bodies of ground ice were melting. The presence of a mantle of solifluction Head tends to 
disguise much of the underlying geology and evidence of deeper-seated mass movement 
processes. Head is a thin mobile deposit subject to mudslide and soil creep movement. 

The slopes that are seen today in the Bath area are largely the result of the climatic conditions, 
which have prevailed since the end of the Devensian glaciation. However, it is believed that 
much of the cambering activity, particularly of the Inferior Oolite, took place prior to this 
(Chandler et al., 1976), possibly as early as the Anglian glaciation (Self, 1995). Currently, 
cambering is inactive and may have been so since the Hoxnian. However, landslides were 
probably most active in the saturated conditions of early post-Devensian times, and it is likely 
that the larger landslides recognised in the area were formed during this period. It is notable that 
most of these large landslides occupy the lower valley slopes. This may be because they are 
related to the accelerated downcutting of rivers following the last glaciation. Under current 
climatic conditions many slopes are only marginally stable (Forster, 1985, Chandler et al., 1976). 
This means that small adverse changes to the climate or slope profile may initiate re-activation.  

 

Table 2 Summary of slope features 

Zone Camber Landslide Condition 

Upper Great Oolite on Fuller’s Earth 
clays. Discrete and limited 
extents, associated with rock 
fall/slide. 

Translational slides (rock & 
soil), topples, debris flows 
within Fuller’s Earth clays. 
Mudslide complexes. 

Cambering & landsliding 
well distinguished but 
tree-covered. Erosion by 
springs. 

Lower Inferior Oolite on Lias clays. 
Some draping & thinning 
downslope. 

Debris flows, mudslides, 
solifluction, head thickening 
downslope, rotational slumps 
within Inferior Oolite & Lias 
clays. Occasional rotational in 
Lias by river erosion. 

Cambering & landsliding 
poorly distinguished. 
Erosion by streams & 
springs. Surface features 
obscured by farming. 
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Many investigations have highlighted the significance of landslides in the Bath area (Cook, 
1973; Chandler et al., 1976; Hawkins, 1977; Privett, 1980; Forster et al., 1985), particularly 
within the area of ‘foundered strata’. However, delineation and classification of these landslides 
is less well documented. The literature suggests that the dominant slope process is two-layered 
(Table 2): the upper zone of mass movement consisting of cambering and landsliding of Chalfield 
Oolite (Great Oolite) on Fuller’s Earth, and the lower zone consisting of cambering and 
landsliding of Inferior Oolite on Lias. In the upper zone instability has occurred on steeper slopes 
with less run-out and less extensive camber, while in the lower zones it has occurred on 
shallower slopes with greater run-out and more extensive camber. However, a small number of 
large, steeply scarped rotational landslides (e.g. North Stoke, Bailbrook) in the lower slopes have 
been produced by river erosion, and have occurred mainly within the Bridport Sand and Lias. 
Shallow mudslides in both upper and lower slopes are subject to re-activation and have been 
associated with springs. Table 2 shows a summary of slope features observed in the field and 
obtained from the literature. Spring sapping is also a feature, particularly within the Bridport 
Sand Formation. This tends to result in the formation of narrow, steep-sided gullies which then 
become susceptible to landsliding. 

During the reconnaissance survey no examples of active landsliding were observed. However, on 
previous visits shallow mudslides have been observed at Swainswick, within areas of known 
landslide, which have rapidly become obscured by farming activities. It is believed that no new 
large-scale, deep-seated landslides have occurred in the area since the Devensian glaciation 
(Privett, 1980). Rotational slides of moderate size have occurred in recent times as re-activations 
of existing slides, but usually in association with the construction of roads, landscaping, and 
retaining structures (Forster et al., 1985). During the reconnaissance survey, sets of panoramic 
photos were taken of the main valley slopes of the ‘foundered strata’ area. 

The literature contains descriptions of several medium to large-sized landslides within, and 
adjacent to the area of ‘foundered strata’ (Forster et al., 1986; Hobbs, 1980) and their locations 
are shown in Figure 1. Some of these are within the urban area of Bath city and have been 
engineered or landscaped in some way, making the natural features difficult to discern. As a 
result of the ‘foundered strata’ scheme, not all of these landslides are depicted on the BGS 
1:50,000 scale geology map. However, widespread belts of landsliding are depicted in the 
following three areas: 

1) to the SE in the Avon valley between Limpley Stoke and Bathford,  

2) to the NW in the region of Freezing Hill, Lower Hamswell, and Tog Hill,  

3) to the NE and E in the Doncombe Brook valley and at Colerne and Box. 

It is the case that these ‘blanket’ depictions of ‘landslipped’ strata do not accurately reflect the 
true landslide extent. In fact, the extent of landsliding may have been over-estimated in some 
cases; this perhaps having resulted from the same mapping problems as encountered with the 
‘foundered strata’. However, this is not unique to the Bath sheet, as is the ‘foundered strata’ 
category. Some areas depicted as ‘Head’ on the 1:50,000 geology map are found to be discrete 
mudslides (Privett, 1980). A large proportion of slopes are partially wooded; the trees concealing 
the upper and central parts, including most of the upper-slope landslides. Often the toes of 
landslides may be seen emerging from woods onto pasture 

 

3.1 CAMBERING 

Cambering is a mass movement process whereby a strong caprock layer overlying a weak, 
‘extruding’ clay layer, usually at the edge of a plateau or hilltop, is subject to a gradual 
downslope movement. This often involves ‘hinging’ or ‘slumping’ downward and subsequent 
gradual break-up of the caprock into blocks, which become available for involvement in 
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landslides on the slope. One effect of cambering is to give an exaggerated impression of the 
outcrop and thickness of the caprock, and conversely a reduced impression of underlying stratum 
thickness. In addition, the Bath area is notable for the ‘mid-slope’ cambering of the Inferior 
Oolite limestones. Whilst these limestones are not forming a caprock as such, the process is 
comparable, as are the results in terms of the apparent increases in outcrop and thickness 
described earlier. 

Associated with cambering are ‘gulls’. These are open or infilled tension cracks within the 
cambering caprock, usually formed along pre-existing joints and running mainly parallel with the 
valley. In some cases, gulls may be ‘bridged’, that is they occur only in the lower beds of the 
caprock, particularly where the caprock is thick and well bedded, and thus are not visible at 
surface. Such gulls occur in the Great Oolite Group and to a lesser extent in the Inferior Oolite 
Group. In some cases the Great Oolite Group gulls have developed into a complex network of 
distinctive orthogonal ‘gull caves’ deep within the hillside. These are unusual in cambered 
terrain, and are distinct from the more common solution caves found in limestone terrain. The 
mid-slope gulls within the Inferior Oolite are inferred from site investigation borings (Chandler 
et al., 1976), and are, by virtue of their subcrop, ‘infilled’. 

Various models developed for cambering were reviewed by Parks (1991) and Hutchinson 
(1991). The most likely sequence of events, according to Parks, based on observations at 
Empingham Dam (Horswill & Horton, 1976) is as follows: 

1) Valley-bulge development caused by stress-relief during rapid river downcutting (glacial 
melt-water, river capture, etc) 

2) Thawing of ground ice contained within the slope (increased pore pressures), 

3) Downslope creep / extrusion of the softened plastic clay substrate. 

The most commonly quoted morphology for cambering is the simple ‘drape’ profile shown in 
Figure 5. This profile features progressive forward tilting combined with subsidence of the 
caprock blocks into the underlying extruding clay formation. One of the features of the drape 
profile is that as blocks become separated, the underlying (and in some cases the overlying) clay 
material extrudes into the gap created. Such features were inferred for some slope profiles at 
Swainswick (Chandler et al., 1976). The drape may develop further to produce the ‘dip and fault’ 
structure shown in Figure 6. Here the dip of the bedding in individual detached caprock blocks is 
increased. 

 

 

Figure 5 Cambering - simple ‘drape’ profile 
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Figure 6 Cambering – ‘dip and fault’ profile 

 

 

Figure 7 Cambering - back-rotation profile 

 

An alternative back-rotation profile is shown in Figure 7. This occurs when individual cambered 
blocks are subject to rotational landsliding. Such processes were probably separated in time from 
the cambering itself, and being active have probably tended to degrade the original cambered 
profile. An example of the ‘hinge’ part of the cambering drape is shown in Figure 8. A possible 
example of the ‘dip & fault’ process is shown in Figure 9. 

The periglacial model described by Parks (1991) is based in part on the fact that cambering, 
unlike landsliding, is inactive in the UK; that is, the process ceased following periglaciation. This 
would tend to discount any idea that cambering is purely a stress-relief process. Hutchinson 
(1991) and Parks (1991) point to ground ice formation and melting as essential factors in the 
development of cambering. Melting of periglacial ground ice tends to occur from both above and 
below. This tends to give the remaining body of ice a profile running parallel with the valley 
slope, and hence encourages the development of simple cambering (Figure 5). Several cycles of 
ground ice formation/melting would tend to disrupt this pattern, and final melting would initiate 
landslipping (Figure 6 and Figure 7). 

 

 

Figure 8 Camber ‘hinge’ at Rowbarrow Wood, Monkton Farleigh 
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Figure 9 Possible dip & fault profile – Rowbarrow Wood, Monkton Farleigh 

 

A classification of mass-movement processes related to gull-formation was put forward by 
Hawkins and Privett (1981). This is summarised, including additional elements taken from Self 
(1985), in Table 3. 

 

 

 

 

 

 Table 3 Classification of gull-forming mass movements (Hawkins and Privett,1981; Self, 1985) 

Type Description 

A Opening of single major joint to surface, formed on single slip plane, results in smooth-walled gull 

B Multiple bedding-plane slips between surface and lowest slip-plane, results in many small non-aligned 
smooth gulls 

C As for A but bounded by an upper slip surface, results in smooth ‘bridged’ gull 

AB Combines features of A & B. Movement increasing upward, results in stepped gull narrowing with depth 

AC Sliding of a C-type block followed by tilt, results in smooth gull narrowing with depth 

D C-type movement which induces a B type movement above it, results in single smooth gull at depth with 
shallower disconnected small smooth gulls 

E C-type movement combined with a wedge block fall at the rear, results in two-level smooth gull narrowing 
with depth 

 

Physically similar, but glacially-unrelated, camber structures to those at Bath are found in Italy. 
A site of apparent active cambering has been described at Caramanico Terme, Pescara in the 
Central Apennines of Italy (Sciarra, 2000). Here, a plateau of partially karstic carbonate 
megabreccias overlies a thick deposit of Pliocene marly clays with sands; the junction being 
characterised by disturbance, in particular thrust shears. A large landslide occurred, at the edge 
of one large block already detached from the plateau, in October 1989 close to the village of San 
Vittorino. Finite element analyses (Sciarra, 2000) indicated that the plasticity of the substrate, the 
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stress history, and traction forces on the caprock were key elements in the mass movement. 
Contemporary camber structures have also been noted by Hobbs et al. (1986) in Nicosia, Cyprus. 

3.1.1 Cambering of the Great Oolite 

As the Great Oolite limestone is for the most part highly permeable, springs develop at its base 
in the Bath area. Subsided blocks would have tended to act as ground water sinks at these points, 
resulting in seepage and local erosion. The undisturbed bedding dip is to the southeast and away 
from the valley. However, the dip is very slight (typically 1 to 2 o), is unlikely to significantly 
influence ground water flow, and is readily counteracted by the cambering process.  

Evidence from gull caves (see section 0) indicates two phases of cambering movement at Gully 
Woods. A pre-Ipswichian date is given to the main cambering event at Bath by Chandler et al. 
(1976), and a possible Anglian or post-Anglian date by Self (1995). 

An example of a bridged gull, visible in the south wall of a small (former) quarry, is shown in 
Figure 10. This may form part of a gull cave system similar to that at Gully Woods, Monkton 
Farleigh (see section 0), although the slope at Brassknocker Hill has a characteristically 
cambered profile (Hobbs, 1980), unlike that at Gully Woods. 

 

 
Figure 10 Bridged gull cave, Great Oolite, Brassknocker Hill, Monkton Combe 
[ST779628] (Hobbs, 1980) Note: slope from right to left 
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Figure 11 Cambered block of Great Oolite, Bathford Hill - March 2004 [37940 16136] 

An example of a large cambered block of Great Oolite limestone is found in a clearing in the 
woods on Bathford Hill, on the east side of the Limpley-Stoke valley (Figure 11). Here the 
limestone has dips of 20 – 30 o downslope (westward). 

 

3.1.2 Cambering of the inferior oolite 

Evidence for cambering of the Inferior Oolite is less clear than for the Great Oolite. This is 
largely because of a general lack of cambered Inferior Oolite outcrop and of sub-surface 
information away from the east side of Swainswick Valley. The principal source of information 
and interpretation for cambering in the Inferior Oolite was found in Chandler et al. (1976). In 
particular, two cross-sections (‘Swainswick 1 & 2’) on the western slope of Little Solsbury Hill 
(Figure 12 and Figure 13). The data for these came from early site investigations for the re-
alignment of the Swainswick Valley section of the A46. These included boreholes and trial pits. 
Later site investigations, whilst adding to the data set, borrowed from rather than altered the 
essential interpretation of Chandler et al. (1976). The interpretation of these two sections used a 
‘dip & fault’ mechanism (see Figure 6) to explain the apparent and considerable downslope 
(westerly) drop by more than 30 m of the base of the Inferior Oolite on these slopes, despite an 
easterly regional dip. Whilst the interpretation is plausible, though not unique, it is difficult to 
prove and, perhaps more importantly, does not appear to be repeated elsewhere in the study area. 
Associated with the apparent ‘dip & fault’ cambering was considerable disturbance of all strata 
involved from the Fuller’s Earth to the Lias. 

In contrast to the Little Solsbury Hill area on the east side of the Swainswick Valley, described 
above, the limited outcrops of the Inferior Oolite suggest that cambering has not occurred 
universally; for example, on the west side of the Swainswick Valley below Soper’s Wood (Figure 
14). 
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Figure 12 Cross-section ‘Swainswick 1’ (Chandler et al., 1976) 

 

 

Figure 13 Cross-section ‘Swainswick 2’ (Chandler et al., 1976) 

 

 

 

Figure 14 Apparently uncambered, though open-jointed, Salperton Limestone Formation (Inferior Oolite 
Group) below Soper’s Wood [37480 16810]. 
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3.1.3 Substrate mobility 

A key pre-requisite for cambering to take place is the mobility of a weaker substrate. In the Bath 
area these are represented by the Fuller’s Earth Formation mudstones which underlie the Great 
Oolite Group limestones, and the Lias Group mudstones and sandstones which underlie the 
Inferior Oolite Group limestones. The means by which a weaker substrate to the cambering rock-
mass becomes mobile is a topic which has received little attention in the literature. One 
contribution was from Poulsom (1995) who described a process of brittle/ductile transition to 
explain the large-scale coastal displacements at Portland, Dorset and Ventnor, Isle of Wight. 
Whilst these well-known landslide complexes are not entirely a function of cambering, the 
process proposed does hold some interest for the likely genesis of today’s Bath slopes. Poulsom 
(1995) related lateral stress relief to principal stress-paths within the clay substrate using pre-
critical-state soil mechanics terminology. A brittle/ductile transition boundary defined by the 
principal stress equation (dashed blue line in Figure 15): 

1 = 23 

where:  1 is vertical stress and 3 is horizontal stress 

was derived from Barton (1976). In the same figure the strength envelope for the clay is shown 
as a black curve. The proposed sequence of (geological time-scale) events, as a point within the 
rock mass would have been approached by the valley side, is as follows (letters refer to Figure 15): 

a) Initially, lateral stress (3) exceeds vertical due to the over-consolidated nature of the clay 
deposit. This places an example point within the clay layer at point ‘a’ (Figure 15). Points 
at other positions within the clay layer would be located elsewhere on the right side of the 
graph. The Fuller’s Earth Formation mudstones and clays are lightly over-consolidated. 
The Lias Group mudstones are generally heavily over-consolidated. 

b) As the valley side approaches, the lateral stress (3) at the example point reduces whilst 
the vertical stress (1) remains constant. The clay layer is within the ductile zone but 
below the failure envelope. Deformation does not occur. 

c) With closer proximity to the valley side, parts of the clay layer are within the zone of 
ductile deformation and have begun deforming and thinning. This allows the process of 
cambering of the overlying limestone to initiate. As the limestone is a brittle material, 
tension cracks (gulls) develop and the limestone blocks subside or rotate. However, the 
clay layer does not fail catastrophically as the ductile deformation zone is characterised 
by strain-hardening behaviour. Rather, a process of clay creep leads to gull widening and 
progressive lateral movement of the limestone blocks. 

d) As lateral stress decreases further, the clay layer enters the brittle zone by crossing the 
blue line. As this is characterised by strain-softening behaviour, shear strength reduces to 
a residual value and displacements tend to concentrate in one or more shear surfaces at 
levels of common principal stress. At this point vertical stress has also decreased 
somewhat due to progressive thinning of the clay layer. As the overburden, and hence 1, 
within the clay layer is greatest at its base, the principal shear plane tends to develop here 
(Poulsom, 1996) and a deep-seated landslide is formed. Increased pore pressures would 
tend to reduce strength further and initiate shear failure at some point within the clay 
mass. 
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Figure 15 Brittle/ductile transition model for weak substrate deformation and failure  
(adapted from Poulsom, 1996) Note: refer to text for explanation 
 

In the case of Ventnor and similar coastal sites the shear plane has developed on an essentially 
level shear plane, determined by the bedding, with subsidiary inclined shears forming at the rear 
and within the slip mass, to accommodate rotational and extensional (spreading) movements. 
Comparison of the Bath cambering situation with that summarised above, from Poulsom (1996) 
for Ventnor and Portland, is imperfect. For example, the thicknesses of the Fuller’s Earth and 
Lias clay substrates at Bath are considerably less, and hence the tendency to produce large 
landslide complexes is absent. Also, the stress histories, glaciation and periglaciation histories, 
and stress/strain behaviours of the Fuller’s Earth and Lias clays are different. Finally, unlike the 
Bath situation, the coastal models are currently active as a result of continuous marine erosion 
(Poulsom, 1996). However, the principles of this simple model appear to suggest how a 
mechanism described elsewhere as clay ’extrusion’ could have occurred on a geological time 
scale. The likelihood is that such processes are not continuing at the present day.  

Using the Poulsom model, described above, a conceptual model for cambering and landsliding at 
Bath is shown in Figure 16. Here, cambering movements in the two layers are shown with black 
arrows and landslide movements with grey. Many tens of metres away from the valley side, the 
sequence is considered stable with little or no lateral spreading. Closer to the valley side ductile 
deformation and brittle failure within the Fuller’s Earth and Lias produce cambering of the Great 
Oolite and Inferior Oolite, respectively. Lias strata close to the valley floor are uplifted by valley 
bulging. This then produces occasional deep-seated landslides in the Lias and shallow landslides 
in the Fuller’s Earth. Block slides of Great Oolite are found downslope of the escarpment. The 
Inferior Oolite is frequently, though not universally, cambered. The Poulsom (1996) model 
would suggest that the effects of cambering should be greatest in the Inferior Oolite for two 
reasons: firstly, the Inferior Oolite is weaker than the Great Oolite, and secondly the reduction in 
overburden is greater. Evidence from the Swainswick valley (A46) site investigations (Chandler 
et al., 1976) suggests that both Fuller’s Earth and Lias clay (and sand) ‘squeeze’ into camber 
gulls within the Inferior Oolite. In addition, shallow head deposits tend to ‘drape’ the Inferior 
Oolite debris further downslope from the base of the actual outcrop. 
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Figure 16 Cross section through idealised cambered Bath valley side showing brittle/ductile transition within 
the two clay layers (adapted from Poulsom, 1996) Note: refer to text for explanation 

 
An interesting feature of the Bath area is the presence of small and narrowed plateaux. The 
model shown in Figure 16 then becomes more complex due to the fact that the stable zone is 
negligible or even absent. Stress relief, and hence cambering may then have developed on both 
flanks of any chosen cross-section through the plateau (Figure 17). Examples of this would be 
Little Solsbury Hill and the southern tip of Banner Down. However, the much larger Charmy 
Down plateau, east of the Swainswick valley, shows bedding-dip evidence which may suggest 
very deep-seated landsliding and associated hinging of the central plateau caprock (Figure 18). 
However, borehole evidence on the slopes around Charmy Down (Chandler et al., 1976; Mott 
McDonald pers. comm.) does not support this. The model in Figure 18 might conceivably result 
from dominantly deep-seated landslide processes, affecting a relatively thin caprock, rather than 
from cambering; that is, effectively the converse process to that shown in Figure 17. The Figure 18 
model would tend to produce back-tilted limestone bedding which might appear similar to the 
familiar cambering model shown in Figure 7, and may in fact be more applicable to the slopes 
around Little Solsbury Hill.  
 
Deep-seated landslides on this scale have been proposed, but not proved, for the Bath area in the 
past and are found in G.A. Kellaway’s field notes and 6” map (Figure 19) prior to the publication 
of the 1965 1:50,000 solid & drift edition of Sheet 265 (but not indicated on the published map). 
Kellaway referred to the ‘Solsbury Hill Landslip’ which was considered to have slipped 
southward from Charmy Down plateau. Whilst this linear feature was no doubt mooted to 
explain the outlying Little Solsbury Hill, it fails to do so as the (scarp?) feature lies to the south 
of Chilcombe Bottom, and even further to the south of the Charmy Down plateau from which 
presumably Little Solsbury Hill was assumed to have slipped. This feature was later interpreted 
as the ‘Solsbury Hill Fault’ by Chandler et al. (1976). 
 
 

 
 

Figure 17 Cross section through idealised ‘dip& fault’ style cambered plateau 

 
Such a fault could be of a ‘listric’ type replicating landslide type displacements but on a larger 
scale. Certainly, the sub-surface surrounding Little Solsbury Hill does show considerable 
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bedding disruption and brecciation to depths in excess of 30 m (Chandler et al., 1976). The 
possible transition of scale from landsliding to faulting, in the context of gravity-driven 
mechanisms, merits further investigation. 
 
 

 
 

Figure 18 Conceptual cross section through small plateau showing ultra-deep-seated landslide model 

 

 

 

Figure 19 Extract from BGS County series ‘6 inches to one mile’ Sheet Somerset VIII SW 
Note: red arrows = location of “assumed position of Solsbury Hill major slip / slide” 
Yellow line = cross-section (Figure 20) 
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Figure 20 Cross-section from Charmy Down (left) to Little Solsbury Hill (right) across Chilcombe Bottom 
(refer to Figure 19) Note: Red arrow shows approximate position of ‘Solsbury Hill Fault’  
 
A north to south cross-section from Charmy Down to Little Solsbury Hill is shown in Figure 20. 
The summit of Little Solsbury Hill is about 9 m lower than Charmy Down. The approximate 
location of the Solsbury Hill slide (or fault) feature is shown by the red arrow. The two flanks of 
the Chilcombe Bottom valley are notably different in profile, but both have been subject to 
landsliding. 
 

3.2 GULL CAVES 

Although generally known to cavers for many years, the true extent and significance of gull cave 
formation in the Bath area has only become apparent in the last few years, as a direct result of 
detailed cave surveys by Bristol University speleologists (Self, 1985; Self, 1995; Self & Boycott, 
1999). They have revealed remarkable natural cave systems penetrating deep (>60 m) into the 
hillside at depths (below plateau ground level) in excess of 25 m. These are distinct in character 
from nearby mines within the same strata. The proposed mechanisms leading to the development 
of these cave systems are shown in Table 4 and schematically in Figure 22. These were developed 
by Self (1985), and the block diagrams are adapted from the same source. The location to which 
the model refers is ‘Sally’s Rift’ at Gully Woods [ST794650], to the south of Bathford, on the 
east side of Limpley Stoke valley. The proposed mechanism of Fuller’s Earth clay softening, 
plastic extrusion, and the resulting ‘traction’ forces on the overlying Great Oolite limestone, is an 
unusual one not dealt with analytically in the literature (to the authors’ knowledge). However, 
see section 3.1.3 for a simple ‘soil mechanics’ explanation. The mechanism is essentially 
analogous to a ‘conveyor’ driven by gravitational forces and stress-relief acting on the weak 
substrate and approximates to movement types D and AC in Table 3. The apparently purely 
horizontal nature of this deformation mechanism, at least away from the valley side, is difficult 
to visualise. However, it has been proved conclusively by the speleologists’ surveys that 
horizontal movements, at least within the caprock, are the forming factors of the gull caves 
systems studied in this area (Self, 1985; Self, 1995; Self & Boycott, 1999). The gull cave system 
has been dated to at least 350,000 years BP (Hoxnian), and possibly as far back as 500,000 BP 
(pre-Anglian) (Self, 1995). 
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Figure 21 Map of gull caves at Sally’s Rift, Gully Woods, Bathford (Self, 1995) 
Green line = plateau edge 
 

 

The cave system resulting from these processes (Figure 21) is distinctly angular in both plan and 
cross-section, and maps out as a trelliswork of open, en-echelon rifts parallel and perpendicular 
to the local valley crest (NW/SE and NE/SW, respectively). The rifts are 10 to 12 m high and 30 
to 60 cm wide (Self, 1995). Apparently none of these features has any expression at ground 
surface. The contact between the Great Oolite limestone and the Fuller’s Earth clay in the cave 
floor is highly irregular and poorly defined, due at least in part to a build-up of debris. Self 
(1985) reported that an analysis of rift volumes and polar directions indicated that net movement 
had been to the west (i.e. valleywards) at some point in the process, rather than solely south-west 
as might be expected from the polar directions alone. The rifts decrease in width away from the 
valley, but are still negotiable (by a caver) at a distance of 60 m at which point the cave roof is 
approximately 25m below ground. Self (1985) has identified two phases of mass movement, 
based on cave geometry and deposits, with net lateral movement of 20%. These range in age 
from >350,000 years BP (possibly as much as 500,000 years BP) and 78,500 years BP. Self 
(1985) also describes a similar cave system (Henry’s Hole) to the northeast of Box (Wilts.) 
which is outside the study area. 
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Stage 1 

 

 
Stage 2 

 

 
Stage 3 

 

 Stage 4
 

Figure 22 Proposed stages of slope, mass movement, and gull cave development at ‘Sally’s Rift’, Gully 
Woods, Monkton Farleigh (adapted from Self, 1985) (Refer to Table 4) (not to scale) 

 

The slope profile at Gully Woods suggests that the dominant process here is not the classic 
concept of cambering, at least not as far as the Great Oolite limestone caprock is concerned. The 
overall process may be considered in the same category as cambering, the difference being that 
the caprock is thicker and does not provide a continuous ‘drape’ as seen in the mid-slope Inferior 
Oolite, and elsewhere in the Great Oolite caprock (Chandler et al., 1976; Hutchinson, 1991; 
Parks, 1991; Humpage, 1976), and described in section 3.1.1 and shown in Figure 5, Figure 6, and 
Figure 7. 

 

 

 

Table 4 Proposed stages in development of slope and mass movements 
(refer to Figure 22) 
Stage Process  

1 

Start condition: Deeply incised valley. Rapid downcutting of River 
Avon. Toe erosion. Saturated ground conditions. Freeze/thaw action. 
Springs. Solifluction Head deposits involved in shallow landslides. 
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2 

Seepage from InO and GtO. Extrusion valleyward of softened FE 
clays resulting in loss of support to GtO limestones (lower). Shallow 
landslides continue. Deep-seated landslides develop in FE. Block 
formation in GtO (lower) resulting in detachment & sliding. 

 

3 

GtO limestones (upper/mid) capable of cantilevered self-support. 
Block detachment continues, affecting lower & some mid GtO. 
Hydrostatic uplift due to cambering and artesian conditions at 
‘buried’ InO subcrop. Gull network develops in GtO limestones 
(lower). 

 

4 

Gull cave system propagates away from valley (limited surface 
expression). Driving mechanism is traction of GtO limestones 
(lower) caused by extensile forces within FE (upper) clays. Large 
block of GtO limestones (whole) topples and slides (>20o tilt). 
Existing blocks break up. Extrusion of FE and BLi into cambered 
InO. Shallow landsliding continues. 

 

 

A detailed cross-section of the proposed gull-forming mechanism at Sally’s Rift (Gully Woods) 
is shown in Figure 23. This shows the lateral extensile movement and associated traction force (F 
in Figure 23), developing at some distance from the valley side, which then acquires a downward 
component at some point close to where it daylights at the valley side. These forces are 
analogous to those postulated for valley bulging, except that in the case of valley bulging the 
valleyward deformation vector tends to be upward. Both types of force are largely the result of 
the stress relief behaviour of clays, augmented by landslide movement as the valley side is 
‘approached’. These traction forces diminish upward through the various limestone layers (as do 
the resulting fractures), and the uppermost layer is unaffected, it being subject only to cantilever 
forces and failure in the final stages. Self (1985) describes open gulls large enough to walk 
through which have roofs formed by the overlying bedding plane, i.e. bridged gulls. Self also 
describes separated asymmetric ‘fit’ features in the cave walls (e.g. at point X in Figure 23) further 
indicating that the rift had been formed by movement (rather than dissolution), and that this 
movement had been purely lateral in this area. The gull caves are described as being largely 
rectilinear with sharp-edged junctions and terminations. Such features are not indicative of 
solution processes associated with normal cave systems in limestone. 

 

 

 
Figure 23 Schematic cross-section through gull cave system at Sally’s Rift showing possible 
displacement mechanism of lowermost limestone [adapted from Self, 1985] (not to scale) 
 

Upper limestone 

Middle limestone 

Lower limestone 

Fuller’s Earth Clay 

F 

X 
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Similar observations of ‘foundering’ of the lowermost Great Oolite bed have been made at 
Horsecombe Vale to the west of Limpley Stoke (Chandler et al., 1976).  

Self (1985) suggested that gull caves, of the kind found at Gully Wood and Box Hill, are likely 
to be common, though as yet unexplored, in the Bath area. In fact, there is no reason to suspect 
that such complex features are anomalous, though they are probably related to caprock thickness, 
plateau/valley relief, and the origins of the stress-relief. 

Features which exhibited similar characteristics, but on a much smaller scale, were identified at 
The Rocks Rift (By Brook, St Catherine’s valley) [ST 7896 7057], Guy’s Rift (Slaughterford) 
[ST 8450 7372], Murhill Rift (Murhill) [ST 7956 6073], Gorton’s Rift (Bradford-on-Avon) [ST 
8225 6089], and at Bath University (Bathampton Down) [ST 7677 6452] (Self & Boycott, 1999). 

  

3.3 LANDSLIDES 

There are many types of landslide in the study area, in various stages of degradation, re-
activation, and stabilisation under present climatic conditions. Landsliding in the area is closely 
related to cambering, and cannot be considered in isolation. Most landslides are believed to have 
an ancient origin, at a period when the climate was wetter than today; only a small proportion 
have shown any activity in historic times. However, several of these have disrupted the 
development of the city of Bath. Landslides have also had a major influence on road design and 
construction.  

In general there is a ‘double-layer’ trend to landslides in the area; i.e an ‘upper slope’ and a 
‘lower slope’ regime. The ‘upper’ occurs within the Chalfield (Great) Oolite and Fuller’s Earth 
Formations, and the lower within the Inferior Oolite and Lias Groups (Table 2). 

3.3.1 Upper slopes 

The upper slopes are characterised by sharply defined backscars at the edge of the Great Oolite 
limestone plateau. These may have been either cambered or uncambered. Evidence of cambering 
may have been removed by large-scale landsliding. Alternatively, some elements of cambering 
may remain. The plan form of the backscars is usually either straight or slightly arcuate. 

 

Debris flows are found particularly in the tree-covered upper slopes. These usually derived from 
deep-seated rotational or translational landslides upslope (for example, Figure 24). 

 

Figure 24 Debris flow emerging from Soper’s Wood, Swainswick Valley (west side) 
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Mudslides in the vicinity of the outcrop of the Fuller’s Earth Formation, and to a lesser extent 
the Bridport Sand Formation, frequently have developed into complexes, which scour out 
characteristically shaped hollows. Frequently, little or no landslide debris remains within the 
hollow. Whilst individual mudslides tend to be shallow and very elongate with a wider head and 
wider toe (Figure 25), the mudslide complex tends to develop into a deeper bowl-shaped feature 
usually with degraded head and side scars. The individual mudslides are rapidly degraded, 
whereas the complex as a whole is long-lived, perhaps due to the fact that it is self-regenerating 
by virtue of the channelling effect of surface and ground water. 

 
Figure 25 Fresh mudslide tracking top right to centre – Charmy Down (Chilcombe Bottom) 
 (Cartographic Services Ltd. April 1975) 
 

These are associated with back-sapping along spring-lines and, particularly within the Bridport 
Sand Formation and Fuller’s Earth Formations. Good examples are seen on the southern slope of 
Holts Down facing Little Solsbury Hill (Figure 26), on a northwest-facing slope of Freezing Hill 
viewed from Toghill Farm (Figure 27), and on the western slopes of Swainswick valley (Figure 28). 
Due to the fact that their central portions are narrow, the complexes tend to be separated by 
‘unslipped’ bedrock (that is, bedrock unslipped as part of the mudslide complex itself). 

 

 

Figure 26 Southern slope of Holts Down (Pennyslait Wood) – two mudslide complexes Aug 2002 

 

Individual mudslides are particularly transient in terms of their surface expression. Evidence for 
their presence usually lasts only a few years after the initial event. Processes of creep, erosion, 
and farm activity tend to be responsible. Mudslide complexes become re-vegetated and re-
farmed very quickly unless activity persists over several seasons. Field boundaries often follow 

20 m 
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the edges of the complexes, or in some cases individual mudslides, which may attest to their 
longevity. 

 

 

Figure 27 Recent mudslides at Freezing Hill viewed from Toghill Farm (Sep 2005) 

 

 

Figure 28 Shallow landslides at Soper’s Wood, Swainswick valley (west side) 

 

3.3.2 Lower slopes 

The lower slopes in the vicinity of Bath are characterised by deep-seated rotational landslides, 
such as Bailbrook at the western approaches to Batheaston and on the southern flank of Little 
Solsbury Hill (Figure 29). This landslide is 1.2 km long and the backscarp and toe are at elevations 
of 100 m and 20 m, respectively. The toe reaches to the River Avon in the eastern half and the 
former route of the A4 trunk road crosses its full width. The backscarp is clearly shown in the 
cross-section (Figure 30).  
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Figure 29 Bailbrook landslide showing cross-section (yellow line) (refer to Figure 30) 

  

 

Figure 30 Cross-section CS4 at Bailbrook landslide, Batheaston (refer to Figure 29) 
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Figure 31 North Stoke landslide showing cross-section (yellow line) (refer to Figure 32) 

 

 

Figure 32 Cross-section CS7 at North Stoke landslide, North Stoke (refer to Figure 31) 

 

The North Stoke landslide (Figure 31) is situated immediately west and downslope of North Stoke 
village. It is 1.2 km in width and drops from 105 m at the backscarp to 17 m at the River Avon. 
The cross-section (Figure 32) extends from Little Down at the western extremity of Lansdown Hill 
westward, and downslope, towards the River Avon near Swineford. The geomorphology of the 
North Stoke landslide is remarkably similar in form, size, and elevation to that of Bailbrook 
(Hawkins & Privett, 1979, 1980). 

With the exception of a small number of other deep-seated landslides (refer to Appendix 1) the 
lower slopes are either unslipped or are covered by shallow landslides (for example, Figure 33), 
some of which have developed from landslides initiated in the upper slopes (see section 3.3.1). 
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Figure 33 Shallow landslides on the lower slopes at Twinfield Farm, Swainswick Valley (west side) 

 

 

 
Figure 34 Comparison of adjacent cross-sections at Luccombe Farm (St Catherine’s Valley, east side) 
Section CS 17: partial landslides (white), section CS 17a: full landslide (green) 
 

 
Figure 35 View eastward toward Bannerdown from Upper Northend Farm, Aug 2002 [37817 16907} 
Note: Northern edge of Luccombe Farm landslide (right) 

 

Comparative sections through part of the eastern side of the St. Catherine’s Valley, below the 
Banner Down plateau, at Luccombe Farm are shown in Figure 34. A view of part of the same 
valley side is shown in Figure 35. 
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Table 5 Average slope angles for the major formations in the Bath area (Forster et al., 1985) 

Ref. Locality Great 
Oolite 
(edge) 

Fuller’s 
 Earth 

Inferior 
Oolite 
(edge) 

Inferior 
Oolite 
(camber) 

Midford 
Sands 

Lower 
Lias 

Cook 1973 Lansdown  9 - 13     

Swainswick 1  9  6.5 11  

Swainswick 2  12  11   

Chandler et 
al. 1976 

Swainswick 3  15.5 25 25 13 - 19 9 – 10.5 

Swainswick 4  11.5     

Privett 1980 Bath 15 - 30 8 - 17 30 6 - 9 6 - 18 6 - 20 

Brassknocker  11  11 - 13 7 - 17  

Hobbs 1980 Claverton 15 11 - 13  9 - 10 5 - 6 5 - 16 

Hengrove Wood 21 - 24 18 - 23 35  17 - 20 10 - 13 

Sheephouse 17 12  11 11 11 

Brown’s Folly 21 13  10 6 8 

Average  22 13 30 9.6 12 10.8 

 

 

3.4 LANDSLIDE MAP 

 

The landslide map, accompanying this report, is a digital map created in ARCMap9 and is not 
reproduced in this report. It encompasses the area previously referred to as ‘foundered strata’ on 
the published BGS 1:50,000 geology map of Bath (Sheet 265). It depicts the extent of 
landslipped ground including the backscarps and sidescarps, where known. It also shows the 
location of cambers. It does not show geology, as this is currently being remapped. Other 
geomorphological features are also shown: ridges, valley crests, valley floors, and significant 
changes of slope. 

Most of the features depicted on the map were produced from aerial photo interpretation and 
from archive data and published literature. In some cases field inspection was carried out.  
NextMap Digital terrain models, and the cross-sections generated from them, were also used to 
help identify landslides and cambers. 

The map was produced initially on topographic paper base Landplan maps (1: 10,000 scale), and 
subsequently digitised onto ArcMap 9. The area covered by the landslide map is shown in Figure 
36. 
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Figure 36 Geology map (published) of Bath (Sheet 265) showing outline of area of ‘foundered strata’ (black 
line) and outline of area of landslide map (red line) 

 

3.4.1 Landslide 

Landslides are depicted in two ways: 

1) Vertical hachuring with lines depicting head and toe. This covers all areas of landslide. 

2) Individual landslides, where known, depicted with complete boundary. These lie either 
within or without a larger hachured area of landslide. Well documented or major 
landslides in this category are named. 

Lines depicting reasonably certain features are solid and those depicting uncertain features are 
dashed on the map. The map key is reproduced in Table 6. 

 

3.4.2 Cambering 

Cambering is depicted as individual lines located at the estimated ‘hinge point’ of a camber or at 
the head of an area of cambering; the former usually being applicable to the Great Oolite at the 
plateau edge, and the latter to the camber ‘aprons’ of Inferior Oolite at mid-slope. Lines 
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depicting reasonably certain features are solid and those depicting uncertain features are dashed 
on the map. 

 

3.4.3 Other features 

Major geographical features such as ridges, valley crests, valley floors, and changes of slope not 
thought to be associated with landsliding, are shown as dashed lines on the map. The locations of 
cross-sections taken from NextMap are shown as solid lines with numbers “CS x”. An example 
of a ‘change of slope’ feature unrelated to landsliding might be a geological outcrop. 

 

Table 6  Key to landslide map 

 

 

 

 

 

 

 

4 Remote sensing 

Sources of remote sensing terrain data available to the project have been examined for the 
purposes of landslide recognition. These were as follows: 
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 Aerial photographs (BGS),  

 Airborne radar (NextMap), 

 Airborne LiDAR (ARSF - NERC), 

 Terrestrial LiDAR or ‘laser scanning’ (BGS) 

4.1 AERIAL PHOTOGRAPHS 

Stereo aerial photos were examined, and used to identify and delineate landslide features. 
Several epochs (from 1975 to 1997) were consulted including both colour and black & white, at 
scales from 1:10,000 to 1: 25,000. The photos used are listed in Table 7. 

 

Table 7 Stereo aerial photos used for landslide map 

Supplier Type Scale Date Series/Line Photos 

Infoterra Colour 1:25,000 10/1997 34/97 233-236 

Infoterra Colour 1:25,000 10/1997 34/97 237-240 

Infoterra Colour 1:25,000 10/1997 34/97 265-268 

Infoterra Colour 1:25,000 10/1997 34/97 269-272 

Infoterra Colour 1:25,000 08/1996 47/96 050-051 

Infoterra Colour 1:25,000 08/1996 47/96 071-072 

Infoterra Colour 1:25,000 08/1996 47/96 079-080 

Infoterra Colour 1:25,000 08/1996 47/96 100-101 

Cartographic Services B&W 1:10,000 05/1975 489 853-861 

Cartographic Services B&W 1:10,000 05/1975 489 97-105 

Cartographic Services B&W 1:10,000 05/1975 489 169-177 

Cartographic Services B&W 1:10,000 05/1975 489 29-47 

Cartographic Services B&W 1:10,000 05/1975 489 41-47 

Cartographic Services B&W 1:10,000 05/1975 489 8-16 

Cartographic Services B&W 1:10,000 05/1975 489 9925-9932 

 

4.2 AIRBORNE RADAR (NEXTMAP) 

Images produced from NextMap™ DTM data within Erdas Imagine™, and transferred to 
Arc9™ as image files, were used to help identify and delineate landslide features. Spot heights 
could also be extracted. The use of variable lighting directions and angles was found to aid in the 
identification of features. Problems have been experienced with the DSM version, which 
subtracts the height of objects such as tress and buildings from the model. In this regard the OS 
contour data set is preferable, but has less resolution than NextMap. Cross-sections, examples of 
which are shown in this report, have been taken from the raw NextMap data set using an Arc9 
sub-routine developed within BGS. 

An example of the problems experienced with the DTM data is shown in Figure 37 and Figure 38. 
This shows two cross-sections, obtained independently at the same location (Brown’s Folly, 
Limpley Stoke valley), which have been superimposed. The first (E2) was surveyed on the 
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ground using Abney level and tape, and the second (CS27) derived from the NextMap DTM. 
The clear discrepancy (up to 19 m) in the upper part of the slope is due to tree cover. 

 

 

Figure 37 Aerial photo (Cartographical Services, 1975) showing cross-section CS27/E2 (red line), and 
Bathford Hill Woods 

 
 

 
Figure 38 Comparative cross-sections demonstrating ‘tree’ effect on NextMap DTM 
Black line= sectionCS27 (NextMap), red line=sectionE2 (Hobbs, 1980) 
 

4.3 AIRBORNE LIDAR & PSINSAR 

Airborne LiDAR has been flown for all or part of the study area by NERC’s Airborne Research 
& Survey Facility (ARSF). However, no data have been made available to the project at the time 
of writing.  

In addition, recent studies using the ‘Permanent Scatterer Synthetic Aperture Radar’ (PSinSAR) 
method of ground deformation detection have been interrogated to determine subsidence in the 
Bristol and Bath areas (www.terrafirma.eu.com). These data derived from monthly passes of the 
ERS satellite(s) have revealed that no subsidence has been detected during the period for which 
data have been available (1992-2005). 

4.4 TERRESTRIAL LIDAR (LASER SCANNING) 

Terrestrial LiDAR (laser scan) surveys at selected locations within the study area were carried 
out during March 2004. BGS’s Riegl LPM2K ‘very long-range’ laser scanner and Leica SR530 
geodetic-quality dGPS system were used in combination to produce 3D models of slopes in the 
Swainswick and St. Catherine’s valleys, oriented to national grid co-ordinates. The main purpose 
was to determine whether the method, used elsewhere by BGS, was suitable for detailed 
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mapping of type of slopes found at Bath and the production of high-resolution cross-sections. An 
example of the output is shown in Figure 43. 

The method was found to be successful in terms of the reflectivity of the ground and the range of 
the instrument. However, the generally low angle of most vantage points meant that it was often 
difficult to resolve the subtleties of the geomorphology. In common with other remote sensing 
methods, the extensive tree cover also presented a major problem, particularly on the upper 
slopes. Refer to section 5.2. 

5 Field Investigations 

5.1 TOGHILL FARM 

A slope profile with shallow trial-pitting was carried out at a location adjacent to Tog Hill Farm 
[3723 1723] in the north-west of the study area (Figure 39) for which the cross-section is shown in  

 

Figure 40. Trial pits (TP1 to TP4) were excavated to a maximum depth of 2 m using a hydraulic 
backhoe (Figure 41) the results of which are summarised in Table 8. In addition, ultra-lightweight 
penetrometer tests were carried out at the trial pit locations, the results of which are shown in 
Figure 42. 

 

 

Figure 39 Map showing trial pit and slope profile locations, Toghill Farm 
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Figure 3  Slope profile, Toghill Farm 

 

 

 

 

 

 

 

 

 

 

 

Figure 40 Cross-section at Toghill Farm (refer to Figure 39) 
 

 

 

Figure 41 Trial pit TP3, Toghill Farm 
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Figure 42 PANDA penetrometer profiles, Toghill Farm 
[TP1 – dark blue, TP2 – green, TP3 – purple, TP4 – light blue] 
 

 

Table 8 Summary log of trial pits at Toghill Farm 

Trial Pit 

[Grid 
Ref] 

Depth 
Interval 
(m) 

Description 

TP1 
[ST72270 
72351] 

0 – 0.15 
0.15 – 0.30 
0.30 – 1.80 

Topsoil 
Desiccated Sand & Clay with clasts of limestone [Head] 
Weathered orange/brown, mottled grey, stiff to very stiff sandy silty Clay, fissured 
with some sub-horiz. slickensiding with v. coarse sand-size gypsum on surfaces, 
fossils. Ped/matrix (1-2 mm) structure in upper 0.2 m [Landslide - Charmouth 
Mudstone F.] 

TP2 
[ST72353 
72398] 

0 – 0.30 
0.30 – 1.30 
 
1.30 – 1.50 
 
1.50 – 1.90 

Dry, friable, buff silty Topsoil 
Soft, buff, mottled light-grey, Clay with silt & v. fine sand patches, reduction veins. 
Siltstone clast with Liesegang rings [Head] 
Weathered, moist, open-textured, Siltstone blocks in Clay matrix, with ironstone nodules (4-5 cm) 
[Dyrham F.] 

Micaceous, very soft,  Silt & Clay, fractured but no apparent shears [Dyrham F.] 

TP3 
[ST72433 
72422] 

0 – 0.15 
0.15 – 1.90 

Soil containing coarse gravel size Limestone fragments [Inferior Oolite G.] 
Sand with clayey patches, slightly cemented, with blocks (up to 0.5 m) of friable, 
fine-grained, buff, v. fine gr. calcareous sandstone with minor soft to hard Silt & 
Clay. Sandstone block content increasing with depth. Discontinuous bed of 
calcareous, v. fine sandstone at 1.3m. [Bridport Sand F] 

TP4 
[ST72192 
72331] 

0 – 0.10 
0.10 – 1.40 
 
 
 
 
1.40 – 1.60 

Rich loamy Topsoil 
Fissured, slickensided, stiff, orange-buff, veined with grey, Silt & Clay with small 
boulders (up to 0.2m) chalk with some race nodules in upper 0.5 m, with 
concretionary, rounded to sub-rounded, boulders of grey limestone (up to 0.4 m) 
with some tabular grey micritic limestone. Seepage [Landslide – Charmouth 
Mudstone F]. 
In-situ, dark grey/blue-grey, green-grey, weak to very weak, fissured Mudstone, 
with pockets of med-coarse dark orange ferruginous sand. Complete fossil bivalves, 
belemnites [Charmouth Mudstone F.] 
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The penetrometer results (Figure 42) show a progressively weakening Charmouth Mudstone F. 
between 0.55 and 1.30 m depth in TP1, reaching a low of 0.5 MPa. Similarly, in TP3 the 
Bridport Sand F decreases in penetration resistance from 0.15 to 2.1 m, reaching a low of 1.1 
MPa. Trial pit TP4 shows a relatively unchanging profile down to 1.6 m, below which resistance 
increases. Trial pit TP2 shows a resistance ‘high’ between 0.5 and 1.5 m with a peak of almost 
5MPa at 1.15 m. The profile for TP4 is slightly more irregular than the others. It appears to 
represent a 1.4 m deep landslide consisting of Charmouth Mudstone F, overlying unslipped 
Charmouth Mudstone F. It is notable that the landslipped Charmouth Mudstone F between 0.75 
and 1.3 m in TP1 is significantly weaker (less penetration resistance) than that downslope in 
TP4. However, the in-situ Charmouth Mudstone Formation gives the same values for penetration 
resistance (approx 10 MPa) in TP1 and TP4. The soundings for TP1 and TP4 met refusal at 1.45 
m and 1.69 m, respectively. 

It should be noted that the sub-surface investigations carried out at Toghill Farm were too 
shallow to make any conclusions about the presence or otherwise of deep-seated landslides or 
cambers.  

 

5.2 TERRESTRIAL LASER SCANNING 

Terrestrial (LiDAR) laser scans were made of various valley slopes within the study area using 
the BGS’s ‘very long-range’ laser scanner (Riegl LPM2K). The advantages of this method for 
areas such as Bath are as follows: 

 Completely remote,  

 High levels of detail can be captured 

 Results more accurate than alternatives.  

The disadvantages experienced in Bath may be summarised as follows: 

 Generally poor vantage points, particularly of upper convex slopes where most mass 
movement features occur. 

 Tree cover an insurmountable obstacle, as it is to most types of remote sensing. 

The method was capable of detecting relatively minor surface features (> 1 m height) at 
distances of up to about 500 m. This is a distinct improvement on the NextMap data.  However, 
whilst the laser was capable of range finding at distances well in excess of 1 km, the density of 
points at this distance was poor. Also, obliquely angled, poorly-reflective surfaces (e.g. grass) 
proved problematic. Details of the survey are shown in  Table 9 and Table 10. 
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Table 9 Laser scan survey 

Scan site Scan 
location 

Date Scans Subject 

Swainswick (Innox 
Lane) 

ScanPos1 
(S1) 

02/03/04 Scan6 W side (N end, incl Sopers Wood) 
Scan7 repeat (less dense) 
Scan8 repeat (less dense) 
Scan9 repeat (less dense) 
Scan10 repeat (less dense) 

Swainswick (Little 
Solsbury Hill -Piezo 
I15) 

ScanPos2 
(S2) 

03/03/04 Scan1 W side (lower, S end) 
Scan2 repeat (less density) 
Scan3 repeat (less density) 

St. Catherine’s (FP 
stile, Upper NorthEnd 
Farm)  

ScanPos3 
(S3) 

03/03/04 Scan1 E side (overall) 
Scan2 repeat (less dense) 
Scan3 detail (upper slope) 

St. Catherine’s (gate 
on Steway Lane) 

ScanPos4 
(S4) 

04/03/04 Scan1 W side (towards ScanPos3) 
Scan2 detail (upper, N end) 

St. Catherine’s (track  
Orchard Farm) 

ScanPos5 
(S5) 

04/03/04 Scan1 E side below Rodney Farm 
Scan2 detail – upper slope 
Scan3 Slope below Dicknick Woods (to N) 

 
The Leica SR530 ‘base station’ dGPS unit was located on a tripod at Leigh House, Bradford-on-
Avon (B&B) in the paddock/garden for the duration of the field survey. 

The scan positions and one tie-point per scan position were located in static mode, on the same 
tripod as the laser scan, using the roving GPS unit. These were also located using the GS50 unit 
in a rucksack, as a back-up. On Day 2 (3/03/04) the battery unit of the base station failed and no 
records were saved. Due to the separation of base station and field sites (approx 10 km) the 
durations for each location were relatively high (around 1 hour). 

 

Table 10 Differential GPS survey 

Point ID Point Class Epoch Easting Northing Ellip. Hgt. Ortho. Hgt. Geoid Sep. 
Pos. & 

Hgt. Qlty

s1 Measured 02/03/2004 375780 168265     

s2 Measured 03/03/2004 13:18 376313.1137 167812.2933 153.0533 103.9497 49.1036 0.0052 

s3 Measured 03/03/2004 378169 169074     

s4 Measured 04/03/2004 13:40 378830.5867 168814.0269 135.3042 86.2781 49.0261 0.0035 

s5 Measured 04/03/2004 17:13 378149.082 169678.2278 122.9615 73.8974 49.0641 0.0007 

t2 Measured 03/03/2004 11:39 375575.0799 167243.7946 146.9894 97.8661 49.1233 0.0232 

t5 Measured 04/03/2004 15:52 378336.1626 169903.209 103.5853 54.5245 49.0608 0.0016 

x (1) Averaged 02/03/2004 09:53 382953.1532 161990.4183 144.2491 95.4681 48.781 0.0103 

x (2) Averaged 03/03/2004 09:03 382953.1809 161990.3533 144.2554 95.4744 48.781 0.012 

x (3) Averaged 04/03/2004 12:00 382953.4511 161990.591 144.2359 95.4549 48.781 0.0133 

Key:  laser scan locations, s 
 Laser targets, t 
 dGPS base station, x 
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Figure 43 Laser-scanned 3D point-cloud model, Swainswick (west-side), ScanPos1  
Note: viewed towards SW, red dot is location of scanner, Soper’s Wood landslide in top right corner 
 
 
The laser-scanned image shown in Figure 43 gives a good indication of the nature of raw 
terrestrial LiDAR data. The points are distributed in a ‘scatter-gun’ pattern with the data nearest 
to the scanner being the densest, and the furthest data the least dense. This distribution is 
accentuated by the fact that the overall slope angle is low, hence detail in the upper part of the 
slope is low, and as such does not lend itself to triangulation and surface rendering. However, the 
image does show geographical features (e.g. hedgerows) and relatively subtle changes in ground 
surface, at least in the lower and middle slope, of a scale undetectable using NextMap. Whilst the 
image in Figure 43 resembles a contour map, it is not and should be viewed in 3D to obtain the 
full effect. From such scans accurate cross-sections can be produced.
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Appendix 1 Major recorded landslides in the Bath area 

The following account is taken from Forster et al. (1985): 

 

NORTH STOKE [700 687] Ref. Hawkins and Privett (1980) 

This landslip is situated 3 km north-west of Bath and extends from the western edge of the village of North Stoke 
westwards onto the alluvial flats, of the River Avon. The backscarp is arcuate. 

The slip has taken place in cambered Inferior Oolite, Midford Sands and Head and is complex and degraded. 
Hummocky slip debris extends from the Inferior Oolite/Midford Sands backscarp to the margin of the River Avon. 
Erosion by the river has caused minor slips to take place in the toe of the slip which have affected the road at [696 
684] for many years. 

 

2. HEATHER FARM [723 682] Ref. Hawkins and Privett (1979, 1980) 

This slip is situated l km north west of Bath on the south facing slope of Lansdown Hi11. The semicircular 
backscarp is formed by the Upper Fuller's Earth clays and the Great Oolite limestones which cap them. 

The main slip mass is composed of Fuller's Earth and Head, and is the result of numerous individual flows and 
slides. It extends some 400 m downslope from the base of the backscarp. 

A steep sided gully has been cut within the slip by water discharging from the springs at the base of the Great Oolite 
and from thin limestone bands within the Fuller's Earth. It is thought that much of the landslipped material has been 
removed down this gully thus accounting for the small amount of debris present below a large backscarp. 

 

3. BAILBROOK [773 673] Ref. Hawkins & Privett (1979, 1980), Gibb (1984) 

The Bailbrook slip has been recognised as such on the grounds of its morphology which is dominated by a l km, 
long, arcuate backscarp 25 m high at an angle of slope of 30-40 degrees. Hawkins and Privett compare the 
Bailbrook slip to the North Stoke slip in terms of mode of origin and style of movement i.e. over-steepening of the 
slope by river erosion caused a deep rotational failure to take place. The subdued topography within the Bailbrook 
slip is considered to be the result of many years of agricultural use. The site investigation carried out in 1983 for the 
proposed A4/A36 Batheaston/Swainswick bypass included several boreholes through the Bailbrook slip which 
provided the first subsurface data of the area. The evidence of the boreholes does not wholly support the existence of 
a major landslip at this location. The top of the Lias clay encountered by the boreholes within the boundary of the 
slip does not appear to have suffered vertical displacement, although there are an unusually large number of 
slickensided joints and bedding planes. 

The backscarp could have originated by spring sapping at the base of the Midford Sands, an origin favoured by the 
straightness of the scarp. The report by Sir Alexander Gibb and Partners concludes that in any engineering design 
both possible origins of the morphology must be taken into account. 

 

4. SALLY-IN-THE-WOODS [791 652 to 795 647] Ref. GKN Rep.SM 361 1959; GKN Rep.SM 475 1960; 
Foundation Engineering F69/977 1969; GKN Rep.S 1575 1969; Nott Brodie  1979 

The section of the A363 which passes through Sally-in-the-Woods has been subject to minor slipping for many 
years. The ground movements are shallow, 4 m deep rotational slides in Head and landslide debris. The section of 
road investigated in the listed reports is cut by the ENE/WSW trending Monkton Farleigh Fault. North of the fault 
the slips appear to be associated with the junction of the Inferior Oolite and Midford Sands, and south of the fault 
with the base of the Lower Fuller's Earth. The local geology is not well established despite a number of site 
investigations.  

 

5. BEACON HILL [751 659] Ref . Kellaway & Taylor 1968; Hawkins & Privett 1979; Strata Surveys Rep. B20907 
1973 

The extensive area of landslipping which forms the south-east slope of Beacon Hill. is considered by both Kellaway 
and Hawkins to be a deep rotational slide caused by the over-steepening of the hillside by the erosive action of the 
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River Avon, probably in the latter part of the late Devensian glaciation. The failure took place in Lower Lias shales 
overlain by cambered Inferior Oolite and Midford Sands. The backscarp behind the body of the slip cuts the base of 
the Lower Fuller's Earth which caps Beacon Hill. 

A report by Strata Surveys for M.P. Kent, however, appears to indicate, on the evidence of a borehole into the slip 
mass, that the slip may be relatively shallow and more translational in character. The area on and around the slip has 
been extensively built upon, making accurate mapping of the landslip very difficult except for the backscarp. It is, 
however, reasonable to assume that the landslip debris extends downslope to the present course of the River Avon. 
Several areas within the assumed limits of the Beacon Hill slip have been active since the late eighteenth century 
when the development of the area commenced. Since that time at least six instances of earth movement have been 
recorded and it is probable that many other cases before and after that date have not been recorded. Recorded 
movements include: 

a) Camden Crescent [749 657] 

The construction of Camden Crescent in 1794 was delayed by a series of shallow landslips which destroyed some 
houses and caused the abandonment of others. Camden Crescent remains uncompleted, a crescent in name alone, 
although no further movements have taken place since that time. Movement also took place in 1889 when houses 
below Camden Crescent collapsed. 

b) Hedgemead slip [750 656] 

The Hedgemead area which lies downslope and to the south-east of Camden Crescent was developed between 1860 
and 1875. The first signs of slipping probably occurred in the early 1870's and continued periodically until the late 
1800s. In total 2.5 hectares of land were affected and at least 135 houses destroyed or demolished due to the direct 
or indirect effects of the movements that occurred on November 1878, July 1881, Hedgemead Park was opened in  
1889. 

The landslips were shallow translational movements in Head composed of Fuller's Earth, Midford Sands and 
Inferior Oolite which had been barely stable prior to development. The slips were largely triggered by increased 
water input into superficial material as a result of the service works associated with the housing i.e. infiltration from 
leaking sewers, water supply pipes and storm water soakaways. 

The improved water flow in the Midford Sands caused by natural piping induced by water abstraction from wells 
may also have proved detrimental to stability because, when wells were abandoned, water continued to be brought 
into a critical area but was no longer removed. 

The presence of confined aquifers in the limestones of the Lower Lias, which could have supplied water under 
pressure to the Head/bedrock interface, may also have played a part in the failure. No remedial measures proved 
effective, with the result that the area was turned over to recreation purposes, as Hedgemead Park. 

c) Beacon Common Slip [751 662] 

In 1958 a small rotational slip l0 m across occurred in the outcrop of the Fuller's Earth clay where the backscarp of 
the Beacon Hill slide cuts Beacon Common. The failure had undergone 5 m of vertical displacement by 1961 and 
had generated a mud flow which extended down slope for 120m. The movement was finally stabilised by the 
installation of herring bone drains in the hillside. 

d) Perfect View Slip [752 662] 

On the 5th of December 1972 during a period of wet weather, a 50m long crack appeared in the roadway of Perfect 
View, and the downslope side dropped 75 mm. The movement ruptured a water main which supplied copious 
amounts of water to the area. On the 6th December the downslope side had dropped a total of 0.75 m but no further 
movement took place. Piezometric measurements showed porewater pressure had dropped in the main body of the 
slip by the 10th December. No reference to further movement has been found. 

e) St. Stephen's Hill [750 659] Ref. BA69 S.W.I.R.L. Rep 1495 

During January 1979, in St Stephen's Road, a masonry retaining wall 0.5m thick and 3 - 5m high underwent a 5 
degree rotation accompanied by cracking of the upper road level pavement. The conclusion of the site investigation 
was that the wall failed due to inadequate design and that it was only effective in the past because of the use of good 
quality back fill. The site investigation also pointed out that the area around the site was in a state of marginal 
stability. Boreholes and trial pits showed the area to be underlain by coarse to fine granular hillwash on weathered, 
disturbed and fissured Lias clay. 

f) Mount Road [750 659] Ref: BA 49 Somerset C.C. Lab Rep. 48/77 (ACC) 

During the autumn of 1975 a failure occurred in the masonry retaining wall supporting the east side of Mount Road. 
The wall was founded on 4 m of Lower Fuller's Earth lying on Inferior Oolite limestone. Water percolating from 
behind the wall had caused leaching and erosion of the Fuller‘s Earth to the detriment of the structural integrity of 



OR/08/052; Draft 2.0  Last modified: 2008/08/11 14:09 

3 

the wall. Remedial measures suggested included grouting and various configurations of ground anchors which were 
designed to tie the wall back into solid stable ground. 

 

6. BEECHEN CLIFF [751 641] Ref. Hawkins, A.B. 1976; Kellaway, G.A.d. Taylor, J.H. 1968; Soil Mechanics 
(1967) SM 4734; Hawkins (1980) Rep. to Bath City 

The Beechen Cliff slip is considered to be a deep-seated rotational slide of Late Devensian age which has affected 
strata from the Inferior Oolite, limestone capping the hill, through the Midford Sands into the Lower Lias clays and 
silts which outcrop at its foot. A backscarp at a slope angle of 38 - 52 degrees is present above the debris apron. 

A series of boreholes through the slip mass proved the debris to be 18m thick. Another borehole nearby showed 
fissuring in the Lias clay to a depth of 24m, indicating that a slip plane in the Lias clay may also be present. 

Beechen Cliff is situated on the outside of a curve of the River Avon and it is thought by Kellaway and Hawkins that 
the slip occurred in late Devensian times as a result of over-steepening of the hillslope by river erosion. 

The effect of tree and vegetation cover on the face of Beechen Cliff is considered by Hawkins in his report to the 
Bath City Engineer in 1980. The steep cliff area appears to be currently stable and no movements during the last 
hundred years are recorded. However, movements did take place in the slip mass below the cliff at Calton Gardens 
in 1973 and at Calton Road in 1974. 

 

8. CALTON GARDENS [750 641] Ref. M.P. Kent 1972 Soil Mechanics 1973 Rep.6173 

In December 1972 a landslip took place south of Calton Gardens, opposite house numbers 45 to 50. The movement 
had been, initiated by the excavation of the foot of the slope in order to construct a lay-by next to the road; the slope 
was to be supported by a retaining wall. Heavy rainfall occurred before the wall could be completed and movement 
of the hillside took place. 

An investigation of the slip showed it to be approximately 50m wide across the toe by 30m up the slope, and 
relatively shallow in depth. It was confirmed that the slip had taken place by the partial reactivation of an ancient 
slip due to removal of support at the bottom of a 22 degree slope. The situation was aggravated by the existence of a 
confined aquifer in the Lias Clay below the slip which supplied water under pressure to the slip plane at the 
slip/bedrock interface. Remedial measures recommended were drainage of the confined aquifer and an improved 
retaining wall founded well into the Lias Clay. 

 

9. CALTON ROAD [752 642] Ref . Geotechnical Engineering SM/S/1 974 

An investigation into the failure of a retaining wall in Calton Road showed that the wall had failed due to 
deterioration of its structure. However, the investigation looked at the stability of the retained slope itself and found 
that the slope angle of 70 degrees and cutting height of 2.5 - 3.5 m in slip debris composed of silty, sandy, limestone 
rubble, was only marginally stable. The recommendation was made that the slope either be regraded to one of 35 
degrees or that a more effective retaining wall be designed and built to replace the old one, preferably in sections to 
minimise the risk of failure during construction. 

 

10. HENGROVE WOOD [780 650] Ref. Gibb 1984; Somerset C.C. Rep.4068; Hobbs 1980 

The Hengrove Wood slip was described by Sir Alexander Gibb and Partners in their report as having a length of at 
least 700m, and maximum depth of 20 m and as having taken place in Lias clay. 

BGS records show Hengrove Wood to be only part of a belt of landslipped ground which runs the entire length of 
the valley side, affecting strata from the limestones of the Great Oolite at the top, to the Lias clays at the base. The 
area was described in detail by Hobbs, (1980) who considered the Great Oolite to be uncambered but to have given 
rise to a number of minor rotational and translational failures which had slid and toppled onto the Fuller's Earth 
outcrop below. The Fuller's Earth outcrop is heavily wooded and the severity and style of movement was not clear. 
The main failure on this section of the valley side appeared to be on the lower valley slope below a 10 m scarp of 
Inferior Oolite limestone and Midford Sands. The movement is a shallow translational slip in cambered Inferior 
Oolite and Midford Sands with a slip plane possibly extending into the Lias Clay. Alternatively the slip may have 
simply overridden an original ground surface of Lias Clay. 

The marginal stability conditions which are present in some parts of this slip are demonstrated by the movements 
which took place within it in 1966 near Dry Arch [781 6551]. 

 

11. DRY ARCH BATHAMPTON [781 655] Ref. AV20 Structural Soils Rep. 4068 
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In 1966 a site investigation into the cause of cracking of the tarmac of the A36 near Dry Arch, Bathampton, was 
carried out by Structural Soils. The cause was found to be a slip 90 m long by 50 m wide which had started as a 
small rotational failure of the road embankment and developed into a translational slide in the Fuller's Earth/Inferior 
Oolite/Midford Sands Head. The bedrock below the site is Lower Lias clay and the junction with the Midford Sands 
is a short distance upslope, above the road. The area had been subject to earth movements in the past and the latest 
slip was considered to have been triggered by heavy rain causing an increase in water flow from the Midford 
Sands/Lias spring line, possibly aggravated by earth moving operations which had been carried out below the 
slipped part of the hillside. 

 

12 TWERTON [726 644] Ref. Chandler 1976 

Chandler refers to this slip as being 700 m wide and extending more than 300 m upslope from the No.1 terrace. The 
slip is important because of its relationship to the terraces of the River Avon which enable the time of its movement 
to be established. Field evidence shows that it pre-dates the aggradation of the No.1 terrace and post-dates the 
deposition of the No.3 terrace which indicates that the slip took place in late Devensian times. 

The slip is in Head and Lower Lias clay below a backscarp of Midford Sands and was probably caused by over-
steepening of the hillside by river erosion on the outside of a river bend. 

 

13 SWAINSWICK LANDSLIP BELT [760 765] Ref. Gibb 1984 

The Sir Alexander Gibb report on the proposed A46 bypass refers to the east side of the Swainswick valley as “the 
Swainswick Landslip Belt”. This valley side is only one example of landslipped valley sides in the Bath area and is 
not unique in any respect, other than its significance to the construction of the A46 Bypass. 

 

14 OLD HOUSE SLIP [763 674] Ref. Gibb 1984 

A Sir Alexander Gibb report describes this slip as being “200 m wide and 11 m deep in Lias clays”. BGS records 
show the backscarp to be of Inferior Oolite and Midford Sands, and coincident with a NW/SE fault with a 
downthrow to the SW. 

 

15 A46 [7563 6896] Ref. Foundation Engineering Rep. F69/977/2 

This slide occurred on the downhill side of a newly constructed three lane section of the A46 north of the 
intersection with the A4. Surplus material, mainly clay, had been dumped into a gully on the downslope side of the 
road. Heavy rain in July 1968 caused the tipped material to become saturated and f low downhill for a distance of 
300m. Investigation of the event showed that previous movements of this type had taken place through natural 
causes, the last occurrence having been some 60 years previously. 

The bedrock below the site is Fuller's Earth clay. Water is fed into the area by the spring line at the base of the Great 
Oolite limestone which outcrops upslope of the road. 

 

16 A46 ABOVE SWAINSWICK [754 694 - 752 700] Ref . AV93 Exploration Associates 1977 

This investigation concerns a 500 m section of the A46 which had been subject to subsidence prior to 1977. 

The road had been built on Upper Fuller's Earth clay below the junction with the Great Oolite limestone which is of 
ten the site of an active spring line. The report concludes that the Great Oolite is not cambered at this locality and 
that the movements are shallow f lows and translational slides. Stabilisation of the road embankment by drainage, 
and the interception and diversion of water inflow into the area was recommended. 

 

17 MEADOW LANE [770 662] Ref. Gibb 1984 

A series of landslips in Lias clays covering an area of approximately 250 m wide and having a depth in excess of 10 
m. This is part of the general occurrence of slipping on the valley sides around Bathampton Down. 

 

18 A36 LIMPLEY STOKE [780 611] AV 92 Exploration Associates 1977 

This investigation looked at a 100 m section of the A36 downslope from Limpley Stoke village, which had suffered 
disturbance by minor landslip movements. Boreholes in the slipped material indicate a thickness of 7 to 15 m of slip 
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debris lying on cambered Inferior Oolite in the north and on down-faulted Great Oolite in the south. The 
landslipping is considered to be typical of the stability state of the valley side as a whole. 

 

19 HINTON HILL [756 582] Ref . AV73 Somerset C.C. Rep 67/78ACC 

Cracking of the road surface at the top of Hinton Hill required an investigation to be carried out in 1978 by Somerset 
County Council. The investigation showed the road to be constructed on the edge of the outcrop of the Great Oolite 
limestone above a landslip-covered slope of Fuller's Earth. The angle of slope of the hillside was 12 degrees and the 
slip was between 6 and 7.5 m thick. The report concluded that the subsidence of the road was being caused by 
ground water seeping through the permeable Great Oolite limestone and creating a mudflow condition in the Fuller's 
Earth clay downslope of the road. Drainage measures alone were considered insufficient to ensure the long term 
stability of the site and some form of retaining structure was recommended, the most economical being piles. 
Further subsidence and cracking was expected to occur to the west of the existing unstable section. 

 

20 BANNER DOWN [794 687] Ref. AV68 C.J. Associates 51001 

A section of the unclassified road (Fosse Way) on the eastern side of Banner Down had suffered slipping and 
required an investigation to be carried but in November 1975. The road had been built on 2-3 metres of previously 
slipped material lying on the Upper Fuller's Earth clay downslope of the junction with the overlying Great oolite 
limestone. No details of the cause of the failure or recommendations for remedial measures were included in the 
report. 

 

21 MAGDALEN AVENUE [746 642] Ref. Wilcox Cooper Associates Rep. S4687 

Structural cracks in No. 28 Magdalen Avenue, Bath were investigated in November 1981. The building had been 
constructed on fill and landslip debris lying on Lower Lias clay. Natural landslipping was therefore suspected as the 
cause of the problem. However, the investigation found that structural inadequacies of the building and disturbance 
of the foundations by excavations nearby were the cause of the failure. 

 

22 BLOOMFIELD ROAD [739 630] Ref. Larnach 1963 Rep. to Bath City; Underwood 1963 Rep. to Bath city  

In 1963 a slip took place in a field north of Bloomfield Road after the field had been used as a waste disposal site. 
An inspection of the site showed the tipped material to be Fuller's Earth clay and the ground on which it had been 
dumped to be Fuller's Earth Head lying on Fuller's Earth bedrock. The loading of the slope, which stood at an angle 
of between 25 and 30 degrees, had caused a circular rotational failure to take place in both the tipped material and 
the Head below. The initial failure developed into a translational slide and ultimately a mudflow as it progressed 
downslope. The mudflow was particularly wet, probably due to the water issuing from the base of the Great Oolite 
limestone which capped the hill. 

Remedial measures recommended were the drainage of the slip mass and the careful regrading of the slope with the 
removal. from the site of all- excavated material. 

 

23 LANDSOWN [727 679] Ref. Cook 1973 

A shallow, 3 m thick landslip 210 m long, affecting 12 acres of ground on the south facing slope below the Great 
Oolite plateau at Lansdown, took place between October 1969 and January 1971. The slip developed in three main 
phases which were mainly movements of mudflow type but with some degree of translational sliding. The slip was 
started by the dumping of rubbish into an old abandoned quarry at the base of the Great Oolite limestone. Springs 
had been observed issuing at this level of the hillside, and the blocking of these drainage paths resulted in the 
saturation of the fill and underlying Head deposits causing failure. Once slippage had started, minor aquifers in the 
Fuller's Earth under the slip mass may have aided further movement. 
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Appendix 2 

Selected SI reports for A46 Swainswick area 

County of Avon (1977) A46 Swainswick Hill. [Final SI report-Ashcombe Wood area] Exploration Associates, 2 
vols. (NGRC Ref. No. 16389). 

Department of Environment (1970) Bath to M4 feasibility study. Manders, Raikes & Marshall. (NGRC Ref. No. 
16389) 

Department of Transport (1983) A46 Upper Swainswick to A420. Manders, Raikes, & Marshall. (NGRC Ref. No. 
16389) 

Somerset County Council (1966) [Stabilisation assessment for A46 at Swainswick] Ground Exploration Ltd Rep. 
No. 3739 (Nov. 1966) (NGRC Ref. No. 16389) 

Somerset County Council (1969) [Landslide investigation A46, North of Swainswick] Foundation Engineering Ltd. 
Rep No. F69/977/2 (Feb 1969) (revised Sept 1969) (NGRC Ref. No. 16389) 

Somerset County Council (1968) [Landslide investigation A46, Ashcombe Wood] Foundation Engineering Ltd. Rep 
No. F69/977/3 (Feb 1969) (NGRC Ref. No. 16389) 

Somerset County Council (1960) [A46 Butcher’s Wood] Sub Soil Surveys, Rep No. 60/13 (May 1960). (NGRC 
Ref. No. 16389) 

Department of Environment / Department of Transport (1984) A4/A36 Batheaston / Swainswick Bypass & A36 
link. Site investigations, 1983, Factual Report. Sir Alexander Gibb & Prtnrs. 2 Vols. Jan 1984. 

Department of Environment / Department of Transport (1984) A4/A36 Batheaston / Swainswick Bypass & A36 
link. Site investigations, 1983, Interpretative Report. Sir Alexander Gibb & Prtnrs. 2 Vols. March 1984. (not found 
in NGRC) 

Mott MacDonald / W S Atkins / Raynesway Construction Southern / Interoute (2003) A46 Four Winds Farm and 
Hartley Bends 

. 
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