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Summary  

41
The Galerkin finite element method is used to solve the coupled

410
equations governing the steady-state flow of groundwater and the

dispersion of salt in a coastal aquifer using an iterative scheme
111

which can be applied either to confined or unconfined aquifers. The

effects of both molecular diffusion and mechanical dispersion are

included in the model.

The method is applied to a test problem based on the Mogadishu

coastal plain in Somalia. Solutions are obtained both for th'e salt
111

concentration and the flow velocities in a vertical section of the

aquifer perpendicular to the coast. The effects, b)th on these
ID

solutions and on the rates of convergence, of altering the diffusionID
and dispersion paramters are investigated.

41

40

41

ID

ID

41

ID

40

ID
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NOTATION: The following symbols have been used:

40
porosity (dimensionless)

D' tensor coefficient of hydrodynamic dispersion (L2T
-1
)

salt concentration (dimensionless)
40

velocity vector (LT
-1
)

40
fluid density (ML

-3
)

hydraulic conductivity tensor (LT
-I
)

acceleration due to gravity (L1
-2
)

PS pressure (ML
-1
T
-2
)

x', z' coordinates in horizontal and downward vertical
40

directions (L)

•
of density of fresh water (ML

-3
)

•
p
s

maximum density of salt water present (ML
-3
)

a constant (dimensionless)
40

unit vector, outward normal to a boundary (dimensionless)

z',

 

•
z', elevations relative to origin (L)

o 1

thickness of aquifer (L)

pressure due to head h of fresh water (ML-IT-2)

•
D
d

coefficient of molecular diffusion for salt in the

aquifer (L
2
T
-1
)

•
p, x, z, D non-dimensionalized variables corresponding to p', x',

•
z' and D'

•
zo,zl, z2 non-dimensionalized elevations corresponding to z , zi

•
and z'

2

• non-dimensionalized mechanical dispersion tensor

•
aL, aT longitudinal and transverse dispersivities (L)

•
V velocity vector (LT

-1
)

•
d
50

mean grain diameter (L)

•
•



Po' P1' P2'

5l, 52'

coefficients in expansions of concentration

relaxation factor

tensor function

coefficients in expansions of pressure

u, f, g, S scaler functions
vector function

—
.Q region

r r
2

boundaries of Q

test function

u
h discrete approximation to u

Oi basis functions (global numbering)

basis functions (local numbering)

stiffness matrix

load vector

n local coordinates

IJ Jacobian function



INTRODUCTION

41
In many arid and semi-arid regions, surface water is either scarce

40
or unpredictable and groundwater often forms a major source of water

41
supply. An understanding of the groundwater flow is required both in

40
evaluating the size of the available resource and in developing the best

40
strategy for its use. The problem is complicated by constraints on the

41
water quality, depending on the particular use for which the water is

41
required; this is of particular importance in coastal aquifers, where

41
any increase in groundwater abstraction will cause saline water to move

41
further inland, possibly endangering existing supplies. Since the

41
amount of sodium chloride in sea water corresponds to approximately

41
twenty times the safe limit for chloride in drinking water, it is clearly

41
necessary to understand the interaction between the saline and the fresh

41

•
water, and its effects on the flow in the aquifer.

.  

41
This dissertation is concerned with investigating the conditions

41
in a coastal aquifer; it will be assumed that the uniformity of the41

41 aquifer properties and flow conditions along the coast are such that the

41 flow is essentially perpendicular to the coast. The problem can then be

40 reduced to two dimensions, considering only the flows in a vertical

• plane at right angles to the coastline. The problem has been further

• simplified by considering here only the steady-state case, with no time

40 dependence; it is proposed to extend the method to transient problems

.40 at a later stage.

40

• Two distinct approaches are possible to the problem of modelling

'41 saline intrusion. The first considers the salt and fresh water as

• immiScible fluids separated by a sharp interface; this approximation can

41

41



ID

411

40 greatly simplify the problem in many cases of practical interest,

ID
especially when certain assumptions relating to horizontal flow are also

ID
introduced (Bear'). The fresh and salt water are in fact miscible fluids

and a transition zone is formed at the interface as a result of hydro-

ID
dynamic dispersion; the use of the abrupt interface approximation can

ID
only be justified where the width of the transition zone is relatively

411
narrow.

•
40

The alternative approach which includes the effects of disper-

ID
sion has developed from the work of Henry2; the problem is treated as

one with continuous variation of salt concentration and density,

resulting in an equation of motion and a solute transport equation

411
which are coupled. This approach has been adopted for the work

described in this dissertation.
ID



•

•

•

EQUATIONS AND BOUNDARY CONDITIONS

0
2.1 The Governing Equations

The equations governing the steady state flow of water and the

•
dispersion of salt in a porous medium can be written (Beart

• V (nDh Vc) - V  (ac)  = 0 (2.1)

(PR) = 0 (2.2)

-K. (Vp' - pg Vz') (2.3)

P-Pf
or p = p

f
(1+ac) (2.4)

Ps-Pf•
Ps- Pf  • where a - , and the other symbols are as previously defined.Pf

•
Substituting from equation (2.3) into (2.2):

•
( Vp' - KpVz') = 0

•

g _

and rearranging and making use of (2.4):

• V (KVp') - gpf (K(l+ac)) = 0 (2.5)

• If we assume K to be constant, then:

• 3c
v 2PI =  gPfa ir

(2.6)

Substituting from (2.4) into (2.1):

0

0

0
V . (nDhyc) - V •

P-Pf
-

1 (pa)
Pf v q9. [ ( ))

Ps "f
p

s
r.i _v_
f Ps-Pf—

•

• fl



The first term on the right hand side is zero by (2.2);

substituting for g from (2.3):

(nOtly_c) =

If we again assume K to be constant, then:

V . (nDa c) -

2.2 Boundar Conditions

c = 0

ac  0
az'

1 1V  (7- - -  Vp) - — V (KVz)cxgpf — i+ac — a —

1
agpf —\7 • (C+ctc -V-P)

on OD

on  BC

on  OB  and DC

(2.7)

(2.8)

The equations (2.6) and (2.8) are to be solved simultaneously

in some region, subject to boundary conditions on the concentration and

the pressure. In the case of the coastal aquifer being modelled here ,

two cases need to be distinguished:

Case 1: The aquifer is confined (i.e. it is overlain by an impermeable

layer). The flow domain being considered is OBCD, shown in Figure 1,

where it is assumed that BC is sufficiently far inland for the water to

be fresh and that the impermeable boundaries  OB  and DC are horizontal.

Then taking the origin at 0 with coordinates x horizontally and z'

vertically downwards, the boundary conditions for the concentration are

given by:

(2.9)



•
•
•
•
•
•
•
• SEA

0
• - FRESH

• c=1
AQUIFER WATER

c=0

•
•
• Figure 1 CROSS - SECTIO N THROUGH

CONFINED COASTAL AQUIFER
•
•
•
•
•
•
• SEA

• 6
FRESH

• cr1
AQUIFER WATER

cr 0



The boundary conditions for the pressure are given by:

where z' is the elevation of the sea surface and z'
1
is the head at B.

Case 2: The aquifer is unconfined (i.e. there is no confining layer

overlying the aquifer and consequently the position of the top surface

of the flow domain is unknown a priori). The flow now takes place in

the region OBCD, shown in Figure 2; in this case the location of B

and the position of the boundary OB are part of the required solution.

can now be written:

Taking the origin at 0, the boundary conditions for the concentration

on OD
--

on BC
--

on BC
--

on OB

where n is the unit outward normal to the boundary OB.

The boundary conditions for the pressure are:

(2.11)

ap'
Tr '

- p
s
gz'

p g(z' - z')
f 2

pf(1 + ac)g

p
f
(1 + ac)g(-n

on OD

on BC

on EC

z') and p' = 0 on OB

(2.12)



where z' is the elevation of B. The extra condition on OB allows
2

the position of the free surface to be determined.

2.3 Non-dimensional Form of Equations

The equations (2.6) and (2.8) can be written in non-dimensional

form as follows. Let

2' = P

x' = hx

z' = hz

D' = D D
h d

where h is the mean saturated thickness of the inland part of the

aquifer under consideration, 13 = pfgh, Dd is the coefficient of molecular

diffusion for salt in the aquifer and p, x, z and D are dimensionless.

From equation (2.6):

-
v 2 n _  n ac

h2 r  'of a  E-5i

9 a
where now V = (— ,Dx

'O p , a

From equation (2.8):

D
d 1

V(nD Vc)  - r  V
— ap f (T-47E  °P)

1aDd V . (nD Vc) = V Vp)_ - 1+12X  —
hK

(2.13)

(2.14)

(2.15)
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ID

The boundary conditions for the concentration (2.9) or (2.11)

are clearly unaffected by the transformations represented by equations

(2.13).

411

The boundary conditions for the pressure in the confined case,

equations (2.10) become:

ID = (1 + a) (zo - z) on OD

p = (z1 - z) on BC (2.16)

PsiR = (1 + ac) on OB and DC

411
In the case of the unconfined aquifer, corresponding to (2.12),

411

• 2.4 The Dispersion Tensor

• Following Bear' the non-dimensionalized dispersion tensor D is

411 of the form:

•
• D D

h
/D
d

• I + D* (2.18)

41
where the non-dimensionalized mechanical dispersion tensor D* can be

•

•

• 8



written as:,

(0
ij
* =

Dd

(aLV)2( + aTV2z)/ 1VI  (ac aT)VxVz/IVI

(aL-aT)Vxy lvl

where a
L aT

are the longitudinal and transverse dispersivities of the

medium (assumed isotropic) and

= s/n -
-K

n(l+ac) [Vp - (1+ac)Vz)

Equation (2.19) can be simplified by making the assumption that

the flow is essentially horizontal with Vx » Vz (Wikramaratna and

Wood  5); D* is then given approximately by the diagonal matrix

a
L

0

0 a
T

(aTVX aLVZ)/IVI

(2.19)

(2.20)

(2.21)

Various different assumptions have been made about the values

taken for the dispersivities al_ and aT. Bear' suggests that they should

be obtained for each site from the solution of an inverse problem.

Nishi, Bruch and Lewis', in considering the seepage of pollutants from

a triangular ditch, take al_ = 1.8 d50 where dso  is the mean grain

diameter. On the other hand, Frind", discussing a coastal aquifer-

aquitard system, takes the dispersivities as proportional to the depth

of the aquifer; he takes aL = h/6, aT = aL/10.

For the work described here, the dispersivities have been assumed

to be related to the depth of the aquifer; solutions have been obtained

fl
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40

II
with a series of different values of a

L
and a

T
to allow comparison of

II
the results. The full form of the dispersion tensor (2.19) has been

II
used in obtaining solutions, allowing an evaluation of the effects of

40
the horizontal flow approximation, equation (2.21), used by

II
Wikramaratna and Wood'.

II

II

II

II

II

40

40

40

40

II

40

40

II

II

40

II

40

II

II

II

II

0

II

II
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0



41

41

41

• SOLUTION OF THE EQUATIONS

41
3.1 The Perturbation Ex ansion A roach

41

41 Wikramaratna and Wood' take a as a convenient 'small parameter

41 to use as the basis for perturbation expansions for equations (2.14)

41 and (2.15), putting

41

• c = co + cc
1
+ a2

C2 (3.1)

• P = Po aP1 a2P2 (3.2)

41

• Orthodox perturbation methods (Van Dyke') would solve for po,

• co, pl,  c r  etc. separately with boundary conditions from the terms

• of matching order, but Wikramaratna and Wood found it more convenient

• in obtaining numerical solutions to solve for po, co, 51, = Po + aP1,

• cl

-

= + (icy etc., using the full boundary conditions each time.

•
where the dispersion tensor is calculated at each stage from equations

•
(2.18) and (2.19) or (2.21) and with the velocities given by equation

41
(2.20) using the most recent estimates of the pressure and concentration.

41
11 -
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0

0

0
3.2 A Modified Iterative Scheme

410
In practice it was found that the iterative scheme given by

equations (3.4 - (3.6) failed to converge when realistic values were

taken for the molecular diffusion Dcr In order to overcome these

difficulties, a modified iterative scheme has been developed.
40

Equations (3.3), (3.4) and (3.5) remain unaltered, while equation

(3.6) is replaced by a two-stage calculation

40
D
d 1  1.(nD(V

n
)Ec

n
*) + Vc

n
*.y.15

nhK
40 (l+aEn_02

• 1  3cn
*

= 0 (3.7)
Dz

• (l+à n-1)

40 En = w  cn* + (1-w)E
n-1

(3.8)

Clearly w = 1 leads to the scheme obtained from the perturbation

40
expansion approach. A choice of w - 0.5 was found to give a very

significant improvement in the convergence of the scheme over the

whole range of parameter values used; this value of  w  has been used

40
in obtaining most of the results presented in section 4.

3.3 Galerkin Finite Element Solution

The equations for the pressure and the concentration have been

solved at each iteration using the Galerkin finite element method,

with isoparametric quadrilateral elements and bilinear basis functions

(Strang and Fix7; Zienkiewicz6).40

Consider the second order partial differential equation:

-V.(PVu) + r.Vu = f (3.9)_ _

12
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ID

ID

411 where the symmetric tensor P, the vector r and the scalar f are known

functions of position. The equation (3.9) holds in some region Q, with

boundary conditions:

ID

u = g on  F1
• (3.10)

(PVu) .n = 6 on  F
2

where r1 2
is the boundary of Q and n is the unit outward normal

from Q.

It is clear that each stage of the iteration both the pressure

equation (3.5) with boundary conditions (2.16) and the concentration

111
equation (3.6) or (3.7) with boundary conditions (2.9) are of this

form, and it is sufficient simply to consider the solution of the

problem defined by equations (3.9) and (3.10).

A weak form of the differential equation (3.9) is obtained by
4I

forming an inner product with a test function w:

ff (- V. ( PVu)  + r.Vu]w dQ = ff.ifwdQ (3.11)
Q

ID
Hence, integrating by parts

•
w (PVu).n ds - w(PVu).n ds

• Jr
1

— — r2

+ if [(Pvu).vw + (r.Vu)+ Q =  f f  fwdQ (3.12)
• 0

ID

ID

• 13 -
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0

Usi ng t he boundary condi t i ons on F2

• f f j (PVLu) .Vw + ( r .Vu)w) dR = f f fi erdS2 + ewds ( 3. 13)
• r2

111 wi t h t he unders t andi ng t hat u = g on rl .

The f unct i on u i s appr oxi mat ed i n ( 3. 13) by :

hu u = 1 u.s . ( 3. 14)
• 1=1

where t he si ar e basi s f unct i ons, and i t i s r equi red t hat uh = g at

t he nodes on ' 1'• put t i ng w = Sj i n t ur n t hen l eads t o a set of n

si mul t aneous equat i ons of t he f orm:
•
•

u.f f [ ( PV0. ) .Vs . + ( r .V0. )0 ) 1J0
• = ' 12 - 1 — — 1

•
(3. 15)

= f l f s .c1Q + 130 .ds = 1, n
•
•

J Jr2

These equat i ons can be wr i t t en i n mat r i x f orm as :

•
Hu = F + ( 3. 16)

•
wher e H i s t he ' st i f f ness mat r i x and F i s t he l oad vect or .

•

• I n t he f i ni t e el ement met hod t he si ar e ' l ocal ' - t he regi on Q

• i s di vi ded i nt o el ement s whose ver t i ces ar e cal l ed nodes , and t he pi

• ar e such t hat :

• 1 at node i
( 3. 17)

• 0 at every ot her node

14
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41

41

• The u. are called the nodal coordinates. Suppose that the point Q is

• at node i; then Oi(Q) = 1 and o.(0) = 0 for any jii and

•

• uh(Q) = ui

•

•

•

•

• = x n)j 1= J J

41

• z•(1).( ,n)
j=1 3

•

•

•

•

(3.18)

Suppose that the region Q has been divided in a suitable fashion

into N quadrilateral elements, and suppose that the sub-region Qt

represents the t-th element. Entries in the 'stiffness' matrix are of

the form:

For each element, a transformation is made to local coordinates

( ,n) on a canonical square using the isoparametric transformation:

15

(3.20)
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41.

41

•

•

41

41
Now

41
3x ax• dx — d + — dn
a an

41 az azdz = — d + dn
41 a

•

41

41
•

41

41

• wher e

41

41

41
Al so

I I ax az ax az
1" 1 = a an - an a

41

• d = X dx + dz
ax az

• dx + dz
x az

41

and compar i son of t erms i n equat i ons  (3.23)  and  (3.25)  gi ve :

16 -

(3.22)

(3.24)

I(3.25)



• n ao .
a _ 1 3z 1

•

- an - Tyr zj an
j=1

a. n as .
1 ax 1

• az

-

TJT T - Tij ill xj On

• (3.26)

• an _ 1 az = _ 1 If arbj  
ax TJT 3 ITT J a

lb

• _ I ax _ i y 3Gj
Dz -TIT @ TaT ac

lb

• where use has been made of equations (3.20) in obtaining the expressions

• on the right.

• Suppose that we adopt a local numbering system for the nodes, as

• shown in figure 3, and represent the local numbering by superscripts.

• Then for the bilinear elements:

lb

• 0' = itho ci+n)

• O2 = 1(l- )(l r1)
(3.27)

• cp' =

• 44 = i(1+0 (1-n)

•
• and all the other basis functions are identically zero within the

• element. Hence:

•
• ao' ao'

- i(ltn) - 1(1+ )

•

an

302 ,A2
"- -1(1+1) On - i(1- )

(3.28)
• ao'

- -1(1-n)
Oe

-On
ID

•   = 1 ( 1 — n ) a (b 4 = -1(1+ )
Ot "Fri



•
•

•
•

•

•

•

•

• -

• 0 0
(-1,1) 11,1)

•
•
•

• 714
)

•
• 4
•
•
• 0,-1)
• 0 0
•
•

Fig ure 3 LOCAL COORDINATES ON
• A CANONICAL SQUARE

•

•

•

•

•

•

•

•

•

•

•
18 -



0

0

0

0 Clearly in evaluating the terms I. in equation (3.19)

• a non-zero value will only be obtained for  H i  if nodes i and j

• (in the global numbering system) both fall on the boundary of element

• 1. Hence there will be non-zero contributions to the summation from

• at most two  of  the elements. The non-zero 1
ijt

can be evaluated by

41 @S. @S . aa:
substituting for -E L,  -E L from equations (3.21) and then

41 making use of equations (3.26), (3.27) and (3.28) and the relationship:

41

41 dxdy = 1J1dcdn (3.29)

41

41 to obtain an expression for Ju t  in which the integrand is given in

41 terms of P11'
P
12'

P
22

and simple functions of n and the integration

41 is to be performed over the square -1 < < 1, -1 < n <,.1. The integral

41 can be evaluated numerically using four-point Gauss-Legendre quadrature

41 with the sampling points given by = ±
1
/JT, n =

1/ 1/7 .

41

41
The elements F. of the load vector can be similarly evaluated

41
using the equation

41

41
F.  f f  fo.dxdy  = f i f .dxdy (3.30)

41 0 9.=1 t

41

• and in this case there will only be a non-zero contribution to the

• summation if node j is on the boundary of element  t .

•

• After assembly, the matrix equations (3.16) have been solved

41 using NAG subroutines F018MF and FO4AVF. The subroutine FOIBMF

41 decomposes the real banded matrix H into triangular sub-matrices using

41 Gaussian elimination with pivoting, making use of the band structure

•

•
19 -
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to reduce the storage requirements. The subroutine FO4AVF uses this

ID
decomposition to obtain the solution.

411
3.4 The Unconfined Case

ID
The iterative scheme has been further modified to deal with the

case of an unconfined aquifer. Initial estimates of pressure and

concentration are obtained exactly as for the confined aquifer using

equations (3.3) and (3.4) and ignoring the extra condition p = 0 on OB411
(equation 2.17). At each stage of the iteration the positions of the

ID nodes lying on the free surface are adjusted in a vertical direction,

after which new estimates of the pressure and concentration are obtained

• using equations (3.5), (3.7) and (3.8). Suppose that node k is on the

free surface and at the n-th iteration it had z-coordinate z
n
(k)

ID with corresponding pressure and concentration solutions rin(k) and

• n
(k). Then the new z-coordinate is given  by:

(k)

•
z
n+1

(k) =  z  (k) n  (3.31)
n 1+aEn(k)

•
• The use of this equation is motivated by the fact that with zero

• pressure at zn+.1(k), a constant concentration En(k) and a hydrostatic

• pressure distribution, the pressure at zn(k) would be equal to f3n(k).

ID

41

•

ID

•

ID

- 20 -
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41

• RESULTS  

•
4.1 The Test Problem

ID
The methods discussed above have been tested on an example

ID based on the Mogadishu coastal plain in Somalia. The Mogadishu

• aquifer is a thick semi-consolidated sand aquifer which passes

• laterally into arenaceous limestone towards the coast. The

• following model dimensions and parameter values based on the Mogadishu

• aquifer have been used for the test problem.

•
-4 -1

•

• An aquifer length of 500 m was found to be sufficient: further

• increases in the modelled aquifer length were found to have no significant

• effect on the solutions obtained and this value was used in all the

• model runs described below.

•

• For the confined case, values for z and z'1of 0.0 and 2.2 m

• were used, while for the unconfined case, the value of z' was taken as

•
2

ID

• Table 1 summarises the other parameter values for the runs

• discussed below. Figure 4 illustrates the finite element mesh used

• for the test problem.

•

• The coefficient of molecular diffusion for sodium chloride in

• solution is given by Weast, Selby and Hodgman9  as 1.5 x 10-9 m2s-1.

- 21
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•
•
•
•

•

•
•

Following Bear, the effect of the porous medium is to reduce the

1 2
molecular diffusion coefficient by a factor m, where -3- < m < 7.

2
Taking m  = 7, this gives a value of Dd = 10-9 m

2
s
-1

for the coefficient

of molecular diffusion in the aquifer. In some cases it proved

impossible to obtain convergence with such a small value of Dd, and

it was necessary to use larger values for some of the runs in order

to compare the different schemes. The run numbers used to identify

the various runs consist of a two-digit number followed by a letter.

The letter identifies the value used for Dd
:

41
D
d
= 10-5

41

41

41

1 41

•
41

41

41
concentration:

41

41
maxic

n
* - E

n-1
I <  0.1  (4.1)

41

41
where c

n
* and E

n-1
are as used in equation (3.7) and where the

ID
maximum is taken over the nodal values. This measure of convergence

D
d
= 10-6

D
d
= 10-9

Thus, for exampfe, runs 12A, 12B and 12E all have identical parameters

except for the value of Dd.

The criterion for convergence is based on the maximum change in

ID

maxIE - En_il, since it is independent of the choice of relaxation
41

factor (..).

has been adopted, rather than the alternative of looking at

- 24



41

41

41

• 4.2 Choice of Relaxation Factor

•
Initial runs were made using the iterative scheme described in

41
section 3.2 with a value of  w  = 1.0 (that is, following the scheme used

41
by Wikramaratna and Wood'). In order to obtain convergence with this

41
scheme, it was necessary to use values of Dd as large as 10-6 or 10-5.

41
Figure 5 shows the c = 0.5 isochlors for successive iterations

41
for run 88; it will be observed that the solutions for the 'odd'

•

41
iterations (C3, C5, C7) and those for the 'even' iterations (C4, C6, C8)

are in each case closely grouped but the solution oscillates back and
41

forth between these two distinct groups.
41

41
Subsequently a value of  w  = 0.5 was tried, and was found to give

41
much more satisfactory results. Figure 6 shows the successive c = 0.5

41
isochlors for run 128; the only difference between runs 88 and 128

41
was in the value taken for w. Figure 7 illustrates the improved

41
convergence obtained with w = 0.5, showing the maximum nodal change in

41
the concentration solution at each iteration for the two runs. Figure

41
8 shows the corresponding convergence rates for runs 8A and 12A;

41
although in this case both.schemes converged, it is clear from the

41
diagram that the convergence is improved by taking w = 0.5.

41

41
The choice of w = 0.5 resulted in satisfactory convergence over

41
a wide range of parameter values, and this value of w has been used for

41
all the other runs discussed below.41

41

41 4.3 Effect of the Horizontal Flow A roximation

• Wikramaratna and Wood' assumed that the flow was essentially

• horizontal allowing the use of the simplified form of the dispersion

• tensor given by equation (2.21). The program has been modified to

41
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41

41

41

41 make use of the full dispersion tensor, equations (2.19), allowing an

41 assessment of the effects of the approximation. Figure 9 compares

41 the positions of the c = 0.25, 0.5 and 0.75 isochlors for run 15E

41 which uses the horizontal flow approximation and run 25E which uses the

41 full form of the dispersion tensor. The main effect of using the

41 horizontal flow approximation is to bring the 'toe of the saline wedge

41
further inland than with the full dispersion tensor, but it has relatively

41
little effect on the spread of the isochlors. Figure 10 shows the

41
convergence for the two runs; clearly the horizontal flow approximation

41
results in a small reduction in the number of iterations required.

41

41
4.4 Flow Velocities  

41
Figure 11 shows the velocity vectors obtained for run 25E,

41
using equation (2.20) to calculate the velocities for the converged

41
pressure solution, together with the c - 0.25, 0.5 and 0.75 isochlors.

41
The circulatory motion of the saline water, flowing in at the bottom

41
of the aquifer and flowing out together with the fresh water in the

41
upper part of the aquifer has been described by Henry and has also41

41 been observed in field measurements'. This circulation results in the

41 increasing flow velocities at the top of the aquifer as the coast is

41 approached, since the water passing through the aquifer is flowing

41 out through a continually decreasing cross section of the aquifer.

41

• 4.5 Effect of the Choice of a
L'

a
T

41 Runs 25E, 26E and 27E illustrate the effect of reducing the

41
values of a

L
and aT while keeping a

L
/a
T
constant. Figure 12, which

41
compares the convergence for the three runs, shows that a reduction

41
in a

L
and a

T
leads to a slower rate of convergence. The concentration

41

- 30 -



• 
•

•
• 

•
•

• 
• 

• 
•

•
• 

•
•

• 
•

•
• 

• 
• 

•
•

• 
•

•
• 

• 
• 

•
•

• 
•

•
•

C
O

N
V

E
R

G
E

D
 

C
O

N
C

E
N

T
R

A
T

IO
N

 
S

O
LU

T
IO

N
S

 
Dd

=
10

-9
 

ad
h

=
0

.1
 

aT
/h

=
0

.0
1

R
U

N
 

15
E

 
[C

6
j

R
U

N
 2

5E
1C

7
1 •••

 
1%

. 
.6

..
. 

..
. 

••
..

. 
••••

- 
S.

H
O

R
IZ

O
N

TA
L 

F
LO

W
 

A
P

P
R

O
X

IM
A

T
IO

N

F
U

LL
 

D
IS

P
E

R
S

IO
N

 
T

E
N

S
O

R

..
...

 
%

• 
•

..
.

•
%

• •
• 

%
•

%
•

S.

....
.

..
.

...
\ 

/ 
\ 

/ 
\ 

/
.7

5 
.5

 
•2

5

F
ig

u
re

 9

'I



• 
• 

•
•

• 
•

•
• 

• 
•

• 
• 

• 
•

• 
• 

• 
• 

• 
•

•
• 

•
• 

• 
•

• 
•

•
• 

•
• 

•
•

U
J

IN
)

1 
.2

ct
 

0
.4

ci a
0

.2
CE

0
.0

C
O
N
V
E
R
G
E
N
C
E
 
O
F
 
I
T
E
R
R
T
I
O
N

Ek
i=
10
-9
 

&
il
h
=
0
.0
1

R
U

N
 2

5
E

F
U

LL
 

D
IS

P
T

E
N

S
O

R

1
. 

2
. 

3
. 

4
. 

6
. 

6
. 

7
. 

8
.

I
T
E
R
R
T
I
O
N
 
N
U
M
B
E
R

F
ig
u
re
 1
0

R
U

N
 

15
E

H
O

R
IZ

. 
F

LO
W

 A
P

P
R

O
X

.

 



• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

• 
• 

• 
•

R
U

N
 

2
5

E
F

U
L

L 
D

IS
P

E
R

S
IO

N
 

T
E

N
S

O
R

Ci
d=

10
-9

 
af

r
=

0
.1

a
T/

h
=

0
.0

1

S
C

AL
E

! 0
.0

0
0

0
0

2
5

0

0
.0

0
0

0
0

12
6

• 
• 

• 0
.7

5 
0

.5
 

0
.2

5

F
ig

u
re

 
11

 
V

E
LO

C
IT

Y
 

V
E

C
T

O
R

S
 

A
N

D
 

IS
O

C
H

LO
R

S
F

O
R

C
O

N
V

ER
G

E
D

 
S

O
LU

T
IO

N

w
t.

*



varies most rapidly in the region of the origin along the x-direction

• and it is to be expected that any oscillations in the converged

41 solutions will manifest themselves in this area; figures 13, 14 and

40 15 show the converged concentration solutions along z = 0 for 0 x 0.5

41 for the three runs. For run 25E, (figure 13), with a value of

40 a
L
/d = 0.1, the concentration solution reduces smoothly from c = 1 at

41 x = 0 to c = 0. For run 26E (figure 14), ati d = 0.05 and the solution

41 is effectively zero for x > 0.1; although there is some oscillation

of the solution, it is so slight as to be almost negligible. For run

27E (figure 15), aL/d = 0.025 and the solution has large oscillations;

41
it seems that in the region of x = 0 the mesh is too coarse to cope

41
with the changes in concentration occurring there.

41

41
Figure 16 compares the concentration solutions for runs 25E and

41
26E; the main effect of reducing aL/d is to bring the isochlors much

41
closer together in the vicinity of x = 0, z = 0; the isochlors in the

main body of the aquifer are also slightly closer together, but the

41
effect is much less marked here.

•

•
4.6 The Unconfined Case

41 Run 35E represents the unconfined case corresponding to run 25E;

the parameter values for the two runs are identical, and the only

•
difference is in the treatment of the top boundary condition. Figure

17 compares the convergence of the salt concentration in the two cases;

• a slight increase in the number of iterations required in the unconfined

• case is the result of the changes in position of the free surface

between iterations. Figure 18 shows the maximum change in free surface

• elevation at each iteration; it is clear from comparison with figure 17

40

41
34



that the changes in free surface position reduce more rapidly than the

changes in concentration, so that the convergence of the whole iteration

is in fact governed by the convergence of the concentration solution.

The positions of the c = 0.25, 0.5 and 0.75 isochlors for run 35E

are indistinguishable to plotting accuracy from those obtained with

run 25E.
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CONCLUSIONS  

ID
The convergence of the iterative scheme depends on a suitable

ID
choice of relaxation factor w; a value of  w  = 0.5 was found to give

40
convergence over a wide range of parameter values, whereas with

= 1.0 the convergence was slower and was restricted to a very
40

limited range of parameters.

Solutions have been obtained using both the full form of the
ID

mechanical dispersion tensor and an approximation which assumes that
ID

the flow is essentially horizontal resulting in a diagonal form for40
the mechanical dispersion tensor. This horizontal flow approximation

was found to result in the 'toe of the saline wedge extending further

ID inland, although it has relatively little effect on the spacing of the

isochlors.

ID

• A reduction in the longitudinal and transverse dispersivities,

• a
L
and a

T'
was found to result in the isochlors coming closer together;

•
this effect is most marked at the top of the aquifer in the vicinity

• of the coast. Too great a reduction in aL and aT was found to give a

• solution for the salt concentration which exhibits spatial oscillations;

• further refinement of the finite element mesh should smooth out this

411 oscillation.

•
• The iterative scheme has been extended to cope with a free

• surface boundary at the top of the aquifer. The convergence of the

• position of this boundary was found to be more rapid than that of the

• concentration solution, and the overall increase in the number of

• iterations necessary for convergence was found to be small.

•
•
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