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Summary

The Galerkin finite element method is used to solve the coupled
equations governing the steady-state flow of groundwater apd the
dispersion of salt in a coastal aquifer using an iterative scheme
which can be applied either to confined or unconfined aquifers. The
effects of both molecular diffusion and mechanical dispersion are

included in the model.

The method is applied to a test problem based on the Mogadishu
coastal plain in Somalia. Solutions are obtained both for the salt
concentration and the flow velocities in a vertical section of the
aquifer perpendicular to the coast. The effects, both on these
solutions and on the rates of convergence, of altering the diffusion

and dispersion paramters are investigated.
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NOTATION:

P, X, 2, D

ZO, Z.I, Z2

D*

The following symbols have been used:

porosity (dimensionless})

tensor coefficient of hydrodynamic dispersion (LZT']

)
salt concentration (dimensionless)

h

velocity vector (LT~

fluid density (M.™3)

hydraulic conductivity tensor (LT™)
acceleration due to gravity (LT'Z)
pressure (ML"]T-Z)

coordinates in horizontal and downward vertical
directions (L)

density of fresh water (ML'3)

maximum density of salt water present (ML-3

)
constant (dimensionless)

unit vector, outward normal to a boundary {(dimensionless)
elevations relative to origin (L)

thickness of aquifer (L)

1.-2

pressure due to head h of fresh water (ML 'T °)

coefficient of molecular diffusion for sait in the
i
)

non-dimensionalized variables corresponding to p', x',

aquifer (L2T"

z' and Dh

non-dimensionalized elevations corresponding to zé, zi

and z,

non-dimensionalized mechanical dispersion tensor

longitudinal and transverse dispersivities (L)

]
)

mean grain diameter (L)

velocity vector (LT




C C-I, C2,..

Y coefficients in expansions of concentration

» coefficients in expansions of pressure

retaxation factor
tensor function

scaler functions
vector function

region
boundaries of @

test function

discrete approximation to u

basis functions (global numbering)
basis functions (local numbering)
stiffness matrix

load vector

local coordinates

Jacobian function




INTRODUCTION

In many arid and semi-arid regions, surface water is either scarce
or unpredictable and groundwater often forms a major source of water
supply. An understanding of the groundwater flow is required both in
evaluating the size of the available resource and in developing the best
strategy for its use. The problem is complicated by constraints on the
water quality, depending on the particular use for which the water is
required; this is of particular importance in coastal aquifers, where
any increase in groundwater abstraction will cause saline water to move
further inland, possibly endangering existing supplies. Since the
amount of sodium chloride in sea water corresponds to approximately
twenty times the safe limit for chloride in drinking water, it is clearly
necessary to understand the interaction between the saline and the fresh

water, and its effects on the flow in the aquifer.

This dissertation is concerned with investigating the conditions
in a coastal aquifer; it will be assumed that the uniformity of the
aquifer properties and flow conditions along the coast are such that the
flow is essentially perpendicular to the coast. The problem can then be
reduced to two dimensions, considering only the flows in a vertical
plane at right angles to the coastline. The problem has been further
simplified by considering here only the steady-state case, with no time
dependence; it is proposed to extend the method to transient problems

at a later stage.

Two distinct approaches are possible to the problem of modelling
saline intrusion. The first considers the salt and fresh water as

immiscible fluids separated by a sharp interface; this approximation can




greatly simplify the problem in many cases of practical interest,
especially when certain assumptions relating to horizontal flow are also
introduced (Bear'). The fresh and salt water are in fact miscible fluids
and a transition zone is formed at the interface as a result of hydro-
dynamic dispersion; the use of the abrupt interface approximation .can
only be justified where the width of the transition zone is relatively

narrow.

The alternative approach which includes the effects of disper-
sion has developed from the work of Henry?; the problem is treated as
one with continuous variation of salt concentration and density,
resulting in an equation of motion and a solute transport equation
which are coupled. This approach has been adopted for the work

described in this dissertation.




EQUATIONS AND BOUNDARY CONDITIONS

2.1  The Governing Equations

The equations governing the steady state flow of water and the

dispersion of salt in a porous medium can be written (Bear'):

v (nDp 9¢) -9 . (qc) =0 (2.1)
9. (eq) =0 (2.2)
-K . .
=5 (%' - pg v2') (2.3)
i (1+ac) (2.4)
DE— or p = p.{l+ac .
PsPs f
Pe~Pg
where a = 5o and the other symbols are as previously defined.
f

Substituting from equation (2.3) into (2.2):

v (BT - Kewmz') - 0

and rearranging and making use of (2.4):
v (K9') - gp. <2 (K(14ac)| = O (2.5)
= = Pfaz | ‘

If we assume K to be constant, then:

Substituting from (2.4) into (2.1):

PP )] ] Pg
Ps™P¢




The first term on the right hand side is zero by {(2.2);

substituting for g from (2.3):

_ 1 K 1
7 (nDhEF) = 590 Vo lyme W) - =Y (Kvz) (2.7)
If we again assume K to be constant, then:
v . (D,7¢) = — 9 . (v vp) (2.8)
- h— agpe - * ‘T+ac -~ ’

2.2 Boundary Conditions

The equations (2.6) and (2.8) are to be solved simultaneously
in some region, subject to boundary conditions on the concentration and
the pressure. In the case of the coastal aquifer being modelled here,

two cases need to be distinguished:

Case 1: The aquifer is confined (i.e. it is overlain by an impermeable

layer). The flow domain being considered is 0BCD, shown in Figure 1,
where it is assumed that BC is sufficiently far inland for the water to
be fresh and that the impermeable boundaries 0B and DC are horizontal.
Then taking the origin at 0 with coordinates x' horizontally and z'
vertically downwards, the boundary conditions for the concentration are

given by:

on 0D

0 on BC

[
"

%€ - 0 on OB and DC
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The boundary conditions for the pressure are given by:

= osg(za -z") on QD
p- pfg(zi -z") on BC (2.10)
op' = g + ac)g on 0B and DC
v f

where zé is the elevation of the sea surface and Zi is the head at B,

Case 2: The aquifer is unconfined (i.e. there is no confining layer
overlying the aquifer and consequently the position of the top surface
of the flow domain is unknown a priori). The flow now takes place in

P

the region 0BCD, shown in Figure 2; in this case the location of B
and the position of the boundary OB are part of the required solution.
Taking the origin at 0, the boundary conditions for the concentration

can now be written:

on 0D
o = 0 on 56
—— (2.11)
€ .9 on OC
92 .
ac = 0 on OB
an

~

where n is the unit outward normal to the boundary 08.

The boundary conditions for the pressure are:

~~ w
p' -psgz' on 0D
p' p.9{z, - z") on BC
e - L (2.12)
ap' pf(] + oc)g on EC
"o T
oz .
P pe(1 + ac)g(-n  2') and'p’' =0 on 0B

Q.
=2




—

where zé is the elevation of B. The extra condition on 0B allows

the position of the free surface to be determined.

2.3 Non-dimensional Form of Equations

The equations (2.6) and (2.8) can be written in non-dimensional

form as follows. Let

P =pPP
x' = hx
(2.13)
z' = hz
Dh = DdD

where h is the mean saturated thickness of the inland part of the
aquifer under consideration, p = pfgh, Dd is the coefficient of molecular

diffusion for salt in the aquifer and p, x, z and D are dimensionless,

From equation (2.6):

é-_ 24 - dc
hT VP 7 9pf & g
N I N
where now V = (ax . 5?) = h(ﬁiT" 557)
S
V2p = o o (2.14)

d K p 1
pr UnD Vo) = o Y (e P
aD _ ]

hX




The boundary conditions for the concentration {2.9) or (2.11)

are clearly unaffected by the transformations represented by equations

(2.13).

The boundary conditions for the pressure in the confined case,

equations (2.10) become:

2 = (1 +a) (zo - 2) on
p = (z] - Z) on
%% = (1 + ac) on

In the case of the unconfined

we obtain:
= -(1 + o)z on
v (22 - 2) on
9 .
%7 (1 + ac) on
= (1 +ac) (-n.2) and p =

2.4 The Dispersion Tensor

0D
BC (2.16)

0B and DC.

aquifer, corresponding to (2.12),

0D
BC
(2.17)

~

oC

0 on OB

Following Bear! the non-dimensionalized dispersion tensor D is

of the form:

D = Dh/Dd
I + D*

(2.18)

where the non-dimensionalized mechanical dispersion tensor D* can be




written as:,
(aLv2 *a; V )/ |V (aL-aT)VXVZ/IVl
1
il
[Dij ] = 0, (2.19)
- 2

(aL ar vaz/|V| (aTvx +a V )/ |V
L J

where a,» 3y are the longitudinal and transverse dispersivities of the

medium {assumed isotropic) and
R L v Ll (1+ac)j;] (2.20)

Equation (2.19) can be simplified by making the assumption that
the flow is essentially horizontal with VX >> Vz (Wikramaratna and

Wood *); D* is then given approximately by the diagonal matrix
L
{oij*] - vl (2.21)

Various different assumptions have been made about the values

taken for the dispersivities a, and ar. Bear' suggests that they should

L
be obtained for each site from the solution of an inverse problem.
Nishi, Bruch and Lewis®, in considering the seepage of pollutants from
a trianqular ditch, take a = 1.8 d50 where d50 is the mean grain
diameter. On the other hand, Frind“, discussing a coastal aquifer-
aquitard system, takes the dispersivities as proportional to the depth

of the aquifer; he takes a, = h/6, a; = aL/10.

L

For the work described here, the dispersivities have been assumed

to be related to the depth of the aquifer; solutions have been obtained




with a series of different values of a and ar to allow comparison of
the results. The full form of the dispersion tensor (2.19) has been
used in obtaining solutions, allowing an evaluation of the effects of
the horizontal flow approximation, equation (2.21}, used by

Wikramaratna and Wood>.

10 -




SOLUTION OF THE EQUATIONS

3.1 The Perturbation Expansion Approach

Wikramaratna and Wood® take o as a convenient 'small' parameter
to use as the basis for perturbation expansions for equations (2.14)
and (2.15), putting
2

Co t Ol +a%cy + .. (3.1)

[

o
1

o
]

pO + Gp] + azpz + (3.2)

Orthodox perturbation methods (Van Dyke®) would solve for Py

o> Py» C1» etc. separately with boundary conditions from the terms

of matching order, but Wikramaratna and Wood found it more convenient
in obtaining numerical solutions to solve for Pos o 5], =P, * OPy

¢, = ¢, + aCys etc., using the full boundary conditions each time.

This leads to the numerical scheme

vZp, = 0 (3.3)
i v(nD(V )¥c ) - Vc_.9p = 0 (3.4)
hK = o'>7p <o XPg )
05 = g o] (3.5)
n 9z )
%4 T(ND(V_ )92 ) + ) ve_.vp
hK — n’= (1+a€ F])z -'n n
1 aEn
- ! =t =0 (3.6)
(]+aCn_-|)

where the dispersion tensor is calculated at each stage from equations

(2.18) and (2.19) or (2.21) and with the velocities given by equation

(2.20) using the most recent estimates of the pressure and concentration.

1 -




3.2 A Modified Iterative Scheme

In practice it was found that the iterative scheme given by
equations (3.3 - (3.6) failed to converge when realistic values were
taken for the molecular diffusion Dy In order to overcome these
difficulties, a modified iterative scheme has been developed.
Equations (3.3), (3.4) and (3.5) remain unaltered, while equation

(3.6) is replaced by a two-stage calculation

24 o (ND(V_)9c_*) + ——r e *.vp
ac_*
- ! = =0 (3.7)
(]-i-g_c ])

Clearly w = ) leads to the scheme obtained from the perturbation
expansion approach. A choice of w = 0.5 was found to give a very
significant improvement in the convergence of the scheme over the
whole range of parameter values used; thi; value of w has been used

in obtaining most of the results presented in section 4.

3.3 Galerkin Finite Element Solution

The equations for the pressure and the concentration have been
solved at each iteration using the Galerkin finite element method,
with isoparametric quadrilateral elements and bilinear basis functions

(Strang and Fix’; Zienkiewicz®).

Consider the second order partial differential equation:

-9.(PPu} + r.9u = f (3.9)
12




where the symmetric tensor P, the vector r and the scalar f are known
functions of position. The equation {3.9) holds in some region Q, with

boundary conditions:
{3.10)

where P] + Tz is the boundary of @ and n is the unit outward normal

from Q.

It is clear that each stage of the iteration both the pressure
equation {3.5) with boundary conditions (2.16) and the concentration
equation (3.6) or (3.7) with boundary conditions {2.9) are of this
form, and it is sufficient simply to consider the solution of the

problem defined by equations (3.9) and (3.10).

A weak form of the differential equation (3.9) is obtained by

forming an inner product with a test func;ion W!

”Q[—_V_’.(PY_U) + L.zu]w e = ”Q'fwdQ (3.11)
Hence, integrating by parts
-! w {PYu}.n ds - [r w{PVu).n ds

N 2

+ JJQ{(PEQ).Ey + (Efzu)w]dﬁ = JIwadQ {3.12)

13 -




Using the boundary conditions on r2

JJQ[(PEp).gy + ([,gy)deQ = JJwadQ + JrZSwds (3.13)

with the understanding that u = g on r].

The function u is approximated in (3.13) by:

h n
U u = .z1u'i¢1' (3.14)
'|=

where the ¢, are basis functions, and it is required that uh = g at

-

the nodes on Iy putting w = ¢j in turn then Teads to a set of n

simultaneous equations of the form;

. {3.15)
= IJ fo.dQ + J Bo.ds =1, > N
o Y r,
2
These equations can be written in matrix form as:
Hu = F + & (3.16)

where H is the 'stiffness' matrix and F-is the logad vector.

In the finite element method the ¢, are 'Tocal' - the region Q
is divided into elements whose vertices are called nodes, and the ¢,
are such that:

1 at node i

$. = {(3.17)
l 0 at every other node

14




The u, are called the nodal coordinates. Suppose that the point Q is

at node i; then ¢.{Q) = 1 and ¢j(Q) = 0 for any j#i and
hoay -
u'(Q) = v, (3.18)

Suppose that the region Q has been divided in a suitable fashion
into N quadrilateral elements, and suppose that the sub-region QQ
represents the 2-th.element. Entries in the ’'stiffness' matrix are of

the form:

( 36; 3. 3¢, 3. 9. 3¢, 36 30,
= ' J 1 J 1 Ja Al J
R = JJQ[pH TR O VA TR TR TR B U YR T

— .| dxdz

n a¢1 3¢lJ 3¢1 a¢J 8¢1 3¢J a¢ 3¢
s ”Q [”n woa el e ow) PP w

994 99
* e ¢j tr, 52—-¢j]dxdz

] [ (3.19)

For each element, a transformation is made to local coordinates

(£,n) on a canonical square using the isoparametric transformation:

.~
]
ie~-123

54 Xj¢j(£,n)
(3.20)

™~
0]
ne-3

Zj¢j(ﬁ’n) ]

J=1

15




Hence
3% C 3 3x T an ax
a3 8¢i & B¢i an
2 C 3 3z " m a2z
Now
X g, B
dx = 3% de + 3 dn
Sy, m2
dz = 5E dg + 3 dn
which leads to
] 3z ox
dg—m(—a-ﬁdX'—'*dz

1

dn=m("‘égdx+a—£d2)

9z

where
jg] = S22z Xz
3§ dn an 9§
Also
- _ 9§ 8
dg = M dx + =2 dz
Mgy, B
dn = X dx + ~z dz

L (3.21)

(3.22)

(3.23)

(3.24)

(3.25)

and comparison of terms in equations (3.23) and (3.25) give:

16 -




Sz 5%
TuTran'FJTJ-E]ZJ n
RS I I SR
CTWTE WL
. (3.26)
BN
BT T 5 33
I VR N e
13T 3¢ TUT.j=] J 3

where use has been made of equations (3.20) in obtaining the expressions

on the right.

Suppose that we adopt a local numbering system for the nodes, as

shown in

Then for

figure 3, and represent the local numbering by superscripts.

the bilinear elements:

1(1+€) (3+4n)
1(1-£) (1+n)
1(1-£)(1-n)
1(1+€) (1-n)

"

(3.27)

and all the other basis functions are identically zero within the

element. Hence:

1 1
TR 5= = 1)

2 2
o (LD = 100-9)

3 3 L (3.28)
3= - -0 2. - -1(1-8)
3¢’ 3¢

= i(1-n) L= -3(1+E)

3T Elm J




Al

©) Q)
{-11) (11)
1
§
(1) (31
® ®

Figure 3 LOCAL COORDINATES ON
A CANONICAL SQUARE
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Clecarty in evaluating the terms Iij£ in equation (3.19)

a non-zero value will only be obtained for Ii' if nodes i and j

JL
{in the global numbering system) both fall on the boundary of element

2. Hence there will be non-zero contributions to the summation from

at most two of the elements. The non-zero I... can be evaluated by

i 98 304 305 3¢, o
substituting for TR TR T T: from equations (3.21) and then

making use of equations (3.26), (3.27) and {3.28) and the relationship:

dxdy = |JjdEdn (3.29)

to obtain an expression for Iiji

terms of P]], P]Z’ P22 and simple functions of £, n and the integration

in which the integrand is given in

is to be performed over the square -1 < § < 1, -1 < n <.1. The integral
can be evaluated numerically using four-point Gauss-Legendre quadrature

with the sampling points given by £ = ¢ 1/-/3', n =t 1/J§.

The elements Fj of the load vector can be similarly evaluated

using the equation

N
F. = JJ fo.dxdy = § JJ fo.dxdy (3.30)
J Q p=1l/g, J

and in this case there will only be a non-zero contribution to the

summation if node j is on the boundary of element £.

After assembly, the matrix equations (3.16) have been solved
using NAG subroutines FOI18MF and FO4AVF. The subroutine FOI1BMF
decomposes the real banded matrix H into triangular sub-matrices using

Gaussian elimination with pivoting, making use of the band structure

19 -




to reduce the storage requirements. The subroutine FO4AVF uses this

decomposition to obtain the solution.

3.4 The Unconfined Case

The iterative scheme has been further modified to deal with the
case of an unconfined aquifer. Initial estimates of pressure and
concentration are obtained exactly as for the confined aquifer using
equations (3.3} and {3.4) and ignoring the extra condition p = 0 on 6%
(equation 2.17). At each stage of the iteration the positions of the
nodes lying on the free surface are adjusted in a vertical direction,
after which new estimates of the pressure and concentration are obtained
using equations (3.5), (3.7) and {3.8). Suppose that node k is on the
free surface and at the n-th iteration it had z-coordinate zn(k)
with corresponding pressure and concentration solutions 5n(k) and

En(k). Then the new z-coordinate is given by:

B, (K)

K) = 2 (k) - D——
LRAIE 14ag (k)

(3.31)

The use of this equation is motivated by the fact that with zero

pressure at z__.(k), a constant concentration Eh(k) and a hydrostatic

n+1
pressure distribution, the pressure at zn(k) would be equal to ﬁn(k).

- 20 -




RESULTS

4.1 The Test Problem

The methods discussed above have been tested on an example
based on the Mogadishu coastal plain in Somalia. The Mogadishu
aquifer is a thick semi-consolidated sand aquifer which passes
laterally into arenaceous limestone towards the coast. The
following model dimensions and parameter values based on the Mogadishu

aquifer have been used for the test problem.

Permeability K=10"%ms!
Aquifer depth h = 100 m
Porosity n=0.4

a = 0.02

An aquifer length of 500 m was found to be sufficient: further
increases in the modelled aquifer length were found to have no significant
effect on the solutions obtained and this value was used in all the

model runs described below.

For the confined case, values for zé and zi of 0.0 and 2.2 m
were used, while for the unconfined case, the value of zé was taken as

2.2 m.

Table I summarises the other parameter values for the runs
discussed below. Figure 4 illustrates the finite element mesh used

for the test problem.

The coefficient of molecular diffusion for sodium chloride in

solution is given by Weast, Selby and Hodgman® as 1.5 x 1070 w7,

- 21
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Following Bear, the effect of the porous medium is to reduce the

molecular diffusion coefficient by a factor m, where-% <m< %n

Taking m = %, this gives a value of D = 107 ws™! for the coefficient
of molecular diffusion in the aquifer. In some cases it proved
impossible to obtain convergence with such a small value of Dd, and

it was necessary to use larger values for some of the runs in order

to compare the different schemes. The run numbers used to identify
the various runs consist of a two-digit number followed by a Tetter.

The letter identifies the value used for Dd:

_1a2
Dd = 10

_ a6
Dy = 10

_1n-9
Dy = 10

Thus, for exampfe, runs 12A, 12B and 12E all have identical parameters

except for the value of Dy-

The criterion for convergence is based on the maximum change in

concentration:
. =
max(c Cn—]l < 0.1 (4.1)

where cn* and En_] are as used in equation (3.7) and where the
maximum is taken over the nodal values. This measure of convergence
has been adopted, rather than the alternative of looking at

max|En - En_]l, since it is independent of the choice of relaxation

factor w.

- 24




4.2 Choice of Relaxation Factor

Initial runs were made using the iterative scheme described in
section 3.2 with a value of w = 1.0 (that is, following the scheme used
by Wikramaratna and Wood®). In order to obtain convergence with this
scheme, it was necessary to use values of Dd as large as 10'6 or 10-5.
Figure 5 shows the ¢ = 0.5 isochlors for successive iterations
for run 8B; it will be observed that the solutions for the 'odd'
jterations (C3, C5, C7) and those for the 'even' iterations (C4, C6, (8)

are in each case closely grouped but the solution oscillates back and

forth between these two distinct groups.

Subsequently a value of w = 0.5 was tried, and was found to give
much more satisfactory results. Figure 6 shows the successive ¢ = 0.5
isochlors for run 128; the only difference between runs 8B and 12B
was in the value taken for w. Figure 7 illustrates the improved
convergence obtained with w = 0.5, showing the maximum nodal change in
the concentration solution at egch jteration for the two runs. Figure
8 shows the corresponding convergence rates for runs 8A and 12A;
although in this case both.schemes converged, it is clear from the

diagram that the convergence s improved by taking w = 0.5.
The choice of w = 0.5 resuited in satisfactory convergence over
a wide range of parameter values, and this value of w has been used for

ail the other runs discussed below.

4.3 Effect of the Horizontal Flow Approximation

Wikramaratna and Wood® assumed that the flow was essentially
horizontal allowing the use of the simplified form of the dispersion

tensor given by equation (2.21). The program has been modified to

- 25 -
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make use of the full dispersion tensor, equations (2.19), allowing an
assessment of the effects of the approximation. Figure 9 compares

the positions of the ¢ = 0.25, 0.5 and 0.75 isochlors for run 15E

which uses the horizontal flow approximation and run 25E which uses the
full form of the dispersion tensor. The main effect of using the
horizontal flow approximation is to bring the 'toe' of the saline wedge
further inland than with the full dispersion tensor, but it has relatively
Tittle effect on the spread of the isochlors. Figure 10 shows the
convergence for the two runs; clearly the horizontal flow approximation

results in a small reduction in the number of iterations required.

4.4 Flow Velocities

Figure 11 shows the velocity vectors cobtained for run 2Z5E,
using equation (2.20) to calculate the velocities for the converged
pressure solution, together with the ¢ = 0.25, 0.5 and 0.75 isochlors.
The circulatory motion of the saline water, flowing in at the bottom
of the aquifer and flowing out together with the fresh water in the
upper part of the aquifer has been described by Henry and has also
been observed in field measurements?. This circulation results in the
increasing flow velocities at the top of the aquifer as the coast is
approached, since the water passing through the aquifer is flowing

out through a continually decreasing cross section of the aquifer.

4.5 Effect of the Choice of aL, aT

Runs 25E, 26E and 27E illustrate the effect of reducing the
values of a and ar while keeping aL/aT constant. Figure 12, which
compares the convergence for the three runs, shows that a reduction

in a and 3 leads to a slower rate of convergence. The concentration
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varies most rapidly in the region of the origin along the x-direction

and it is to be expected that any oscillations in the converged

solutions will manifest themselves in this area; figures 13, 14 and

15 show the converged concentration solutions along z = 0 for 0 ¢ x € 0.5
for the three runs. For run 25E, {(figure 13), with a value of

aL/d = 0.1, the concentration solution reduces smoothly fromc = 1 at

x =0toc=20. For run 26k (figure 14), aL/d = 0.05 and the solution

is effectively zero for x > 0.1; although there is some oscillation

of the solution, it is so slight as to be almost negligible. For run

27t (figure 15), aL/d = 0.025 and the solution has large oscillations;

it seems that in the region of x = O the mesh is too coarse to cope

with the changes in concentration occurring there.

Figure 16 compares the concentration solutions for runs 25E and
26E; the main effect of reducing aL/d i$ to bring the isochlors much
closer together in the vicinity of x = 0, z = 0; the isochlors in the
main body of the aquifer are also slightly closer together, but the

effect is much less marked here.

4.6 The Unconfined Case

Run 35E represents the unconfined case corresponding to run 25E;
the parameter values for the two runs are identical, and the only
difference is in the treatment of the top boundary condition. Figure
17 compares the convergence of the salt concentration in the two cases;
a slight increase in the number of iterations required in the unconfined
case is the result of the changes in position of the free surface
between iterations. Figure 18 shows the maximum change in free surface

elevation at each iteration; it is clear from comparison with figure 17
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that the changes in free surface position reduce more rapidly than the
changes in concentration, so that the convergence of the whole iteration
is in fact governed by the convergence of the concentration solution.
The positions of the ¢ = 0.25, 0.5 and 0.75 isochlors for run 35E

are indistinguishable to plotting accuracy from those obtained with

run 25E.
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CONCLUSIONS

The convergence of the iterative scheme depends on a suitable
choice of relaxation factor w; a value of w = 0.5 was found to give
convergence over a wide range of parameter values, whereas with
w = 1.0 the convergence was slower and was restricted to a very

limited range of parameters.

Solutions have been obtained using both the full form of the
mechanical dispersion tensor and an approximation which assumes that
the flow is essentially horizontal resulting in a diagonal form for
the mechanical dispersion tensor. This horizontal flow approximation
was found to result in the 'toe' of the saline wedge extending further
inland, although it has relatively little effect on the spacing of the

isochlors.,

A reduction in the longitudinal and transverse dispersivities,
aL and s Was found to result in the isochlors coming closer together;
this effect is most marked at the top of the aquifer in the vicinity
of the coast. Too great a reduction in 3 and 3 was found to give a
solution for the salt concentration which exhibits spatial oscillations;
further refinement of the finite element mesh should smooth out this

oscillation.

The iterative scheme has been extended to cope with a free
surface boundary at the top of the aquifer. The convergence of the
position of this boundary was found to be more rapid than that of the
concentration solution, and the overall increase in the number of

iterations necessary for convergence was found to be small.
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