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Abstract The eruptions of the Soufrière Hills volcano on Montserrat (Lesser Antilles) from 1995 to 

present have draped parts of the island in fresh volcaniclastic deposits.  Volcanic islands such as 

Montserrat are an important component of global weathering fluxes, due to high relief and runoff and 

high chemical and physical weathering rates of fresh volcaniclastic material. We examine the impact 

of the recent volcanism on the geochemistry of pre-existing hydrological systems and demonstrate 

that the initial chemical weathering yield of fresh volcanic material is higher than that from older 

deposits within the Lesser Antilles arc. The silicate weathering may have consumed 1.3% of the early 

CO2 emissions from the Soufrière Hills volcano. In contrast, extinct volcanic edifices such as the 

Centre Hills in central Montserrat are a net sink for atmospheric CO2 due to continued elevated 

weathering rates relative to continental silicate rock weathering. The role of an arc volcano as a source 

or sink for atmospheric CO2 is therefore critically dependent on the stage it occupies in its life cycle, 

changing from a net source to a net sink as the eruptive activity wanes. While the onset of the eruption 

has had a profound effect on the groundwater around the Soufrière Hills center, the geochemistry of 

springs in the Centre Hills 5 km to the north appear unaffected by the recent volcanism. This has 

implications for the potential risk, or lack thereof, of contamination of potable water supplies for the 

island’s inhabitants. 
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INTRODUCTION 

 

The geochemistry of groundwater on active volcanic islands is of interest because of potential 

contamination of water supplies by volcanic ash leachates and magmatic volatiles (Johnston 

et al. 2000). Strong evidence exists for synergistic interactions between volcanism and 

groundwater, such that volcanic activity influences groundwater chemistry (Aiuppa et al. 

2000; Varekamp 2008) and changing groundwater levels may trigger volcanic activity 



(Matthews et al. 2002). Volcanic islands commonly have high relief and runoff and are 

comprised of easily weathered volcanic material (Eiriksdottir et al. 2008). Elevated 

mechanical and chemical weathering in volcanic terrains has been recognized as an important 

component in the transport of global dissolved load to the oceans (Rad et al. 2007) and 

therefore plays a significant role in the consumption of atmospheric CO2 and the marine 

geochemical budgets of a variety of cations (Gaillardet et al. 1999; Dessert et al. 2003; Rad et 

al.  2006; Goldsmith et al. 2010). 

Island arc products generally range from basaltic to dacitic in composition. The more silicic 

end of this spectrum, andesites and dacites, are viscous magmas that lead to explosive 

eruptions and the formation of lava domes. The long-lived deposits that comprise the bulk of 

island arc volcanoes are primary block-and-ash flow deposits and secondary lahar deposits, 

which fill drainages around the volcano and prograde as alluvial fans out to sea (Barclay et al. 

2007). This mode of volcanism has important consequences for the subsequent weathering of 

material. The majority of unlithified deposits are extremely porous and permeable, such that 

much of the runoff is subsurface (Rad et al. 2007). This allows for elevated reaction rates 

between volcanic deposits and percolating fluids due to higher temperatures and longer water 

residence times. 

Explosions, dome collapses, and venting produce significant amounts of tephra (airborne 

volcanic particles), which can be widely dispersed. Tephra deposition can also affect surface 

runoff as it sticks to vegetation, killing the leaves. This aids the subsequent erosion by 

precipitation through reduced canopy cover (Collins and Dunne 1986; Major and Mark 2006).  

Pumice flow (from eruption column collapse events) and tephra fallout deposits typically only 

last for days to weeks on volcanic arc islands, depending on the thickness of the deposits, the 

local relief, and the amount of precipitation.   

We examined the impact of recent and sustained volcanism on the geochemistry of 

hydrologic systems on the Caribbean island of Montserrat, where there has been intense 

volcanic activity over the past decade. We aimed at determining silicate weathering rates on 

this andesitic volcano to compare with other islands in the Lesser Antilles arc. 

 

 

 

 



FIELD AREA 

 

The Soufrière Hills volcano, located in the southern part of the island of Montserrat in the 

Lesser Antilles (Fig. 1), is an andesitic stratovolcano that had been dormant since the 

seventeenth century. The island comprises three distinct volcanic massifs, the extinct 

northern Silver Hills (2.6–1.2 Ma) and Centre Hills (950–550 ka), and the active Soufrière 

Hills (170 ka to present) (Harford et al. 2002).  The massifs are largely formed of andesite 

lava domes with aprons of volcanic breccias, representing mainly pyroclastic flow deposits 

and lahar deposits. The most recent eruption of the Soufrière Hills volcano commenced in 

1995 and is ongoing.  The current eruption is characterized by periodic lava-dome growth, 

dome collapse pyroclastic flows (block-and-ash flows), and vulcanian explosions, some of 

which generate pumice flows (e.g., Carn et al. 2004; Edmonds et al. 2006; Trofimovs et al. 

2006). Over the 15 years of the current eruption, ~1 km3 of volcanic material has been 

erupted, with between 75% and 90% of material eventually deposited in the surrounding 

ocean (Trofimovs et al. 2006). Thick pyroclastic flow and lahar deposits have built up in 

valleys in the south of the island, extending across older alluvial fans and building new deltas 

(Barclay et al. 2007) (Fig. 1). The geochemical hydrology of Montserrat was studied prior to 

the recent volcanic activity in 1977 and 1991–1992 (Wright et al. 1976; Bath 1977; Chiodini 

et al. 1996). Sampling of the main Centre Hills springs was also carried out in August–

September 2003, 8 years into the eruption (Davies and Peart 2003). 

The soils on Montserrat are comparable to elsewhere in the Lesser Antilles and are 

predominantly Andosols. These soil formations can reach 70 m thick in the Lesser Antilles 

(Rad et al. 2007), although on Montserrat the soils are thinner due to the island’s small size, 

steep topography, and relatively young age. As with Dominica (Goldsmith et al.  2010), these 

combined factors have restricted soil development.  The soils are generally thicker and more 

deeply weathered towards the north of the island where older deposits outcrop.  The 

dominance of coarse soils creates a porous surface, allowing water to percolate by 

infiltration. This creates soil aquifers in the central part of the island, with associated springs.  

Proximal to the volcano, subsurface water is more typified by groundwaters that have 

percolated through recent volcaniclastic deposits. 

Rainfall is highest in the south and west of the island and lower in the north and east. The 

most extensive recent records are from the gauge at Hope (site 8) and show an average 



rainfall of 1.72 m/year between 1999 and 2007.  However, there is considerable inter-annual 

variability, such that total rainfall at Hope in 2007 was only 1.31 m, compared to 2.75 m in 

2004 (Montserrat Water Authority, unpublished data). Average annual rainfall over the 

summit areas of Centre Hills and Soufrière Hills is estimated to be ~2.5 m/year (Davies and 

Peart 2003). There are no published evapotranspiration data for Montserrat, but in the thickly 

vegetated areas of Centre Hills, it is likely to be similar to the 30% of precipitation observed 

on the nearby islands of Martinique and Guadeloupe (Rad et al. 2007).  Over the bare flanks 

of the volcano, water loss through evaporation will be closer to the open-water evaporation 

rates of 1.4–2.6 m/year measured on Montserrat by Bramble and Barragne-Bigot (1988). 

There is no perennial surface water runoff from the island, other than from streams fed 

directly by spring water, and these are currently confined to the Centre Hills area. Surface 

runoff does occur following periods of sustained high rainfall, as observed in the Belham 

valley during this study. 

 

SAMPLING AND METHODS 

 

Springs, surface runoff, and rivers were sampled and analyzed during a field investigation of 

Montserrat from 13
th

 to 30
th

 June 2008. At this time, the Soufrière Hills volcano had no lava 

extrusions following the end of the third episode of lava dome growth in early April 2007.  

There was no ash fall in the Centre Hills during the field investigation, although there was a 

permanent plume of gas.  A total of 19 sites were sampled, with repeat sampling conducted at 

several locations (Fig. 1 and Table 1). 

In Montserrat, the wet season lasts from June to November. Sampling at the end of the dry 

season increased the likelihood of detecting any volcanic influence in spring and surface 

waters. The prevailing wind is from the east and southeast, though occasionally from the 

south, such that deposition of volcanic gases and aerosols will largely affect areas to the west, 

northwest, and to a lesser extent the north of the Soufrière Hills volcano. The weather was 

mostly dry and sunny during the field investigation, apart from showers on the 20
th
 and 23

rd
 

June and minor rainfall on the 26
th
 June. 

 

The springs in the western Centre Hills (sites 2–8) were sampled at source. These springs are 

the main source of potable water on the island and are enclosed to prevent detritus entering 

the pipes. The springs in the eastern Centre Hills (sites 12a, 12b, 15, and 16) are not currently 



tapped nor cordoned off, allowing some direct input from atmospheric sources. Attempts 

were made to sample surface runoff wherever possible. Site 13 (Soldier Ghaut in the Centre 

Hills) is a stream with near-continuous surface runoff above 350-m elevation with an 

unknown source. 

Around the volcano, intense rainfall sometimes instigates lahars, particularly in the Belham 

River valley. Site 14 (the location of the former Belham Bridge) and site 1 (the mouth of the 

Belham River) were sampled after heavy rains led to surface runoff. In addition, pits were 

dug into the volcanic deposits to reach the water table at sites 1, 9–11, and 17. These pits did 

not exceed 2-mdepth andwere left for 10 min prior to sampling to allow disturbed particulates 

to settle. The final sample locations were site 18 (Hot Pond), a thermal spring northwest of 

the former capital Plymouth, and site 19, a 115-m-deep borehole by the former Belham 

Bridge that is utilized by the Montserrat Water Authority. 

Conductivity, pH, and temperature were measured in situ. Samples were collected in rinsed 

high-density polyethylene (HDPE) bottles and passed through 0.45-μm filters within a few 

hours of collection. The filtered waters were sub-sampled into 30-ml HDPE bottles for anion 

and Sr isotope analysis, into 60-ml HDPE bottles which were acidified to 1% by volume with 

sub-boiled Suprapure® HNO3 for cation analysis, and into 100-ml glass bottles for δ18O, δ13C, 

and δD analysis. Alkalinity was measured as soon after collection as possible (under 3 h), 

using 3MH2SO4 to titrate solutions. Element concentrations were analyzed at the National 

Oceanography Centre, Southampton, using inductively coupled plasma–mass spectrometer 

for cations and ion chromatography for anions. The precision of the individual concentrations 

is generally better than ±5%. The 87Sr/86Sr ratios for each sample were measured using a VG 

Sector 54 thermal ionization mass spectrometer at Southampton. The samples were 

evaporated to dryness, taken up in 3 M HNO3, and run through Sr-spec columns. The purified 

Sr was then loaded onto outgassed Ta filaments. The samples were run at 88Sr beam potentials 

of 2 V, and 150 ratios were collected using a multi-dynamic peak jumping routine. The ratios 

were normalized to an 86Sr/88Sr ratio of 0.1194. Twenty eight analyses of the NBS 987 

standard yielded an average 87Sr/86Sr of 0.710256±18 (2 SD). δ18O, δ13C, and δD were 

analyzed at the British Geological Survey, using standard methods. Analytical precisions 

were ±0.1‰, ±0.2‰, and ±1‰, respectively. Values of δ18O and δD are expressed with 

respect to VSMOW and δ13C with respect to VPDB. HCO3 concentrations were estimated by 

assuming that total alkalinity is carbonate alkalinity and using the following equations: 
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where CA denotes carbonate alkalinity and k is the equilibrium constant for HCO3 (or the 

second dissociation constant for carbonic acid). 

 

 

RESULTS 

 

The analytical results in Table 2 give a charge balance within ±10% of the total cation charge 

and most balance within ±5%, suggesting that there is no significant contribution to the 

geochemical composition of the waters from any species not included in Table 2. The cation 

and anion concentrations of the samples are depicted in ternary diagrams in Fig. 2 (after 

Giggenbach 1988). The Sr isotope, δ18O, δD, and δ13C data are listed in Table 3. 

 

Centre Hills 

 

Chiodini et al. (1996) analyzed the Olveston (site 5), Lawyers (site 3), and Killiekrankie (site 

6) springs from Centre Hills in 1991–1992, and Davies and Peart (2003) analyzed most of the 

Centre Hills springs in 2003. Hence, it is possible to make a limited comparison of the 

groundwater geochemistry in the Centre Hills before and since the onset of the present 

volcanic activity. The Centre Hills waters fall into the spring classification of neutral Ca–

Mg–HCO3 type (Giggenbach 1988), and they all plot slightly above the meteoric δD–δ18O 

line (MWL) (Fig. 3), as indeed do the spring samples of Davies and Peart (2003) and 

Chiodini et al. (1996). The “deuterium excess” (i.e., y-axis intercept) depends largely on 

humidity in the moisture source area and can fluctuate around the global mean of +10 (e.g., 

Clark and Fritz 1997). The spring waters are unmodified rainfall, as indicated by the O and H 

isotope data. However, comparing the 2008 data with that of Davies and Peart (2003) shows 

a consistent difference running sub-parallel to the MWL (Fig. 4). This shows a change in the 

isotopic balance of the groundwater, which may be seasonal or secular. These isotopic shifts 



imply that the groundwaters are not well mixed and therefore that storage and subsurface 

residence times are relatively short. 

The Centre Hills waters data lie on a mixing line between the average 87Sr/86Sr of local 

andesitic rocks (Cooper 2005) and rainwater (Rad et al. 2007) on a Sr isotope mixing diagram 

(Fig. 5). The δ13C values are typical of groundwater with no carbonate weathering. A mixture 

of CO2 derived from decaying organic matter in soil (δ13C≈−25‰) and atmospheric CO2 

(δ13C≈−7.9‰) (Faure 1986) (Fig. 6) explain these data best, which is typical of short-lived 

interaction between meteoric waters and rocks in shallow aquifers (Freeze and Cherry 1979). 

It is possible that magmatic volatiles from Soufrière Hills volcano leaked into the Centre 

Hills aquifer. Of the species measured in all three studies, F/Cl ratios are more likely to 

record any such input due to the high relative ratio of these halogens in magmatic fluids 

compared to seawater-derived sources. The average F/Cl is lower in the 2008 and 2003 

samples than in the 1991–1992 samples (Table 4). In addition, As and Se concentrations were 

below detection limits (2 and 1 nmol/l, respectively) in the 2008 samples (Table 2), which are 

commonly elevated in fluids of magmatic origin. Hence, we find no evidence of any 

magmatic volatile input into the Centre Hills groundwaters. 

Abundant ash deposition and continuous gas emissions from the Soufrière Hills volcano have 

taken place since 1995. Most of the tephra and gas are carried to the west and northwest of 

the volcano, occasionally affecting the southwestern flanks of the Centre Hills. Occasional 

major lava dome collapses and vulcanian explosions have led to significant ash falls and acid 

rain over most of the Centre Hills. Rainwater pH values as low as 2.7 have been recorded as 

far north as Lawyers (site 3) as a result of high emissions of HCl, SO2, and other acids from 

the volcano (MVO unpublished data). Deposition of easily weathered tephra and acids over 

Centre Hills could also lead to an increase in cation concentrations in the groundwaters if 

recharge took place by filtration through ash layers.  However, the small-scale nature of the 

tephra deposits, coupled with the high relief and precipitation, means the tephra residence 

times are usually confined to weeks. The short residence time is further enhanced by the loss 

of vegetation from ash deposition and increased surface runoff (Major and Mark 2006). The 

Ca/Cl, Mg/Cl, and SO4/Cl molar values are essentially indistinguishable for the confined 

springs pre- and syn-eruption (Table 4). The SO4/Cl molar ratios are only slightly higher than 

the seawater ratio of 0.052 that would be expected in meteoric water uncontaminated by 

volcanic emissions on a small island. This suggests that the infiltration of volcanically 



derived SO4 in the recharge water is very limited and there is no observed enhancement of 

weathering since the onset of the eruption. 

The unconfined springs measured in 2008—namely Corbett (site 12), Ginger Ground (site 16), 

and Bottomless Ghaut (site 15)—have significantly higher SO4/Cl ratios (0.113–0.126, 0.080, 

and 0.260, respectively) than the other Centre Hills springs. This may suggest a small 

contribution from surface runoff influenced by volcanically derived SO4 to these waters. 

Overall, however, it appears that the compositions of the Centre Hills springs are largely 

unaffected by the volcanic activity that is occurring only 5 km south of their geographical 

center. 

The flow rates of the Centre Hills springs are sensitive to rainfall, with a 4–6-month delayed 

response (Davies and Peart 2003). The Killiekrankie (site 6), Lawyers (site 3), and Olveston 

(site 5) springs were all sampled on three separate occasions, over the course of 17 years, at 

times of very different flow rates (Fig. 7). In particular, the 2003 samples were taken after a 

period of prolonged regional drought (Davies and Peart 2003). Despite this, the 

concentrations of the individual species and the elemental ratios remain relatively constant 

(Table 4), suggesting that the groundwater chemistry is close to equilibrium with a constant 

secondary mineral assemblage. On a stability diagram (Fig. 8), the Centre Hills data form a 

vertical array on the kaolinite–smectite line, suggesting that the groundwater composition is 

close to equilibrium with these minerals. 

An alternative method is to take the mass balance approach to determining the weathering 

signature (Table 5). First, the contribution due to rainwater is subtracted from the average 

spring water compositions, on the assumption that all the Cl− is derived from meteoric water 

(the discussion above demonstrates that the contribution from volcanic volatiles and acid 

rain is minor) and that the other species are present in seawater ratios. Next, it is assumed 

that all the remaining Na+ is balanced by whole-rock weathering, with the contributions of 

the other cations derived from average andesite from the Centre Hills (Zellmer et al. 2003). 

This approach yields a remarkably good agreement between the calculated and observed 

water compositions (within the uncertainties of the average whole-rock compositions; 

Zellmer et al. 2003). The exception is an over-prediction in the amount of dissolved K+ that 

would be expected, which might suggest that the smectite predicted from the stability 

calculations is K rich. 

 



Belham Valley 

 

The Belham Valley catchment lies at the boundary between the Centre Hills and the NW-

aligned Garibaldi and St. Georges Hills. Two production boreholes have been sunk close to 

the site of the old Belham Bridge and cased to a depth of ~57 m below the surface. Water was 

pumped from below this depth with sustainable yields of ~4,250 and 1,625 l/min in 2004 

(Hydrosource Associates Inc. 2004). The shallower of two aquifers is thought to lie within a 

~15-m-thick layer of coarse gravel and weathered pebbles that are buried beneath 58 m of 

volcanic breccia and lahar deposits of undetermined age (Hydrosource Associates 2004). The 

more productive of the two wells was sampled in this study (site 19). 

Lahars frequently flow down the Belham Valley after intense rain (Barclay et al. 2007), with 

some filling the entire width of the valley (~200 m) and producing standing waves up to 2 m 

in height (MVO weekly report, 21
st
 May 2004). During this study, surface runoff was 

generated after 1 day of sustained rainfall that was a few centimetres deep and lasted for ~3 h. 

This was sampled close to the borehole at the location of the former Belham Bridge (site 14).   

In most respects, the composition of the Belham Valley borehole water is similar to that of 

the Centre Hills springs.  It has slightly lower pH (6.78 compared to a range 6.94-7.68) and is 

slightly enriched in elements such as Na, Mg, Si, Cl, K, Ca, Fe, Rb, and Sr (Table 2). On the 

K/H2 versus SiO2 discrimination diagram (Fig. 8), it plots well within the smectite stability 

field, which together with the higher total dissolved salts (TDS), is consistent with the 

borehole tapping a deeper, longer residence-time reservoir than the Centre Hills springs. The 

baseline (i.e., well-mixed, longterm mean), δ18O, and δD isotopic compositions for the 

southwest side of the island are probably best represented by this site (Fig. 3). The F/Cl 

(1.02×10−3) of the borehole water is well within the range exhibited by the Centre Hills 

springs, but the δ13C value lies on a mixing line between average Centre Hills spring waters 

and typical geothermal fluids (Fig. 6). This suggests that there is some small hydrothermal 

input into the aquifer (at the time of sampling), consistent with the findings of Younger 

(2006).   

The composition of the Belham valley surface runoff (site 14) is clearly distinct from the 

springs and borehole.  The TDS is approximately one third of that of the Centre Hills springs, 

while the Sr isotope plot (Fig. 5) suggests that the surface runoff is simply a mixture of spring 

water and meteoric water. However, the relatively low pH and ternary diagrams (Fig. 2) 

reveal that this is not the case. On the secondary mineral assemblage stability diagram (Fig. 



8), the Belham surface runoff composition plots on the gibbsite–kaolinite boundary, and this 

is also reflected in the high dissolved Al concentration (16 μmol/l) compared to the spring 

waters (generally<1 μmol/l) (Table 2). The slight effect of geothermal fluids found at depth 

in the Belham catchment is absent from the surface runoff. Therefore, if it is assumed that all 

the Cl− is derived from rainfall, and the other ions in meteoric water are present in seawater 

ratios; then a correction due to this source can be made. The chemical composition of the 

surface runoff water due to weathering can then be calculated. When this calculation is 

applied to the Sr isotope ratios, then the 87Sr/86Sr of the weathering component is calculated to 

be 0.7037—very close to the value of 0.7036 for average Montserrat volcanic rocks (Cooper 

2005). This calculation also suggests that relatively little of volcanically derived HCl was 

deposited on the flanks during this study (if less Cl− is ascribed to a rainwater source, the 

calculated 87Sr/86Sr of the rock component would be higher). Edmonds et al. (2003) have 

shown that HCl emissions are dependent on magma ascent rate, so the lack of magma 

extrusion before or during this study suggests low emissions of HCl at this time. While Cl− is 

scavenged very quickly by dry and wet depositional processes and would therefore increase 

closer to the vent, the lack of elevated Cl− in the Belham catchment (1–5 km from the vent) 

adds weight to this assertion. Table 5 does, however, suggest that the chemical composition 

of the surface runoff water is significantly impacted by deposition of sulfate in its watershed, 

consistent with the relatively constant emissions of SO2 from Soufrière Hills regardless of 

extrusion rate. This is reflected in both the low pH and the fact that SO4 is the major anion 

balancing the cation charge after accounting for the meteoric water contribution, suggesting 

that sulfuric acid was the main weathering agent in the Belham surface runoff water during 

this field study. 

The relatively dilute nature of the surface runoff waters compared to the spring waters makes 

it more difficult to specify the composition of the phases undergoing weathering.  

Nevertheless, it is clear that the balance of cations is distinct from that observed in the Centre 

Hills springs, with Na+ being by far the dominant cation (Table 2). This suggests that there is 

selective dissolution of Na-rich phases. The major Na-bearing mineral phase in Soufrière 

Hills volcanic rocks is plagioclase (Humphreys et al. 2009), but studies of feldspar 

weathering consistently show preferential dissolution of anorthite relative to albite (Blum and 

Stillings 1995). Hence, the most likely source of the high Na+ in the surface runoff waters is 

preferential dissolution of volcanic glass, which commonly has higher Na/Ca ratios than 

whole rock in fresh volcanic material (Cashman 1992). Glass is uncommon in dome rocks 



and block-and-ash flow deposits but comprises a significant proportion of the fine tephra 

(Bonadonna et al.  2002). Such fine material is rapidly transported through the Belham 

catchment by fluvial processes, so in the absence of eruptive activity prior to the study, most 

of this fine glass would have already been transported offshore. Therefore, the glass 

contributing the excess Na+ is likely to be predominantly from pumice transported into the 

catchment by occasional pumice flows in 2007 and frequent lahars. 

 

Shallow groundwater 

 

Recently, deposited volcanic materials such as pyroclastic flow and lahar deposits are 

generally highly permeable, such that surface water flow is restricted to periods of high 

rainfall. With this in mind, we carried out a reconnaissance survey that involved digging 

shallow (1–2 m) pits at the mouths of gullies (Ghauts) on the western flank of the Soufrière 

Hills volcano (Fig. 1). Most of the pits had to be dug within ~100 m of the shore to reach the 

water table, so inevitably they contain a major seawater component—either as a result of 

surface spray or mixing of seawater with the groundwater (Fig. 2, Table 2)—making it 

difficult to discern the weathering signature. 

The exception is provided by the sample from the mouth of Gingoes Ghaut (site 17) which 

has relatively high pH (Table 2). The Cl− concentration is lower than the other shallow 

groundwater samples but is still significantly higher than observed in the Centre Hills springs 

or the Belham Valley surface runoff sample. This may reflect seawater contamination, it may 

arise from concentration of the dissolved load by the high evaporation/rainfall ratio on the 

barren slopes of the volcano during the dry season (Bramble and Barragne-Bigot 1988), or it 

may reflect acid rain deposition from the volcanic plume. Acid rain at Lower Amersham, the 

closest sample site to Gingoes, had a pH range 2.55 to 3.90 in June 1996–June 1997. The 

average Cl− concentration of 3.48±0.98 mmol/l (Smithsonian Institution 1997) is 

indistinguishable from that measured in the Gingoes groundwater in 2008. However, studies 

of atmospheric deposition around Mt. Etna have revealed that the flux of dissolved Na, Ca, 

Mg, and K is derived almost entirely from sea spray (Aiuppa et al. 2006). If all the Cl− in the 

Gingoes groundwater was ascribed to deposition from the volcanic plume, together with the 

associated concentrations of SO4 and F−, there would be a net positive charge imbalance in the 

remaining ions. Alternatively, if all the Cl− is ascribed to a marine origin (either directly from 



seawater mixing with the groundwater or indirectly via meteoric water), there would be a 

negative charge imbalance. The best charge balance is achieved if 25% of the Cl− is ascribed 

to deposition from the volcanic plume and 75% is ascribed to a direct (through a seawater 

component in the groundwater) or indirect seawater source (through sea spray and/or 

meteoric water) (Table 5).   

The relative concentrations of the cations derived from weathering compared to their 

concentrations in average Soufrière Hills rocks (Zellmer et al. 2003) indicate that Na+ is 

relatively high, which suggests that there is incongruent dissolution of the rock and/or there is 

significant retention of the other cations in secondary minerals. Evidence in favor of the latter 

is provided by the presence of the Gingoes sample within the smectite stability field (Fig. 8), 

but extensive Ca2+, Mg2+, and K+ uptake into smectite is required to balance the Na+ derived 

from congruent dissolution of average Soufrière Hills rocks. Hence, it is possible that, as 

suggested for the Belham Valley surface runoff sample, the relatively high Na+ concentrations 

in the groundwater results from preferential dissolution of Na-rich volcanic glass. 

The dissolved F− concentrations in Gingoes subsurface water are considerably higher than 

observed in either the Centre Hills springs or the Belham Valley lahar waters (Table 2). The 

head of Gingoes Ghaut drains the upper slopes of Chances Peak, close to the site of steam 

vents associated with the present phase of volcanic activity. Hence, the elevated F− levels 

may reflect some magmatic volatile input into the groundwater. This is supported by the δ13C 

value (−4.42‰), which clearly indicates a dominant magmatic component for the dissolved 

inorganic carbon in the groundwaters (Fig. 6). The cations derived from weathering are 

almost exactly equally balanced between HCO3 (4.82 meq/l) and SO4 (4.78 meq/l). This 

suggests that half of the weathering signature is derived from leaching by sulfuric acid, 

formed from oxidation and solution of H2S and SO2 in magmatic gases, and half from 

magmatic CO2. Sulfuric acid forms up to 7–40% of the anhydrous gas in fumaroles, and CO2 

forms 59–92% of the anhydrous phase of fumarole gases from Soufrière Hills (Chiodini et al. 

1996; Hammouya et al. 1998). 

 

Geothermal water 

 

The Hot Pond spring (site 18) situated in Amersham northwest of Plymouth displays element 

concentrations of the neutral Na–Cl type. These are characterized by medium–high 



temperatures (<90°C) and display chemical compositions that are indicative of medium- to 

high enthalpy geothermal reservoirs (Ellis and Mahon 1977). The equilibrium temperatures 

and Cl− contents of the pure geothermal liquid involved in the origin of the Hot Pond waters 

are predicted to be 245–250°C and 665–690 mmol/l, respectively (Chiodini et al. 1996). The 

Hot Pond springs are relatively depleted in SO4 and Mg with respect to seawater while 

enriched in Ca, suggesting vigorous and sustained element exchange with country rock. The 

likely cause of this thermal spring is due to seawater–hot rock interaction along a zone of 

crustal weakness. The role of seawater is clearly indicated here by the 87Sr/86Sr ratio 

(0.705677), which is intermediate between that of Montserrat volcanic rocks (0.7036) and 

seawater (0.70916) (Fig. 5). Hot Pond is situated close to the NW trending zone that also 

features the Soufrière Hills volcano and St. George’s Hill and Garibaldi Hill to the north of 

Plymouth. This zone of crustal weakness has acted as an upflow path for rising magma 

(Wadge and Isaacs 1988) and has allowed seawater to percolate to depth and react with the 

hot rocks. The lack of pronounced enrichment of volcanic volatiles (such as SO4 and F) 

suggests that there is minimal input of magmatic water into the Hot Pond aquifer. However, 

the δ13C value (−5.25‰) suggests that there is a significant contribution of gaseous magmatic 

CO2 to the geothermal system (Fig. 6), while the relatively low dissolved inorganic carbon 

(DIC) and low pH (5.40) also suggest that the fluid has undergone boiling at depth with 

secondary loss of CO2 from the fluids. 

The Hot Pond spring has been sampled on at least five occasions between 1976 and 2008 

(Bath 1977; Chiodini et al. 1996; MVO unpublished data, 1998; Younger 2006; this study). 

The data are of variable completeness and quality, but they do show some consistent trends 

(Fig. 9). Since the onset of the most recent phase of volcanic activity in 1995, there have been 

clear falls in the temperature, pH, and Li concentration of the fluids and a rise in the SO4 

concentrations. The temperature of the springs can vary by >10°C on a weekly basis (R. 

Syers, personal communication), so the measured temperature change (Fig. 9) is not 

necessarily indicative of a decrease in the flow of hot water to the surface. Both the decrease 

in pH and increase in SO4 concentrations could be due to a relative increase in the proportion 

of gases derived from sub-surface phase separation and/or a response to the increase in 

average SO2 emissions from the volcano. The ultimate cause of these changes cannot be 

discerned from these data alone. Figure 10 shows a δ18O–Cl plot for the various samples for 

Hot Ponds. The three samples taken between 1976 and 2008 lie on a mixing line between 

seawater with a slight 18O shift and well-mixed meteoric waters of Belham borehole type, 



marked as cool groundwater. The good fit of these data again suggests that the contribution of 

magmatic water is negligible. 

 

 

DISCUSSION 

 

Weathering fluxes 

 

A recent survey of groundwater and surface water geochemistry on three volcanic tropical 

islands (Martinique and Guadeloupe in the Lesser Antilles and Réunion in the Indian Ocean) 

led Rad et al. (2007) to conclude that weathering in these environments contributes 25–30% 

of the global dissolved load transported to the oceans, despite the fact that they only represent 

9% of the global land area. These high weathering rates arise from the fact that unlithified 

volcanic rocks are very porous, causing much of the runoff to be subsurface where reaction 

rates are accelerated by higher temperatures and longer water residence times. In addition, 

younger volcanic rocks have not had time to develop the thick mantle of weathered material 

that is characteristic of tropical volcanic islands with high rainfall. A recent study by 

Goldsmith et al. (2010) on the island of Dominica highlighted the importance of crystallinity 

and the age of the parent material on the concentrations of solutes in runoff. Their study 

concludes that silicate weathering yields and subsequent CO2 consumption in andesitic 

terrains are comparable to basaltic terrains. 

Detailed hydrologic models are not available for Montserrat. Nevertheless, the recent 

deposits around the volcano and the thick soils of the Centre Hills are relatively permeable, 

such that runoff is largely confined to subsurface flow during the dry season, while 

significant rainfall creates surface runoff during the wet season once the infiltration rates are 

exceeded. The average rainfall over the ~25 km2 of the Centre Hills area is ~1.5 m/year 

(Davies and Peart 2003) and if we assume that evapotranspiration is similar to the 30% of 

precipitation observed on the nearby islands of Martinique and Guadeloupe (Rad et al. 2007), 

this yields an annual water flux of 26×106 m3/year. After adjusting the average spring water 

compositions for the rainwater component, this yields a minimum average silicate weathering 

flux of ~70 t/km2 per year (in the absence of any significant weathering during surface 

runoff). This is considerably higher than the global average silicate weathering rate of ~7 

t/km2 per year (Gaillardet et al. 1999), comparable to the surface runoffs of nearby islands of 



Dominica (6–106 t/km2 per year; Goldsmith et al. 2010) and Martinique and Guadeloupe 

(100–120 t/km2 per year; Rad et al. 2006), but lower than 290–1,090 t/km2 per year for 

subsurface weathering on Martinique and Guadeloupe (Rad et al. 2007). This discrepancy 

with regard to subsurface weathering likely reflects the fact that the Centre Hills massif is an 

extinct volcano and has an age of 950–550 ka (Harford et al. 2002), whereas the areas studied 

by Rad et al. (2007) include historically active volcanoes and recent unlithified or partially 

lithified channel-fill volcanic deposits. 

Calculation of weathering rates over Soufrière Hills is speculative due to the absence of 

hydrologic data on the active volcano. Nevertheless, if the data for Gingoes Ghaut are 

representative of groundwater compositions in Soufrière Hills, then some estimates can be 

made. Gingoes Ghaut drains an area of ~2.5 km2. Rainfall is higher over this area (~2.5 

m/year; Davies and Peart 2003), but the absence of vegetation means that evapotranspiration 

is also likely to be higher (Bramble and Barragne-Bigot 1988). If, for the purposes of 

illustration, we assume that evapotranspiration is double that observed over Centre Hills (i.e., 

~60%), then the runoff in Gingoes Ghaut is 2.5×106 m3/year, and the average weathering flux 

is ~600 t/km2 per year. This figure is comparable with the 1,080 t/km2 per year measured for 

subsurface weathering on Martinique (Rad et al. 2007). The total surface area covered by 

volcanic deposits on Montserrat varies depending on the state of volcanic activity and the 

subsequent erosion. Figure 1 shows the pyroclastic flow deposits, lahar deposits, and pumice 

flow deposits and excludes tephra deposits, such as long-lived tephra deposits on St Georges 

Hill and in the headwaters of Belham Valley.  Both pumice flow deposits and airfall deposits 

are relatively short-lived, such that the degree of volcaniclastic coverage varies from season 

to season. For the purposes of the following calculations, it is assumed that the average 

coverage at the time of sampling is ~30 km2, which yields a total silicate weathering flux 

from the Soufrière Hills volcano of 18×103 t/year. 

CO2 consumption during weathering in Centre Hills is ~1.7×106 mol/km2 per year compared to 

a global average due to silicate weathering of 0.6×106 mol/km2 per year, with the δ13C values 

indicating that all of this CO2 derived directly from the atmosphere with no discernable 

magmatic input. Extrapolation of the Gingoes Ghaut data (site 17) yields a CO2 consumption 

rate of 4.8×106 mol/km2 per year or 150×106 mol/year over the ~30 km2 covered by recent 

volcanic material (Fig. 1). Based on an average SO2 flux of 400 t/day and a CO2/SO2 ratio of 

~3.5, Hammouya et al. (1998) calculated the average CO2 flux from the volcano during dome 

growth between 1995 and 1997 to be 1,400 t/day (32×106 mol/day). Daily average SO2 fluxes 



from the Soufrière Hills volcano have been relatively constant at ~500 t/day up until 2005 

and have since increased. The current CO2/SO2 ratio is unknown, but if the 1996 figures are 

considered representative of average SO2 and CO2 degassing rates during at least the early 

years of the eruption, then only ~1.3% of the annual CO2 flux from the volcano was 

consumed by silicate weathering on the island at that time. 

There are no published data that explicitly describe CO2 degassing rates from Soufrière Hills 

prior to the present phase of activity, but using the hot spring and fumarole data of Chiodini 

et al. (1996) and following the approach of Taran (2009), it was likely to have been of the 

order of ~1 t/day (0.23×106 mol/day). Approximately 20% of this CO2 was dissolved in the 

hot spring waters that ultimately flowed into the ocean. If weathering rates prior to the recent 

phase of activity were similar to those in Centre Hills today, then the Soufrière Hills massif 

would have been close to being in balance regarding the CO2 source from the volcano and the 

CO2 sink from weathering. 

Hence, the role of an andesitic arc volcano, such as Soufrière Hills, as a source or sink for 

atmospheric CO2 depends critically on the stage it occupies in its life cycle.  During the pre-

eruptive phase when volatiles are rising to the surface, there appears to be a fine balance 

between CO2 uptake due to weathering and loss to the atmosphere from degassing. During the 

active phase of volcanism, magmatic degassing far outweighs the enhanced weathering 

signature.  Once the volcano becomes dormant or extinct, magmatic degassing ceases and the 

enhanced weathering of volcanic rocks (relative to continental silicate rock weathering) 

results in the volcanic rocks acting as a sink for atmospheric CO2. The behavior of CO2 during 

the transition from an active to a dormant or extinct phase is complicated by the uncertain 

role played by CO2 degassing of plutonic rocks in arc environments and the difficulty in 

measuring passive CO2 degassing rates (Marty and Tolstikhin 1998). Resolution of this 

problem will require extensive studies of CO2 degassing and weathering fluxes from arc 

volcanoes, covering a spectrum of ages, tectonic regimes, and weathering environments. 

However, the undoubted importance of arc volcanism in defining the composition of modern 

and ancient atmospheric CO2 levels (Kerrick 2001) requires us to solve this problem if we are 

to develop a deeper understanding of the evolution of global climate. 

 

 

 



CONCLUSIONS 

 

This field study demonstrates the importance of weathering of fresh volcanic material as a 

sink of atmospheric CO2. The high silicate weathering rates from both the extinct Centre Hills 

and the active Soufrière Hills volcanoes confirm that weathering of young andesitic terrains 

has a disproportionate effect on the consumption of CO2 with respect to the land surface area. 

This carbon sequestration through elevated weathering is initially dwarfed by the CO2 

emissions from the active Soufrière Hills volcano, such that silicate weathering consumes a 

predicted 1.3% of the CO2 released by magmatic degassing. However, as the sub-aerial 

exposure times of volcanic centers greatly exceed that of the active life span of the volcano, 

the extent to which arc volcanoes are overall sinks or sources of atmospheric CO2 is 

uncertain. However, at any given time, the stage of the volcano’s life cycle is critically 

important in the balance between a source and sink of CO2. The importance of lithification of 

volcanic deposits may also become important on a timescale of 100,000s of years. 

The lack of magmatic influence on the springs situated in the Centre Hills suggests that the 

geochemical influence of recent volcanic activity is completely restricted to the south of the 

island, implying a narrow conduit for rising magmatic volatiles and fluids beneath the 

Soufrière Hills volcano. The sporadic coverings of tephra and acids on the Centre Hills 

appear to have had no significant impact on the covered potable springs, suggesting that 

Montserrat’s current water supply is not in danger of contamination from the ongoing 

volcanic activity. However, the observed change in the isotopic balance of the groundwater 

since 2003 implies that these waters are not well mixed. These changes may well be seasonal, 

but given the lack of explosive activity prior to this study, this may have had an effect on the 

apparent lack of volcanic signature from infiltration of acids as all tephra deposited in the 

Centre Hills had been removed for some time prior to the study. The boreholes situated in the 

Belham valley (site 19) suggest some interaction with magmatic gases, and monitoring of the 

geochemical signature of these waters may provide a valuable insight into the variations in 

the release of magmatic gases into the proximal aquifer. 
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Table 1  Sample details 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Location Type Alt. (m) Latitude N Latitude W Date

SW Belham River Shore Seawater 0 16° 44′ 28.5″ 062° 13′ 60.0″ 23-Jun-08

1a Belham River Shore Subsurface 1 16° 44′ 28.7″ 062° 13′ 59.3″ 13-Jun-08

1c Belham River Shore Pool 1 16° 44′ 28.7″ 062° 13′ 59.3″ 13-Jun-08

1d Belham River Shore Runoff 1 16° 44′ 28.7″ 062° 13′ 59.3″ 20-Jun-08

1e Belham River Shore Runoff 1 16° 44′ 28.7″ 062° 13′ 59.3″ 20-Jun-08

1f Belham River Shore Runoff 1 16° 44′ 28.7″ 062° 13′ 59.3″ 23-Jun-08

1g Belham River Shore Runoff 1 16° 44′ 28.7″ 062° 13′ 59.3″ 23-Jun-08

1h Belham River Shore Runoff + SW 1 16° 44′ 28.7″ 062° 13′ 59.3″ 23-Jun-08

2a Forgarthy Spring Spring 309 16° 46′ 08.3″ 062° 12′ 27.1″ 14-Jun-08

2c Forgarthy Spring Spring 309 16° 46′ 08.3″ 062° 12′ 27.1″ 24-Jun-08

3a Lawyer Spring Spring 174 16° 45′ 36.8″ 062° 12′ 57.7″ 14-Jun-08

3b Lawyer Spring Spring 174 16° 45′ 36.8″ 062° 12′ 57.7″ 24-Jun-08

4a Quashie Spring Spring 245 16° 45′ 30.2″ 062° 12′ 57.1″ 14-Jun-08

4b Quashie Spring Spring 245 16° 45′ 30.2″ 062° 12′ 57.1″ 24-Jun-08

5a Olveston Spring Spring 261 16° 45′ 21.0″ 062° 12′ 49.4″ 14-Jun-08

5b Olveston Spring Spring 261 16° 45′ 21.0″ 062° 12′ 49.4″ 24-Jun-08

6a Killiekrankie Spring Spring 324 16° 44′ 33.7″ 062° 11′ 55.6″ 15-Jun-08

6b Killiekrankie Spring Spring 324 16° 44′ 33.7″ 062° 11′ 55.6″ 25-Jun-08

7a Monkey Spring Spring 339 16° 44′ 30.4″ 062° 11′ 51.3″ 15-Jun-08

7b Monkey Spring Spring 339 16° 44′ 30.4″ 062° 11′ 51.3″ 25-Jun-08

8a Hope Spring Spring 294 16° 45′ 06.9″ 062° 12′ 43.8″ 15-Jun-08

8b Hope Spring Spring 294 16° 45′ 06.9″ 062° 12′ 43.8″ 24-Jun-08

9a Kinsale-Aymer’s Ghaut Subsurface 5 16° 41′ 52.0″ 062° 12′ 56.2″ 17-Jun-08

9b Kinsale-Aymer’s Ghaut Subsurface 5 16° 41′ 52.0″ 062° 12′ 56.2″ 26-Jun-08

10 Government House Subsurface 7 16° 42′ 05.8″ 062° 13′ 07.8″ 17-Jun-08

11 Plymouth-Fort Ghaut Subsurface 11 16° 42′ 33.8″ 062° 13′ 28.5″ 17-Jun-08

12a Corbett Springs (b) Spring 281 16° 45′ 00.1″ 062° 11′ 13.6″ 18-Jun-08

12b Corbett Springs (a) Spring 275 16° 44′ 58.7″ 062° 11′ 15.7″ 18-Jun-08

13 Soldier Ghaut Riverine 400 16° 45′ 52.7″ 062° 12′ 06.5″ 22-Jun-08

14 Belham Bridge Runoff 281 16° 44′ 28.8″ 062° 13′ 05.4″ 23-Jun-08

15 Bottomless Ghaut Spring 379 16° 45′ 59.9″ 062° 11′ 29.4″ 25-Jun-08

16 Ginger Ground Spring 429 16° 46′ 07.7″ 062° 11′ 31.7″ 25-Jun-08

17 Gingoes Ghaut Subsurface 2 16° 41′ 27.4″ 062° 12′ 36.8″ 26-Jun-08

18 Hot Pond Spring 6 16° 43′ 07.8″ 062° 13′ 46.3″ 26-Jun-08

19 Belham Borehole Borehole 281 16° 44′ 29.0″ 062° 13′ 05.4″ 30-Jun-08



Table 2  Sample geochemical data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S
a
m

p
le

R
e
g
io

n
p

H
T

e
m

p
.

A
lk

.
L

i
B

N
O

3
F

N
a

M
g

A
l

S
i

S
O

4
C

l
K

C
a

V
C

r
M

n
F

e
N

i
C

u
A

s
S

e
B

r
R

b
S

r
B

a

°C
m

e
q

/l
n

M
n

M
n

M
n

M
m

M
m

M
n

M
m

M
n

M
n

M
n

M
n

M
n

M
n

M
μ

M
μ

M
n

M
n

M
n

M
n

M
μ

M
μ

M
μ

M
μ

M

S
W

8
.0

2
2
8
.2

2
.3

8
3
1
.3

4
4
1
.2

n
d

4
6
.6

5
2
6
.9

6
6
7
.6

8
5
.6

0
.0

6
2
8
.5

6
5
7
4
.3

9
1
2
.7

9
1
2
.8

6
1
2
3
.9

8
.6

0
.2

5
0
.2

2
1
2
4

1
0
.5

3
4
0
.8

1
,2

7
2
.8

6
6
0
.1

5
1
.5

8
9
0
.3

8
0
.1

1

1
a

B
el

h
am

6
.6

9
2
8
.5

n
a

0
.4

1
4
.2

0
.8

2
0
.7

5
.0

8
2
.4

2
1
.0

0
.7

5
2
.5

3
8
.0

3
0
.2

7
2

3
6

n
d

9
7
.8

4
7
9
.9

1
7
.5

0
.3

4
5
.4

2
0
.5

7
.9

3
0
.1

9
3
.9

8
0
.1

5

1
c

B
el

h
am

6
.4

3
0

n
a

1
.2

8
6
.7

5
.3

2
7

7
0
.6

1
7
.4

4
n

d
0
.5

3
4
.8

8
8
8
.0

7
1
.3

1
3
.4

7
3
3
.6

0
.3

2
0
3
.1

4
3
0
4
.4

4
9
.6

1
.6

1
0
1
.8

2
9
9
.3

9
8
.0

2
0
.7

1
0
.1

6
0
.8

7

1
d

B
el

h
am

4
.2

9
3
3
.5

0
.0

6
1
.6

7
.7

3
0
.7

5
3
.6

2
.0

5
0
.6

2
3
0
.2

0
.2

4
3
.9

1
1
.9

1
0
.1

6
2
.3

6
1
9
.5

0
.5

6
7
.0

9
3
.4

5
4
2
.4

2
4
.9

n
d

n
d

1
.4

5
0
.1

3
4
.1

9
0
.2

4

1
e

B
el

h
am

6
.0

4
2
9
.2

0
.3

2
0
.8

9
.5

1
5
.3

1
8
.7

3
.2

3
1
.3

1
1
.2

0
.5

3
3
.6

4
3
.1

9
0
.1

6
2
.1

7
1
5
.6

n
d

1
1
3
.2

2
9
1
.3

6
2
5
.6

1
.7

1
9
.2

n
d

2
.8

1
0
.1

1
3
.3

9
0
.1

3

1
f

B
el

h
am

4
.2

5
2
7
.1

n
a

1
.3

7
.1

n
d

2
9
.5

2
.7

2
0
.6

2
1
4
9
.8

0
.2

2
2
.2

2
3
.2

0
.1

4
1
.4

8
8

n
d

8
0
.3

6
2
.1

5
2
2
.3

1
9
.4

n
d

3
.2

3
.5

9
0
.1

2
.7

5
0
.2

1
g

B
el

h
am

4
.6

8
2
7
.2

n
a

1
.6

1
1
.6

0
.3

3
1
.6

4
.3

1
.2

5
8
9
.9

0
.6

4
5
.2

1
6
.5

2
0
.2

3
3
.9

3
1
1
.5

n
d

1
7
2
.3

9
1
4
9
.3

7
5
9
.5

5
.5

9
.2

8
.2

5
.4

8
0
.1

7
7
.0

4
0
.3

3

1
h

B
el

h
am

7
.7

9
2
7
.8

2
.2

2
2
4
.3

3
5
0
.9

n
d

5
6
.2

4
0
9
.4

3
5
3
.2

5
.9

0
.2

2
2
1
.3

5
4
6
0
.9

7
9
.8

2
1
0
.4

2
1
2
6

5
.6

2
3
.8

3
0
.1

9
9

1
1
.2

4
1
0
.3

1
,4

8
4
.3

0
5
4
0
.6

6
1
.2

7
7
3
.1

5
0
.2

9

2
a

C
en

tr
e

7
.6

8
2
3
.6

1
.6

8
0
.2

5
.5

3
.5

1
.3

1
.5

8
0
.4

6
1

0
.5

3
0
.0

7
1
.2

3
0
.0

3
0
.3

4
1
9
1
.5

4
.1

0
.0

6
0
.0

9
n

d
2
.4

n
d

n
d

2
.6

7
0
.0

1
0
.7

3
0
.0

1

2
c

C
en

tr
e

7
.4

5
2
3
.2

1
.5

5
0
.2

4
.8

8
.1

1
.2

1
.3

4
0
.4

3
n

d
0
.4

9
0
.0

7
1
.1

0
.0

3
0
.3

4
1
6
2
.9

2
.6

0
.0

4
0
.0

1
n

d
1
.6

n
d

n
d

2
.4

0
.0

1
0
.7

1
n

d

3
a

C
en

tr
e

7
.1

4
2
3
.5

n
a

0
.1

3
.9

1
4
.1

1
.3

1
.1

4
0
.3

8
n

d
0
.4

9
0
.0

5
0
.9

7
0
.0

3
0
.3

7
1
6
8
.8

2
.1

0
.0

6
0
.0

1
n

d
1
.1

n
d

n
d

2
.0

3
0
.0

2
0
.7

n
d

3
b

C
en

tr
e

7
.5

3
2
4

1
.4

8
0
.1

3
.5

0
.3

0
.7

1
.1

5
0
.3

8
n

d
0
.4

8
0
.0

5
0
.9

9
0
.0

2
0
.3

7
1
6
3
.4

1
.5

0
.0

5
0
.0

2
n

d
1
.3

n
d

n
d

1
.3

8
0
.0

1
0
.6

9
0
.0

1

4
a

C
en

tr
e

7
.3

5
2
3
.5

n
a

0
.1

3
.5

2
2
.4

0
.7

1
.1

3
0
.3

8
1
.8

0
.5

1
0
.0

5
0
.9

9
0
.0

3
0
.3

8
1
8
0
.3

1
2

1
.2

8
1
4
.1

6
n

d
3
.8

n
d

n
d

1
.7

4
0
.0

2
0
.7

2
n

d

4
b

C
en

tr
e

7
.2

5
2
3
.5

1
.5

1
0
.1

3
.4

8
.5

0
.9

1
.1

1
0
.3

8
0
.1

0
.5

1
0
.0

5
0
.9

9
0
.0

3
0
.3

8
1
7
1
.1

2
.1

0
.0

5
0
.0

1
n

d
1
.3

n
d

n
d

2
.1

1
0
.0

2
0
.7

2
n

d

5
a

C
en

tr
e

7
.0

6
2
3
.4

n
a

0
.1

3
.5

1
9
.6

0
.6

1
.1

5
0
.3

9
n

d
0
.5

0
.0

5
0
.9

2
0
.0

2
0
.3

9
1
2
8

3
.3

0
.0

1
n

d
n

d
1
.1

n
d

n
d

1
.8

7
0
.0

2
0
.7

5
0
.0

1

5
b

C
en

tr
e

6
.9

4
2
3
.4

1
.5

5
0
.1

3
.5

4
.3

0
.7

1
.1

5
0
.3

9
n

d
0
.5

0
.0

6
1
.0

1
0
.0

3
0
.4

1
2
6

4
0
.0

2
0
.0

4
n

d
1
.3

n
d

n
d

2
.2

1
0
.0

2
0
.7

5
0
.0

2

6
a

C
en

tr
e

7
.3

7
2
6

n
a

0
.2

3
.8

2
9
.2

0
.8

1
.2

6
0
.3

7
n

d
0
.5

4
0
.0

7
1
.1

4
0
.0

3
0
.4

2
1
9
9
.7

n
d

0
.0

1
0
.0

1
n

d
0
.3

n
d

n
d

2
.0

3
0
.0

2
0
.7

5
n

d

6
b

C
en

tr
e

7
.3

4
2
6

1
.5

1
0
.2

3
.8

1
7

1
.6

1
.2

5
0
.3

7
3
.6

0
.5

4
0
.0

7
1
.1

5
0
.0

3
0
.4

2
2
0
3

0
.3

0
.0

1
n

d
n

d
0
.6

n
d

n
d

2
0
.0

2
0
.7

4
n

d

7
a

C
en

tr
e

7
.2

3
2
6
.4

n
a

0
.2

3
.6

8
.6

0
.7

1
.3

2
0
.3

6
n

d
0
.5

3
0
.0

8
1
.1

8
0
.0

2
0
.4

1
1
8
3
.2

n
d

0
.0

1
0
.0

1
n

d
0
.3

n
d

n
d

2
.2

8
0
.0

1
0
.7

7
0
.0

1

7
b

C
en

tr
e

7
.1

4
2
6
.3

1
.4

5
0
.2

3
.6

0
.6

0
.8

1
.3

3
0
.3

6
n

d
0
.5

3
0
.0

8
1
.1

8
0
.0

2
0
.4

1
1
9
6
.3

n
d

n
d

n
d

n
d

0
.3

n
d

n
d

2
.3

7
0
.0

1
0
.7

7
0
.0

1

8
a

C
en

tr
e

7
.5

6
2
3
.2

n
a

0
.1

3
.6

3
5
.4

0
.8

1
.1

3
0
.4

6
n

d
0
.5

6
0
.0

6
1
.0

9
0
.0

3
0
.4

7
2
2
8
.1

1
.2

0
.0

1
n

d
n

d
0
.3

n
d

n
d

2
.0

2
0
.0

2
0
.8

3
n

d

8
b

C
en

tr
e

7
.4

8
2
3
.4

1
.7

4
0
.2

4
.1

1
2
.3

0
.8

1
.3

2
0
.5

1
n

d
0
.5

7
0
.0

9
1
.3

4
0
.0

3
0
.4

6
2
7
7
.4

0
.9

n
d

n
d

n
d

n
d

n
d

n
d

2
.4

6
0
.0

2
0
.8

5
0
.0

1

9
a

P
ly

m
o
u
th

4
.0

6
3
3
.3

0
.1

7
.8

9
2

3
3
.9

1
3
1
.7

7
1
.9

1
8
.5

6
2
4
.9

1
.6

3
8
.6

7
7
.4

5
2
.1

2
.5

4
3
9
.7

4
4
0
.5

9
1
4
.2

5
9
1
.5

1
3
1
.2

5
1
.4

1
9
3
.3

1
2
7
.8

8
0
.5

8
1
0
.4

0
.0

8

9
b

P
ly

m
o
u
th

4
.1

3
2
7
.7

n
a

1
.4

1
2
.2

1
7
3
.4

1
7
8
.2

1
.4

3
0
.9

4
3
7
6
.2

0
.6

5
1
.3

7
2
.6

0
.1

9
1
.5

8
1
0
.3

5
.2

3
7
.4

6
0
.7

4
4
.1

1
1
.8

n
d

n
d

3
.2

9
0
.1

2
1
.6

5
0
.0

5

1
0

P
ly

m
o
u
th

4
.1

4
3
3
.2

n
a

7
.7

6
5
.5

1
6

1
1
4

3
7
.4

3
5
.4

1
4
7
3
.7

1
.9

4
8
.1

2
4
0
.9

5
1
.2

1
6
.0

5
3
5
.6

1
.5

1
2
7
.4

7
2
4
9
.7

9
1
3
5
.4

1
1
1
.1

n
d

8
.5

9
5
.7

4
0
.3

2
7
.2

5
0
.0

5

1
1

P
ly

m
o
u
th

6
.3

2
3
8
.3

1
.5

5
1
5
.3

9
9
.4

1
6
.5

1
3
1
.2

5
8

5
.0

5
2
.2

1
.2

4
4
.5

3
6
1
.0

5
1
.8

1
3
.4

8
7
4
.6

1
.8

3
.7

7
0
.0

4
5
3
.7

1
5
.9

6
0
.7

4
9
.9

1
0
2
.4

9
0
.6

8
.9

7
0
.0

7

1
2
a

C
en

tr
e

7
.3

1
2
6
.3

2
0
.1

5
1
2
.5

2
1
.6

2
0
.4

7
n

d
0
.4

6
0
.1

6
1
.4

4
0
.0

2
0
.6

3
1
0
7
.2

n
d

0
.1

2
0
.0

1
n

d
1
.4

n
d

n
d

3
0
.0

1
0
.9

7
n

d

1
2
b

C
en

tr
e

7
.5

9
2
7

1
.9

7
0
.1

4
.5

1
9
.9

2
.2

1
.6

3
0
.3

7
n

d
0
.4

4
0
.1

8
1
.3

9
0
.0

2
0
.6

3
1
0
7

n
d

n
d

n
d

n
d

0
.2

n
d

n
d

2
.4

9
0
.0

1
0
.9

4
n

d

1
3

C
en

tr
e

7
.3

9
2
6
.9

0
.8

7
0

3
n

d
2
.4

0
.8

6
0
.2

3
0

0
.4

2
0
.2

1
0
.7

7
0
.0

4
0
.3

3
3
3
.5

n
d

0
.0

3
n

d
n

d
0
.5

n
d

n
d

1
.0

6
0
.0

2
0
.6

2
0
.0

1

1
4

B
el

h
am

4
.8

5
2
5
.3

0
.0

6
0
.3

0
.6

6
.2

3
.4

0
.2

6
0
.0

2
1
5
.9

0
.0

5
0
.0

8
0
.2

0
.0

3
0
.0

5
5

n
d

2
.1

4
0
.5

8
n

d
0
.9

n
d

n
d

0
.1

6
0
.0

2
0
.1

2
0
.0

7

1
5

C
en

tr
e

7
.6

4
2
4
.3

1
.7

4
0

2
.8

n
d

1
.3

1
.1

2
0
.3

8
3
.2

0
.7

4
0
.2

5
0
.9

5
0
.0

3
0
.6

1
3
1
.1

n
d

0
.3

7
0
.1

1
n

d
0
.3

n
d

n
d

1
.2

7
0
.0

2
1
.2

8
0
.0

1

1
6

C
en

tr
e

7
.1

4
2
4

2
.1

9
0
.1

3
.8

0
.1

2
.9

1
.7

3
0
.4

3
n

d
0
.9

6
0
.1

1
1
.3

9
0
.0

2
0
.6

1
0
7
.1

1
.8

0
.1

1
0
.3

n
d

0
.2

n
d

n
d

2
.1

6
0
.0

1
1
.2

2
0
.0

1

1
7

G
in

g
o
es

6
.2

5
3
2
.1

4
.8

3
1
.6

3
8
.8

2
4
5
.6

4
6
.6

9
.4

1
.0

8
6
.2

1
.2

3
2
.6

3
.4

8
0
.4

5
0
.4

2
9
9

2
.4

0
.2

7
0
.2

2
5
.5

5
.4

5
.3

3
4
.4

7
.4

4
0
.1

0
.1

9
0
.0

2

1
8

H
o
t 

P
o
n

d
5
.4

0
4
3
.5

0
.9

7
5
2
6
.2

1
,1

2
5
.8

5
.5

3
3
.6

1
8
5
.3

1
2
.3

7
1
3
.6

2
.2

1
1
.9

7
2
9
6
.3

8
1
4
.5

9
3
5

7
6
.3

2
.1

4
6
7
.9

8
1
2
6
.1

1
3
9
0

1
6
.1

1
,3

8
6
.8

5
7
1
.1

3
5
7
.2

2
1
3
.7

1
7
9
.9

1
1
.6

1
9

B
el

h
am

 B
H

6
.7

8
3
1
.5

3
.1

6
0
.7

1
2

3
5
.9

2
.1

2
.4

3
0
.9

6
n

d
1
.6

2
0
.1

3
2
.0

2
0
.1

1
0
.7

4
3
7
4
.2

n
d

0
.1

3
1
.1

9
.7

0
.6

n
d

n
d

2
.1

2
0
.1

1
1
.2

2
n

d

n
a

s
a
m

p
le

s
 n

o
t 

a
n
a
ly

z
e
d

n
d

d
e
n
o
te

s
 c

o
n
c
e
n
tr

a
ti
o
n
s
 b

e
lo

w
 d

e
te

c
ti
o
n



Table 3  Isotope data of oxygen, hydrogen, carbon (all in per mill), and strontium (ratio) in 

selected samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Region δ
18

O δD δ
13

C
87

Sr/
86

Sr

SW na na na na 0.70916

1d Belham −4.28 −21.7 −18.00 na

1e Belham na na na 0.70585

1g Belham na na na 0.70506

2a Centre na na na 0.70510

2c Centre −3.31 −13.7 −20.22 0.70472

3a Centre −3.25 −11.6 −19.41 0.70439

4a Centre −3.21 −12.7 −20.65 0.70442

5a Centre −3.26 −11.3 −19.62 0.70441

6a Centre −2.88 −9.7 −21.88 0.70435

7a Centre −2.83 −8.4 −24.61 0.70438

8a Centre −3.28 −10.5 −18.84 0.70446

9a Plymouth −2.76 −10.2 −9.60 0.70865

9b Plymouth na na na 0.70627

10 Plymouth −2.34 −6.2 −12.21 0.70803

11 Plymouth −2.53 −9.1 −10.04 0.70794

12a Centre −3.29 −10.3 −20.72 0.70428

12b Centre −3.14 −11.0 −20.15 0.70404

13 Centre −2.76 −5.7 −15.59 0.70500

14 Belham na na na 0.70516

15 Centre −3.12 −8.2 −15.58 0.70454

16 Centre −2.79 −8.2 −16.91 0.70464

17 Gingoes −2.07 −4.5 −4.42 0.70861

18 Hot Pond Belham −0.19 −7.1 −5.24 0.70568

19 BH −3.21 −12.3 −10.41 0.70479

na not analyzed



Table 4   Summary of geochemical time series of Centre Hills springs 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5  Summary of major element concentrations before subtraction of rain water 

component for selected samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mg/Cl Ca/Cl SO4/Cl F/Cl (x10
3
)

Mar 1991
a

0.37 0.38 0.071 2.43

Aug–Sep 2003
b

0.36 0.39 0.071 1.28

Jun 2008
c

0.36 0.38 0.067 0.92

a
Chiodini et al. (1996)

b
Davies and Peart (2003)

c
This study. Data reported as molar ratios

Na Ca Mg K HCO3 Cl SO4 F

Av. CH springs 1.347 0.438 0.412 0.025 1.642 1.181 0.087 0.92

Minus rain 0.335 0.416 0.297 0.005 1.639 0 0.031 0.78

Minus W-R 0.000±0.023 −0.001±0.042 0.054±0.049 –0.119±0.018 –0.015

Av CH rock 1.09±0.07 1.36±0.14 0.79±0.04 0.40±0.06

Belham lahar 0.264 0.049 0.025 0.025 0.06 0.196 0.076 3.44

Minus rain 0.096 0.046 0.006 0.021 0.06 0 0.066 3.42

Gingoes 9.4 0.422 1.082 0.451 4.83 3.48 2.6 47

Acid rain 6.91 0.367 0.799 0.397 4.82 3.48±0.98 0.31±0.05 77±1

Minus (25% plume + 75% sw) 0 2.39 27

Av SSH rock 0.98±0.15 1.75±0.27 1.13±0.27 0.37±0.12

Dissolved concentrations are in millimoles per liter, except F in micromoles per liter.

Acid rain composition from Smithsonian Institution (1997)

CH  centre Hills, SSH  South Soufriere Hills, SW  seawater



Figure captions 

 

Figure 1.  Map of Montserrat, depicting the deposits from the Soufrière Hills volcano and 

thelocations of samples collected in this study. Topographic and bathymetric data were 

collected by Le Friant et al. (2004). 

Figure 2.  Ternary diagrams showing the relative abundance by mass of a anions and b 

cations in the collected samples (field descriptors after Giggenbach (1988)). Gray-shaded 

areas denote the general fumarole compositions from Chances and Gages Peak (the sites of 

the subsequent eruptions) in 1991/1992 (Chiodini et al. 1996). Centre Hills data are ringed 

with a black circle with outliers labelled. 

Figure 3.  Oxygen and hydrogen isotopic ratios for the cool and thermal waters in Montserrat. 

SMOW standard mean ocean water, MWL meteoric water line. 

Figure 4.  A comparison of δ
18

O and δ
2
H variations from the Centre Hills springs between 

2003 (Davies and Peart 2003) and this study (2008). 

Figure 5.  
87

Sr/
86

Sr ratios versus 1/Sr for selected samples. The precipitation values for 

Guadeloupe are from Rad et al. (2006). Three end members exist: water–rock interaction, 

atmospheric input (rain), and seawater contamination. The average 
87

/
86

Sr ratio in Montserrat 

rocks is 0.7036 (Cooper 2005). 

Figure 6.  Carbon isotopic composition of DIC in Montserrat waters versus concentration of 

DIC in waters. Open squares = Centre Hills spring waters, solid square = Belham Valley bore 

hole, open circle = Gingoes Ghaut groundwater, cross = Hot Springs. The gray band shows 

the δ
13

C of typical magmatic gases (Hammouya et al. 1998; Di Napoli et al. 2009). 

Figure 7.  Water flow rates for Killiekrankie, Olveston, and Lawyers springs in Centre Hills 

(Montserrat Water Authority, unpublished data). Arrows indicate sampling dates. 

Figure 8.  Stability diagram for secondary mineral assemblages at 25°C. Open squares = 

Centre Hills spring waters, solid square = Belham Valley bore hole, solid circle = Belham 

Valley lahar, open circle = Gingoes Ghaut groundwater. 

Figure 9.  Variation in chemistry and temperature of Hot Pond spring geothermal water (Bath 

1977; Chiodini et al. 1996; MVO unpublished data, 1998; Younger 2006; this study). The 

arrows mark the onset of the most recent phase of volcanic activity. 

Figure 10.  A δ
18

O–Cl plot for the various samples for Hot Pond spring (site 18) (Bath 1977; 

Chiodini et al. 1996; this study). The mixing line originates from cool groundwaters of 

Belham borehole type (site 19). 
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Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 6 
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Figure 9 
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