1 A rich Ediacaran assemblage from eastern Avalonia:

2 Evidence of early widespread diversity in the deep ocean

3 [[SU: ok? need a noun]]

4 Philip R. Wilby, John N. Carney, and Michael P.A. Howe

5 British Geological Survey, Keyworth, Nottingham NG12 5GG, UK

6 ABSTRACT

7 The Avalon assemblage (Ediacaran, late Neoproterozoic) constitutes the oldest 8 evidence of diverse macroscopic life and underpins current understanding of the early 9 evolution of epibenthic communities. However, its overall diversity and provincial 10 variability are poorly constrained and are based largely on biotas preserved in 11 Newfoundland, Canada. We report coeval high-diversity biotas from Charnwood Forest, 12 UK, which share at least 60% of their genera in common with those in Newfoundland. 13 This indicates that substantial taxonomic exchange took place between different regions 14 of Avalonia, probably facilitated by ocean currents, and suggests that a diverse deepwater 15 biota that had a probable biogeochemical impact may already have been widespread at 16 the time. Contrasts in the relative abundance of prostrate versus erect taxa record 17 differential sensitivity to physical environmental parameters (hydrodynamic regime, 18 substrate) and highlight their significance in controlling community structure. 19 **INTRODUCTION**

The Ediacaran (late Neoproterozoic) Avalon assemblage (ca. 578.8–560 Ma) preserves the oldest evidence of diverse macroorganisms and is key to elucidating the early radiation of macroscopic life and the assembly of benthic marine communities

23	Article ID: G31890 (Clapham et al., 2003; Van Kranendonk et al., 2008). However, detailed data are
24	conspicuously localized, and consequently total diversity and provincial variability are
25	poorly constrained. Current understanding is largely based on the classic biotas of
26	Newfoundland, Canada (e.g., Narbonne et al., 2009). These are dominated by
27	rangeomorphs, an eccentric group with a distinctive pseudofractal architecture (Brasier
28	and Antcliffe, 2009) that reached their acme in the Mistaken Point Formation (565 \pm 3
29	Ma). Here they comprise a series of high-diversity census populations, collectively
30	composing the Mistaken Point assemblage, each preserved on top of a fine-grained
31	turbidite beneath a thin volcanic ash (Clapham et al., 2003).
32	By contrast, the Charnwood Forest (UK) biotas, which occupied comparable
33	deepwater niches in a different part of the peri-Gondwanan Avalonian volcanic arc
34	system (Cocks and Fortey, 2009), are much less well understood. They have yielded the
35	holotypes of several key taxa (e.g., Ford, 1958, Boynton and Ford, 1995) and have
36	formed part of significant phylogenetic studies (see Brasier and Antcliffe, 2009), but they
37	have been considered impoverished and have received comparatively little attention.
38	Most of the previously identified taxa are shared with the Mistaken Point assemblage, but
39	the perceived absence of many of the others has prompted the belief that the Avalon
40	assemblage exhibits high levels of endemism (e.g., Clapham et al., 2004). This has
41	influenced how observed trends in the Ediacara biota as a whole have been interpreted,
42	and the relative significance of temporal, environmental, taphonomic, and biogeographic
43	drivers remains contentious (Waggoner, 2003; Grazhdankin, 2004; Narbonne, 2005).
44	We report the first high-diversity and abundant [[SU: vs. abundance?]] Ediacara
45	biotas from present-day eastern Avalonia. These were revealed by a systematic program

46	of silicone rubber molding in Charnwood Forest that included all of the most important
47	known fossiliferous surfaces (totaling >150 m ²). The biotas overlap those of the Mistaken
48	Point assemblage in terms of their age, depositional setting, and taphonomy. They
49	therefore provide a unique opportunity to determine levels of endemism within the wider
50	Avalon assemblage and the relative importance of paleobiogeography and ecological
51	sensitivity in controlling community composition.
52	GEOLOGICAL SETTING
53	The landscape of Charnwood Forest (Leicestershire, UK) includes [[SU: ok? vs.
54	"forest comprises"]] a poorly exposed inlier of late Neoproterozoic to early Cambrian
55	rocks (Fig. 1). The late Neoproterozoic strata form the core of a faulted anticline and
56	underwent folding, epizonal metamorphism, and cleavage formation during localized pre-
57	Acadian deformation (Carney et al., 2008). Fine- to medium-grained turbiditic facies
58	dominate; subordinate slumped units and laterally extensive sandstones record downslope
59	mass wasting events and unconfined, high-density turbidites, respectively (Carney,
60	1999). Thin ashes occur throughout, and coarse-grained pyroclastics constitute a
61	significant proportion of the middle part of the succession. These were sourced from
62	contemporaneous calc-alkaline volcanic centers in the northwest of the inlier and exhibit
63	a geochemical signature consistent with an arc that developed on oceanic or highly
64	attenuated continental crust (Carney, 1999).
65	Fossils are known on more than 12 bedding planes and compose two assemblages
66	separated by an interval of ~2.2 km. The Lubcloud assemblage is known only from a
67	single surface in the Ives Head Formation, close to the lowest exposed part of the
68	succession. It contains the relatively simple forms Blackbrookia, Ivesheadia, and

69	Shepshedia (Boynton and Ford, 1995), and its distinction may be largely taphonomic (see
70	Liu et al., 2011). The younger assemblage, here named the Mercian assemblage, is more
71	diverse and is the focus of this paper. It is recorded at five localities and yielded the
72	holotype of the Ediacaran index species Charnia masoni (Ford, 1958). A U-Pb thermal
73	ionization mass spectrometry date of 563 ± 1.9 Ma (data from the British Geological
74	Survey–Natural Environment Research Council Isotope Geoscience Laboratories) [[SU:
75	ok? Geology does not allow "unpublished" citations, except for the authors'
76	unpublished data.]] has been obtained from between the lowest two fossil levels, but the
77	assemblage's upper age remains poorly constrained (see Compston et al., 2002); it is
78	unconformably overlain by the early Cambrian Brand Group.
79	MERCIAN ASSEMBLAGE
80	The Mercian assemblage (Fig. 2; Table 1) is considerably richer than previously
81	recognized: more than 1200 specimens (>95% newly found) and at least 18 taxa (9 new
82	to the assemblage) have been molded, including several undescribed species. The fossils
83	are preserved on top of fine-grained beds as high-fidelity, low-epirelief impressions.
84	None is obviously overlain by a thick ash layer, though disseminated ash constitutes a
85	significant component of the sediment. Pustules, irregular wrinkles, and iron-stained
86	surfaces suggest the widespread presence of biomats (see Callow and Brasier, 2009).
87	Discoidal fossils dominate (70%) and include a plethora of forms (see Boynton
88	and Ford, 1995). The commonest are simple discs, referable to Aspidella, with mean
89	ellipsoidal diameters typically <0.1 m. They occur on all the fossiliferous surfaces and
90	may form monospecific populations (e.g., bed H). Decimeter-scale circular impressions
91	with a lobe and ridge morphology or polygonal ornament, collectively termed

92	Article ID: G31890 ivesheadiomorphs (see Liu et al., 2011), are also common. Also present is <i>Cyclomedusa</i>
93	davidi, apparently restricted to surfaces at the Outwoods locality, and rare specimens of
94	the tentaculate holdfast <i>Hiemalora</i> , reported here for the first time. [[SU: correct?]]
95	Discoidal fossils are the commonest and longest ranging constituents of the global
96	Ediacara biota, but their status remains controversial (e.g., MacGabhann, 2007). Large
97	specimens, in particular, have been rejected as holdfasts in favor of other explanations
98	(e.g., Hofmann et al., 2008), but examples in the Mercian assemblage as large as 0.35 m
99	mean diameter that are unambiguously attached to fronds (see following) refute this.
100	Many of the attached discs are morphologically distinct, suggesting that isolated holdfasts
101	may hold greater potential as a proxy for frond diversity than hitherto anticipated.
102	Frondose rangeomorphs constitute most of the remainder of the assemblage
103	(27%) and at least 60% of total diversity. Complete fronds (i.e., with holdfast attached)
104	dominate and most taxa are represented by a range of specimen sizes. Charnia masoni
105	(Ford, 1958) is the most abundant frond (Fig. 2A); several new specimens of the globally
106	rare and typically fragmentary large form (C. grandis of Boynton and Ford, 1995) are
107	also identified, as well specimens of intermediate size (e.g., see Fig. 4A). These promise
108	to help confirm the likely ontogenetic relationship between these two charnids (see
109	Antcliffe and Brasier, 2008). Of the 70 new Charniodiscus specimens located, none
110	exhibit the multifoliate frond that is purportedly present in the type specimen of C .
111	concentricus and that has been given considerable phylogenetic weight (Brasier and
112	Antcliffe, 2009). However, examples of closely adjunct, and even overlapping,
113	conspecific fronds are present. At least two other species of Charniodiscus are added to
114	the assemblage (Fig. 2B), one of which we tentatively refer to C. arboreus.

115	Article ID: G31890 Bush-shaped rangeomorphs compose nearly half of all the frondose fossils,
116	though only Bradgatia linfordensis (Fig. 4A), which is now known to be relatively scarce
117	(3%), had previously been recorded (Boynton and Ford, 1995). At least three additional
118	species are present. Two of the species are allied to Primocandelabrum (see Hofmann et
119	al., 2008), though neither bears a Hiemalora-like holdfast. In terms of gross morphology,
120	they are distinguished by a sustained disparity in their frond/holdfast proportions through
121	ontogeny (Figs. 2C, 2G). The third species is unique among Ediacara taxa (Fig. 2D): it
122	has a long stem bearing a globular frond with most of the primary branches emanating
123	from a single point, but with some dividing from other branches.
124	Specimens of uncertain affinity are scarce (3%) and may include taphomorphs or
125	developmental stages of more familiar taxa. They include a diminutive, gladius-like fossil
126	bearing transverse divisions (Fig. 2E), and a hemisphere with a medial ridge and radial
127	bifurcating ribs (Fig. 2H). Rare specimens of Thectardis cf. avalonensis (Clapham et al.,
128	2004) are also reported here for the first time (Fig. 2F). [[SU: ok?]]
129	COMMUNITY PRESERVATION
130	The fronds on each bedding plane exhibit a preferred orientation (Figs. 4A, 4B)

The tronds on each bedding plane exhibit a preferred orientation (Figs. 4A, 4B) 130 131 that is consistent with them having been felled and preserved in situ by the overlying 132 turbidite or ash. Liu et al. (2011) interpreted the ivesheadiomorphs as impressions of 133 organisms that underwent protracted decomposition on the sediment surface prior to 134 burial; consequently, they take each bedding-plane assemblage to constitute a time-135 averaged record of that biota. We disagree, and interpret each surface as a near census of the standing crop at the time of obrution (cf. Clapham and Narbonne, 2002). We consider 136 137 the morphology of ivesheadiomorphs to be more consistent with the intrusion of sediment

138	into space created by the decay of buried organisms. These organisms are inferred to
139	have been killed at the same time as the associated aligned specimens, but whereas the
140	fronds of the latter were felled onto the substrate, the fronds (still anchored) of the former
141	were held clear by sediment in the turbid flow or by ash settling beneath them. This
142	interpretation explains a number of ivesheadiomorph peculiarities, notably their high
143	relief and distinctive morphology, and their apparent restriction to turbidite successions.
144	Separate surfaces preserve markedly different communities (Table 1; Fig. 3).
145	Comparable variation in the Mistaken Point assemblage has been interpreted as recording
146	different stages in an ecological succession (Clapham et al., 2003). Certainly, the
147	occurrence of different populations on closely spaced beds is inconsistent with an
148	evolutionary control. However, the degree of taphonomic overprint is not yet fully
149	resolved and intrinsic differences in the dynamics of the smothering turbidites could have
150	led to the preferential capture of certain taxa (see above). Similarly, the penetrative
151	structural cleavage may introduce a substantial bias. Typically, it is subtle and several
152	orders of rangeomorph branching are visible within fossils, but on bed A, [[SU: no quote
153	marks needed]] where it has been accentuated by bedding-plane slip, the only
154	discernable fossils are large discs and fragments of very large Charnia.
155	COMPARISON WITH MISTAKEN POINT ASSEMBLAGE
156	The largest surface examined in the Mercian assemblage (bed B) has a species
157	richness comparable to the most diverse surface (E surface) in the Mistaken Point

- assemblage, and its generic composition most closely resembles that of the G surface (cf.
- 159 Fig. 3 and Clapham et al., 2003, their figure 2). However, total diversity is lower (18
- 160 species compared to 20–30; see Clapham et al., 2003), probably due to the smaller

161	sample area. Full taxonomic lists are not yet available for either the Mercian or Mistaken
162	Point assemblages, but our new data show that the former shares at least 60% of its
163	genera in common (Aspidella, Hiemalora, Charnia, Charniodiscus, Bradgatia), including
164	at least two (Primocandelabrum, Thectardis) that were previously considered endemic to
165	western Avalonia (Hofmann et al., 2008; Clapham et al., 2004). This indicates that much
166	greater taxonomic exchange took place between these separate locations than previously
167	believed.
168	Direct morphological evidence of the dispersal strategies utilized by Ediacara
169	organisms is lacking, but they may be inferred from distribution data (e.g., Narbonne et
170	al., 2009). The Charnwood and Newfoundland successions comprise laterally continuous
171	tuffs and tabular event beds (Carney, 1999; Wood et al., 2003), both of which constituted
172	kill mechanisms. Ash falls associated with arc volcanism may blanket vast regions of
173	deepwater substrate (10^5 km^2) and are especially lethal to sessile epibenthos; turbidites
174	typically sterilize smaller areas, but the biotic response may be similar (Hess et al., 2001).
175	Because of the scale of such decimation, recolonization relies on passive planktic
176	immigration from outside areas (e.g., Grassle and Morse-Porteous, 1987). Hence, the
177	repeated recolonization events preserved in the Avalon assemblage, together with the
178	new evidence of abundant shared taxa (see above), strongly support the notion that these
179	organisms were able to disperse widely (Clapham et al., 2003), perhaps passively in
180	ocean currents.
181	Though the Mistaken Point and Mercian assemblages share many taxa in
182	common, their communities had profoundly different structures: prostrate and creeping

183 **[[SU: no quote marks]]** forms (e.g., *Fractofusus*, *Hapsidophyllas*, *Pectinifrons*) are

184	Article ID: G31890 common in many of the former (Clapham et al., 2003), whereas they are conspicuously
185	absent in the latter; Bradgatia may have adopted an intermediate posture (Flude and
186	Narbonne, 2008). Avalonian organisms are thought to have adsorbed dissolved organic
187	carbon directly from the global marine pool (Sperling et al., 2011). Therefore, nutrient
188	availability may have had less impact on community structure than variations in the
189	physical environment. For example, hydrodynamic and depositional regimes vary
190	between deepwater sites (Stow et al., 1996), and locally higher concentrations of
191	particulates immediately above the substrate could have perturbed prostrate taxa by
192	preferentially fouling them. Equally, these taxa may have required different substrate
193	conditions to the erect fronds, which utilized a buried holdfast; they lack a discrete
194	anchor and must have adhered by an alternative means. The comparative rarity of
195	Thectardis in Charnwood lends some support to this idea, because it too lacked a holdfast
196	(Clapham et al., 2004). While sediment grain size appears not to have influenced the
197	communities (Clapham et al., 2003), the impact of variations in the nature of the
198	overlying biomats (Callow and Brasier, 2009) remains to be fully elucidated.
199	CONCLUSIONS
200	The new Charnwood biotas fill a significant gap in knowledge of the Avalon
201	assemblage and expand the known diversity of the Ediacaran deepwater biotope.
202	Endemism is much less marked than previously reported, suggesting effective
203	communication between separate regions, probably facilitated by ocean currents. Benthic
204	colonization of comparable deepwater environments therefore may have been extensive,
205	and could have played a role in moderating the global carbon cycle. Observed differences

and could have played a role in moderating the global carbon cycle. Observed differences

206 between the Charnwood and Mistaken Point assemblages are most consistent with

207	sustained regional differences in hydrodynamic regime or substrate, probably related to
208	wider basin dynamics. They support the growing perception of environmental sensitivity
209	among Ediacara organisms and its primary role in controlling community composition
210	(Grazhdankin, 2004).
211	ACKNOWLEDGMENTS
212	We thank the landowners and Natural England for facilitating site access;
213	Martin Brasier, Alex Liu, Jonathan Antcliffe, and Helen Boynton for useful
214	discussion; GeoEd for molding and casting; Alan Weightman and Frank Ince for rope
215	safety; and Paul Witney for photography. We acknowledge the financial support of
216	Natural England.
217	REFERENCES CITED
218	Antcliffe, J.B., and Brasier, M.D., 2008, Charnia at 50: Developmental models for
219	Ediacaran fronds: Palaeontology, v. 51, p. 11–26, doi:10.1111/j.1475-
220	4983.2007.00738.x.
221	Boynton, H.E., and Ford, T.D., 1995, Ediacaran fossils from the Precambrian (Charnian
222	Supergroup) of Charnwood Forest, Leicestershire, England: Mercian Geologist,
223	v. 13, p. 165–182.
224	Brasier, M., and Antcliffe, J., 2009, Evolutionary relationships within the Avalonian
225	Ediacaran biota: New insights from laser analysis: Geological Society of London
226	Journal, v. 166, p. 363–384, doi:10.1144/0016-76492008-011.
227	Callow, R.H.T., and Brasier, M.D., 2009, Remarkable preservation of microbial mats in
228	Neoproterozoic siliciclastic settings: Implications for Ediacaran taphonomic models:
229	Earth-Science Reviews, v. 96, p. 207–219, doi:10.1016/j.earscirev.2009.07.002.

- 230 Carney, J.N., 1999, Revisiting the Charnian Supergroup: New advances in understanding
- 231 old rocks: Geology Today, v. 15, p. 221–229, doi:10.1046/j.1365-
- 232 2451.1999.00006.x.
- 233 Carney, J.N., Alexandre, P., Pringle, M.S., Pharaoh, T.C., Merriman, R.J., and Kemp,
- 234 S.J., 2008, ⁴⁰Ar-³⁹Ar isotope constraints on the age of deformation in Charnwood
- 235 Forest, UK: Geological Magazine, v. 145, p. 702–713,
- doi:10.1017/S0016756808004950.
- 237 Clapham, M.E., and Narbonne, G.M., 2002, Ediacaran epifaunal tiering: Geology, v. 30,
- 238 p. 627–630, doi:10.1130/0091-7613(2002)030<0627:EET>2.0.CO;2.
- 239 Clapham, M.E., Narbonne, G.M., and Gehling, J.G., 2003, Paleoecology of the oldest
- 240 known animal communities: Ediacaran assemblages at Mistaken Point,
- 241 Newfoundland: Paleobiology, v. 29, p. 527–544, doi:10.1666/0094-
- 242 8373(2003)029<0527:POTOKA>2.0.CO;2.
- 243 Clapham, M.E., Narbonne, G.M., Gehling, J.G., Greentree, C., and Anderson, M.M.,
- 244 2004, *Thectardis avalonensis*: A new Ediacaran fossil from the Mistaken Point
- 245 Biota, Newfoundland: Journal of Paleontology, v. 78, p. 1031–1036,

246 doi:10.1666/0022-3360(2004)078<1031:TAANEF>2.0.CO;2.

- 247 Compston, W., Wright, A.E., and Toghill, P., 2002, Dating the late Precambrian
- volcanicity of England and Wales: Geological Society of London Journal, v. 159,
- 249 p. 323–339, doi:10.1144/0016-764901-010.
- 250 Cocks, L.R.M., and Fortey, R.A., 2009, Avalonia: A long-lived terrane in the lower
- 251 Palaeozoic?, in Bassett, M.G., ed., Early Palaeozoic Peri-Gondwana terranes: New

- 252 insights from tectonics and biogeography: Geological Society of London Special
- 253 Publication 325, p. 141–155, doi:10.1144/SP325.7.
- Flude, L.I., and Narbonne, G.M., 2008, Taphonomy and ontogeny of a multibranched
- 255 Ediacaran fossil: *Bradgatia* from the Avalon Peninsula of Newfoundland: Canadian
- 256 Journal of Earth Sciences, v. 45, p. 1095–1109, doi:10.1139/E08-057.
- 257 Ford, T.D., 1958, Precambrian fossils from Charnwood Forest: Yorkshire Geological
- 258 Society Proceedings, v. 31, p. 211–217, doi:10.1144/pygs.31.3.211.
- 259 Grassle, J.F., and Morse-Porteous, L.S., 1987, Macrofaunal colonization of disturbed
- 260 deep-sea environments and the structure of deep-sea benthic communities: Deep-Sea
- 261 Research, v. 34, p. 1911–1950, doi:0198–0149/87.
- 262 Grazhdankin, D.V., 2004, Patterns of distribution in Ediacaran biotas: Facies versus
- biogeography and evolution: Paleobiology, v. 30, p. 203–222, doi:10.1666/0094-
- 264 8373(2004)030<0203:PODITE>2.0.CO;2.
- Hess, S., Kuhnt, W., Hill, S., Kaminski, M.A., Holbourn, A., and de Leon, M., 2001,
- 266 Monitoring the recolonization of the Mt. Pinatubo 1991 ash layer by benthic
- 267 foraminifera: Marine Micropaleontology, v. 43, p. 119–142, doi:10.1016/S0377-
- 268 8398(01)00025-1.
- 269 Hofmann, H.J., O'Brien, S.J., and King, A.F., 2008, Ediacaran biota on Bonavista
- 270 Peninsula, Newfoundland, Canada: Journal of Paleontology, v. 82, p. 1–36,
- doi:10.1666/06-087.1.
- Liu, A.G., McIlroy, D., Antcliffe, J.B., and Brasier, M.D., 2011, Effaced preservation in
- the Ediacara biota and its implications for the early macrofossil record:
- 274 Palaeontology, v. 54, p. 1–24, doi:10.1111/j.1475-4983.2010.01024.x.

275	MacGabhann, B.A., 2007, Discoidal fossils of the Ediacaran biota: A review of current
276	understanding, in Vickers-Rich, P., and Komarower, P., eds., The rise and fall of the
277	Ediacaran Biota: Geological Society of London Special Publication 286, p. 297–313,
278	doi:10.1144/SP286.21.
279	Narbonne, G.M., 2005, The Ediacaran biota: Neoproterozoic origin of animals and their
280	ecosystems: Annual Review of Earth and Planetary Sciences, v. 33, p. 421-442,
281	doi:10.1146/annurev.earth.33.092203.122519.
282	Narbonne, G.M., Laflamme, M., Greentree, C., and Trusler, P., 2009, Reconstructing a
283	lost world: Ediacaran rangeomorphs from Spaniard's Bay, Newfoundland: Journal of
284	Paleontology, v. 83, p. 503-523, doi:10.1666/08-072R1.1.
285	Sperling, E.A., Peterson, K.J., and Laflamme, M., 2011, Rangeomorphs, Thectardis
286	(Porifera?) and dissolved organic carbon in the Ediacaran oceans: Geobiology, v. 9,
287	p. 24–33, doi:10.1111/j.1472-4669.2010.00259.x.
288	Stow, D.A.V., Reading, H.G., and Collinson, J.D., 1996, Deep seas, in Reading, H.G.,
289	ed., Sedimentary environments: Processes, facies and stratigraphy: London,
290	Blackwell Science, Inc., p. 395–453.
291	Van Kranendonk, M.J., Gehling, J.G., and Shields, G.A., 2008, Precambrian, in Ogg,
292	J.G., et al., eds., The concise geologic time scale: Cambridge, Cambridge University
293	Press, p. 23–36.
294	Waggoner, B.M., 2003, The Ediacaran biotas in space and time: Integrative and
295	Comparative Biology, v. 43, p. 104–113, doi:10.1093/icb/43.1.104.
296	Wood, D.A., Dalrymple, R.W., Narbonne, G.M., Gehling, J.G., and Clapham, M.E.,
297	2003, Paleoenvironmental analysis of the late Neoproterozoic Mistaken Point and

- 298Trepassey formations, southeastern Newfoundland: Canadian Journal of Earth
- 299 Sciences, v. 40, p. 1375–1391, doi:10.1139/E03-048.

300 FIGURE CAPTIONS

- 301 Figure 1. Lithostratigraphy and location of Charnwood Forest (UK) inlier, including
- 302 stratigraphic positions of main fossil-bearing horizons.
- 303
- 304 Figure 2. Mercian assemblage, bed B, North Quarry, Charnwood Forest (UK). All
- 305 specimens are casts, except B (mold), and are housed at British Geological Survey,
- 306 Keyworth. A: Immature *Charnia masoni* complete with holdfast (GSM105979). B:
- 307 *Charniodiscus* sp. (GSM106069). C: Giant *Primocandelabrum* with proportionally large
- 308 holdfast (GSM105871). D: New multibranched, dumbbell-like taxon (GSM105875). E:
- 309 New gladius-like frond (GSM106083). F: Largest *Thectardis cf. avalonensis* specimen
- 310 identified (GSM106054). G: Primocandelabrum species with proportionally small
- 311 holdfast (GSM105969). H: New hemispherical species with bifurcating radial ribs
- 312 (GSM105967). Scales: A—4.1 cm; B—6.5 cm; C—15.5 cm; D—11.1 cm; E—4.3 cm;
- 313 F—9 cm; G—11.5 cm; H—1.7 cm.
- 314
- 315 Figure 3. Lithological log of North Quarry, Charnwood Forest (UK), with compositions
- 316 of key fossil surfaces; Outwoods (Main) and Bradgate Park (MC—Memorial Crags)
- 317 [[SU: correct? If not, what is MC (Mercian?)?]] included for comparison (boxed).
- 318 Shaded beds are sandstones; A is ash bed. Data are total fossil counts of surfaces
- 319 compiled from full molds under low-angle lighting. Taxa are grouped by genera to
- 320 minimize misidentification and to facilitate comparison with Clapham et al. (2003).

Publisher: GSA Journal: GEOL: Geology

	Article ID: G31890
321	Holdfasts lacking frond are grouped as Discs; indifferently preserved fronds, or those of
322	unknown or undetermined taxonomy, are grouped as Undet. fronds. Rare taxa
323	(individually <1%) are not shown.
324	
325	Figure 4. Current-aligned fronds, bed B, North Quarry, Charnwood Forest (UK). A:
326	Charnia masoni, Bradgatia linfordensis, and 2 undetermined (undet.) fronds (arrows)
327	(cast, GSM105873; housed at British Geological Survey, Keyworth). Scale bar = 10 cm.
328	B: Axial azimuths of fronds in 5° bins (n = 99, σ = 24) and mean orientation (65°, n = 28,
329	$2\sigma = 16.9$) of long axes of their ellipsoidal holdfasts. Dotted arrow shows mean frond
330	axial azimuth corrected for structural dip and plunge.

- 331
- 332
- 333

TA	BLE 1.	SUMMARY ATTR	RIBUTES OF KE	EY FOSSIL SURF	ACES, MERCIAN ASSE	MBLAGE
Locality	Bed	Area studied (m ²)	Number of fossils	Fossil density (n/m ²)	Taxonomic richness (minimum)	Characterizing taxor
North Quarry	Н	12	44	3.6	1	Aspidella
-	D	4.5	24	5.33	4	· · · · ·
	В	115	899	7.8	18	Primocandelabrum
	A*	40	7	0.17	2	Charnia grandis
Outwoods	Main	4	33	7.9	5	Cyclomedusa
Bradgate Park	MC	20	203	10.15	7	Bradgatia

Note: Taxonomic richness is the combined species and form richness. *Indicative data only.

[[SU: should define dash used (e.g., no data, not determined); MC should be spelled
out; is it Memorial Crags, Mercian, or other?]]