

INSTITUTE of HYDROLOGY

SEARLE PLANT, MORPETH
RECONNAISSANCE SURVEY
REPORT ON PHASE I

table of contents

1. INTRODUCTION
1.1 General
1.2 Programme outline
1.3 Methodology
1.4 Geology
1.4.1 Regional setting
1.4.2 Brown tlll
1.4.3 Sllt
1.4.4 Grey till
1.5 Plezometry
1.6 Permeabillty
2. SAMPLING RESULTS
2.1 Organic contamination
2.2 Inorganic contamination
3. DISCUSSION
3.1 Sources of contamination
3.2 Contamination of flll material
3.3 Contamination of the slit layer
3.4 Contamination of the bedrock
3.5 Areas at risk from contamination
4. CONCLUSIONS
5. RECOMMENDATIONS

Figures 1 - 9

Appendix A Borehole logs

Appendix B Water level data

1. INTRODUCTION

1.1 General

The Searle Pharmaceutical site near Morpeth extends over an area of some 20 ha. Four chemlcal production plants, covering an area of about 1 ha, are situated in the north eastern part of the site (Figure 1A)

The toxic chemical waste from the chemical plants and adjacent laboratory is conveyed through a separate effiuent drain system to a treatment works just north of the chemical plants. At least 75\% of this system falled pressure-tests during a survey in October 1985. It was therefore highly probable that leakage of toxic wastes would have contaminated the underlying deposits. Subsequently, engineering works near Chemlcal Plant 4 encountered groundwater contalning acetone at shallou depth.

The Institute of hydrology have undertaken a reconnaissance survey of an area of some 2 ha in and around the chemlcal plant area. This study was arranged to be undertaken in two maln phases:

Phase $A:$ an initlal drilling and sampling programme to determine the extent of pollution and the environmental rlsk arlsing from such pollution.

Phase B: a period of monitoring of a network of sampling points leading to proposals for any remedial action required.

This report summarises the results from Phase A.

The site is underlain by Millstone Grit and Coal Measures. The nearest potentlal groundwater supply at rlsk is a borehole located about one kllometre southwest of the site. However, it is belleved that this borehole is not in use.

A shallow stream follows the northern boundary of the site about 220 m north of the chemical plants. A drain leading from the western part of the site discharges Into thls stream. The stream itself passs beneath the Morpeth by-pass to join the R. Hansbeck about 1.3 km north of the
site. Although ephemeral, the stream is doungradient of the chemical plant area and could therefore be at risk. A grassed area, the North Field, occurs betreen the chemical plants and the stream.

1.2 Programme Outline

Six shallow and two deep wells were drllled by the Institute of Hydrology at separate locations in the North East area of the slte between 16 and 27 February 1987. One of the deep boreholes was drilled upslope of the chemical plant area for lithological control.

The first site to locate any contaminants was drilled in the North Field with the intention that if contaminants were not located within the boulder clay horizons or weathered bedrock at this site then subsequent sites would be drilled towards the chemical plants in an arc extending East and South East from the Inltial site. Drilling would consist of shallow wells at first to avold cross-contamination of the underlying sandstone If shallow contaminants were found. If contaminants were identlfled at the Initial site then the investigation would extend North and North East to locate its extent (within the site boundary only). If contaminants were not found at the shallow sites then some initlal investigation of the chemical plant area itself would begin in order to prove that contaminants were definitely present.

Polluted' groundwater was encountered at only 2 locations:

- at MP6, about 10 m North East of the effluent plant, where high levels of sodium chloride were found
- at MP8, about 8 m North of Chemical Plant 2, where volatlle organics were found in high concentrations.

At this stage it was decided to appraise the results of this inltial programme prior to further investigation within the chemical plant area itself. The initial results, which were presented as a preliminary report in March 1987, strongly suggested that contamination had not spread beyond the site and could even be restricted to the Immediate area of the chemical plants. Between 2 and 9 April 1987 five shallow and one deep borehole were drilled specifically in the area of the chemical plants to
define the pollution in this area in wore detall. The locations of the IH boreholes are shown in Flgure 1B.

1.3 Methodology

A total of 11 shallow and 3 deeper wells were constructed using a shell and auger rig. Great care was taken during the drllling to seal off the upper layers in the borehole using casing. No water was added to the boreholes to assist drilling which made it easier to check the seals were preventing water from entering the borehole.

A 50 mm galvanised steel pipe with a 0.5 m perforated tip was placed in the hole and supported at the surface. The perforated tip was wrapped in Terram to prevent ingress of fine naterlal.

After the wells had been completed water was pumped out to both purge the well and to assist in development of it; the water in the well is then more representative of the water present in the sequence. Water samples were taken in some wells during normal drilling operations to assist with the planning of the programme, but in all cases except MP14 the wells were resamples after purging. The water samples were taken using a syringe sampling system modifled by the Institute of Hydrology, the sample was decanted Immediately into a clean airtight bottle.

To estlmate the permeability values of the formation simple recovery tests were carrled out. These involved pumping out a known volume of water and measuring the water level in the well as it returned to its original level.

1.4 Geology

1.4.1. Regional Setting

The geology of the Morpeth area described on Sheet 14 and the accompanying memoirs suggested that the whole site is underlain by the Millstone Grit. The area has recently been resurveyed by the British Geological Survey and the boundary between the Millstone Grit and the overlying Coal Measures $1 s$ now thought to cross the site \ln an east west direction near the northern end of the buildings.

The Millstone Grit, in the Morpeth area, is characterised by thick coarse grained sandstones as found in MP4 together with fine grained sandstones (MP14) and mudstones. The Coal Measures comprlse of cyclic sequence of shale, mudstone, sandstone, seat earth and coal with each unit up to a few metres thick. There are no known faults in the factory area and the Millstone Grit-Coal Measures contact is conformable. The depth to bedrock for the whole site is shown in Figure 2.

We have found 3 main lithologlcal units that overlie the bedrock:

Brown tlll
Silt
Grey till

The lithological logs for the 14 boreholes we drllled are given in Appendix A.

1.4.2 The Brown Tlll Sequence

The brown till sequence occurs over the whole site with thickness in general up to 2.0 m . In the north the sequence thickens to over 6 m in the North Field area. The sequence is variable comprising of brown silty and very silty clays with some clayey silts. The conslstency is generally firm but soft-firm and firm-stiff were encountered. The clays contain varlable amounts of pebbles malnly of sandstone, limestone, mudstone and coal.

Wlthin the brown till sequence in the North Field there are Interlayered fine-medlum silty sands. In MP2 these sands contain gravel between 2.6 m and 3.3 m below ground level. The sands pinch out towards the south and are not present around the chemical plants.

1.4.3 The Silt

The IH and previous boreholes in the northeast part of the site have proved up to 2.0 m of soft clayey silt with a distinctive olive colour. In some places the ollve silt is sandy, for example 0.3 m of very silty sand is found in MP5. At MP7 laboratory analysis of a sample taken between 5.4 m and 5.9 m below ground level gave a result of 50% sand, 42% silt and

8\% clay. The upper boundary with the brown till is transitional with the consistency changing from firm to firm-soft to soft over a thickness of up to 1 m .

The greatest thickness of silt (1.9 m) was encountered at MP11 underlying a slity clay. The upper and lower soft layers are separated by 0.5 m of a stiff silt. As all the sllt layers are olive grey and are classified as clayey silt we have assigned the whole thickness of silt to the main silt layer. Consequently the normally overlying brown till sequence is absent. In MP4, in the North Field, the silt layer was proved between 3.8 and 4.9 m below ground level as interlaminated silts and sands.

1.4.4 The Grey Till

The grey till is a stlff dark grey silty clay with sandstone, limestone and occasional dolerite pebbles. This clay, which overlies the bedrock in all boreholes, varies in thickness between about 1.5 m in the south at MP1 to about 3.5 m in the north at MP14. The grey till generally is thickest where contamination has been found. The boundary with the overlying soft silt layer is usually sharp, but at some locations the top of the grey till is a stlff dark grey brown silt.

In October 1985 site investigation borehole BH2 was drilled in the area of the west drun store. The \log states that only 0.3 m of stiff dark brown sandy clay separated waterbearing sands from sandstone bedrock. We belleve this \log to be incorrect and that the bedrock was a sandstone boulder in the till.

1.5 Plezometry

During drilling water inflow was usually slow due to the 10 w permeabillty of the sequence; consequently water levels may have taken several days to reach equillbrlun. Hater level elevations, for the silt layer, are shown in Figure 7 for the 16 April 1987, one week after completion of the drllling programme. The elevations vary from about 81 m OD In the south to 76 m OD in the north east at MP6. The average gradient towards the northeast is 0.06 but in the southeast the gradlent is less at about 0.03 with the $f 10 \mathrm{in}$ a more easterly direction.

The silt layer in the south is confined with the plezometric surface at or above the top of the silt layer. Away from the chealcal plants the plezometric head Increases until at MP6 it is about 2 m above the sllt layer.

Between the chemical plants a shallow water table was found within the dolerlte flll at MP8 and In the dolomite fill at MP14. At all the other sites where the dolomite/ dolerite fill is present no water was found in it. As water was only found within the fill at these two sites any water bearing layers are discontinuous and that water is only present because of local lateral and vertical variations in the flll material or degree of compaction of it.

A separate shallow water table is present in MP3 in the North Field Indicating that the water bearing formation is isolated from the wore continous deeper sands and silts.

The weathered sandstone at MP4 was found to contain water. This water bearing zone is fully confined by the overlying boulder clay. The sandstone located at MP14 was found to be dry, but it was also found to be a finer grained sandstone and less weathered.

1.6 Permeability

Estimates of perneability have been made from short recovery tests, and for the sands from grain size analysis. Table I sumarises the results of these tests.

The permeabllity estimate derived from grain size is the mean from 5 samples. The permeabllity was calculated using a technique derlved by Boonstra and de Ridder.

As a general indication of permeabilities for these sequences we would expect values in the range of 10^{-2} to $10^{-4} \mathrm{~m} / \mathrm{d}$ for mixed sands, silts and clays such as the broun till sequence and about $10^{-8} \mathrm{~m} / \mathrm{d}$ for massive clays such as the grey clay. The occurrence of grounduater in the silt horlzon overlying the grey clay would seem due to the higher permeability of the sllt compared with the very lou permeabllity of the denser more compact grey clay which restricts further downward movement of

Table I Derived permeabillty values

	permeability K m/d	layer
MP2	7.0	silty sand sand
MP3	40.0	sandstone
MP4	5×10^{-4}	silt
MP5	5×10^{-4}	silt
MP6	0.4	silt
MP7	0.4	silt
MP8	1.4	silt
MP10	0.7	silt
MP11D	3.0	
	1.0	sand (grain size analysis)
MP2	5.0	

groundwater.

The permeability estimates we obtalned for the silt layer are, in general, considerably higher than might be expected for silts. The method we used for constructing the wells resulted in an annulus around the 50 mm casing. This annulus would have the effect of forming a reservoir which could dampen the effects of the pumping. A greater effect is the uncertalnty of the thickness of the contributing water bearing layers. This is because of the transitional nature of the brown tlli-silt junction which nay be up to a netre thick compared to the average thickness of the silt layer of 0.5 m . The mean derlved permeabllity value for the sllt layer in the chemical plant layer is $1.3 \mathrm{~m} / \mathrm{d}$. This permeability estimate has a large degree of uncertainty because of the annulus and the thickness of the water bearing layers. Ne estimate that these could be as high as an order of magnitude and as such we have chosen the lower value of 0.1 m / d; we consider that this is a conservative estimate for the permeability.

2.1 Organic contamination

He were informed by Searle that methanol and acetone were the most commonly discharged organic compounds in the complex effluent produced by the plants; and we decided to use them as markers for contamination. The analyses were performed by Analytical and Technical Services of Newcastle using gas chromatography. Since we were trying to locate gross contamination we decided that a detection llait of $1 \mathrm{mg} / \mathrm{l}$ would give sufficlently sensitive. The drilling samples were analysed on site by Searle staff, also using gas chromatography, to guide the drilling programe. Initially only methanol and acetone were analysed for but tetra-hydrofuran (THF) was found to be present in MP8 and subsequently this was Included in the analysis. With the exception of MP2, 3 and 4 all boreholes were resampled during Aprll and analysed for the three compounds. As methanol and acetone and THF, although less dense than water, are fully miscible, there will probably be uniform vertlcal contamination. At the time of sampling temperature, electrical conductivity and pH were also measured. The results of the analysis are shoun in Tables II, III and IV and on Figure 8.

During April several trenches were being dug along the eastern boundary. He took the opportunity of sampling water that collected in the trenches. Unfortunately heavy rainfall made the trench samples of dubious value. Because of the rain we felt that any samples taken of surface nater would also be of limited value.

Those samples indicated as drllling samples were taken during normal drilling operations. Less emphasis should be placed on the drilling samples. The drilling equipment was washed between sites but there still may have been some slight cross contamination such as at HP12 where acetone was found in the drllling sample but not in the purged sample, MP12 was drilled after MP11, a heavily contaminated site.

Methanol has only been found in samples taken from MP11. It may be that biological degradation is taking place which converts the methanol to methane.

TABLE II Water sample analysis - boreholes

Sample No.		Date	Time	Methanol (mg/l)	Acetone (mg / l)	$\begin{aligned} & \text { THF } \\ & (\mathrm{mg} / \mathrm{s}) \end{aligned}$	
4	N3	21.2 .87	1130	0	0	-	purged
65	NE3	8.4.87	1710	0	0	0	purged
8	NE4	24.2.87	1000	0	0	-	
13	MP1	27.4.87	1130	0	0	-	
14	MP2	27.2.87	1140	0	0	-	purged
15	MP3	27.2.87	1140	0	0	-	purged
16	MP4	27.2.87	1140	0	0	-	purged
9	MP5	25.2 .87	0930	0	0	-	purged
66	MP5	8.4.87	1720	0	0	0	purged
10	MP6	25.2.87	1005	0	0	-	purged
67	MP6	8.4 .87	1730	0	0	0	purged
68	MP7	8.4 .87	1740	0	0	0	
17	MP8	27.2.87	1230	0	0	-	upper (not purged)
11	MP8	26.2.87	1830	0	8	700	lower (not purged)
69	MP8	8.4 .87	1750	0	0	1432	* purged
45	MP9	7.4 .87	1340	Tr	<1	<1	purged
46	MP9	7.4 .87	1340	0	0	0	dupllcate
35	MP10	6.4 .87	1340	<1	<1	0	purged
36	MP10	6.4 .87	1340	Tr	Tr	Tr	dupllcate
28	MP11S	6.4 .87	1300	48	58	65	not purged
53	MP11S	8.4 .87	0910	71	318	151	purged
54	MP11S	8.4 .87	0910	103	217	119	dupllcate
30	MP11D	6.4 .87	1305	110	133	125	not purged
55	MP11D	8.4 .87	0915	62	261	140	purged
56	MP11D	8.4 .87	0915	180	337	182	duplicate
32	MP12	6.4 .87	1315	0	31	0	not purged
57	MP12	8.4 .87	0925	0	0	0	purged
58	MP12	8.4 .87	0925	0	0	0	duplicate
34	MP13	6.4.87	1325	0	17	0	not purged
59	MP13	8.4.87	0920	0	8	0	purged
60	MP13	8.4 .87	0920	0	0	0	duplicate
37	MP14	6.4.87	1500	0	249	60	top ${ }^{+}$
38	MP14	6.4 .87	1500	0	150	67	duplicate
-	MP14	6.4 .87	2200	0	0	0	nlddle ${ }^{+}$

* also $1000 \mathrm{mg} / \mathrm{s}$ of unidentifled organlc
+ drilling sample

TABLE III Water sample analysis - trenches

Sample No.		Date	TIme	Methanol $(\mathrm{mg} / \mathrm{l})$	Acetone $(\mathrm{mg} / \mathrm{l})$	THF $(\mathrm{mg} / \mathrm{l})$	
50	SE of MP1	7.4 .87	1735	0	0	0	
48	East of MP14	7.4 .87	1730	0	0	0	
61	East of MP14/NE3	8.4 .87	1000	0	0	0	
62	MP14/NE3	8.4 .87	1000	0	0	0	dupllcate
63	at NE3	8.4 .87	1350	Tr	Tr	0	duplicate
64	at NE3	8.4 .87	1350	0	0	0	0
	Effluent plant	6.4 .87	1500	0	9	before rain	
52	Effluent plant	7.4 .87	1740	0	0	0	after raln

TABLE IV Hater sample analysis

	Date	Time	EC(S)	pH	Temp $\left({ }^{\circ} \mathrm{C}\right)$	
MP1	6.4 .87	1725	520	7.72	10.2	
MP2	4.4.87	0925	770	7.16	6.5	
MP3	4.4 .87	1655	480	6.91	6.2	
MP4	5.4.87	1055	730	8.18	7.3	
MP5	25.2.87	0930	1820	6.7	6.5	
MP5	3.4.87	1430	2950	7.16	7.1	
MP6	23.2.87	1800	3160	6.7	6.5	
MP6	25.2 .87	1000	5910	6.85	6.4	
MP6	2.4 .87	1530	6620	7.00	8.1	
MP6	3.4.87	1330	7180	7.33	7.1	
MP7	4.4 .87	1515	1930	7.05	6.9	
MP8	27.2.87	1230	630	7.4	-	
MP8	26.2 .87	1830	4570	6.3	-	
MP8	5.4 .87	1610	5390	6.61	6.5	
MP9	7.4 .87	1350	1670	7.1	9.4	
MP10	6.4 .87	1540	1850	6.89	10.5	
MP11S	8.4.87	1750	1800	7.14	9.8	upper
MP11D	8.4 .87	1420	1820	7.08	8.4	lower
MP12	7.4.87	1710	820	7.63	6.8	
MP13	7.4 .87	1550	2440	7.54	7.9	
MP14	6.4 .87	1500	1060	9.10	7.1	upper (drllling)
MP14	6.4 .87	2200	2110	7.12	8.1	middle (drilling)
NE3	3.4 .87	1745	2880	7.27	6.6	
NE4	24.2 .87	0930	1575	6.9	-	
NE4	5.4 .87	1705	1650	7.14	8.2	
Trench near MP14	7.4 .87	1730	1100	7.69	6.9	
Trench near MP1	7.4 .87	1735	730	7.87	6.8	
Trench near MP14/NE3	8.4.87	1000	480	7.56	5.6	
Trench at effluent plant	7.4 .87	1800	880	7.60	7.0	

2.2 Inorganic contamination

In February 1987 we found high sodium and chloride levels present in MP6. In April we resampled MP6 and sampled MP5 and NE3; the samples were analysed for inorganic ions. The analysis, using standard techniques, Here carried out by the Institute of Hydrology. The results are given in Table v.

Table V Inorganic analysis Results

	rorern	nor $\mathrm{ch}^{\mathrm{Br}}$	notsp 1	Nor $\mathrm{R}^{\text {P/4 }}$
	MP5	MP6	MP6	NE3
Cations	214	875	$830{ }^{+}$	89
	295	440	440	395
	53	90	80	29
	3	4	1	1
Anions	244	251	-	205
	490	345	360	12
	590	2150	2200	850
	3.3	0.1	-	0.4
lonic balance	-4.1\%	-3.2\%		-3.0\%
Minor lons	0.1	3.6	8	2.9
	36	15	28	0.6
	-	-	2	-
All units are mg + partial analys	e cols	25.		

The high levels of zinc in boreholes MP5 and MP6 could be derived from the galvanised steel casing; NE3 has a plastic casing.

The high sodium and chloride levels indicate that the source of contamination is probably the road salt which has been stored in the effluent plant area for several years. A storm water drain passes within two metres of MP6 which may be leaking and been acting as the source of contamination.

3.1 Sources of contamination

Toxic waste is conveyed from the laboratory and the chemical plants to the effluent plant for treatment through the network of dralns shown in Figure 8. There are two systems of effluent dralns, at different depths, which join near the north east corner of Chemlcal Plant 4 :
(i) a shallou system of drains, located at less than 1.5 m below ground level, beneath and immediately east of Chemical Plant 4.
(11) the other effluent drains run north from the laboratory to the effluent plant, linking with Chemlcal Plant 1, 2 and 3. The depth varies but in general is between 1.4 and 2.5 m below ground level.

The shallow system and the drains on the north side of Chemical Plant 3 are located within the flll.

3.2 Contamination of flll material

The fill extends under and around all the chemical plants and was also observed in the trenches along the east fence line. The fill comprises of variably compacted crushed dolerite around Chemical Plants 1 and 2 , the dolerite is replaced with dolomite at the other sites. The thlckness of the crushed material varles from 0.3 m dolomite at MP12 and MP14 to 1.3 m of dolerite at MP8. Beneath the rock flll there is a clay fill with some silt layers; this part of the fill is not present at sites MP12 and 13.

A shallow water table was encountered in the dolerlte flll at MP8. The source of the water is probably a combination of direct rainfall and runoff from the surrounding paved areas and buildings. This was found to be uncontaminated.

While drilling MP10 the flll between 1.3 to 1.5 m below ground level there was an odour of contaminants but the sequence was not damp. In MP14 at 1.0 m below ground level water was struck at the base of the crushed dolomite fill. It was possible to obtain a water sample which contained
about $200 \mathrm{mg} / \mathrm{s}$ of acetone and $65 \mathrm{mg} / \mathrm{s}$ of THF (MP14 top). As both MP10 and MP14 are close to Chemical Plant 4 which has shallow drains (less than 1.4 m deep) it would appear likely that the source of contamination within the flll at these sites is solely from the shallow drains associated with Chemical Plant 4 and the north side of Chemical Plant 3.

The permeability of the more open textured crushed flll is higher than that of the silt layer. If an estimated permeability of only tuice the silt is assumed then the groundwater velocity within the upper fill would be approximately $25 \mathrm{~m} / \mathrm{yr}$. This is about the distance to the fence from Chemical Plant 4. The reason no contamination was found at MP12 or In the holes dug close to the fence could be that the velocity figure is high, the contaminant plume passes between the holes or the contamination is infiltrating to a greater depth. The last possiblilty is the least likely of the three considering the presence of the lower fill and brown clay in boreholes MP7, 10, 12 and 14.

The eastward extent of the fill is not known but as dolomite is present in the trenches near the boundary fence it can be assumed to extend to the fence. The dolomite is underlain by 1.1 m of clay in MP12 which will restrict the downward movement of water, this will allow the creation of a separate shallow water table. The general movement of water within the crushed fill would then be expected to follow the surface topography and be parallel to the fence flowing towards the north east corner.

3.3 Contamination of the silt layer

The silt layer at the base of the brown till sequence was encountered In all the boreholes we drilled and is probably a continuous horizon. The thickness varles from 0.3 m in MP10 to 1.9 m In MP11 with an average thickness of about 0.5 m . The grey clay tlll, at least 2 m thick near the chemical plants, separates the sllt layer from the underlying bedrock.

The silt layer is confined by the overlying brown tlll at all boreholes. At MP11 the rest water level is about at the Junction of the lower flll and the silt. Moving towards the North Field the plezometric head increases until at MP6 it is over two metres above the top of the silt. The head differences in the overall sequence would result in upward
movement of water down dip as well as downuard movement towards the bedrock if there is any vertical continulty. The clays above and below the silt layer would make this unlikely.

Water from the silt layer is unlikely to emerge at the surface. However there may be a preferential path along the line of the effluent drain as it passes down the slope north of Chemical Plant 4. Near MP7 the draln is about 3.3 m below ground level but at the trench dug near the effluent plant the top of the concrete surround was within the clay fill at about 0.5 m . A water sample taken from the trench contalned some acetone but a sample taken the following day after heavy raln was uncontaminated.

The main area of pollution located is in the silt layer south of Chemical Plants 3 and 4, in boreholes MP8, MP11 and MP13. Using the permeabllity estimate of $0.1 \mathrm{~m} / \mathrm{d}$ the contaminant plume would have an approximate velocity of $2 \mathrm{~m} / \mathrm{yr}$ and would take about 15 years to cover the 30 metres to the nearest slte boundary east of Chemlcal Plant 2. However no contaminant was found in any of the down dip boreholes stretching from MP9 in the south through MP10 to MP5 in the north.

If we assume an average thickness of 0.5 m for the silt layer and a quoted porosity for silt of 40% then the storage volume of silt beneath Chemical Plant 1 and 2 is $670 \mathrm{~m}^{8}$ and beneath Chemical Plant 3 and 4 about $450 \mathrm{~m}^{3}$. These flgures represent the approximate maximum value of polluted groundwater in the silt layer present within the site if little or no lateral movement has taken place.

During drllling the underlaying grey till was logged as a stiff clay containing rock fragments. There was no indication of water ingress. The relatively 10 permeabllity of the clay will effectively prevent downward movement of water.

3.4 Contamination of the bedrock

Three deep boreholes were drilled to bedrock. These were MP1, east of the warehouse, MP4 in the North Field and MP14 east of Chemical Plant 4. The bedrock under most of the site are the mudstones penetrated in MP1, which were found to be dry. The sandstones, north of Chemical

Plants 3 and 4, were found to be dry in MP14 but water bearing in MP4. The depth at which water was struck in MP4 coincided with the top of the sandstone and as such seems to be associated with the bedrock rather than entering the borehole, through a leaking seal, from a higher horlzon. No contamination in the bedrock was found but in order to investigate deeper into the sandstone different drllling techniques will have to be used.

3.5 Areas at risk from contamination

The risk of contamination of the crushed fill is greatly reduced if the shallow effluent drains lie in the lower flll which comprises mainly of clay. Similarly if the deeper drains are not in contact with, or in close proximity to, the silt layer, the risk of contamination is much less. Figure 9 shows those areas that we consider to be at the greatest risk of contamination from the effluent drians.

We have taken into account all the avallable lithological data to determine the areas at greatest risk. However, the varlable thickness of the crushed flll and the variable depth and thlckness of the silt layer make it impossible to accurately define the areas. Ne have chosen a value of 0.5 m as the maximum distance that leakage from a drain can cause contamination in the silt layer.

The source of contamination, at MP11, is the relatively shallow drains south of Chemical Plant 3 but because of the greater thickness of silt present at the site the contamination is present in the silt layer and not in the fill.

We have not attempted to show the extent of the contaminated areas because of the uncertainty of the groundwater velocities in the silts and fill. However, the map does show the areas which would allow effluent leaking from the drains to enter a relatively permeable water bearing horlzon.
4. CONCLUSIONS

The recent survey has proved the presence of contamlnation by toxic organic chemicals in the deposits underlying the chemical plant area due to leakage from the effluent draln system. This has neither extended
beyond the immediate area of the chemlcal plants nor has it penetrated to the underlying bedrock. As such, the area contaminated is localised in extent and does not present any lmmedlate threat to the area outside the Searle site, even though the contamination may have been taking place for up to 15 years.

The extent of the contamination beneath the chemical plant area has not yet been fully defined. Our work shows that the pollution occurs at two levels: in the fill beneath Chemical Plants 3 and 4 and in the silt layer beneath Chemical Plants 1 and 2 and between the chenical plants.

Contamination of the flll material is due to the shallow effluent drains associated with Chemical Plant 4 and the north side of Chemical Plant 3. A saturated zone in the fill has not developed due to the shorter period of leakage and the recent repairs to the shallow drains which suggests that the volume of effluent that has leaked is small.

The effluent drains beneath Chemical Plants 1 and 2 occur elther close to the base of the lower flll or below it and consequently the more permeable upper fill has not been contaminated. Instead the drains are wainly elther in contact with or in close proximity to the sllt layer at the base of the broun till sequence. The risk of pollution northwards along the eastern side of Chemical Plant 4 from the drains is reduced due to the shallow slope of the drains compared to that of the sllt layer. It is possible that water may follow a preferential path along the dralns themselves. However trench samples taken, while perhaps not wholly representative, near the exit point of the drains close to the collector tank at the effluent plant do not suggest a preferential pathway.

The silt layer is saturated, confined and has a lou permeabllity. The underlying grey till, with a much lower permeabllity, separates the silt from the bedrock. The contaminated area is underlain by mudstones rather than sandstones which further reduces the risk of deeper contamination. The contamination of the silt layer is still apparently restricted to the area of Chemical Plants 1 and 2 despite the probablilty that leakage has occurred from the drains assoclated with those plants since they were bullt over 15 years ago.

A thicker sequence of sllt occurs near the cooling tower between Chemical Plants 1 and 3. The shallow drains, assoclated with Chemical

Plant 3, in this probably locallsed area, are in contact with the silts. As a result a recharge mound, not yet fully defined, appears to have developed. Since these sllts are in hydraullc continulty with the main silt layer leakage from the shallow dralns can be transmitted to the silt layer.

A contaminated area has also been identified just north of the effluent plant. This is caused by direct pollution from nearby stockpiles of road salt and/or leakage from the adjacent storm drain. Ask such this is considered to be a separate and less important problea than that associated with the chemical plant area. No toxic organic chemicals are assoclated with this pollution.

5. RECOMMENDATIONS

1. A network of observation wells has now been Installed in the north eastern part of the site which can be used to monitor the contamination. He suggest that this network is supplemented by:
(a) three additional boreholes penetrating the grey till:

- close to the north side of Chemical Plant 3 uhere information is still lacking
- at the western end of Chemical Plant 3 to provide additional information on water level elevations and contamination. It would also extend our knowledge of the shallow silts encountered at MP11
- near the boundary fence east of Chemical Plant 2 to clarify the direction of groundwater flow in the silt layer.
(b) a serles of shallow pits around the peripheral parts of the fill.

Routine measurements of water levels should be made at each site at fortnightly intervals for the next six months to Indicate the response of the system to natural recharge as well as contaminant leakage. The monitoring requirements should be reviewed after three and six months of monitoring.

Hater samples for organic analysis should be taken from the monitoring network, initially at monthly intervals, for the next six months. These would also include the two surface streams in and close to the North Field. All monitoring points which have concentrations of organic compounds of less than $1.0 \mathrm{mg} / \mathrm{l}$ should be analysed, at least once, using a detection limit of $10 \mu \mathrm{~g} / \mathrm{s}$.
2. Remedial measures should be implemented in order to ensure that the contamlnants do not spread further. The highest concentrations of pollutants are found in the silt layer between the chemical plants. The clean up operations should commence with abstraction from the silt layer in that area.
3. The road salt should be stockpiled in such a way as to prevent further contamination of the area just north of the effluent plant. The stormater drains in the same area should be inspected for possible leakage.

Location map

- Previous site investigation boreholes
+ I.H. boreholes

Chemical plants

Elevation of bedrock (m.O.D.)

Figure

Elevation of top of grey clay (m.O.D)

Figure
Geological cross section $C-E$

Effluent drains

Figure 8

Location map showing areas at risk

BOREHOLE NO. MP 5.

End of borehole.

APPENDIX B

WATER LEVEL DATA

Station	No		Date		Time	Depth to water (m "below datum level)	(m)	Elevation of water table above sea level)
MF' 1		26	Feb	87	i110	5.548		78.822
		27	Fets	87	1130	4.582		79.788
		5	fipr	37	1717	0.028		84.342
		7	Apr	37	1355	0.497		83.873
		16	Aar			0.750		83.620
MF10		4	Aor	37	1559	5.223		78.247
		5	fipr	37	1154	4.966		78.504
		6	Apre	37	1110	5.000		78.470
		ó	Apr	37	1521	4.963		78.507
		7	Apr	87	1044	4.923		78.547
		8	Apr	87	1132	4.898		78.572
		14	Apr	87		4.952		78.518
		16	Apr	87		4.930		78.540
MF:110		5	Apr	37	846	2. 252		80.017
		6	firr	87	1125	1.401		80.868
		7	Apr	87	1527	1.317		80.952
		8	fipr	37	906	1. 369		80.900
		8	Apr	37	1110	1.307		80.932
		14	Apr	87		1.280		80.989
		16	Apr	87		1.320		80.949
MFI 15		7	Afr	87	1528	1. 5.20		80.749
		8	Apr	E? 7	905	1. 344		80.925
		14	Apr	87		1.280		80.989
		13	Apr	87		1.320		80.949
MP12		5	Apr	87	1942	2.728		78. 31
	-	-	Apr	87	1151	2.515		78.544
		7	Apr	87	10.39	2.276		78.783
		3	Apr	87	923	2.085		78.974
		8	Apr	27	1138	$\because .050$		78.029
		14	Apr	87		2.432		78.627
		16	apr	87		2.570		78.689
MF1S		6	Apr	87	1127	5.006		80.375
		7	Hpr	87	1037	2.836		80.543
		7	Apr	87	1544	З. 193		80.186
		8	fipr	E7	914	. 122		80.257
			Afr	E7		2.400		80.979
		16	Apr	87		2.390		80.989

Station No
Date
Time

> Depth to water (m below datum leve?)

MPS	20	Feb e\%	1215
	25	Fot 87	1700
	27	Fob 87	1120
	\because	Ajer 97	1120
	\pm	Apr 07	1142
	4	fipr 37	914
	Ξ	Fir 637	1048
	6	Apr 37	1915
	7	Apr 67	1716
	8	Aipr 87	1656
	14	fior 07	
	16	Apr 8 \%	
MFS	$2 \times$	Fet 87	1215
	2-	Feb 87	1700
	27	Feb 27	1150
	2	fur 37	11.2
	$\underset{3}{ }$	Apr 37	1140
	4	fipr 37	927
	5	Apr 87	1051
	6	Hp:- 87	1914
	7	fpr 87	1717
	8	Apr 37	1657
	1.4	Apr 37	
	1ヵ)	Apr 37	
MPG	23	Fet Sa^{\prime}	1215
	20	Feb 87	1700
	27	Fet 37	1150
	2	Ap: 37	1135
	\pm	Apr 87	1138
	4	Apr 87	950
	\%	Apr 87	1024
	6	fipr 87	1914
	7	Apr 8\%	1718
	8	Apr 87	1659
	14	Apr 37	
	15	Apr 87	

1.570
1.504
1.556
1.318
1.342
1.352
1.349
1.322
1.277
1.211
1.320
1.340
1.644
1.509
1.427
1.249
1.26\%

1. 282
1.269
1.232
1.229
1.15%
1.270
1.250
9.070
2. 3.0
3. 13
7.665
7.759
7.817
7.845
8.068
8.163
8.126
4. 66
8.130
77.248
77.234
77.265
77.500
$77.47 t$
77.466
77.469
77.496
77.541
77.607
77.498
77.478
77.375
77.510
77.152
77.776
77.756
77.78
77.750
77.737
77.790
77.866
77.749
77.769
70.090
70.850
71.027
71.495
71.591
71.343
71.315
71.091
79.797
71.054
70.800
76.780

Station	No	Date	Time	Depth to water （m below datum level）	Elevation of water table （m above sea level）
Mis	24	Feb E7	14.3	3.296	77.413
	24	Fao 87	－ 920	3.172	77.507
	25	Fets 87	925	E． 146	77.563
	2	Apr 87	1136	2.932	77．777
	3	Apr 87	1136	2.974	77.755
	\pm	Apr 87	1405	2.972	77.737
	4	Apr 37	95.5	2.985	77.724
	5	Apr 87	1146	2.967	77.742
	t	Afre 37	1916	2.947	77.762
	7	Apr ${ }^{-17}$	1714	2.869	77.340
	E	Apr 8\％	1655	2.787	77.922
	14	Apr 97		2.895	77.314
	16	fipr E_{7}		2.890	$77 . ⿹ 勹 巳 17$
CF\％	24	Feb 37	1130	2.873	76.777
	24	Fets 87	1915	2.797	76.855
	25	Fet 87	1000	2.775	76.875
	27	Feb E7	1230	2.770	76.880
	2	Apr 97	11.39	2.696	76.954
	\pm	Apr 87	1144	2.596	77.054
	4	Apr 87	955	2.606	77.044
	5	Apr 87	1148	2.596	77.054
	5	Apr 87	1918	2.584	77.066
	7	Apr 87	1719	2.552	77.098
	9	Apr 87	1651	2.494	77．15
	14	Apr 87		2.600	77.050
	1s	Apr 97		2.590	77.060
NF7	25	Feb 87	810	6.592	76．$\triangle 42$
	2	Apr 87	1141	5.681	77.259
	$\stackrel{3}{3}$	Apr 87	1147	5.675	77.265
	4	Apr 87	1002	5.675	77.265
	4	Apr 87	1426	5.680	77.260
	5	Apr 87	1150	5.679	77.251
	6	Apr 87	1209	5.657	77.283
	7	Aipr 87	1046	5.657	77．283
	8	Apr 87	1647	5.620	77.320
	14	Apr 87		5.560	77.380
	16	Apr 8\％		5.690	77.250

Date Time

Depth to water
(m below
datu!n level;
3. 785
2.314
2.818
2.35
2.825
2.822
2.848
2.815
2.770
2. 200
2.830
-796
…67

- . 221
$\therefore .379$
‥392
5.789

צ. 912
2.77
-. 910
2.03
2.4 .1
2.418
2.297
2.298
2. 315
2. 317
2. 308
2. 280
2.255
2. $3 \bigcirc$
5.345
5. 367
5.274
5. 262
5.282
5. 285
5.539
5.45%
5.436
79.454
80.005
80.001
77.937
79.994
79.997
79.971
30.094

E0.0.01
30.539
79.589
79.923
80.392
80.5 .58
79.680 79.667
79.77t
79.647
79.649

