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Abstract 

Extensions of existing L-moment procedures are considered, aiming for ways of 

assessing changes over time in the distributions of quantities such as annual maxima while 

avoiding subdivision of data-records into possibly overlapping sub-periods. Distributional 

changes of many types are included: location, scale, skewness, etc.. Although direct 

application of some simple ideas is unsuccessful at providing good estimates of trends, less 

direct application of the same ideas allows for the implementation of significance tests for 

changes in shape, for the construction of confidence regions for the quantiles of a distribution 

that might change with time and for an indirect use of L-moments in estimating trends. 

Keywords: L-moments, Trends
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Background 

The L-moment approach to analysing the statistical distributions of environmental 

variables has become widespread since its formulation by Hosking (1990) and its subsequent 

advocacy by Hosking and Wallis (1997). While an important use of this approach is as a 

means for fitting a selected family of statistical distributions to a set of data, it has found 

widespread use as a way of comparing and grouping the distributions appropriate to data at 

different sites, without having to make a choice of any one family of distributions at an early 

stage. L-moments provide convenient measures of the shape of distributions which can be 

compared numerically and graphically, and averaged across sites to yield an “average shape”.  

When data are being assessed for possible trends, it would be convenient to have tools 

with similar properties to those of L-moments, whereby analyses could be made to examine 

changes in the shape of the statistical distribution of a variable over time, without having to 

make an initial assumption about the form of an appropriate family of distributions. There is a 

danger that a poorly chosen family of distributions might lead to poor conclusions, or that 

important features of the behaviour of data might be missed. Thus a distribution-free 

approach to assessing trends would be an important adjunct, even if a final analysis were 

eventually made using a chosen family of distributions. 

The existing methodology of L-moments is based on the assumption that data arise 

from a fixed distribution and thus it is not immediately suited to assessing trends in the 

shapes of distributions. Chandler & Scott (2001) provide a general survey of statistical 

techniques for detecting trends and they take the view, as is done here, that “trend” refers to 

changes in all aspects of statistical distributions, not just a location parameter. The purpose of 

this paper is to consider how the L-moment methodology can be modified to allow the 
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analysis of trends, without breaking datasets into blocks (as has been done in some 

applications; see below), such that the analysis reduces to the existing L-moment method if 

no trends are fitted and such that the computational simplicity of the L-moment approach is 

retained as far as possible. Founding the approach on L-moments means that any methods 

developed would be targeted on those qualities of the distributions being analysed that are 

quantified by the L-moments, or by the L-moment ratios, which include versions of location, 

scale, relative scale, skewness and kurtosis. 

The following are examples of some previous uses of L-moments in connection with 

trend analyses. Adamowski and Bougadis (2003) used L-moments to delineate homogeneous 

collections of sites for extreme rainfalls (of various durations) in Canada, before undertaking 

trend analyses that did not involve the L–moment approach and that did not consider trends 

in the shape of the distributions. Fowler and Kilsby (2003) used L-moments for extreme 

multi-day rainfalls in the UK, first to form groups of sites and then as part of a trend analysis 

that involved obtaining L-moment estimates from data both within moving 10-year windows, 

and within fixed decadal windows. They investigated trends firstly by plotting these 

estimated L-moments against time, and then by showing changes in the rainfall-frequency 

curves fitted using the L-moment estimates within each decade.  Kay and Jones (2010) 

analysed changes to the distribution of annual maximum river flow derived from rainfall-

runoff models driven by the rainfall output at a 1 hour resolution from a transient climate 

change model; they used L-moments estimated from 30-year moving windows and then fitted 

non-parametric trends to these and to the quantiles of distributions fitted within each 30-year 

window. They went on to use a resampling technique to assess the statistical significance of 

the apparent changes. 
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One objective of the present work is to avoid the apparent necessity of using blocks of 

data within the overall dataset in order to examine trends in L-moments. A very naive method 

of fitting trends using L-moments is proposed which, while it has extremely poor properties 

regarding quantifying changes over time in the shapes of distributions, it does yield good 

estimates when no changes are present. This important finding leads to the development of 

two useful types of analysis: tests for presence of changes in distribution and confidence 

regions for the quantiles of distributions that possibly change over time. 

 

Basis of trend estimation with L-moments 

In order to avoid unnecessary formulae where these are obvious, it will be convenient 

to use the third L-moment, or later the L-skewness, as the basis of discussion, on the 

understanding that other cases can be being dealt with similarly. A route to applying a 

regression-like analysis of trends to L-moments can be developed using the formulation of 

the usual sample estimate of an L-moment as U-statistic  which is noted by Hosking (1990; 

Section 3.1). Thus, consider the estimation of the 3rd L-moment, 3 , defined in the standard 

notation by  

)2(E 3:13:23:33
1

3 XXX  ,       (1) 

where it supposed that 3 independent samples of a random variable, X , are obtained and put 

into decreasing order as 3:13:23:3 ,, XXX . In this often used notation, kjX :  denotes the j’th 

largest value in a set of k values of a quantity originally designated with the symbol “X”. For 

a given dataset, jx , of n items,  a new set of values,  ijkd , is created, where the indices i, j 

and k satisfy nkji 1 , and where the items ijkd are defined as follows. For the given 
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values of i, j and k, the values  kji xxx ,,  are put into decreasing order and labelled 

temporarily as  123 ,, yyy : then ijkd  is defined as 

  1233
1 2 yyydijk  .       (2) 

The set  ijkd  contains N items, where in this case   21
6
1  nnnN . (The value of N  

varies with the order of the L-moment being considered and, for example, N=n for the first 

order moment.) The standard sample third-order L-moment estimator, 3l , can be then written 

as  

 



kji

ijkdNl 1

3 .        (3) 

The quantities ijkd can conveniently be called the third-order raw L-moments. Other orders of 

L-moments can be treated similarly by treating ordered subsets with 1, 2, 3, ... members 

(equivalent to the number of subscripts on the raw L-moments, d) for the L-moments of order 

1, 2, 3 .... The first-order raw L-moments are identical to the original data values. 

 The relationship of the ordinary sample L-moment estimates to regression can be seen 

by noting that the sample average in Eq. (3) would be the result of the estimate for a 

regression coefficient obtained by ordinary least squares for a model in which the N values 

ijkd are the dependent variables and in which there is a single independent variable with 

constant values, with value equal to 1. That is, the estimate 3l  is the value of u which 

minimises the sum of squares 

  2

,,

)(  
kji

ijk uduS .        (4) 
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Here, the ordinary least squares step would be employed simply as a means of minimising a 

sum of squares. The usual assumptions about uncorrelatedness or independence of error 

terms that are often associated with least squares procedures do not hold here, but they are 

not needed as none of the results deriving from them are required. In order to apply a 

regression-like analysis for trend in L-moments, what is required is to have a set of values 

ijk that would reflect what would be the expected outcomes of ijkd under a given model of 

trend. For the least squares estimation to be simplest, these values ijk would be expressed as 

a linear combination of fixed regression coefficients with dependent variables that could vary 

with all of the subscripts i, j and k. The structure of the model here would be derived from an 

assumed model for trend in the L-moments. 

 The raw L-moments for a set of data that is used again later are shown in Fig. 1. Here 

the first three orders of L-moments are shown and the raw L-moments are plotted against a 

notional time-point equal to the average of the times from which the underlying values 

derive. The dataset consists of 70 years of annual maximum flow values at Day’s Weir on the 

River Thames, and Fig. 1(a) shows these values as the 1
st
 order raw L-moments. 

 Someone considering the possibility of a change in the shape of a statistical 

distribution, within the context of L-moments, would most naturally start from the possibility 

that the L-moments, such as the L-moment in Eq. (1), might vary with time, and might start 

with a regression-like equation expressing this formally, for example as 

szs 103 )(   .        (5) 

Here 0 and 1 would be regression coefficients to be estimated and sz  represents a known 

function of the time, s, such as a linear function or a step-function, which would specify the 

type of trend being contemplated. However, while it is possible to define the quantities 
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ijk using a version of Eq. (1) in which the three underlying values of X are drawn from 3 

different distributions, there is no direct formula linking them to the 3
rd

 L-moments of the 

separate distributions, and hence there is no expression for them starting from Eq. (5). 

Specifically, a formal expression for ijk requires complicated integrals of the 3 different 

distribution functions of the component random variables which, for general distributions, 

cannot usefully be represented in terms of the sets of L-moments of the three distributions. 

By assuming that the distributions are in some particular family of distributions, values for 

ijk could eventually be obtained from the L-moments of the separate distributions, but even 

then they would typically need to be obtained by numerical integration. As indicated in the 

introduction, the intention here is to investigate computationally simple approaches to trend 

analysis, which rules out this “exact” approach. There is also a wish to avoid assuming that a 

particular family of distributions holds at too early a stage. Instead, simple approximations 

are pursued in the hope that the effects of the errors introduced will be small. As indicated 

later, this turns out not to be the case. The simple approximations here can be criticised on the 

basis that they ignore any changes in the location and scale parameters but no simple 

formulae involving these is known. Nonetheless, the approach here does still provide a basis 

for useable methods for statistical inferences of many types, and these are described later.  

 The type of approximation made is that the cross-time L-moments, such as ijk , can 

be replaced by simple averages of the corresponding single-time L-moments )(3 t  at the 

corresponding times i, j and k. Then the regression model in Eq. (5) for the single-time L-

moment would result in  

  kjiijk zzz 
3
1

10  ,       (6) 
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and, given this, it would then be possible to estimate 0 and 1 using a standard least-squares 

fitting routine with the set of values ijkd  as the dependent variables and with independent 

variables consisting of a constant set of values set at 1, and a set of values equal to 

 
kji zzz 

3
1 . Clearly the same approach can be taken for generalised versions of Eq. (5) 

having more than one explanatory variable z, and hence more regression coefficients.  

This approach needs to be modified slightly to allow the trend analysis using L-

moments to follow the established practice of using L-moment ratios, rather than L-moments 

themselves to compare distributions. 

 

Trend analysis for L-moment ratios 

Data analyses that involve L-moments typically make use of L-moment ratios rather 

than the L-moments themselves because these dimensionless measures seem more useful for 

comparing distributions at different sites. In the case of trend analysis it may be most natural 

to consider trends in shape parameters, such as the L-skewness, but dealing with the scale 

parameter is less obvious. There are two simple possibilities in the case of trends in annual 

maximum flood: firstly, that a change in the mean level is a reflection of a simple upward 

shift of the distribution, so that the L-scale would remain fixed; secondly that the distribution 

is affected in a proportional manner, so that the L-CV would remain fixed. Thus trend 

analyses of either or both of L-scale and L-CV may be appropriate in any particular case.  

It is convenient to label the quantities 1 ,  , 3  etc. as the “L-moment ratios” even 

though 1 , which is the mean, is not formally an L-moment ratio. Here   is the L-CV and 3  

is the L-skewness in the notation of Hosking and Wallis (1997). Once again, the discussion 
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here is primarily in terms of the 3
rd

 order quantity. It is assumed that models have been fitted 

to the lower order L-moments (or L-moment ratios) and these models are now treated as 

fixed. In order to determine what type of regression-fitting is appropriate for L-moment 

ratios, use can be made of the requirement that the result of the method when applied in a 

trend-free case should reduce to the standard formula for an L-moment ratio. In the case of 

the L-skewness, the standard estimate is 

 233 / llt           (7) 

where 2l  is the sample estimate of the L-scale and 3l  is the sample estimate of the 3
rd

 L-

moment. It follows that the usual estimate for the 3  is identical to the value of u which 

minimises the sum of squared errors defined as 

  2

,,

2)(  
kji

ijk ulduS .       (8) 

Given this, a trend in the L-skewness would be estimated by constructing values 

ijk based on the existing model for 2l  (as a function of time) and the model to be fitted for 

the L-skewness. Here ijk have exactly the same interpretation as earlier, as the values that 

ijkd estimates. In parallel to Eq. (5), suppose that the model for the L-skewness at time s is of 

the form 

szs 103 )(   ,        (9) 

and that 2l  is a known function of time, sh . Then two ways of approximating ijk  based on 

the idea of using average values of the parameters of the distributions at different times are 

       13
1

3
1

03
1  kjikjikjiijk zzzhhhhhh  ,   (10) 
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    13
1

03
1  kkjjiikjiijk zhzhzhhhh  ,    (11) 

where the first corresponds to using averaged values of 2  and 3 to determine the 

approximating distribution and the second corresponds to using average values of 2  and 3 . 

In either case, estimation of 0 and 1 can again be achieved using a standard least-squares 

fitting routine. This would have ijkd  as the dependent variables and have independent 

variables consisting of the values multiplying 0 and 1  in Eq. (10) or (11). A similar third 

expression for ijk can be found which would correspond to using averaged values of 1 ,   

and 3 . 

 

Practical considerations 

While the fitting of models for trends in L-moments or in L-moment ratios is 

computationally simple using the approach outlined above, there are various considerations 

needed in making use of the results. These have been noted in a trial implementation of the 

approach. Some of these considerations relate to the bounds that need to be satisfied by 

values of L-moments and their ratios so that they are possible values pertaining to a 

probability distribution. Another finding relates to the lack of resilience of the estimated 

trends to outliers at the stage of fitting by least squares. A further consideration relates to 

whether a simple model for trend in the L-moments behaves in a reasonable way when 

interpreted via the quantiles of a given family of distributions. 

Hosking and Wallis (1997, Section 2.6) outline a number of bounds that must be 

obeyed by L-moments and their ratios. There is no reason why any of these bounds should be 
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automatically obeyed by the results of fitting a trend model by the regression-like procedures 

discussed here. The simplest example arises when considering the model for the 1
st
 L-

moment (equivalent to the mean) when a simple linear-in-time trend is fitted: the procedure 

here is identical to the well-known procedure of fitting a linear trend in typical values by least 

squares. Even if the population from which observations arise contains only positive values, 

as in the case of annual flood maxima, the fitted linear trend will produce negative values at 

some point in time except in the trivial case. Similarly, if trends in 1  and  are fitted 

separately, then the values of 2  derived via the relation  

)()()( 12 sss   , 

may not satisfy the bound 0)(2 s  that must hold if )(2 s  is to be treated as the L-scale of a 

probability distribution; values contradicting the bound may arise from negative fitted values 

of either of )(1 s  or )(s . Similarly to 1 , fitting a trend model for 2 may also yield 

negative values in the fitted trend function, so that neither L-scale or L-CV has an advantage 

in this regard. There are other relevant bounds on the ranges of L-moment ratios that must be 

satisfied for the fitted trends in L-moments to correspond to a valid probability distribution. 

One of these bounds is 13  ,  and this must apply either for a trend model fitted for 3 , or 

for the ratio of values derived from separate models for 2  and 3 . 

 Clearly, if the fitted trends in L-moment ratios are to be taken forward for use in 

producing corresponding trends in quantiles via a selected family of distributions, the 

theoretical bounds will need to be obeyed. The work here has taken the most immediately 

convenient approach in implementing a trend-fitting procedure. Specifically, an initial 

version of the trend function is fitted by linear least squares, as outlined above, and then a 

final version of the fitted trend at any given time is created by trimming the values from this 
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fitted function so that the bound is obeyed. Where a fitted trend in a lower order L-moment is 

required for use as fixed values in fitting a model for a higher order L-moment ratio, it is 

these trimmed values that are carried forward. Similarly, it is the trimmed values that are used 

as the values for fitting a distribution for any given time-point. Thus, even if models for 

changes in the L-moments that are linear in time are chosen for fitting, the final results would 

relate to the trimmed versions of these models. 

 An alternative to the above convenient approach would be to formulate trend models 

that are guaranteed to yield values within the valid ranges, but this cannot be achieved within 

the linear regression framework being used However the methodology could be modified by 

allowing the use of readily-available computer procedures for nonlinear least-squares 

estimation, at the expense of a modest increase in computation time. Such an approach would 

also provide a way of including the trimmed model discussed more integrally within the 

fitting procedure, compared to the “convenient” method. However, it would usually be more 

natural to adopt a smooth function of time as a model for trend.  

 For applications to annual flood maxima, the results from a standard least squares 

approach to fitting a trend in the mean value are likely to be affected by outliers simply 

because the probability distributions of such flood values are typically long-tailed. The same 

has been found to be true in the fitting of trends to the higher-order L-moments by the 

approach described here. For example, a single outlier in a time series of n items will affect 

  21
2
1  nn  out of the   21

6
1  nnnN  values of ijkd  that would be used in the least-

squares fitting for the 3
rd

 L-moment. This would suggest that an outlier-resistant approach to 

fitting the trend models should be adopted for fitting each of the L-moments. If one maintains 

the requirement that the result of fitting a model with no trend should produce results 

identical to those from the standard L-moment estimates, this would mean that resistant 
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fitting procedures would need to be specifically selected. Existing outlier-resistant regression 

procedures would affect all of the regression coefficients, including the constant term, and it 

is this term that corresponds to the standard L-moment estimates. 

 A final practical consideration is whether simple trend modelling of the shapes of 

distributions using L-moments does correspond to the distributions behaving in a way that a 

data analyst would expect. In particular, a monotonic trend in the L-skewness does not imply 

a corresponding monotonic behaviour in the quantiles of a fitted distribution. For example, 

suppose that the model being considered is such that the mean and L-scale are constant, but 

that the L-skewness has a trend. Suppose also that a generalised logistic distribution is to be 

applied at some later stage; similar results arise for other distributions. Fig. 2 shows how the 

quantiles of this distribution vary as a function of the L-skewness, for 11   and 
2
1

2  , 

where each line represents the values that would be plotted on the Gumbel scale at a given 

value of the “reduced variate”, y, where y = 1, 0, 1, … . This behaviour arises because, 

within this family (and similar families) of distributions, for fixed mean and L-scale, 

increasing the skewness means that a greater proportion of the distribution is brought close to 

the centre while the remaining part of the distribution is pushed even further way from the 

centre. Eventually, as the skewness increases, the quantile for any fixed return period 

becomes close to the median. These types of behaviour mean that modelling trends using L-

moments might not actually have the interpretation that is expected. Mathematically, the 

behaviour arises because the scale parameter of the generalised logistic distribution depends 

on both L-scale and L-skewness. 

 

Estimation of trends 
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 A limited simulation experiment of the properties of the trend estimation scheme 

described above has been carried out, of which only a summary is reported here. The 

experiment involved generating independent random samples of length 201 from generalised 

logistic distributions in which the time-varying parameters were determined from models for 

the L-moment ratios (the mean, L-CV and L-skewness), and these same models were then 

fitted to the data-values generated. The models selected allowed each of the three L-moment 

ratios to vary as a linear function of time, with no connection between the parameters of these 

models. Estimation of these trend models followed the scheme described earlier, and included 

the trimming of the estimated trends that was outlined. Two versions of the estimation 

scheme were outlined, as exemplified by Eqs. (10)-(11), and both have been implemented.  

The notional record length of 201 is, of course, rather longer than records of annual 

maximum flood typically available in hydrology, but it represents a choice that gives the 

methodology for estimating trends in shape a good chance of working. Choosing an odd 

number makes it easy to examine the properties of estimates at the mid-point of the series. 

 The results found are described only briefly here. While the estimation schemes 

associated with Eqs. (10)-(11) did produce different results, neither was consistently better 

than the other, and the difference between them was found to be considerably smaller than 

their inherent biases, which are discussed later. The results for the trend in the mean are as 

would be expected from theory, that the regression coefficients for the mean are unbiased for 

any amount of trend in the L-CV or L-skewness.  

Results if there is no trend present 

If there is no trend in the any of the 3 L-moment ratios in the model used for generating the 

data-series, then the estimated parameters in the trend models perform well, being nearly 

unbiased. Analysis of 40000 repetitions of the simulation procedure demonstrates that bias is 
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definitely present in the estimates of some of the coefficients, but this bias is small compared 

with the standard error of an individual estimate (less than 5%).  Similar findings apply to 

other quantities that might be studied but which vary with time; the fitted L-moments, L-

moment ratios and quantiles of fitted generalised logistic distributions, with the worst bias 

reaching 10% of the estimate’s standard error. The biases in the estimates of the regression 

coefficients of the L-CV and the L-skewness, which are only the “constant” terms, arises 

because of the use of estimated values from an earlier stage in the overall estimation 

procedure. The reason for the bias parallels that for the bias in the usual estimates of L-

moment ratios: for example, in Eq. (7), the estimates 2l  and 3l  are unbiased, but the result, 3t , 

is a biased estimate of 3 . 

Results if trend is present 

If there is trend in one or more of the L-moment ratios, then more substantial biases 

exist, with the amount of bias depending on the size of the trends. A trend in the mean leads 

to biases in all the estimates of the regression coefficients of the L-CV and L-skewness. A 

trend in L-CV leads to biases in the estimates of the “constant” regression coefficient for both 

L-CV and L-skewness. However, a trend in L-skewness does not itself lead to biases in any 

of the regression coefficients.  Here an estimate is being called biased if the bias is greater 

than 10% of the estimate’s standard error. If the trends are large enough to be seen visually in 

a time-series plot, then the biases can exceed three times the standard error. This applies not 

only to the estimates of the regression coefficients but also to the estimates of the time-

varying quantiles derived by assuming that the generalised logistic distribution is known to 

apply.  

Conclusion 
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Estimation of trends in the shapes of distributions using the methodology outlined 

here cannot be recommended. The estimates might be of use in providing initial values for 

some more sophisticated procedure in which a particular family of distributions is selected at 

an early stage, for example using maximum likelihood estimation.  

 One obvious reason for the method’s poor performance as an estimation procedure in 

the presence of trend is the approximation made in Eqs. (6) and (10)-(11). The most 

immediate remedies have been ruled out by the requirement to keep the procedure simple and 

assumption-free. However, useable improved approximations might yet be developed. The 

differences between the results for schemes based on the approximations in Eqs. (10)-(11) are 

very small, and it is judged unlikely that any variant of these kinds will produce an 

improvement. 

 

Testing for trend 

 In spite of the poor results reported above regarding the performance of the 

methodology as an estimation procedure, there is still a possibility of using the approach to 

provide a test for trend-like changes in the shapes of distributions. This possibility derives 

from the result that the regression estimates are effectively unbiased if no trends are present. 

Thus a test statistic can be constructed based on how far the method’s estimated trend is from 

“no trend”; the method produces results that indicate more trend if more trend is present, even 

if its quantification of the amount of trend present does not agree with the amount actually 

present. It is envisaged that a permutation test will be suitable for analysing annual flood 

maxima where the assumption of statistical independence between years is often made. If 

independence cannot be assumed then a block-bootstrap procedure would provide an 
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alternative. Permutation procedures are well-known in statistics (Good, 1994; Maritz, 1981). 

In hydrology, Robson et al. (1998) and Robson and Reed (1999, Section 21.5) applied the 

method to testing for trends in the typical sizes of quantities derived from flood data. 

 To provide a single overall test for change across time in the distributions being 

analysed, where there might be any type of change in these distributions, the initial 

requirement is to determine a single test statistic derivable from an observed data series, to 

which a permutation test can be applied. This test statistic should be something that quantifies 

the apparent amount of change in the distributions that an analysis of the data series finds. If 

the estimation methodology described here is applied for L-moments up to the third order, 

then the three stages of estimation each might contribute a measure of change, but there is no 

immediate way of combining them into a single measure of change. Thus the question is how 

to combine a measure of change in mean level, a measure of change in L-CV and a measure 

of change in L-skewness. Here the basic measures might be either trend coefficients 

themselves or the reduction in the sums of squares achieved by fitting each trend model. The 

approach suggested here is to make a dual use of the permutation samples. For this, the 

permutations are used to derive a probability of getting a more extreme value for each of 

three tests statistics, one for each L-moment ratio. These three values are then combined by 

taking the smallest, to produce the combined test statistic, and finally the permutation 

approach is applied again to evaluate the true probability of getting a smaller result for the 

smallest of the three values.  

For the dataset of annual maximum floods at Day’s weir (Fig. 1), estimates of the 

trend coefficients for simple linear trends in 1 ,   and 3  were all negative. The permutation 

analysis outlined above indicated that the absolute values of the trend coefficients such that 

the probabilities of getting more extreme values than those observed were 39.9%, 5.5% , and 
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11.9%; this is according to their permutation distributions representing no-trend. Judged 

individually these results might be interpreted as pointing to a conclusion that there a 

downward trend in L-CV, with no trend in mean value for the annual maxima and a weak 

indication of a reduction in skewness. However, the second stage of the permutation analysis 

indicates that in fact there is a 15.5% chance of getting an even smaller value than the 

observed value of 5.5% for the smallest of these three probabilities (i.e. the combined test 

statistic) if there is no trend. Thus, if one starts from the position of not knowing what type of 

change in the distribution of annual maxima might have occurred, the test does not provide 

clear evidence of any change: the test statistic would be just significant at a significance level 

of 15.5%. 

 As described earlier, the trend model fitted at any stage can be badly affected by 

outliers and how the raw fitted trend may produce invalid values for L-moments or L-

moment ratios. This raises some doubt about using the estimated trend coefficients as a 

measure of the amount of change. One proposal would be to use the trimmed versions of the 

fitted time-varying functions as the final estimates, just as they are within the procedure to 

carry forward to the next stage. The amount of change detected at a given stage could then 

quantified by calculating the sum of squares of deviations of this function about its own 

mean. A similarly constructed test statistic was used in the test of trend employed by Kay and 

Jones (2010). The same idea may be of use if the model for trend included more than just a 

single parameter controlling departure from a constant value.  

 The approach to testing for trends based on L-moment ratios is moderately 

complicated in a computational sense, since the analysis of the higher order L-moment ratios 

for each permutation requires a regression analysis with a new set of independent variables, 

since these are constructed as a result of the previous stage of the analysis. Some of this 
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complexity can be avoided if an analysis is made of the L-moments directly. However, a test 

of trend based on simple models for the L-moments would be most sensitive to a different 

pattern of possible trend than would tests using simple trend-models for the L-moment ratios. 

For comparison with the results of the test for linear trends in 1 ,   and 3  in the data for 

Day’s Weir, the test for linear trends in 1 , 2  and 3  gave exceedance probabilities of 

39.9%, 3.7% , and 11.5% for the individual components, a combined test statistic of 3.7% 

and this was just significant at a significance level of 10.7%. 

 To summarise, the results for tests for changes in L-moment ratios or in unscaled L-

moments are broadly similary in that they both indicate a change in scale, rather than location 

or skewness as the predominant effect. Once account is taken of having done tests of change 

in several different aspects of the distribution of annual maxima, the overall test statistics are 

not significant enough to draw a definite conclusion that change has occurred, but close 

enough to significance to prompt further analyses of how much change is represented within 

the dataset. 
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Confidence intervals for trend 

 A simple significance test for change in shape of distributions may not be adequate 

for supplying information about the amounts of change that might be occurring in the shapes 

of the distributions underlying a particular set of observations. Visual assessment of the 

amount of change apparent in a dataset can perhaps be most readily provided in the form of 

confidence intervals on the quantiles in the distributions, where these are allowed to vary in 

time. 

The approach suggested here is based on using a selected family of distributions, in 

this case the generalised logistic distribution, and on representing the possible changes in 

shape by allowing linear-in-time changes to the parameters of this distribution (using the 

usual parameterization). While this approach clearly does make the type of distributional 

assumption which was earlier being avoided, it does makes use of the L-moment based 

approach to assessing trends that is described in this paper. The approach has been chosen on 

the basis of being achievable with moderate computational resources. At the centre of the 

approach is a significance test of the hypothesis that a series of data is a trend-free realisation 

from a standard generalised logistic distribution; specifically one where the distribution’s 

location, scale and shape parameters are zero, one and zero. A confidence region for a set of 

parameters, including trend parameters, is then constructed by including within the 

confidence region any such set of parameters for which there is acceptance of the significance 

test just mentioned when applied to a series of values obtained from the observed data-series 

by the following de-trending and standardization step. Values ty in the series to which the test 

is applied are calculated from values in the observed series, tx , as 

)0,1,0);,,;((1

ttttt kuxFFy  ,      (12) 
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where ),,;( kuxF   is the cumulative distribution function of the generalised logistic 

distribution with parameters ,u and k , with ),,;(1 kuxF  being the inverse of this 

function. The values ttu ,  and tk  represent time-varying values of the parameters derived 

from the trend model. If the trend model is correct, then the values calculated as 

),,;( tttt kuxF   would correspond to a uniform distribution on the interval 0 to 1, and it 

would be possible to base the confidence intervals on tests of this distribution, rather than 

including the further step of transforming this distribution to a standard generalised logistic 

distribution. This alternative approach has not been tried and the one adopted has been 

chosen on the dual basis that L-moments are widely accepted for use with extreme-value like 

distributions, but not for use with the uniform distribution, and of leaving the skewness of the 

distribution nearly unchanged if the values of the shape parameter are close to zero. The 

above expression simplifies to  
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It may be noted that, if the distribution here were replaced by a generalised extreme value 

distribution, the same transformation would apply. 

 The test that the constructed series represents a trend-free realisation from a standard 

generalised logistic distribution is based on a similar idea to that used above, but modified to 

test for specific values of the L-moments, as well as for “no trend” in the L-moments. In this 

application, where the constructed series are meant to have a mean value close to zero, it 

seems appropriate to test for trends in the L-moments, rather than in the L-moment ratios, and 

no trimming is applied to force the estimates to jointly satisfy theoretical bounds. The method 

previously outlined is applied, with a linear-in-time model being fitted for each of the first 
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three L-moments, yielding a total of 6 regression parameters. To be specific, the regression 

models here are formulated in such a way that, for example in Eq. (5), the “constant” 

regression parameter 0 represents the average of the values of )(3 s  across the set of time-

points being analysed. The values that the 6 regression parameters should take are determined 

by the hypothesis being tested: they should all be zero except for the “constant” regression 

parameter for L-scale model, which should be one.  

The permutation-based resampling approach to constructing the test procedure used to 

test for trend is here replaced by straightforward simulations from the standard generalised 

logistic distribution on which the model for possible trends is based. Only a single set of 

simulations is required to determine critical values for the test here, with the simulations 

being done for the standard logistic distribution. The same critical values are applied to 

whatever values of ttu ,  and tk  are being tested to see if they represent possible true values 

of the parameters of the time-varying distributions of observations at different times. 

As for the test for trend, the question of combining information from the 6 test 

statistics for the individual regression coefficients into a final test statistic might be resolved 

by initially determining a probability of getting a larger departure from a true value for each 

of the 6, and then finding what value of the smallest of these 6 probabilities will occur in a 

given percentage of samples of the same length as the observed series. However, an initial 

simulation study showed low correlations between the errors in these estimated parameters: 

they are all very close to zero apart from correlations close to 0.3 for the two pairs of 

estimates: (i) the “constant” regression parameters of the models for trends for 1  and 3  and 

(ii) the trend coefficients for 1  and 3 . Given this, it is reasonable to adopt the simplified 

procedure of using a test statistic defined as being a weighted sum of squares of the 
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differences between the estimated parameters and their true values under the null model. The 

initial simulations were used to determine the variances of the estimated parameters and these 

were used to specify weights inversely proportional to these variances in the weighted sum of 

squares. Such weights need not be determined particularly accurately, but they are kept fixed 

for later stages of the analysis. If the various errors were normally distributed (and if all the 

correlations were zero) the sum of squares would have a 2  distribution with 6 degrees of 

freedom, but the later simulations show that the test statistic has a longer tail than this. The 

validity of the distribution obtained from the simulations is not affected by either the non-

normality of the estimates or the correlation that is actually present. 

 Linear-in-time models for the distribution parameters ttu ,  and tk  are formulated, 

giving a total of 6 parameters controlling the variation of the distribution over time. The first 

step in constructing a confidence interval for the quantiles is to construct a collection of sets 

of the 6 parameter values such that these effectively determine the boundary of the 6-

dimensional confidence set for the parameters. Specifically, for a 90% confidence region, a 

search is made for values of the 6 parameters such that the de-trended and standardised series 

is just on the border of having the underlying significance test accepted or rejected at a 10% 

level. This collection of boundary values in six-dimensional space is then used to determine a 

corresponding collection of quantile-time functions that correspond to these “just acceptable” 

parameter sets.  

 The approach here also allows a set of “central estimates” for the model parameters. 

In this specific case this results in values such that the sample L-moments of the transformed 

values derived from Eq. (13), but in other cases (assuming a weighted sum-of-squares test 

criterion is used), the central estimates could be defined as values minimising the test 
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criterion. These central estimates are different from those considered in the section on 

“estimation of trends”. 

 Some results from this procedure are shown in Fig. 3, which presents 90% confidence 

regions for flows having a 50% and a 5% chance of being exceeded in each particular year 

for the 1938 to 2007 water-years for the Day’s Weir data-set. Here each region should be 

interpreted as being the outcome of a procedure that had a 90% chance of the constructed 

region covering the true quantile curve for all years. Fig. 4 has a similar interpretation, but 

shows a 90% confidence region for the ratios defined as the flow of a given return period in 

the last year of record (2007) divided by the flow of the same return period in the first year of 

record (1938). The reason for the narrowing of the confidence region near a return period of 

10 years is unknown and is still the subject of speculation. 

 

Further extensions 

 It is not immediately possible to use the calculations described above to derive 

confidence intervals for individual parameters or for single derived quantities such as the 

flow of a given return period in a particular year. The confidence levels quoted relate to 

whether the whole of the function being studied lies entirely within the confidence region. 

However, it should be possible to derive such “pointwise” confidence intervals by finding 

test-statistics for use within the procedure that are appropriate to this purpose. 

As indicated above, the approach suggested here for constructing confidence intervals 

can be used as an indirect procedure for parameter estimation. In fact this has wider 

applications in situations not involving trends. It provides an alternative to the standard L-

moments procedure, but based on the indirect use of L-moments, and will produce different 
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results. The introduction of the step in Eq. (13), which has a re-shaping effect as well as a de-

trending effect on the distributions, makes it possible to consider fitting distributions for 

which there are no explicit formulae for the L-moments: such distributions would effectively 

be defined by the re-shaping function being used, on which there is little constraint. Such 

revised estimation procedures would need careful study. 

A further possibility is to extend the procedures outlined here to develop tests of 

whether a given distribution is acceptable as a model for a given dataset. This would give 

new types of L-moment-based tests of fit. 

  

Conclusions 

 Simple basic ways of extending L-moment estimation procedures to assess trends in 

the shapes of distributions have been outlined. While a straightforward implementation of 

these procedures is not successful in direct estimation of such trends, they can be used in 

conjunction with permutation techniques to provide significance tests of trend in 

distributional shape, and they can be used in conjunction with de-trending and standardisation 

steps to provide the basis for confidence regions for how quantiles of flow might change over 

time, and for related quantities. The approach opens new possibilities for estimating 

parameters. The extended procedures can be applied to estimation problems in which the 

models are such that data can be transformed to have a simple standard distribution, even if 

the L-moments of the untransformed data cannot be evaluated analytically. In addition, the 

use of parameterised transformations to represent trends in the shape of the distribution over 

time may have advantages compared to using the ordinary parameters of a distribution, since 

it allows more control over how changes in the quantiles of the distribution behave over time.  
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FIGURES. 

Fig. 1.  Raw L-moments of orders 1, 2 and 3,  plotted at average time-points. Data are annual 

maxima for Day’s Weir 1938-2007. 

Fig. 2. Anomolous behaviour of the quantiles of a distribution. Showing quantiles of a 

generalised logistic distribution with fixed 1
st
 and 2

nd
 L-moments as the L-skewness 

varies. Each line is for a different return period and is labelled with the 

corresponding Gumbel reduced variate. 

Fig. 3. Central estimates and 90% confidence regions (dashed lines) for flows having 50%  and 

5% exceedance probabilities in the given year. Showing annual maxima for Day’s 

Weir 1938-2007. 

Fig. 4. Central estimate and 90% confidence region (dashed lines) for the ratio defined by the 

flow of a given return period in 2007 divided by the flow of the same return period 

in 1938 
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Fig. 1  Raw L-moments of orders 1, 2 and 3,  plotted at average time-points. Data are annual 

maxima for Day’s Weir 1938-2007. 
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Fig. 2. Anomolous behaviour of the quantiles of a distribution. Showing quantiles of a 

generalised logistic distribution with fixed 1
st
 and 2

nd
 L-moments as the L-skewness varies. 

Each line is for a different return period and is labelled with the corresponding Gumbel 

reduced variate. 
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Fig. 3. Central estimates and 90% confidence regions (dashed lines) for flows having 50%  

and 5% exceedance probabilities in the given year. Showing annual maxima for Day’s Weir 

1938-2007. 
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Fig. 4. Central estimate and 90% confidence region (dashed lines) for the ratio defined by the 

flow of a given return period in 2007 divided by the flow of the same return period in 1938 
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