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• Abstract
•

O This paper describes a stochastic rainfall model which has been developed to

0
generate synthetic sequences of hourly rainfalls at a point. The model has
been calibrated using up to 30 years of rainfall data for each of five sites in

O
Southern Britain. These rainfall data series were divided into wet and dry
spells; analysis of the durations of these spells suggests that they may be

O
represented by exponential and pain :, distr ibutions respectively. The total
volume of rainfall in wet spells was adequately fi tted by a conditional gamma

O
distribution. Random sampling from a beta distribution, defining the average
shape of all rainfall profiles, is used in the model to obtain the rainfall profile

O
for a given wet spell. The model has a total of 22 parameters some of which
are specific to winter or summer and vary at cach site, whilst some are

O
constant through the year and over all of southern Britain. Results obtained
from the model compare favourably with observed monthly and annual rainfall

O
totals and with annual maximum frequency 'distributions of 1, 2, 6, 12, 24 and
48 hours duration at Farnborough in Hampshire.
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• 1. Background to study

• Traditional approaches to regional fl ood frequency analysis have involved
analysing observed sequences of annual fl oods from a number of gauging

• stations each draining a catchment wi th different physical character istics. By
averaging the observed fl ood frequency curves within groups of physically

• similar catchments (such as small , steep and wet catchments or large, fl at and
dry catchments) it is possible to identify the fl ood frequency distribution which

• results front various combinations of physical characteristics. However, it is
difficult to determine how the individual characteristics contribute to the shape

• of the fl ood frequency curve.

• A n alternative approach is to simulate the response of a catchment with a
predetermined set of physical characteristics using a computer model. For

• modelling purposes the hydrological response system can be sub-dividcd into
two parts: ( 1) a meteorological input, viewed as a stochastic variable, and (2)

• a rainfall-runoff transformation process, which is essentially deterministic. 'M c
rainfall model is used to generate long sequences of synthetic rainfall totals

• which retain the statistical properties of observed sequences. Thesc rainfall
sequences are transformed into long synthetic records of river fl ows using the

• rainfall-runoff model. The fl ow scrics can then be analysed using conventional
statistical methods. Different climatic and meteorological conditions can be

• simulated by varying the parameters of the rainfall model. By varying the
parameters of the rainfall-runoff model, different physical conditions of the

• catchment can be simulated. In this way thc effects on thc hydrological
response of changes to a single catchment characteristic, such as soil capacity

• or slope, can be modelled.

• A particular application of this methodology seeks to identify the relative
importance of dif ferent physical characteristics of a drainage basin in shaping

• its fl ood frequency curve. Specifically, rainfall model has been developed and
used to generate 1000 years of hourly synthetic rainfall totals. Annual fl ood

• peaks have been extracted from the fl ow sequence output from thc
rainfall-runof f model and these have been used to define a fl ood frequency

• curve. In successive simulation runs different values for the parameters which
control the modell ing of soil moisture storage and runoff production have

• been used to investigate thc infl uence of catchment morphology and soil
properties. The effects of lake and fl oodplain storage on the fl ood frequency

• curve have also being studied by routing the synthetic fl ow sequence through
an appropriate model. In this way the relative importance of a variety of

• catchment characteristics in shaping thc fl ood frequency curve can be
evaluated.

•

• 2. Model specifi ca tion

•

• This report describes the development of a computer model which is capable
of generating unlimited sequences of . synthetic hourly rainfall totals at a point

•

•

•

•
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which preserve the statistics of observed rainfall series. The main statistics to
be preserved are the depth frequency relationships for 1, 2, 4, 6, 12, 24 and

• 48 hour durations and the mean and standard deviations of monthly and
annual rainfall totals.

•

• 3. Rainfa ll characterisation

•

• The way in which rainfall is characterised in a rainfall model depends upon
the structure of the rainfall data series being modelled. The strucmre of a

• rainfall series depends, in turn, upon the time interval over which the total
rainfall depth is measured, or has been aggregated. If the interval is very

• short, of the order of a second or less, the rainfall will depend on the
number of raindrops and their size and thus the rate is likely to vary

• considerable between intervals. Rainfall rates recorded on a chart by a ti lting
syphon raingauge, which has a resolution of around one minute, tend to

• exhibit sonic serial dependence. As rainfall depths arc accumulated over
intervals of longer duration, from minutes to hours, the degrec of dependence

• between the ordinates changes. I f the interval is much less than the average
length of an event the dependence is high due to ser ial correlation wi thin an
event. However, as the interval increases in length it wi ll contain some
complete events and some partial events, therefore dependence is likely to

• decrease. Hence daily rainfall totals exhibit less serial dependence than hourly
falls. Each rainfall total may be considered as a discrete random observation,
wi th some small serial dependence over several previous values. For example,
the probabil ity that a ccrtain depth of rain will fall tomorrow is a random

• variable whose likely value is conditional upon how wet it was today and, to
a lesser extent how wet it was yesterday, and the day before, and so on.

• Marcov chains are used for this type of modell ing (sec for example Todorovic
and Woolhiser, 1975 and Haan et al, 1976). Unfortunately when extended to

• shorter time periods, such as an hour, because the rainfall depth in any hour
is conditional on falls over many previous hours, a large number of model

• parameters need to be optimised (see for example Pett ison, 1967). However, as
the rainfall depths are accumulated over still longer durations the degree of

• dependence may increase. This occurrs when the interval is long enough to
contain a large sample of diff erent magnitude events. For example, annual

• rainfall totals may exhibit smooth trends and cyclic fl uctuations in harness with
sun-spot activity or long-term climatic change. This type of behaviour can be

• modelled by a polynomial curve or by harmonic analysis.

• Ideally a model would be formulated in continuous time and would be
appropriate at all levels of aggreation. Model parameters could be fixed using

• data of various aggregations including minute, hourly, daily and yearly. It
would then be possible to partially calibrate the modei using any available
local data. This methodology, although conceptually reasonable, is very diffi cult
to apply in practice. Consequently rainfall models tend to be based on the

• structure exhibited by one chosen rainfall duration. Th e volumes over other
intervals are then obtained by aggregating or disaggrcgating these totals.

•

Hourly rainfall poses particular problems in modell ing, since surcessive values
•

•

•



exhibit properties of random variation but wi th some serial dependence. Many
models are a compromise between the two extremes of independent random
variables and deterministic functions. Small clusters, or groups, of rainfall values
may be considered to have some deterministic structure, such as those making
up a rainfall event, burst or cell , with these groups treated as random
variables. Cox & 1sham (1987) developed a model based on the concept that
the fundamental rainfall uni t is a cell of variable duration but with constant
intensity. The cells start at variable times and thus may overlap such that the
total rainfall profile may exhibit the characteristic castlated appearance of
observed hyetographs. A variable number of cells makes up a storm, the
length of which is also modelled as a random variable. Dry periods are not
modelled explicitly, but make up the spaces between rainfall cells. However,
to model the variabil ity observed in profi les of hourly rainfall data from
Denver they introduced an element of random noise. A lthough the parameters
have a physical interpretation, such as the duration of a rain cell, they express
themselves indirectly in the observed rainfall hyetograph; any given rainfall
pattern could have been produced by several dif ferent combinations of
parameters. Futhermore the model had only been applied to data from
summer convective rainfall in the USA and may not be applicable to Bri tish
meterological conditions.

n alternative model structurc is to generate alternate wet and dry periods of
random duration. The wet periods are assigned a random total depth, which
is condit ional on the duration, and is distr ibuted through the event using a
fixed profi le. Beven (1987) made the most basic assumpt ion that the rainfall
was evenly distributed throughout the storm, thus yielding a rectangular profile,
whi lst a triangular profi le was adopted for all storms by Grayman and
Eagleson (1966). To make the concept of a triangular profi le more realistic,
observed rainfall sequences investigated by Marien & Vandewiele (1986) were
divided up into storm profi les, or parts of storm profi les, which took the form
of a triangle. This makcs the assumption of a triangular profi le a more
reasonable assumption by defi nition. Acreman (1987) treated the profile as a
further random element, in which individual storm profi les are analogous to
sample histograms from a population density function which describes the
average of all profi les. In this model the total storm rainfall is divided into
blocks of 05 mm which are distributed within the profi le with their probability
of occurrence at any time during the event governed by a normal distr ibut ion.
This is particularly appropr iate for data collected from a tipping bucket
raingauge which yields rainfall depths in discrete amounts depending on the
size of the bucket.

Different models try to characterise rainfall in dif ferent ways. Provided that the
model generates rainfall values which preserve the statistical characteristics of
the observed data sequence required by the particular applicat ion, the precise
structure is perhaps not important.

4. Data

Prior to the research for the fl ood Studies Report (NERC, 1975), long
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• Fig. 4.1 Precipitation regions of England and Wales (aft er Wigley et
al, 1984).

•

• sequences of short duration rainfall to tals were no t widely available in a
convenient form for compu ta tional analysis. In 1973 the Meteorological Offi ce

• and the Oxford University Nuclear Physics 1.2 borato ry collaborated on a
project to digitise recording rainfall charts automatically. Fo r this work they

• used a fl ying spot sca nne r, known as the Precision Encode r and Pattern
Recognit ion (PEPR) machine . Mo re than one million hyetograms were selected

• by the Meteorological Offi ce for digitising (Folland and Colgate, 1978). The
resulting d a ta a re p o in t rainfall to tals at a resolut ion of I/ 100th mm at one

• minute intervals. Data from fi ve sites in Southern Britain were obtained by the
Institute of Hydrology in 1975. (Table 4.1) Data are not complete for the

• whole period of each reco rd, bu t the gaps form a small p roportion of the
total record length. The loca tions of the sites are shown in Figure 4.1

• together with the precipitation regions of England and Wales produced by the
Climatic Research Unit (Wigley et al, 1984). For thc purposes of this study

• the data we re aggregated to produce hourly falls with a reso lution of 1/ 10th

•
mm.
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Table 4.1 Summary of rainfall data used in this study

Table 6.1 Basic statistics of rainf all data

3184 5659 3794 6055 3700 5881 2764 1973 3994 1872
20.43 25.35 20.19 25.35 20.03 25.69 14.63 20.14 19.17 23.65
38.08 54.99 36.74 55.92 36.83 57.07 36.60 42.47 46.09 51.89

4.76 5.16 4.57 5.64 4.33 5.04 7.16 5.06 6.05 5.89

n = number
g = samp le
a = sample
g = sample

of periods
estimate of mean
estimate of standard deviation
estimate of skewness



•

• 5. Model definit ions
•

• This model treats point hourly rainfall sequences as comprising of alternating
wet periods, termed events, when some rainfall has been recorded in each

• hour and dry periods consisting of onc or more consecutive hours when no
rain has been recorded. Events are characterised by their duration, total

• rainfall depth and profi le, ic how the depth is distributed in time over the
duration of the event. Dry periods are defi ned in terms of their duration

• alone. The defi nit ion of a rainfall event allows for considerable subjectivity.

• The simplest defi nit ion is that adopted by Yen and Chow (1980) that a
rainstorm is a period of continuous non-zero rainfalls in each time interval.

• Thus one dry interval defines the division between two events. However, two
or more bursts of rainfall separated only by onc dry hour are often

• considered as one single event. Thus somc rainfall models use diff erent
cri teria to defi ne the end of an event. For example, when working with

• rainfalls of one minute durat ion Kidd and Packman (1981) considered that an
event had ended only when the intensity of rainfall fell below 1 mm hr for

• 15 minutes. Cri teria based on meteorological independence would seem
intuit ively sensible, but may depend on the synoptic situation. For example,

• dur ing frontal rainfall a longer dry period may be required to designate events
as indepedent than during anticyclonic, showery weather. From a catchment

• response standpoint, the independence threshold may be chosen to be the
cri t ical duration of rainfall to which the catchment responds; small urbanised

• catchments would require a short dry period threshold, whilst a larger
catchment underlain by chalk would be more suited to a long threshold. In a

• study by Roa (1974) the threshold dry period length was chosen by identifying
the minimum number of dry hours required between two wet hours such that

• there was not significant serial correlation. Thus the cri tical lag for hourly data
was found to be 15 hours. However, rainfall is usually low in the first and

• last hours of an event, therefore this statistic simply refl ected the high
dependence of these hours and does not indicate the dependence between

• successive events as a whole. A more meaningful statistic would be the partial
correlation calculated between all the data in each pair of events. A single

• index of the information held in a whole event is, however, not obvious.
Restrepo and Eagleson (1982) utilised the idea that if the arrival t imes of

• independent rainfall events can be modelled by a Poisson process, thc dry
periods between events should be exponentially distr ibuted. T hey then chose

• the critical dry period duration such that the exponent ial hypothesis was best
satisfied. However, the independence assumption in the Poisson model relates

• to arrival rates and not to the dependence of storm duration or depths.

• Provided that realistic rainfall sequences can be generated the separation
cri teria are unimportant i.e. events do not need to bc independent provided

• that any dependence is built into the model. In the model developed here,
events arc defined as continuous sequences of wet hours; thus a single dry

• hour is considered as the start of a dry, inter-event period. In this way all
dry and wet hours are modelled explicitly.

•



6. Ba sic ra infa ll sta tistics

Fo r each of the five sites, the observed rainfall sequences were divided into
wet and dry periods. A further sub-division was undertaken on the basis of
season (Tables  7.1  and 10.1). Various other sub-divisions were conside red but
rejected. "f able 6.1 gives some summary statist ics derived fro m the available
data. The sta tistics appear to be intu itively realistic. For example, at all sites
dry periods are, on average, longer in the summer than the winter and,
co rrespo nd ingly, wet periods are shor ter and the depth of rainfall in an event
is more variable in the summer than in the winter. With regard to regiona l
variations, events are , on average, of longer duration in the west (region 2),
be ing in the range 4 44 to 4.98 hours, than those in the east (region 1)
which range fro m 3.75 to 4.71 hours. Correspondingly, the average length of
a dry spell is shor ter in the west. In bo th regions the range is quite small,
suggesting some regional homogeneity. Average event depths are higher in the
west, 2.28 - 2.62 mm, against 1.81-2.22 mm in the east.

The we t and dry periods were examined for se rial correlation. It was
speculated that perhaps a long dry spell would usually be followed by an
event with a large rainfall depth or high average intensity. Th e matr ices in
Tables 6.2 and 6.3 resulted from the analysis of the data fro m Farnborough.
All lag-one correlations are close to zero, but, given the skewed distribu tion of
the data, it is no t easy to assess whether o r no t they are significant ly d ifferent
fro m zero. The highest corre lations are 0.084 and -0.079. The former suggests
that during the summer there is a tendancy for the longer d ry spells to be
followed by even ts with larger rainfall depth and shor ter dry pe riods by even ts
with smaller depth. The latter negative correlation implies that winter events
with a large rainfall dep th tend to be followed by shor t dry periods and vica
versa. All lag-one correlations for event depths arc less than 0.03. Intu itively, it
was felt that large rainfall even ts sometimes cluster, ie as a fron t passes there
may be several heavy rainfall storms in succession. Further analysis p rovided
no just ification for this in the observed data. Consequently, due to the near
zero values, the dry and wet periods were assumed to be independent o f each
other in the model.

A further aspect of corre lation is that between the depth, duration and
intensity with in each event. Table 6.3 shows that corre lation between depth
and duration is h ighly significa nt, as expected, with highe r values in the winter.
Again these results seem intuitively reasonable since, for a given duration
event, greater variability in possible depths would be expected in thc summer.
'Ib is correlat ion structu re is taken into account in the model by making  the
possible values for the depth cond itional on the duration.

7. M odelling event dura tion s

The durat ion of an event is an integer,  cf,  defi ning a continuous sequence wet
hours bounded on either side by at least one dry hour. To illustrate how the



Table 6.2 L ag-one correlation coeffi cients f or razf nall characteristics
at Farnborough

wet dur i• 1th 0.023 0.034 -0.021 0.011 -0.035 0.017 0.005 0.059

wct dcp i• 1th 0.004 0.029 -0.026 0.028 -0.032 0.038 0.014 0.084

wet irn i• I th 0.029 0.012 -0.011 0.027 0.009 0.026 0.007 4 013

dry dur i• 1th -0.058 -01333 4 079 4 039 0.003 0.014 0.012 0.019

Table 6.3 Cross-correlation coeffi cients between depth, duration and
sverage intensity within individual events

Cross-correlations

kb wet or dry period

wet duri ation depth aii g intensity dry duration

win sum win sum win sum win sum

duration depth avg. intensity
win sum win sum win sum

duration 1.000 1.000
depth 0.761 0.683 1.000 1.000
avg intensity 0.254 0.268 0.679 0.677 1.000 1.000

Table 7.1 Defi nition of sum m er and winter seasons f or event durations

summer winter

Hampstead Aprii-September October-March
Abingdon A pril-September October-March
Farnborough April-Septmeber October-M arch
St. Mawgan March-September October-February
It hoose March-September October-February
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typical duration of an observed event may vary through the year, Figure 7.1
shows the variation in mean durations, ME at Rhoose for each month in

• which the event starts. A broadly similar pattern is exhibited at each of the
other four sites investigated, with higher mean event durations occurring in the• winter than summer. A lthough the mean changes relatively smoothly through
the year, a two season model was felt to be adequate. The optimum seasonal

• division varied between the sites as shown in Table 7.1. The fi rst parameter of
the model is the time of year for the start of the summer events season,

• T Es, whilst the second is the start of the winter event season. T o w.

•

•
M E

4
•

• 3

•

F M A M J J A $ O N D

MO N T H

•

Fig. 7.1 Monthly variation in mean event durations at Rhoose.
•

• The histogram of summer event durations at Abingdon is shown in Figure 7.2.
Clearly long events arc less frequent than short eVents with the probabil ity of

• occurrence reducing in a systematic fashion with increasing duration. An
obvious candidate to model this behaviour is the exponential distribution, which

• has a single parameter, ME whose density function is

F(d) = 1 - e( tif fr i n)  (7.1)

• This distribution has been used by Grayman and Eagleson (1969) to model
event durations in Massachusetts and by Beven (1987) in Wales. The

• exponential distribution has a fixed skewness of 2.0. Sample estimates of
skewness for the event durations at the five sites all exceed, though are close

• to, this value. A lternatives to the single parameter exponential distr ibution
include the generalised pareto distribution

•

•

•

•
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Fig. 7.2 H istogram of summ er event durations al A bingdon together
with fi tted exp on en tial, gamma and generalised p areto dis tributions.



event durations is two hours, whereas the modal value of both the exponential
• and generalised pareto distributions is zero, or, in this particular discrete

applicat ion, is one. The gamma distr ibution
•

• d7 eL di t )  
F(d) - (7.3)

• r (7)

• When parameter 7 is greater than one the modal value is (C- 1 ). Both the
gamma and generalised pareto distributions may possess higher values of
skewness.

• Because only positive integer values are acceptable for event durations a
discrete  distribution is required for modelling.  To  achieve this numbers

• generated by the model from a continuous distr ibution are rounded up to the
nearest whole number adding, on average, about 0.5 to each observation.
Consequently 0.5 was subtracted from each observed event duration prior to
fitting each distribution. Probabil ity density functions for each of the three

• distributions described above, with parameters estimated by the method of
maximum likelihood, are shown in Figure 7.2 and the corresponding parameter

• values arc given in Table 7.2. The observed data were divided into 20 classes
and compared with the expected number given by integrating the density
function between the class limits. These observed and expected values are
shown in Table 7.3 for winter events at St. Mawgan. The X 2 goodness of fi t

• statistic

•
2

X 2 = (Ex1)1 - OBSi) EX Di (7.4)
• i =1

• where OBS1 is the number opf events observed in the ith class and EXP1 is
the number that would be expected if the data were drawn from thc
distribution under examination. This statistic can be used to test whether the
observed data can be assumed to be a random sample from that distribution.

• X2 values for each gauge site are given in Table 7.4. Given that Y
- 2 0 7,0 05) is

approximately 27.5, it is unlikely that the sample data came from any ot ' these
distributions. A very high percentage of the cont ribution to the X 2 statistics
comes from the fi rst two classes. The form of the gamma distribution is

• potentially more appropriate for modelling durations of one and two hours.
However, the optimum parameters imply a modal value of one, although the
predicted frequency of two hour events is very similar. These results suggest
that the exponential and generalised pareto distributions, having approximately
equal values for the X 2 statisitic, are better suited to modelling the tail
behaviour than the gamma distribution.

•



•

•

•

•

•
Table 73 Observed and predicted f requencies of winter event

• durations f or St Mawgan

•



•
•
•
• Table 1 4. x 2 stalistia f or testing the goodness of fi t of various

• dis tributions to event durations

•
• exponential gamma generalised pare to

• Hampste ad sum 292.4 337.1 279.9

• Abingdon
win
sum

330.9
481.0

332.8
45 1.2

320.7
479.6

• Farnborough
win
sum

522.2
404.8

585.9
388.1

489.3
401.8

• St. Mawgan
win
sum

412.0
171.5

472.9
169.5

367.4
169.0

• Rhoose
win
sum

162.3
263.4

174.0
24 1.9

155.5
263.5

•
win 188.8 179.5 189.4

•
•
•
•
•
•
•
• n ble 7.5. L ikelihood ratio test results

•
• maximum log likelihoods

• exp. (A ) pareto (B) 2. (A-B) decision Ho

• Hampste ad win -11678.65 -11675.88 5.54 reject

• Abingdon
sum
win

- 9900.01
- 12402.70

- 9897.62
-12395.96

4.78
13.48

reject
reject

• Farnborough
sum
win

-10014.64
-12058.97

-10014.59
-12049.07

0.10
19.80

accept
reject

• St. Mawgan
sum
win

9747.35
- 5949.92

- 9746.91
- 5948.32

0.88
32 0

accept
accept

• Rhoose
sum
win

5658.60
- 7024.20

- 56582 9
- 7024.18

0.62
0.04

accept
accept

• sum - 7364.01 - 7364.01 0.00 accept



Fig. 7.3 Eff ect of aggregating rainf all into hourly dep ths.
•

• Sincc the exponent ial distr ibution is a special case of the generalised pareto
distribution, an alternative test of their relative goodness-of-fi t is provided by

• the likelihood ratio statistic, LR

•
LR = —2 log (LL1 / LL2) (7.5)

•

• where LEA artd 112 are the logar ithms of the maximum l ikelihood for the
exponential and generalised parcto distributions respectively. LR is distr ibuted

• as )( 2 with degrees of freedom equal to the the diff erence in the number of
parameters estimated, in this case 1 Table 7.5 gives the maximum

• log-likelihoods for the two distributions at the five sites together wi th the
crit ical )( 2 values. Using this test, only for winter events at Abingdon and

• Farnborough is the goodness of fi t of the generalised pareto distr ibutions
signifi cantly better that that of the exponential distr ibution. Given the large

• sample of data, using the modifi ed likelihood-ratio test suggested by Hosking
and Wall is ( 1987) where

•

• LR = I - 67 / 66 (6n) LR (7.6)

•
has no effect on the results. A potential drawback with the generalised pareto

• distribution is that when k > 0 the distribution has an upper bound at Wk.
However, only winter events at Rhoose exhibited a positive k value and this

•

•

•

•



•

•

•

• was not significantly dif ferent from zero.

•
The major defi ciency in the exponential model is that the frequency of one

• hour events is over-estimated and that of two hour events is underestimated
(infact the frequencies are reversed). Consequently the modal value is not

• modelled correctly. The form of the observed histogram is influenced by the
aggregation of the rainfall into hourly depths. Rain may, or may not , have

• been fall ing for al l of each hour. Figure 7.3 demonstrates th is eff ect. If we
assume that rainfall is continuous for t ime,  t,  once it has started, the observed

• duration of the event, d, will be

•

• d = c + t + r (7.7)

•

• where E is the time from the start of the present clock hour and  r  is the
time from the end of the event until the beginning of the next clock hour.

• Rather than modelling the duration of an event by a distribution fi tted
directly to the observed data, it can be modelled as a combination of

• processes involving the  true  duration of events that would be observed in
continuous time, combined with a uniform distribution, giving the discrete

• density function

•

• f(d) = 1 — Ms (1 - C LIME) d=1

• (7.8)

= M (e1fm E - 1)2 e E d

•

•
Table 7.6 shows the observed number of events in each duration class together

• with the number predicted using Equation 74. Although the fit is reasonably
good, this model was out-performed by the  use  of the exponential distr ibution

• when modelling the depth-duration-frequency relationships at Farnborough
(section 12). The distribution of depths of one hour duration events is very

• restr icted. A t Farnborough, 97% of winter events contained only 0.5 or 1.0
mm. Fur thermore, 90% of two hour winter events were of 0.5 or 1.0 mm.

• These statistics suggest that, for the overall model performance, it is not
critical to differentiate between one and two hour events; it is suffi cient to

• ensure that thcir combined frequency is modelled adequately.

• In conclusion, the exponential distribution was felt to be adequate to describe
the event durations at all fi ve sites for both seasons. Consequently the mean

• duration over the two season is suffi cient to define the distr ibution of al l
events. The third and four th parameters of the model are the estimates of

• the mean summer event duration and the mean wintcr event duration, M ES
and MENV'



• Table 7.6 Observed f requencies of winter event durations at
Fam borough compared with those predicted using the

• exp onentiafr umf orm distribution.

0

•

•

•

•

Class

1
2
3
4
5

Observed

866
1363
807
492
369

Exponeraial/W iform

659.8
1098.7
829.3
625.9
472.4

• 6 260 356.6
7 213 269.1

• 8 158 203.1
9 107 153.3

• 10 95 115.7
11 85 87.3

• 12 54 65.9
13 60 49.8

• 14 46 37.6
15 34 28.3

• 16 24 21.4
17 17 16.2

• 18-20 38 28.3
21-25 29 16.1

• 26- 23 5.2



• 8. Modelling event depths
•
• Once the duration of an event has been derived, the second characteristic of

the event which requires modell ing is the total depth of rainfal l, p. Total• rainfal l depth can be treated as a random variable and modelled by fi tt ing a
statistical distribution to the sample of observed depths. Because of the strong

• correlation evident between event depths and durations, the model takes the
distr ibution of depths to be condit ional upon the duration. The same

• methodology was fol lowed by Grayman and Fagleson (1976). Separately for the
two seasons, the events were divided into classes according to their duration,

• 1, 2, 3, - . 11, 12, 13-14, 15-18 and 19- hours. A histogram of event depths
was drawn up for each of these duration clasRes. Two possible candidates for

• modelling thcsc data are the gamma distr ibution (4) and the lognormal
distribution

2

1  — [ log (d./
• p = f(d) (8.1)

d 5 (2 n)V2e 2 L

• where riL and Et are the mean and standard deviation of thc natural
logarithms of d respectively. These two distributions were fi tted to the sample

• data set by the method of maximum likelihood. A n example is shown
graphically in Figure 8.1. Table 8.1 gives the observed number in each

• interval of the histogram of 7 hour events at Hampstead. A lso given is the
number predicted for each interval by the fi tted gamma and lognormal

• distributions. I t can be seen that these data are well fi tted by the gamma
distribution. This distr ibution was superior in its descript ion of the data for al l

• durations.

• A lthough the gamma distr ibution fi tted well the rainfall depth data for each
duration, the parameters fi tted were diff erent in each case Figure 8.2 shows

• the parameter, t , plotted against event duration, together with a fi tted curve.
A straight line was considercd to be suffi cient to describe the variation in t
with event duration for both seasons and having the form

•
t = d (82 )

•

• with SE = 0.17 for Farnborough. The fi fth parameter of the model, SE, is the
slope of this line. A straight line function leads to under-prediction of t for
events of 1-4 hours duration. Therefore a constant value, Cr.„ of 0.65 was
adopted for Farnborough for durations of four hours or less. CE is the sixth
parameter of the model.

• Figure 83 shows an equivalent graph for the parameter 7. A curvi linear
relationship was fi tted by eye with a different scalar for winter

•  
7 (83)
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Fig. Histogram of sum m er event dep ths of 6 hours duration at
Farnborough together with fi tted gamma and logn ormal dis tfi butions.



Table 83 Observed and predicted f requencies of winter event depths of
7  hours duration at Hampstead

Class Observed Gamma Log normal

- 03 33 24.63 2339
- 1.0 23 28.47 38.07
- 1.5 22 26.65 31.78
- 2.0 22 23.74 24.74
- 2.5 17 20.66 19.21
- 3.0 22 17.73 15.08
- 3.5 17 15.08 12.00
- 4.0 10 12.74 9.68
- 4.5 13 10.71 7.90
- 5.0 13 8.97 6.52
- 5.5 9 7.50 5.44
- 6.0 5 6.24 4.58
- 6.5 5 5.19 3.88
- 7.0 2 4.31 3.32
- 75 3 3.57 2 85
- 8.0 2 2.96 2.47
- 9.0 7 4.46 4.02
- 10.0 2 3.04 3.11
- 12.0 4 3.46 43 8

12.1 - 2 1 89 10.61

X2 = 12.07
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Fig. 8.2 Relationshtp between event durations and scale param eter
of gamma distribution defi ning associated event dep ths.

(8A)

The two scalars, S
7 w

and S
7S

constitute the seventh and eigth model
parameters and the constant term, C.7 (C../ s and Cm 0.75 both for
Farnborough), is the nineth . The model generates an event depth as a random
numbe r from a gamma dist ribu tion whose parameters are given as a funct ion
of the event duration which has been defined previously.



10

8

6

4

2

0
0

•

9. Modelling event profiles

•  W I N T ER

•  S UM M ER

10 20
EVENT DURATION

Fig. 8.3 Relationship between event durations and shape param eter of
gam ma dis tribution defi ning associated event dep ths.

'fbe event profi le defi nes the way in which the total event rainfall depth is
distr ibuted in time over the duration of the event, in effect the relative
proportions of the total event rainfall depth which falls in each of the hours.
To examine the nature of the rainfall profi les, hourly totals for all events of
4, 6, 8, 10, 12, 14 and 16 hour duration from Farnborough were investigated.
Each of the observed event profiles exhibited a castlated appearance and no
two profiles were exactly similar, with the trivial exception of events of one
and two hours duration. This suggests that using a single smooth profi le for
all events would be unreasonable. However, the average of all profiles for each
duration (separated for summer and winter) can be modelled adequately by a
smooth shape. Individual hyetographs appear to vary randomly from this shape.
They can therefore be envisaged as sample histograms from a population
probabil ity density function which describes the average profile. Figure 9.1 and



9.2 show the average profi les calculated from all events of 4, 8, 12 and 16
hours  duration at Farnborough for the summer and winter  respectively. The
hourly depths, expressed as a proportion of the total rainfall  (p),  are modelled
as a function,  (f (t))  of thc t ime through the event  (t) , which  is itself
expressed as a proportion of the total event duration  (d).  A lso shown is a beta
distr ibution

a
f( t) = t t 0 t) /3t - 1 ot (a t, at)

- 1Bt (a t,  l3t) =
a1 (1 - u)13t- I

(9.1)

where Bt(at , BO is the  beta  function with parameters at and 13t given by

(9.2)

The best fi t parameter values imply that the profi les are slightly negatively
skewed. Note that all four observed profi les are similar in shape in both thc
summer and the winter cases and adequately fitted by the beta distr ibution.
This suggests that the average standardised profi le is constant for all storm
durations. Yen and Chow (1980) also found that the eff ect of rainstorm
duration on the shape of the non dimensional hyetograph was not signifi cant.

Average standardised profi les for 6, 10 and 14 hours (not shown) werc similar
in shape. Average profi les result ing from sub-dividing events according to their
total rainfal l depth and according to intensity showed that the standardised
profi le shape does not vary signifi cantly with event magnitude. Therefore two
standardised profi les (one for summer and one for winter) are sufficient to
defi ne the standardised profi les for all events. The four parameters, as, Os, aw
and t3w, are the tenth, eleventh, twelth and thirteenth parameters of the
rainfall model.

Clearly the rainfall depth in each hour will vary from this average form in a
diff erent way  for each individual event profi le.  The variabili ty of the profiles in
the observed events can be modelled by fi tt ing a distr ibution to the sample of
observed standardised depths in cach hour separately for the events of each
duration. The mean value of each distribution will , of course, lie on the
average standardised profi le curve. There are two problems which arisc wi th
this methodology. Firstly, if each profi le is composed of hourly depth
proport ions randomly chosen from a suite of distribut ions there is no
guarantee that the cumulative total will bc equal to 1.0 at the end of the
event. Secondly, if the sampling is independent for each hour the individual
profi les may not retain their smoothish observed shapes which results from
dependence between falls in successive hours. To overcome the first problem
all proportions can be expressed in a cumulative form as a proportion of the
total rainfall sti ll to fall in the remaining hours of the event. Figure 9.3 shows
the mean proportion,  PR  of the remaining rainfall which falls in each hour of
winter events of 4, 8, 12 and 16 hours duration.

The form of this relationship changes with event duration. However, the
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Fig. 9.1 A verage sum m er event profi les of 4, 8, 12 and 16 hours
durations at Farn borough togethr with a fi tted beta distribution

0 .0 0.5 TI M E 1.0

Fig. 9.2 A verage winter event p rofi les of 4, 8, 12 an d 16 hours
durations at Farnborough together with a fi tted beta distribution.
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•

• Fig 9.3 Mean proportion of remaining depth which f alls in each
hour of winter events of 4, 8, 12 and 16 hours duration.

•

• relationship for each duration can be approximated by accounting the
remaining proportions through the event derived directly from the average

• evetn profi le (Figures 9.1 & 9.2). The result ing relationships are shown as
curves in Figure 9.3.

A n obvious consequence of this methodology is that the last hour of each
• event wil l contain all ( 1.0) of the remaining rainfall. Figures 9.4a to 9.4f show

histograms for each hour (except the eighth) of all observed eight hour events
• together with a beta distribution fi tted to the data by the method of

moments.

The variance is also required to enable the two parameters of the beta
• distribution to be defined.

• a PR [ P R (1 - PR) / S2] - 1 ) (9.3)

•

• where  PR

-

and  S2  are the mean and variance of the distribution and a and 0
arc the location and scale parameters of the beta distribution respectively.

•
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Fig. 9.4 Distribution of the proportion of remaining depth which f alls
in each hour of winter events of hours' duration (except the eighth).



•

•

•

• Figure 9.5 shows the standardised variance  S VA R (S 2/ PR)  for each hour of
summcr events of 4, 8, 12 and 16 hour duration. Similar results were found
for winter events. Consequently, a constant value of 0.15 was chosen to
model all events. This is the twelth parameter of the model.

•

•

•

•

•

•

•

• 0.3

• SVAR
 

-e- 8
—a —12

• 0 .2 —a — 16

•

• 0.1 0

•

• 0.0
ao 0.5 1.0

•

•

•  Fig. 9.5 Standardised variance of the proportion of remaining depth
which f alls in each hour of summer events of 4, 8, 12 and 16 hours

•  duration.

•
To model the observed dependence between successive hourly falls within

• events, which is exhibited as the smoothness of thc profi le, the correlation
structure of all events was examined. To keep the model simple only the lag

• one correlation were analysed. Correlated normally distributed random numbers
(xl , x2) may  bc generated using the formula

•

• xi = x2  p 1 (1 - p 2)  x 1 (9.5)

•

• Values of  p  were chosen by examining the correlation between normally
distributed random numbers which, when transformed to beta distributed

•

•

•

•
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0.2

0.0

random numbers, reproduce this observed correlation structure in generated
rainfall events. Table 9.2 shows the lower triangle of the correlation matr ix
between the standard normal numbers required to generate the observed
hourly rainfalls within all eight hour winter events. Table 9.3 shows the leading
diagonal of this matrix all summer and winter events of 4, 8, 12 and 16
hours duration. I t was noted that the average correlation varies with duration,
but not signifi cantly with season. Figure 9.6 shows a graph of the relationship
between the durations and their respective lag-one correlations. This
relationship takes the form

"The fi fteenth and sixteenth model parameters are the scalar,  Sp  and the
exponent, Ep of this relationship.

0

 

W I N T ER

• S UM MER

(9.6)

4 8 12 16
EVEN T DURAT I O N

Fig. 9.6. Relationship between event duration and lag-one correlation
of hourly rainf all depths.

The mean and variance of each hourly rainfall, expressed as a percentage of
the total event depth, are shown in Table 9.1 for observed storms of 8 and
16 hours duration. A lso shown are the same statistics resulting from 1000
simulated storms for each duration. The reduction in the peak intensify
results from the method of correlation between the hourly falls. The expected
value of t he correlated beta variables is not equal to input values. Otherwise
the simulation results comparE favourably with those observed.
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•

•

• Table 9.1 Mean and variance of each hourly rainf all within observed
events of 8 and 16 hours duration expressed as a

• proportion of the total depth.

0

•

•

•

•

•

•
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0

• Table 9.3 L ag-one correlations between summer and winter events of
4, 8, 12 and 16 hours duration

•

Table 10.1 Def inition of sum mer and winter seasons f or dry period
• durations

summer winter
•

• Hampstead March-October November-February
A bingdon March-October November-February

• Farnborough March-October November-February
St. Mawgan April-September October-March

• Rhoose May-August September-April

0
Table 10.2 Param eter values f or the exponential, generlaised pareto

• and gamma distributions fi tted to dry period durations by
the method of maximum likelihood.

0

•
exponent ial gamma generalised pareto

• IL 7 a

•

• 4 Sum
Win

0.220
0.160

0.002
0.193

• 8 Sum 0.299 0.461 0.436 0.256 0.324 0.227
Win 0.302 0.393 0.394 0.272 0.147 0.065

• 12 Sum 0.473 0.447 0.460 0.435 0.537 0.408 0.244 0.645
0.211 0.281

• Win 0.158 0.531 0.609 0.604 03 60 0.445 0.520
0.411 0.209 0.274

• 16 Sum 0.620 0.633 - 0.087 0.743 0.599 0.749 0.236 0.567
0.569 03 10 04 07 0.111 0.206 - 0.029

• Win - 0.176 0.576 0.438 0.662 0.265 0.621 0.357 0.216
0.581 0.520 0.554 0.318 0.474 0.047

Hampstead SUM 0.040 0.478 52.78 6.35 -0.98
• win 0.05 05 4 37.19 7.01 -0.80

A bingdon SUM 0.04 0.48 51 13 6.55 -0.95
• will 0.05 03 6 32.27 7.61 -0.74

Farnborough SUM 0.04 0.47 54.04 6.27 -0.98
• win 0.05 0.56 25.14 7.5 1 -0.73

St. Mawgan SUM 0.05 0.50 395 2 5.66 -0.90
• win 0.07 0.50 28.15 4.22 -0.82

Rhoose SUM 0.04 0.49 46.97 6.80 -0.89
• win 0.05 0.41 39.04 4.98 -0.91



•

•
• 10. Modelling dry periods

• Dry, or inter-event, periods within the rainfall record arc defi ned only by their
duration. In thc rainfall model the duration of a dry period is treated as a

• random variable from a statistical distribution. Figure 10.1 and 10.2 show the
variation in mean and standard deviation of dry period durations at

• Hampstead for each month in which the period starts. A broadly similar
pattern is exhibited at each of the other four sites investigated with high

• values occurr ing in March, June and October. The only deviation is that at
Farnborough the mid-summer peak occurs in July. A lthough a consistent

• pattern was evident, for model simplici ty a two season restriction  was  imposed.
The seasonal divisions for the fi ve sites are given in Table 10.1. The

• seventeenth and eighteenth parameters of the model are the times of year for
the start of summer and winter for dry period durations.

•
The same analyses wcre performed on the dry period durations as on thc

• event durations. Because only positive integer values are acceptable for the
number of hours duration, numbers generated from a continuous distr ibution

• are rounded up to the nearest whole number adding, on average, 0.5 to each
observation. Consequently, as for event durations, 0.5 was subtracted from cach

• observed dry period duration prior to analysis. The histogram of summer dry
period durations at Rhoose is shown in Figure 10.3. A s with events, long dry

• periods are less frequent than short ones with the probabil ity of occurrence
reducing in a systematic fashion with increasing duration, with  a  modal value

• of one hour. The tail of the observed distribution is much heavier than thc
corresponding distribution of event durations; observed values of skewness

• (Table 6.1) are in the range 35 - 55. Such high values suggest the need for
the general ised parcto distr ibution. Probabil ity density functions for each of

• these three distributions, fi tted by the method of maximum likelihood, are
shown in Figure 103 and the corresponding parameter values are given in

• Table 10.2. I l i e observed data were divided into 20 classes and compared with
the expected number given by integrating thc density function between the

• class limits. These fi gures are shown in Table 103 for winter dry periods at
A bingdon. The x 2 goodness of fit statistic was used to test whether thc

• observed data could be ascalmed to have been sampled from any of these
distributions. x 2 values for each location are given in Table 10.4. Given that

• X 2( 17.0.05) i s approximately 27.5, it is very unlikely that the sample data came
from any of these distr ibut ions. However 30% of the contribution to the x 2

• statistics comes from the fi rst class. Despite the poor x 2 values the general ised
parcto distribution was choscn to model the dry period durat ions.  The  two

• parameters of the generalised parcto distribution,  a  and k, diff ering between
summer and winter, are the nineteenth, twentieth, twenty-fi rst and

• twenty-second model parameters.

•

•

•

•



•

•

•

• Table 10.3 Observed and predicted f requencies of winter dry p eriod
durations for A bingdon.

•

•

•

• Table 1a 4 x 2 statistics f or testing the goodness of fi t of various
distributions to dry p eriod durations

•

•

•

•

•

•
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• Fig. 10.1 Monthly variation in mean dry period durations at
Hampstead.
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• Fig. 10.2 Monthly variation in standard deviation of dry period
durations at Hampstead.
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11. Model implementation

The rainfall model is identifi ed by the anachronym PHROG ; Point Hourly
Rainfall Ordinate Generator. PHROG has been implemented on a IBM
computer at Wallingford using the FORTRA N 77 language. The model
subroutine returns one years • "simulated rainfall in an array of size 16000
containing either 8760, or 8784, point hourly rainfall totals for non leap years
and leap years respectively. A logical variable, set to true or false, is used as
a leap year indicator. To obtain this output, the only input required is an
integer year counter. Since the year rarely terminates exactly at the end of
an event or dry period, if the input year is not 1, the first elements of the
array contain hourly rainfalls generated in the previous year fr om an event or
dry period which spanned the end of the year. In this way continuity
between years is retained.

12. Comparsion of model results with observed
data

The model was ru n to generate 2000 years of synthetic hourly rainfalls using
the parameters calibrated for Farnborough. For each month the total rainfall
volume was recorded. Table 12.1 shows the mean and standard deviation of
each of these monthly rainfalls compared with those observed at Farnborough
over the period of record used for calibration. A lso shown in Table 12.1 are
the means and standard deviations of the annual totals. The statistics of the
simulated annual values are very close to those observed at Farnborough.
However, given the nature of the model, average results are somewhat
constraincd to be similar to those observed. The average monthly simulated
values show a smooth trend through the year, lowest in June highest in
January. The trends are similar in the observed data but exhibit more
variabili ty. The standard deviation of the monthly totals show  a  similar
behaviour with less variabil ity in the model results. Nevertheless,  since the
model has only two seasons, the results are generally acceptable.

For each of the 2000 years of simulated
in any period of 1, 2, 4, 6, 12, 24 and
are plotted using red symbols on Figure
periods, T, calculated using the Gr ingorten

data the maximum depth generated
48 hours was recorded. These data
12.1 against their respective return
plott ing posi tion
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• Table 12 1 Mean and standard deviation of m onthly and annual
rainf all totals observed at Farnborough (1941-1971)

• compared with those generalted by PHR OG

•

0

• mean standard deviat ion
Month Observed Simulated Observed Simulate d

•

• JAN 61.5 67.8 31.2 32.4
FEB 40.6 61.1 26.4 31.1

• MA R 40.7 59.4 29.4 31 9
APR 45.0 54.7 21.4 31 4

• MA Y 52.0 49.2 23.4 30.1
J UN 46.4 47.7 31.2 30A

• J UL 53.6 48.2 26.5 29.5
A UG 64.5 48.6 27.0 30.3

• SEP 54.6 48.4 362 30.4
ocr 62.3 54.5 40.6 33.3

• NO V 71.8 60.9 4 1.9 33.0
DEC 60.4 67.0 23.2 31.7

•

• ANNUA L 653.3 6662 111.3 119.0
SAA R 669.0



60 -

Fig. 12 1 Dis tribution of annual m arim um sim ulated depths of I, 2,
4, 6, 12, 24 and 48 houn duration comp ared with th ose obsetTed
Farnborough.

Re t ur n Per i od
1  1

600 1000



e
e
•
• Table. 12 2 Rainf all depths of sp ecifi ed duration and return period

observed at Farnborough (1941-1971) compared with
• those generated by PHROG and those estimated by the

methods given in the Flood Studies Report (NER C,
• 1975).

•

•

•

•

•
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•

• Table 12 2 (cont 'd)

•

•
Duration Re tu rn Period Observed Simulated FSR

•

•

• 24 5 46.5 51.5 46.5
10 54.1 60.4 54.4

• 50 73.6 81.7 74.8
100 83.1 91.7 86.0

• 200 102.2 100.8
500 116.8 120.0

• 1000 128 8 134.7

•

• 48 5 54.9 58.7 54.9
10 63.4 68.3 63.2

• 50 72.1 91.5 85.1
100 94.1 102.4 97.2

• 200 113.8 113.4
500 129.7 133.0

• 1000 142.7 148.6



0

•

• i — 0.44
Ti - (12.1)

• fi t 0.12

• where .i is the i th ranked annual maximum depth in n years of rccord. A lso
shown, arc the observed annual maxima of the same durations plotted in the

• same manner and solid lines depicting the rainfall frequency curves estimated
by methods given in the Flood Studies Report (NERC, 1975 Vol. I I) . To

• derive these curves, the 5 year return period rainfall depths were estimated
from the observed data at Farnborough and scaled up using the appropriate

• growth factors to give the magnitudes of the less frequent events. This
procedure probably gives the best estimate of the true depths for the specified

• durations and frequencies. These data provide the basis for an independent
test of the abil ity of the model to generate real istic extreme rainfalls. The
envelope of data is coincident upto around the 50 year return period. This
is the extent of the observed data. Above this point the Hood Studies

• Report curves for the 1, 2, 4 and 6 hour durations are slightly steeper than
those which result from the model simulations. This suggests that the model is

• performing well over the range of observed data but is not so good at
extrapolating to more extreme events. A t the 12, 24 and 48 hour durations

• the model appears to slightly over estimate the depth of rainfall at all return
periods. However, the shape of the frequency curves is closely matched. The
dominant control over the frequency of the 1 and 2 hour durations is
probably the form of the event profi le, whereas the control over the 24 and

• 48 hour duration is more likely to be the distr ibution of the event depths for
the longer durations.

•
In order to interpolate between the points and examine the depths estimated

• at specifi c return periods, a generalised extreme value distribution was fi tted to
these annual maxima, separately for each duration, by the method of

• probabil ity weighted moments (Hosking et al, 1986). Rainfall depths for return
periods 5, 10, 50, 100, 200, 500 and 1000 years were evaluated for each

• duration are given in Table 122 . In general the model performs well over the
range of return periods

• at all durations.

•

•
13. Conclusions

•
•

A stochastic rainfall model has been developed to generate synthetic sequences
• of hourly rainfalls at a point. The model has been calibrated using up to 30

years of rainfall data for each of five sites in Southern Britain. These rainfall
• data series were divided into wet and dry spells; analysis of the durations of

these spells suggests that they may be represented by exponential and pareto
• distr ibutions respectively. The total volume of rainfal l in wet spells is

adequately fi tted by a conditional gamma distr ibution. Random sampling from a
• beta distr ibution, defi ning the average shape of all rainfall profi les, is used in

the model to obtain the rainfal l profi le for a given wet spell. The model has
• a total of 21 parameters, some of which are specific to winter or summer and

vary at each site, whilst some are constant through the year and over all of
•

•

•

•



•

•

• southern Britain. Results obtained from the model compare favourably with
observed monthly and annual rainfall totals and with annual maximum

• frequency curves of 1, 2, 6, 12, 24 and 48 hours duration.

• In order to retain the goodness of fi t to the Flood Studies Report curves as
an independent test of the model it can not be used for model calibration.

• Furthermore, given that a large part of the model is empirically based, there
is no j ustifi cation for adjusting thc parameter values on a theoretical basis. In
general the generated data approximate those observed at Farnborough
suffi cient ly well to make these adaptions unnecessary.

• 14. Future work

• Work is continuing on calibrating and testing the model at the four other
sites in Southern Bri tain. Data for other sites, in northern Britain, are to be

• aquired from the Meteorological Offi ce to which the model wil l be fi tted.
Once the model has bccn calibrated at a wide range of locations the spatial

• distribution of thc model parameters can be examined. Relat ionships can be
sought between the model parameters and other mapped data. Maps showing

• the spatial distr ibution of of rainfall statistics, including average annual rainfal l
(SAA R) and two-day rainfall of fi ve year return period (M52D) are available

• in the Fl ood Studies Report (NERC, 1975). The model will then be in a
form suitable for generating data at any site wi thin Bri t ain, whether or not

• gauged rainfall data are available.

•
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The d e mand for long-te rm scie ntifi c cap a b ilities conce rning the
, resources of the land a nd its freshwaters is rising sharply as the

powe r of Man to chang e his e nvironme n t is growing, and with
it the scale of his impa ct Co mprehens iv e rese arch facilities

(labo ra tories, fi e ld stud ies, computer mod e lling, ins trume nta tion,
re mote se nsing) are need e d to prov id e solutions to the

cha llenging problems of the mod ern w o rld in its conce rn for
approp riate and sympathe tic ma nage me n t of the fragile syste ms of

the land 's sur face .

The  Ten es tri al and Fres hw ater Scien c es  Direc torate of the
Natura l Environment Resea rc h Counc il b rings togethe r an

e xce p tiona lly wide range of app ropriate d isc ip lines (che mis try
b iolog y e ngine ering, physics geo logy, g e ograp hy, mathe matics

and compute r sc ie nce s ) comp rising on e of the world's larges t
bod ies of estab lished e nvironme ntal e x p e rtise . A staff of 550,

large ly grad uate and p rofessiona l, from fo ur Institutes a t e leven
laboratories a nd fi eld s tations and two Un iversity units provide

the sp ec ialise d knowle d ge and e xpe ne n c e to me e t nationa l and
inte rnational needs in three m a jor a reas :

Land Use and Natural Re s o urces

Environme ntal Quality and P ollution

Ecology and Co nse rva t ion




