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Abstract

This paper describes a stochastic rainfall model which has been developed to
gencrate synthetic sequences of hourly rainfalls at a point. The model has
been calibrated using up to 30 years of rainfall data for each of five sites in
Southern Britain.  These rainfall data series were divided into wet and  dry
spells; analysis of the durdtions of these spells suggests that they may be
represented by  exponential and  pareto  distributions  respectively. The total
volume of rainfall in wet spells was adequately fitted by a conditional gamma
distnbution. Random sampling from a beta distribution, defining the average
shape of all rainfall profiles, is used in the model to obtain the rainfall profile
for a given wet spell. The model has a total of 22 paramcters some of which
are specific to winter or summer and vary at cach site, whilst some are
constant through the year and over all of southern Britain. Results obtained
from the model compare favourably with observed monthly and annual rainfall
totals and with annual maximum frequency distributions of 1, 2, 6, 12, 24 and
48 hours duration at Farnborough in Hampshire.




Contents

1.

12.

13,

14.

15.

16.

List of Tables

List of Figures

Definition of model paramecters
Other notation

Background to study

Model specification

Rainfall characterisation

Data

Model definition

Basic rainfall statistics
Medelling event durations
Modelling event depths
Modelling rainfall profiles
Modelling dry periods

Model structure

Comparsion of model results with observed data
Conclusions

Future work
Acknowledgements

References




List of Tables

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

4.1

6.1

6.2

6.3

7.1

72

7.3

7.4

7.5

7.6

8.1

9.1

9.2

93

10.1

10.2

103

Summary of rainfall data used in this study.
Basic statistics of rainfall data.

Lag-one correlation coefficients for rainfall characteristics at
Farnborough.

Cross-correlation  coefficients between depth, duration and average
intensity within individual events.

Definition of summer and winter seasons for event durations.

Paramcter values for the exponential, generalised pareto and
gamma distributions fitted to event durations by the method of
maximum likelihood.

Observed and predicted frequencies of winter event udrations for
St. Mawgan,

x? statistics for testing the goodness of fit of various
distributions to event durations.

Likelihood ratio test results.

Observed frequencies of winter event durations at Farnborough
compared with those predicted using the exponential/uniform
distribution.

Observed and predicted frequencies of winter event depths of 7
hours duration at Flampstead.

Mean and variance of cach hourly rainfall within observed events
of 8 and 16 hours duration expressed as a proportion of the
total depth.

Lower triangle of correlation matrix between hour rainfalls within
all cight hour winter events at Farnborough.

Lag-one correlations between summer and winter cvents of 4, §,
12 and 16 hours duration.

Definition of summer and winter seasons for dry period
durations.

Parameter values for the exponential, generalised pareto and
gomma distributions fitted to dry period durations by the
method of maximum liketihood.

Observed  and  predicted  frequencies of  winter  dry  period
durations for Abingdon.




Table 104

Table 12.1

Table 122

x?  statistics for testing the goodness of fiu of various

distributions to dry period durations.

Mean and standard deviation of monthly and annpual rainfall
totals observed at Farnborough (1941-1971) compared with those
generated by PHROG.

Rainfall depths of specified duration and return period observed
at Farnborough (1941-1971) compared with those generated by
PHROG and those estimated by the methods given in the
Flood Studies Report (NERC, 1975).




List of Figures

Figure 4.1
Figure 7.1

Figure 7.2

Figure 7.3

Figure 8.1

Figure 8.2

Figure 83

Figure 9.1

Figure 9.2

Figure 9.3

Figure 9.4

Figure 9.5

Figure 9.6

Figure 10.1

Figure 10.2

Figure 103

Precipitation regions of England and Wales (after Wigley er al,
1984).

Monthly variation in mean event durations at Rhoose.

Histogram of summer ecvent durations at Abingdon together
with  fitted  exponential, gamma and  generalised  pareto
distibutions.

Effect of aggregating rainfall into hourly depths

Histogram of summer e¢vent depths of 6 hours duration at
Farnborough  together with fitted gamma and lognormal!
distibutions.

Relationship between event durations and scale parameter of
gamma distribution defining associated event depths

Relationship  between  event durations and  shape parameter  of
gamma distribution defining associated event depths.

Average summer event profiles of 4, 8, 12 and 16 hours
durations at Farnborough together with a fitted beta distribution.

Average winter cvent profiles of 4, 8, 12 and 16 hours durations
at Farnborough together with a fitted beta distribution.

Mean proportion of remaining depth which falls in each hour of
winter cvents of 4, 8 12 and 16 hours duration.

Distribution of the proportion of remaining depth which falls in
each hour of winter events of 4, 8§, 12 and 16 hours duration.

Standardised variance of the proportion of remaining depth which
falls in cach hour of summer events of 4, 8 12 and 16 hours
duration.

Relationship between event duration and lag-one correlation  of
hourly rainfall depths.

Monthly variation in mean dry period durations at Hampstead

Monthly vanation in standard deviation of dry period durations at
Hampstead.

Histogram of summer dry period durations at St Mawgan
together with fitted cxponential, gamma and generalised pareto
distibutions.




Figure 12.1 Distribution of annual maximum simulated depths of 1, 2, 4, 0,
12, 24 and 48 hours duration compared with thosc observed at
Farnborough.




Definition of the model parameters

1 Tpg time of year for start of summer event season

2 Tgy time of year for start of winter event season

3 Mg scale parameter for the duration of summer events

4 Mg, scale paramcter for the duration of winter events

5 S scalar of rclationship between event duration and scale parameter
for all evebt depths

6 Cg constant of relationship between event duration and scale
parameter for all event depths

7 S?S scalar of relationships between event duration and shape parameter
for the summer event depths

8 Syw scalar of relationship between event duration and shape parameter
for the winter event depths

9 C), constant of relationship betwecen event duration and shape
parameter for all event depths

10 o scale parameter for average summer event profiles

11 By shape parameter for average summer cvent profiles

12 ey scale parameter for average winter event profiles
13 By shape parameter for average winter event profiles

14 SVAR standardised variance of distribution of remaining proportions in
event profilcs

15 E exponent of relationships between duration and

16 S scalar of relationship between duration and

17 Tpg time of year for start of winter dry period season

18 Tpy time of year for start of winter dry period season

19 apg scale parameter for the duration of summer dry perniods
20 kpg shape parameter for the duration of summer dry periods
21 apy scale paramecter for the duration of winter dry periods

22 kpw shape parameter for the duration of winter dry periods




Other notation

Bl(qt. B()
d

PR

2
X( 180.05)

beta distribution with parameters « and 8

event duration
mean proportion of remaining rainfall in any hour

total rainfall in an event

time, from the start of an event

location at which the upper tail area of the chi squared

distribution is 5% given 18 degrees of frecdom

return period of ith ranked annual maximum

correlation between hourly rain falls within an event




1. Background to study

Traditional approaches to regional flood frequency analysis have involved
analysing observed sequences of annual floods from a number of gauging
stattons cach draining a catchment with different physical characteristics. By
averaging the observed flood frequency curves within groups of physicaliy
similar catchments (such as small, steep and wet catchments or large, flat and
dry catchments) it is possible to identify the flood frequency distribution which
results from various combinations of physical characteristics. However, it is
difficult to determine how the individual characteristics contribute to the shape
of the flood frequency curve.

An alternative approach is to simulate the response of a catchment with a
predetermined set of physical characteristics using a computer model. For
modelling purposes the hydrological response system can be sub-divided into
two parts: (1) a meteorological input, viewed as a stochastic variable, and (2)
a rainfall-runcff transformation process, which is essentially deterministic. The
rainfall model is used to generate long sequences of synthetic rainfall totals
which retain the statistical properties of observed sequences. These rainfall
sequences are transformed into long synthetic records of river flows using the
rainfall-runoffl model.  The flow series can then be analysed using conventional
statistical methods. Different climatic and meteorological conditions can  be
simulated by varying the parameters of the rainfall model. By varying the
paramcters of the rainfall-runoff model, different physical conditions of the
catchment can be simulated. In this way the cffects on the hydrological
response of changes to a single catchment characteristic, such as soil capacity
or slope, can be modelled. ‘

A particular application of this methodology sceks to identify the relative
mmportance of different physical characteristics of a drainage basin in shaping
its flood frequency curve. Specifically, rainfal! model has been developed and
used to generate 1000 years of hourly synthetic rainfall totals. Annual flood
peaks have been extracted from the flow sequence output from  the
rainfall-runoff mode! and these have been used to define a flood frequency
curve. In successive simulation runs different valucs for the paramcters which
contro! the modelling of soil moisture storage and runoff production have
been used to investigate the influence of catchment morphology and soil
properties. The effects of lake and floodplain storage on the flood frequency
curve have also being studied by routing the synthetic flow sequence through
an appropriate model. In this way the relative importance of a variety of
catchment characteristics in  shaping the flood frequency curve can be
evaluated.

2. Model specification

This report describes the development of a computer model which is capable
of generating unlimited sequences of synthetic hourly rainfall totals at a point




which preserve the statistics of observed rainfall series. The main statistics to
be preserved are the depth frequency relationships for 1, 2, 4, 6, 12, 24 and
48 hour durations and the mean and standard deviations of monthly and
annual rainfall totals.

3. Rainfall characterisation

The way in which rainfall is characterised in a rainfall model depends upon
the structure of the rainfall data series being modelled. The structure of a
rainfall serics depends, in turn, upon the time interval over which the total
rainfall depth is measured, or has been aggregated. If the interval is very
short, of the order of a second or less, the rainfall will depend on the
number of raindrops and their size and thus the rate is likely to vary
considerable between intervals. Rainfall rates recorded on a chart by a tilting
syphon raingauge, which has a resolution of around one minute, tend to
exhibit some scrial dependence. As rainfall depths are accumulated over
intervals of longer duration, from minutes to hours, the degree of dependence
between the ordinates changes. If the interval is much less than the average
length of an event the dependence is high due to serial correlation within an
event. However, as the interval increases in length it will contain some
complete events and some partial events, therefore dependence is likely to
decrease.  Hence daily rainfall totals exhibit less serial dependence than hourly
falls. Each rainfall total may be considered as a discrete random observation,
with some small serial dependence over several previous values. For example,
the probability that a certain depth of rain will fall tomorrow is a random
variable whose likely value is conditional upon how wet it was today and, to
a lesser extent how wet it was yesterday, and the day before, and so on.
Marcov chains are used for this type of modelling (sce for example Todorovic
and Woolhiser, 1975 and Haan et al, 1976). Unfortunately when extended to
shorter time periods, such as an hour, because the rainfall depth in any hour
is conditional on falls over many previous hours, a large number of model
parameters need to be optimised (sce for example Pettison, 1967). However, as
the rainfall depths are accumulated over still longer durations the degree of
dependence may increase. This occurrs when the interval is long enough to
contain a large sample of different magnitude cvents. For example, annual
rainfall totals may exhibit smooth trends and cyclic fluctuations in harness with
sun-spot  activity or long-term climatic change. This type of behaviour can be
modelled by a polynomial curve or by harmonic analysis.

Ideally a model would be formulated in continuous time and would be
appropriate at all levels of aggreation. Model parameters could be fixed using
data of various aggregations including minute, hourly, daily and yearly. It
would ihen be possible o pardally caiibrate the modei using any available
local data. This methodology, although conceptually reasonable, 1s very difficult
to apply in practice. Consequently rainfall models tend to be based on the
structure exhibited by one chosen rainfall duration. The volumes over other
intervals are then obtained by aggregating or disaggregating these totals,

Hourly rainfall poses particular problems in modelling, since successive values




exhibit propertics of random variation but with some scrial dependence. Many
models are a compromise between the two extremes of independent random
variables and deterministic functions. Small clusters, or groups, of rainfall values
may be considered to have some deterministic structure, such as those makKing
up a rainfall event, burst or <cell, with these groups ftreated as random
variables. Cox & Isham (1987) developed a model based on the concept that
the fundamental rainfall unit is a cell of vanable duration but with constant
intensity. The cells start at variable times and thus may overlap such that the
total rainfall profile may exhibit the characteristic castlated appearance of
observed hyetographs. A variable number of cells makes up a storm, the
length of which i1s also modelled as a random vanable. Dry periods are not
modelled explicitly, but make up the spaces between rainfall cells. However,
to model the variability observed in profiles of hourly rainfall data from
Denver they introduced an element of random noise. Although the parameters
have a physical interpretation, such as the duration of a rain cell, they express
themselves indirectly in the observed rainfall hyetograph; any given rainfall
pattern could have been produced by scveral different combinations of
parameters. Futhermore the model had only been applied to data from
summer convective rainfall in the USA and may not be applicable to British
meterological conditions.

An alternative model structurc is to generate alternate wet and dry periods of
random duration. The wet periods are assigned a random total depth, which
is conditional on the duration, and is distributed through the event using a
fixed profile. Beven (1987) made the most basic assumption that the rainfall
was evenly distributed throughout the storm, thus yielding a rectangular profile,
whilst a triangular profilc was adopted for all storms by Grayman and
Eagleson (1906). To make the concept of a triangular profile more realistic,
observed rainfall sequences investigated by Marien & Vandewiele (1986) were
divided up into storm profiles, or parts of storm profiles, which took the form
of a ftriangle. This makes the assumption of a triangular profile a more
reasonable assumption by definition. Acreman (1987) treated the profile as a
further random element, in which individual storm profiles are analogous to
sample histograms from a population density function which describes the
average of all profiles. In this model the total storm rainfall is divided into
blocks of 0.5 mm which are distributed within the profile with their probability
of occurrence at any time during the event governed by a normal distribution.
This is particularly appropriate for data collected from a tipping bucket
raingauge which yields rainfall depths in discrete amounts depending on the
size of the bucket.

Different modecls try to characterise rainfall in different ways. Provided that the
model gencrates rainfall values which preserve the statistical characteristics of

the observed data sequence required by the particular application, the precise
structure is perhaps not important.

4. Data

Prior to the rescarch for the Flood Studies Report (NERC, 1975), long
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Fig. 4.1 Precipitation regions of England and Wales (after Wigley et
al, 1984).

sequences of short duration rainfall totals were not widely available in a
convenient form for computational analysis. In 1973 the Meteorological Office
and the Oxford University Nuclear Physics [aboratory collaborated on a
project to digitise recording rainfall charts automatically. For this work they
used a flying spot scanner, known as the Precision Encoder and Pattern
Recognition (PEPR) machine. More than one million hyetograms were selected
by the Meteorological Office for digitising (Folland and Colgate, 1978). The
resulting data are point rainfall totals at a resolution of ¥/100th mm at one
minute intervals. Data from five sites in Southern Britain were obtained by the
Institute of Hydrology in 1975. (Table 4.1) Data are not complcte for the
whole period of cach record, but the gaps form a small proportion of the
total record length. The locations of the sites are shown in Figure 4.1
together with the precipitation regions of England and Wales produced by the
Climatic Research Unit (Wigley et al, 1984). For the purposes of this study
the data were aggrepated to produce hourly falls with a resolution of 1/10th
mm.




event
depth

event

drv period

duration durartion

Table 4.1 Summary of rainfall data used in this study
No. Name Period of record Grid Ref. Met. Off. No.
1 Hampstead 1941-1975 5262 1863 246690
2 Abingdon 1944-1964 4482 1990 260990
1964-1975 4479 1991 260991
3 Farnborough 1941-1971 4867 1544 271432
4  §t. Mawgan 1956-1967 1873 642 383478
5 Rhoose 1958-1975 30066 1678 492325
Table 6.1 Basic statistics of rainfall data
Hampstead Abingdon Farnborough St. Mawgan Roose
win  sum win  sum  win sum win sum win sum
n 4789 4284 5340 4542 5140 4473 2396 2363 2810 3104
200 222 181 196 209 203 2.62 228 2.55 2.44
o 390 520 153 412 421 441 5.01 5.02 443 482
g 408 10.89 404 5060 464  S86 3.74 8.59 330 452
e 471 421 425 384 4.34 375 491 453 498 4.44
g 439 387 398 335 416 331 4.57 4.10 4.46 394
g 274 3109 289 244 283 281 2.15 210 207 234
n 3184 5659 3794 6055 3700 5881 2764 1973 3994 1872
g 20432535 2019 2535 2003 25.69 14.63 20.14 19.17  23.65
o 38.085499 3674 5592 3683 5707 36.60 4247 4609 51.89
g 476 5.16 457 5.64 433 504 7.16 5.06 6.05 5.89
n = number of periods
i = sample estimate of mean
o = sample estimate of standard deviation
g = sample estimate of skewness




5. Model definitions

This model treats point hourly rainfall sequences as comprising of alternating
wet periods, termed events, when some rainfall has been recorded in each
hour and dry periods consisting of onc or more consecutive hours when no
rain  has Dbeen recorded. Ewvents are characterised by their duration, total
rainfall depth and profile, ic how the depth is distributed in time over the
duration of the event. Dry periods are defined in terms of their duration
alone. The definition of a rainfall cvent allows for considerable subjectivity.

The simplest definition is that adopted by Yen and Chow (1980) that a
rainstorm is a period of continuous non-zero rainfalls in each time interval
Thus one dry interval defines the division between two cvents. However, two
or more bursts of rainfall scparated only by onc dry hour are often
considered as one single event. Thus some rainfall models use different
criteria to dcfine the end of an event. For example, when working with
rainfalls of one minute duration Kidd and Packman (1981) considered that an
event had ended only when the intensity of rainfali fell below 1 mm hr for
15 minutes. Criteria based on meteorological independence would seem
intuitively sensible, but may depend on the synoptic situation. For example,
during frontal rainfall a longer dry period may be required to designate events
as indepedent than during anticyclonic, showery weather. From a catchment
response  standpoint, the independence threshold may be chosen to be the
critical duration of rainfall to which the catchment responds, small urbanised
catchments would require a short dry period threshold, whilst a  larger
catchment underlain by chalk would be more suited to a long threshold. In a
study by Roa (1974) the threshold dry period length was chosen by identifying
the minimum number of dry hours required between two wet hours such that
there was not significant serial correlation. Thus the critical lag for hourly data
was found to be 15 hours. However, rainfall is usuvally low in the first and
last hours of an event, therefore this statistic simply reflected the high
dependence of these hours and does not indicate the dependence between
successive events as a whole. A more meaningful statistic would be the partial
correlation calculated between all the data in ecach pair of events. A single
index of the information held in a whole event is, however, not obvious.
Restrepo and Eagleson (1982) utilised the idea that if the arrival times of
independent rainfall events can be modelled by a Poisson process, the dry
periods between events should be exponentially distributed. They then chose
the critical dry period duration such that the exponential hypothesis was best
satisfiecd.  However, the independence assumption in the Poisson model relates
to arrival rates and not to the dependence of storm duration or depths.

Provided that realistic rainfall sequences can be generated the separation
criteria are unimportant ie. events do not need to bc independent provided
that any dependence is built into the model. In the model developed here,
events arc defincd as continuous sequences of wet hours; thus a single dry
hour is considered as the start of a dry, inter-event period. In this way all
dry and wet hours are modelled explicitly.




6. Basic rainfall statistics

For each of the five sites, the observed rainfall sequences were divided into
wet and dry periods. A further sub-division was undertaken on the basis of
scason (Tables 7.1 and 10.1). Various other sub-divisions were considercd but
rejected. Table 6.1 gives some summary statistics derived from the available
data. The statistics appear to be intuitively realistic. For example, at all sites
dry periods are, on average, longer in the summer than the winter and,
correspondingly, wet periods are shorter and the depth of rainfall in an event
is more variable in the summer than in the winter. With regard to regional
variations, events are, on average, of longer duration in the west (region 2},
being in the range 444 to 498 hours, than those in the east (region 1)
which range from 375 to 4.71 hours. Correspondingly, the average length of
a dry spell is shorter in the west. In both regions the range is quitc small,
suggesting somc regional homogeneity. Average cvent depths are higher in the
west, 2.28 - 2.62 mm, against 1.8§1-222 mm in the east.

The wet and dry periods were examined for scrial correlation. It was
speculated  that perhaps a long dry spell would usually be followed by an
event with a large rainfall depth or high average intensity,. The matrices in
Tables 62 and 6.3 resulted from the analysis of the data from Farnborough.
All lag-onc correlations are close to zero, but, given the skewed distribution of
the data, it is not easy to assess whether or not they are significantly different
from zero. The highest correlations are 0.084 and -0.079. The former suggests
that dunng the summer there is a tendancy for the longer dry spells to be
followed by events with larger rainfall depth and shorter dry periods by events
with smalier depth. The latter negative corrclation implies that winter events
with a large rainfall depth tend to be followed by short dry periods and vica
versa. All lag-one correlations for event depths are less than 0.03. Intmtively, it
was felt that large rainfall events sometimes cluster, ie as a front passes there
may be scveral heavy rainfall storms in succession. Further analysis provided
no justification for this in the observed data. Consequently, due to the near
zero values, the dry and wet periods were assumed to be independent of cach
other in the model.

A further aspect of corrclation is that between the depth, duration and
intensity within each cvent. Table 6.3 shows that correlation between depth
and duration is highly significant, as expected, with higher values in the winter.
Agan these results seem intuitively reasonable since, for a given duration
event, greater variability in possible depths would be expected in the summer.
This correlation structure is taken into account in the model by making the
possible values for the depth conditional on the duration.

7. Modelling event durations

The duration of an cvent is an integer, d, defining a continuous sequence wet
hours bounded on either side by at least one dry hour. To illustrate how the




Table 6.2 Lag-one correlation coefficients for raifnall characteristics
at Farnborough

ith wet or dry period

wet duriation depth avg intensity dry duration

win sum win sum win sum win sum

wel  dur i+1th 0.023 0.034 -0.021 0.011 -0.035 0.017 0005 0059
wet  dep i+1th 0.004 0.029 -0.026 0.028 0.032 0.008 0.014 0.084
wel int i+1th 0.029 0.012 001 0.027 0.009 0.026 0007 0013
dry dur is1th 0058 -0.033 0079 <0039 0.003 0014 0012 0019

Table 6.3 Cross-correlation coefficients between depth, duration and

sverage intensily within individual events

Cross-correlations

duration depth avg. intensity
win sum win sum win sum
duration 1.000  1.000
depth 0761  0.683 1.000  1.000
avg intensity 0.254 0.268 0679  0.677 1.000 1.000

Table 7.1 Definition of summer and winter seasons for event durations

summer

winter

Hampstead
Abingdon

Farnborough

St Mawgan

Rhoose

Aprii-September
April-September
April-Septmeber
March-September
March-September

October-March
QOctober-March
October-March
October-February
October-February




typical duration of an observed cvent may vary through the year, Figure 7.1
shows the variation in mean durations, Mg, at Rhoose for cach month in
which the cvent starts. A broadly similar pattern is exhibited at each of the
other four sites investigated, with higher mean event durations occurring in the
winter than summer. Although the mcan changes relatively smoothly through
the year, a two scason model was felt to be adequate. The optimum seasonal
division varied between the sites as shown in Table 7.1. The first parameter of
the model is the time of year for the start of the summer events season,
Tge whilst the second is the start of the winter event season, Tg,,.

Me
4
3 }

Fig. 7.1 Monthly variation in mean event durations at Rhoose.

The histogram of summer cvent durations at Abingdon is shown in Figure 7.2.
Clearly long events are less frequent than short events with the probability of
occurrence reducing in a systematic fashion with increasing duration.  An
obvious candidate to mode! this behaviour is the exponential distribution, which
has a single parameter, M, whose density function is

F(d) = 1 - e(-¢/Mp) (7.1)

This distribution has been used by Grayman and Eagleson (1969} to model
cvent durations in Massachusetts and by Beven (1987) in Wales  The
exponential distribution has a fixed skewness of 2.0. Sample estimates of
skewness for the event durations at the five sites all cxceed, though are close
to, this value. Alternatives to the single parameter exponential distribution
include the generalised pareto distribution
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This distribution has been used to model the frequency distributions of
peaks-over-a-threshold  rainfall serics n  the Netherfands (van Montfort &
Witter, 1986). The observed histogram suggests that the modal value of the
event durations is two hours, whereas the modal value of both the exponential
and gencraliscd pareto distributions is zero, or, in this particular discrete
application, is one. The gamma distribution

F(d d7_1 e(hdlt) 73
@ = ET(7) (3)

When parameter ¥ is greater than one the modal value is £{C-1 ). Both the
gamma and gencralised parcto distributions may possess higher values of
skewness.

Becausc only positive integer values are acceptable for event durations a
discrete  distribution " is required for modelling. To achieve this numbers
gencrated by the mode! from a continuous distribution are rounded up to the
nearest whole number adding, on average, about 05 to each observation.
Consequently 0.5 was subtracted from each observed event duration prior to
fitting each distribution. Probability density functions for each of the three
distributions described above, with parameters estimated by the method of
maximum likelthood, are shown in Figure 7.2 and the corresponding paramcter
values are given in Table 7.2. The obscrved data were divided into 20 classes
and compared with the expected number given by integrating the density
function between the class [imits. These observed and expected values are
shown in Table 7.3 for winter events at St. Mawgan. The x? goodness of fit
statistic

n
x2 = I (EXD; - OBS)’ /EXD, (7.4)
it

where OBS; is the number opf events observed in the ith class and EXP; is
the number that would be expected if the data were drawn from the
distribution under cxamination. This statistic can be used to test whether the
observed data can be assumed to be a random sample from that distribution.
x? values for each gauge site are given in Table 74. Given that x? (17.005) 18
approximately 27.5, it is unlikely that the sample data came from any of these
distributions. A very high percentage of the contribution to the X2 statistics
comes from the first twe classes, The form of the gamma distribution s
potentially more appropriate for modelling durations of one and two hours.
However, the optimum paramcters imply a modal value of one, although the
predicted frequency of two hour events is very similar, ‘These results suggest
that the exponential and generalised pareto distributions, having approximately
equal values for the x? statisitic, are better suited to modclling the tail
behaviour than the gamma distribution.




Table 7.2. Parameter values bfor the exponential, generlaised pareto
and gamma distributions fitted to event durations by the
method of maximum likelihood

exponential gammat generalised pareto
Mp 3 Y a k

Hampstead  sum 3.710 1.298 2859 3.009 -0.027
win 4215 1240 3.400 4.089 -0.030

Abingdon sum 3.336 1367 2.441 3.323 -0.004
win 3.753 1.281 2929 3.591 -0.043

Farnborough sum 3.752 1.363  2.385 3214 -0.016
win 3.844 1224  3.142 3.606 -0.062

St. Mawgan  sum 4.015 1237 3.261 3941 -0.018
win 4.369 1.158 3.805 4224 -0.033

Rhoose sum 3.935 1.289  3.061 3.923 -0.003
win 4.415 1239 3.017 4.442 0.006

Table 7.3 Observed and predicted frequencies of winter event
durations for St. Mawgan

Class Observed Exponential Gamma Generalised Pareto
1 387 486.4 4119 500.8
2 595 3874 3930 3932
3 299 309.0 3285 309.2
4 217 2462 266.6 2438
5 169 196.3 2134 192.5
6 125 1564 2694 152.3
7 95 124.7 1338 120.7
8 162 99.4 105.2 959
9 86 792 82.5 763
10 50 63.1 64.6 60.9
11 57 503 50.5 48.6
12 47 40.1 394 389
13 29 3.0 30.7 312
14 28. 25.5 239 250
15 24 203 18.6 201
16 19 16.2 144 16.2
17 14 12.9 112 121
18-20 24 25.0 207 26.1
21-25 16 174 13.0 19.5
20+ 13 82 5.0 1.6
x? 162.3 174.0 155.5




Table 7.4. x* statistics for testing the goodness of fit of various
distributions to event durations

exponcntial gamma generalised pareto
Hampstead  sum 292.4 337.1 2799
win 3309 3328 3207
Abingdon sum 481.0 451.2 479.6
win 5222 5859 489.3
Farnborough sum 404.8 388.1 401.8
win 412.0 4729 3674
St. Mawgan  sum 171.5 169.5 169.0
wip 162.3 174.0 155.5
Rhoose sum 263.4 2419 263.5
win 188.8 179.5 189.4
Table 7.5. Likelihood ratio test resulls
maximum log likelihoods
exp. (A) pareto (B) 2. (A-B) decision Ho
Hampstead  win -11678.65 -11675.88 5.54 reject
sum - 9%00.01 - 9897.62 4.78 reject
Abingdon win -12402.70 -12395.96 13.48 reject
sum -10014.64 -10014.59 0.10 accept
Farnborough win -12058.97 -12049.07 19.80 reject
sum 9747.35 - 974691 0.88 accept
St. Mawgan  win - 5949.92 - 594832 3.20 accept
sum 5658.60 - 5658.29 0.62 accept
Rhoose win - 7024.20 - 7024.18 0.04 accept
sum - 7364.01 - 7364.01 0.00 accept
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Fig. 7.3 Effect of aggregating rainfall into hourly depths.

Since the exponential distribution is a special case of the gencralised pareto
distribution, an alternative test of their relative goodness-of-fit is provided by
the likelihood ratio statistic, LR

LR = -2 log (LL1 / LL2) (7.5)

where LL1 and LL2 are the logarithms of the maximum likelihood for the
exponential and generalised pareto distributions respectively. LR s distnibuted
as x? with degrees of frecedom equal to the the difference in the number of
parameters  estimated, in this case 1. Table 7.5 pgives the maximum
log-likelihoods for the two distributions at the five sites together with the
critical x? values. Using this test, only for winter cvents at Abingdon and
Farnborough is the goodness of fit of the genecralised pareto distributions
significantly better that that of the exponential distribution. Given the large
sample of data, wsing the modified likelihood-ratio test suggested by Hosking
and Wallis (1987) where

LR = 1 - 67/ 66 (6n) LR (7.6)

has no effect on the results, A potential drawback with the generalised parcto
distribution is that when k > 0 the distnbution has an upper bound at ak.
However, only winter events at Rhoose exhibited a positive k value and this




was not significantly different from zero.

The major deficiency in the exponential model is that the frequency of one
hour events is over-estimated and that of two hour events is underestimated
(infact the frequencies are reversed). Consequently the modal value is not
modelled correctly. The form of the observed histogram is influenced by the
aggregation of the rainfall into hourly depths. Rain may, or may not, have
been falling for all of each hour. Figure 7.3 demonstrates this effect. If we
assume that rainfall is continuous for time, f, once it has started, the observed
duration of the event, 4 will be

d=¢ +t+r . (7.7

where ¢ is the time from the start of the present clock hour and r is the
time from the end of the event until the beginning of the next clock hour.
Rather than modelling the duration of an event by a distnbution fitted
directly to the observed data, it can be modelled as a combination of
processes involving the frue duration of events that would be observed in
continuous time, combined with a uniform distribution, giving the discrete
density function

s

f(d) = 1 - Mg (1 - €M) d=1

(78)

Mg €Me - 1) edMg g3

Table 7.6 shows the observed number of events in each duration class together
with the number predicted using Equation 7.8. Although the fit is rcasonably
good, this mode] was out-performed by the use of the exponential distribution
when modelling the depth-duration-frequency relationships at Farnborough
(section 12). The distribution of depths of one hour duration events is very
restricted. At Farnborough, 97% of winter events contained only (0.5 or 1.0
mm. Furthermore, 90% of two hour winter events were of 0.5 or 1.0 mm.
These statistics suggest that, for the overall model performance, it is not
critical to differentiate between one and two hour events; it is sufficient to
ensure that their combined frequency is modclled adequately.

In conclusion, the exponential distribution was felt to be adequatc to describe
the event durations at all five sites for bLolh scasons. Consequently the mean
duration over the two season is sufficient to define the distribution of all
events. The third and fourth parameters of the model are the estimates of
the mean summer event duration and the mean winter event duration, Mgg
and MEW'




Table 7.6 Observed frequencies

exponential/uniform distribution.

gf winter event durations at
Fammborough compared with those predicted using the

Class Observed Exponential/Uniform
1 866 659.8
2 1363 1098.7
3 807 8293
4 492 625.9
5 369 4724
6 260 356.6
7 213 269.1
8 158 203.1
9 107 1533
10 95 115.7
11 8s 873
12 54 65.9
13 60 49.8
14 46 376
15 34 283
16 24 21.4
17 17 16.2
18-20 38 283
21-25 29 16.1
26- 23 5.2




8. Modelling event depths

Once the duration of an event has been derived, the second characteristic of
the event which requires modelling is the total depth of rainfall, p. Total
rainfall depth can be treated as a random variable and modelled by fitting a
statistical distribution to the sample of observed depths. Because of the strong
correlation evident between event depths and durations, the model takes the
distribution of depths to be conditional upon the duration. The same
methodology was followed by Grayman and Eagleson (1976). Separately for the
two seasons, the events were divided into classes according to their duration,
1, 2, 3, .. 11, 12, 13-14, 15-18 and 19- hours. A histogram of event depths
was drawn up for each of these duration classes. Two possible candidates for
modelling these data are the gamma distribution (4) and the lognormal
distribution

1 "[!08 (dfllz] ?

2
ds, 2m2e 25

p = f{d) = (8.1)

where g, and & are the mean and. standard deviation of the natural
logarithms of d respectively. These two distributions were fitted to the sample
data set by the method of maximum likelilhood. An example is shown
graphically in Figure 8.1. Table B.1 gives the observed number in each
interval of the histogram of 7 hour events at Hampstead. Also given is the
number predicted for each interval by the fitted gamma and lognormal
distributions. It can be seen that these data are well fitted by the gamma
distribution. This distribution was supcrior in its description of the data for all
durations.

Although the gamma distribution fitted well the rainfall depth data for each
duration, the parameters fitted were different in each case. Figure 8.2 shows
the parameter, {, plotted against event duration, together with a fitted curve.
A straight line was considered to be sufficient to describe the wvariation in ¢
with  event duration for both seasons and having the form

(8.2)

oy
It
%]
m
(=W

with SE = 0.17 for Farnborough. The fifth parameter of the model, SE, is the
slope of this line. A straight line function leads to under-prediction of & for
events of 1-4 hours duration. Therefore a constant value, Cg, of 0.65 was
adopted for Farnborough for durations of four hours or less. EE is the sixth
parameter of the model.

Figure 83 shows an equivalent graph for the parameter . A curvilinear
relationship was fitted by eye with a different scalar for winter

Yw * s.,g, - ¢, (83)




y—C
_1 brt
-
TI
-l_ln
HE
| ! i
| i
. : !
' ! K =
4 ¥
l i L -
o
[ -
_1 T o
g 1 s
i 4 e
- =
x 5] | : 1?'
<L o {—un u
© ! [ 0:
3
B
u
i
4
hpe—
i o
t
-‘F

SRR [ Y Y IO TR DUUUY (R S

FE PRy S W .I_I_,_J_.I_J_.l_L.. [N A [ U T | :
o

m N

o o o ©

Fig. 8.1 Histogram of summer event depths of ¢ hours duration at
Famborough together with fitted gamma and lognormal distributions.




Table 81 Observed and predicted frequencies of winter event depths of
7 hours duration at Hampstead

Class Observed Gamma Log normal
- 05 33 24.63 23.39
- 10 23 2847 38.07
- 15 22 26.65 31.78
- 20 22 23.74 24.74
- 25 17 20.66 19.21
- 30 22 17.73 15.08
- 35 17 15.08 12.00
- 40 10 12.74 9.68
- 45 13 10.71 7.90
- 50 13 8.97 6.52
- 55 9 7.50 5.44
- 60 S 624 458
- 6.5 5 519 3.88
- 70 2 431 3.32
- 15 3 3.57 285
- 80 2 296 247
- 90 7 4.46 4.02
- 100 2 3.04 i
- 120 4 3.46 438
12.1- 2 2.89 10.61
x? = 12.07
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Fig. 8.2 Relationship between event durations and scale parameter
of gamma distribution defining associated event depths.

and summer

. d
Yo = S8 - Cyy (8.9)

The two scalars, S, and S, constitute the seventh and eigth model
parameters and  the' constant term, (Cyg and 0.75 both for
Farnborough), is the nineth. The model generates an event depth as a random
number from a gamma distribution whose parameters are given as a function
of the event duration which has been defined previously.
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Fig. 83 Relationship between event durations and shape parameter of
gamma distribution defining associated event depths.

9. Modelling event profiles

The event profile defines the way in which the total cvent rainfall depth is
distributed in time over the duration of the event, in effect the relative
proportions of the total event rainfall depth which falls in each of the hours.
To examine the npature of the rainfall profiles, hourly totals for all events of
4, 6, 8, 10, 12, 14 and 16 hour duration from Farnborough were investigated.
Each of the observed event profiles exhibited a castlated appearance and no
two profiles were exactly similar, with the trivial exception of events of one
and two hours duration. This suggests that using a single smooth profile for
all events would be unreasonable. However, the average of all profiles for cach
duration (separated for summer and winter) can be modelled adequately by a
smooth shape. Individual hyetographs appear to vary randomly from this shape.
They can therefore be envisaged as sample histograms from a population
probability density function which describes the average profile. Figure 9.1 and




9.2 show the average profiles calculated from all events of 4, 8, 12 and 16
hours duration at Farnborough for the summer and winter respectively. The
hourly depths, expressed as a proportion of the total rainfall (p), are modelled
as a function, (f(t)) of the timc through the event (1), which is itself
expressed as a proportion of the total event duration (d). Also shown isa beta
distribution

f(t) = e - t)B‘“1 / Bt(x, By (9.1)

where Bt(at, Bt) is the beta function with parameters o, and Bt given by

1
Bt (¢, By - J 0 - u)BH (9.2)

o

The best fit parameter values imply that the profiles are slightly negatively
skewed. Note that all four observed profiles are similar in shape in both the
summer and the winter cases and adequately fitted by the beta distribution.
This suggests that the average standardised profile is constant for all storm
durations. Yen and Chow (1980) also found that the effect of rainstorm
duration on the shape of the non dimensional hyetograph was not significant.

Avcrage standardised profiles for 6, 10 and 14 hours (not shown) were similar
in shape. Average profiles resulting from sub-dividing events according to their
total rainfall depth and according to intensity showed that the standardised
profile shape does not vary significantly with event magnitude. Therefore two
standardised profiles (one for summer and one for winter) are sufficient to
define the standardised profiles for all events. The four parameters, o, B, ay,
and B, are the tenth, cleventh, twelth and thirteenth parameters of the
rainfall model.

Clearly the rainfall depth in each hour will vary from this average form in a
different way for each individual event profilc. The variability of the profiles in
the observed events can be modelled by fitting a distribution to the sample of
observed standardised depths in cach hour separately for the events of each
duration. The mean value of each distribution will, of course, lie on the
average standardised profile curve. There are two problems which arise with
this methodology. Firstly, if each profile is composed of hourly depth
proportions randomly chosen from a suite of distributions there is no
guarantee that the cumulative total will be equal to 1.0 at the end of the
event. Secondly, if the sampling is independent for each hour the individual
profiles may not retain their smoothish observed shapes which results from
dependence between falls in successive hours. To overcome the first problem
all proportions can be expressed in a cumulative form as a proportion of the
total rainfall still to fall_in the remaining hours of the event. Figure 9.3 shows
the mean proportion, PR of the remaining rainfall which falls in each hour of
winter events of 4, 8, 12 and 16 hours duration.

The form of this relationship changes with event duration. However, the
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Fig. 9.1 Average summer event profiles of 4, 8, 12 and 16 hours
durations at Famborough togethr with a fitted beta distribution
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Fig. 9.2 Average winter event profiles of 4, 8, 12 and 16 hours
durations at Famborough together with a fitted beta distribution.
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Fig. 93 Mean proportion of remaining depth which falls in each
hour of winter events of 4, 8, 12 and 16 hours duration.

relationship for each duration can be approximated by accounting the
remaining proportions through the cvent derived directly from the average
evetn profile (Figures 9.1 & 92). The resulting relationships are shown as
curves in Figure 93,

An obvious consequence of this methodology is that the tast hour of each
event will contain all (1.0) of the remaining rainfall. Figures 94a to 94f show
histograms for each hour (except the eighth) of all observed eight hour events
together with a beta distribution fitted to the data by the method of
moments.

The variance is also required to enable the two parameters of the beta
distribution to be defined.

R
n

PR {[ﬁ (1 - PR) /8] -1} 93)

jo~]
u

(1 - PR) [[Iﬂ 1-PR) /S - 1} (9.4)

where PR and §% are the mean and variance of the distribution and « and B
are the location and scale parameters of the beta distribution respectively.




05

00 =

e 6
| T 11
y— ——r 7
= 1 [ 1 |1 11 ] ! |
00 _ 1.0

Fig. 9.4 Dustnbution of the proportion of remaining depth which falls
in each hour of winter events of hours duration (except the eighth).




Figure 9.5 shows the standardised variance SVAR (Szfljﬁ) for each hour of
summer events of 4, 8 12 and 16 hour duration. Similar results were found
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SVAR| _o— 8
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for winter events. Consequently, a constant value of (.15 was chosen (o
model all events. This is the twelth parameter of the model.

0.3

0.2

Qo0 05 1.0

Fig. 9.5 Standardised variance of the proportion of remaining depth
which falls in each hour of summer events of 4, 8, 12 and 16 hours
duration.

To model the observed dependence between successive hourly falls  within
events, which is exhibited as the smoothness of the profile, the correlation
structure of all events was examined. To keep the model simple only the lag
one correlation were analysed. Correlated normally distributed random numbers
(x!, x2) may be generated using the formula

X, =% p+ J(1-p?)xl (9.5)

Values of p were chosen by examining the correlation between normally
distributed random numbers which, when transformed to beta distributed




random npumbers, reproduce this observed correlation structure in  gencrated
rainfall events. Table 92 shows the lower triangle of the correlation matrix
between the standard normal numbers required to gencrate the observed
hourly rainfalls within all eight hour winter events. Table 9.3 shows the leading
diagonal of this matrix all summer and winter events of 4, & 12 and 16
hours duration. It was noted that the average correlation varies with duration,
but not significantly with secason. Figure 9.6 shows a graph of the relationship
between the durations and their respective lag-one correlations.  This
relationship takes the form

E
p=S_dP (9.6)

The fifteenth and sixteenth model parameters are the scalar, Sp and the
exponent, E o of this relationship.
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Fig. 9.6. Relationship between event duration and lag-one correlation
of hourly rainfall depths.

The mean and variance of each hourly rainfall, expressed as a percentage of
the total event depth, are shown in Table 9.1 for observed storms of 8§ and
16 hours duration. Also shown are the same statistics resulting from 1000
simulated storms for each duration. The reduction in the peak intensity
results from the method of correlation between the hourly falls. The expected
value of the corrclated beta vanables is not cqual to input values, Otherwise
the simulation results compare favourably with those observed.




Table 9.1 Mean and variance of each hourly rainfall within observed
events of 8 and 16 hours duration expressed as a
proportion of the total depth.

8 hours Summer Winter
Mean Var Mean VAR

obs  sym obs sym obs sym obs sym
001 005 0.014 0.008 009 0.10 0.016 0.015
014 013 0.025 0019 017 0.13 0.026 0.018
015 017 0.020 0.022 014 014 0.015 0.017
014 0.18 0.020 0.024 016 0l6 t.0z0 0.018
6.15 018 0017 0.021 015 015 0.017 0.016
013 0.1s 0.018 0.016 0.14 013 0.018 0.013
013 009 0016 0.013 0.10 011 0.017 0.012
006 0.04 0.012 0.008 003 008 0.003 0.012

16 hours
002 0.02 0.000 0.001 005 004 0.008 0.007
005 004 0.001 0.003 008 006 0.010 0.005
007 006 0.002 0.007 005 007 0.002 0.007
006 007 0.004 0010 0.06 007 0.004 0.009
007 008 0.005 0.008 007 0.08 0.005 0.006
009 009 0.005 0.011 0.06 Q.08 0.003 0.009
010 009 0.004 0010 008 0407 0.009 0.008
011 009 0.004 0.008 009 008 0.014 0.006
0.13 0.08 0.008 0.009 008 007 0.007 0.007
008 009 0.003 0.007 0.07 0.08 .03 0.000
0.06 0.08 0.003 0.005 008 007 0.003 0.004
004 007 0.003 (0.005 006 007 0.004 0.004
005 006 0.003 (.004 005 006 0.002 0.005
005 005 0.004 0.004 007 005 0.017 0005
001 003 0.000 0.002 004 004 0.002 0003
001 001 0.000 0.001 001 002 0.000 0.003

Table 9.2 Lower triangle of comelation matrix between hourly

rainfalls within all eight hour winter events at Farmborough

1.000
G302
0.021
0.092
0.164

- 0238
- 0.228

1.000
0.393
0.066

-0.151

0.142
0.091

1.000
0.394
- 0.048
- (.151
- 0.061

1.000
0272
- 0078
- 0.185

1.000
0.147

- 0.186

1.000
0.065

1.000




Table 9.3 Lag-one correlations between summer and winter events of
4, 8 12 and 16 hours duration

4 Sum
Win

8 Sum
Win

12 Sum

Win

16 Sum

Win -

0.220
0.160
0.299
0.302
0.473
0.211
0.158
0.411
0.620
0.569
(.176
0.581

0.002
0.193
0.461
0.393
0.447
0.281
0.531
0.209
0.633 -
0.310
0.576
0.520

0.436
0.394
0.460

0.609
0.274
0.087
0407
0.438
0.554

0.256
0.272
0.435

0.604

0.743
0.111
0.662
0.318

0.324
0.147
0.537

0.360

0.599
0.206
0.265
0.474

0.227
0.065
0.408

0.445

0.749
- 0.029
0.621
0.047

0.244  0.645
0.520

0236 0567
0357 0216

Table 10.1 Definition of summer and winter seasons for dry period
durations

summer

winter

Hampstcad
Abingdon
Farnborough
St. Mawgan
Rhoose

March-October
March-October
March-October

April-September

May-August

November-February
November-February
November-February
Qctober-March
September-April

Table 10.2 Parameter values gor the exponential, generlaised pareto

and gamma distributions fitted to dry period durations by
the method of maximum likelihood.

exponential gamma generalised parcto
[ { Y a k
Hampstead  sum 0.040 0478 5278 6.35 -0.98
win 0.05 054 3719 7.01 -0.80
Abingdon sum 0.04 048 5213 6.55 <095
win 0.05 056 322 7.61 -0.74
Farnborough sum 0.04 047 5404 6.27 -0.98
win 0.05 056 25.14 7.51 -0.73
St. Mawgan sum 0.05 050 3952 5.66 -090
win 0.07 050 2815 422 -0.82
Rhoose sum 0.64 049 4697 6.80 -0.89
win 0.05 041 3904 498 -091




10. Modelling dry periods

Dry, or inter-event, periods within the rainfall record are defined only by their
duration.  In the rainfall model the duration of a dry period is treated as a
random variable from a statistical distribution. Figure 10.1 and 102 show the
variation in mean and standard deviation of dry period durations at
Hampstead for each month in which the period starts. A broadly similar
pattern is cxhibited at each of the other four sites investigated with high
values occurring in March, June and October. The only deviation is that at
Farnborough the mid-summer peak occurs in July. Although a consistent
pattern was evident, for model simplicity a two season restriction was imposed.
The seasonal divisions for the five sites are given in Table 10.1. The
seventeenth and eighteenth parameters of the model are the times of year for
the start of summer and winter for dry period durations.

The same analysecs were performed on the dry period durations as on the
event durations. Because only positive integer values are acceptable for the
number of hours duration, numbers generated from a continuous distribution
are rounded up to the nearest whole number adding, on average, 0.5 to each
observation. Conscquently, as for event durations, 0.5 was subtracted from cach
observed dry period duration prior to analysis. The histogram of summer dry
period durations at Rhoose is shown in Figure 10.3. As with events, long dry
periods are less frequent than short ones with the probability of occurrence
reducing In a systematic fashion with increasing duration, with a modal value
of one hour. The tait of the observed distribution is much heavier than the
corresponding  distribution of event durations; observed wvalues of skewness
(Table 6.1) are in the range 35 - 55. Such high values suggest the need for
the generalised parcto distribution. Probability density functions for ecach of
these three distributions, fitted by the method of madmum liketihood, are
shown in Figure 103 and the corresponding parameter values are given in
Table 10.2. The observed data were divided into 20 classes and compared with
the expected number given by integrating the density function between the
class limits. These figures are shown in Table 10.3 for winter dry periods at
Abingdon. The %2 goodness of fit statistic was used to test whether the
observed data could be assumed to have been sampled from any of these
distributions. x? values for each location are given in Table 104. Given that
x‘mo_os) is approximately 27.5, it is very unfikely that the sample data came
from ‘any of these distributions. However 30% of the contribution to the Xx?
statistics comes from the first class. Despite the poor X? values the generalised
pareto distribution was chosen to model the dry period durations. The two
parameters of the generalised pareto distribution, @ and k differing between
summer and winter, are the nineteenth, twentieth, twenty-first and
twenty-sccond model parameters.




Table 10.3 Observed and predicted frequencies of winter dry period
durations for Abingdon.

Class QObserved Exponential Gamma Generalised Pareto
1 575 187.9 577.5 4472
2 379 178.6 264.4 363.0
3 238 169.7 203.4 299.8
4 209 161.3 170.1 2511
5- 6 350 299.1 279.2 3935
78 275 2703 2269 2959
9- 10 214 244.1 191.6 228.5
11- 12 156 220.5 165.6 181.1
13- 14 146 1992, 1453 146.5
15- 17 148 263.3 188.0 1733
18- 20 155 226.1 159.7 135.6
21- 24 144 252.6 1787 136.]
25- 28 105 206.2 148.1 103.3
29- 50 306 615.8 488.5 2942
51- 70 149 191.0 199.5 111.2
71- 90 83 69.2 9.3 61.0
91-140 &4 36.2 85.8 73.1
141-180 30 2.7 15.8 274
181-260 35 04 6.0 27.4
559- 13 0.0 0.6 28.6
x? 29666.2 623.7 109.5

Table 10.4 x* statistics for testing the goodness of fit of various

distributions to dry period durations

exponential gamma generalised pareto

Hampstead  sum 369333 11173 165.1

win 212019 4329 156.3
Abingdon sum 392559 528.0 136.6

win 29666.2 6237 109.5
Farnborough sum 411324 1358.0 126.9

win 293654 633.5 110.9
St. Mawgan  sum 28679.5 432.8 608

win >99999.9 4154.8 449
Rhoose sum 9642.7 263.8 65.9

win 314393 1513.9 62.1
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11. Model implementation

The rainfall model is identified by the anachronym PHROG; Point Hourly
Rainfall Ordinate Gencrator. PHROG has been implemented on a IBM
computer at Wallingford using the FORTRAN 77 language. The model
subroutine returns one years ‘simulated rainfall in an array of size 16000
containing either 8760, or 8784, point hourly rainfall totals for non leap ycars
and leap years respectively. A logical variable, sct to true or false, is used as
a leap year indicator. To obtain this output, the only input required is an
integer year counter. Since the year rarely terminates exactly at the end of
an event or dry period, if the input year is not 1, the first elements of the
array contain hourly rainfalls generated in the previous year from an event or
dry period which spanned the end of the year. In this way continuity
between years is retained.

12. Comparsion of model results with observed
data

The model was run to generate 2000 years of synthetic hourly rainfalls using
the parameters calibrated for Farnborough. For each month the total rainfall
volume was recorded. Table 12.1 shows the mean and standard deviation of
each of thesc monthly rainfalls compared with those observed at Farnborough
over the period of record used for calibration. Also shown in Table 12.1 arc
the means and standard deviations of the annual totals. The statistics of the
simulated annual values are very close to those observed at Farnborough.
However, given the nature of the model, average results are somewhat
constrained to be similar to those observed. The average monthly simulated
values show a smooth trend through the year, lowest in June highest in
January. The trends are similar in the observed data but exhibit more
variability. 'The standard deviation of the monthly totals show a similar
behaviour with less variability in the model results. Nevertheless, since the
model has only two seasons, the results are generally acceptable.

For each of the 2000 years of simulated data the madmum depth generated
in any period of 1, 2, 4, 6, 12, 24 and 48 hours was recorded. These data
are plotted using red symbols on Figure 12.1 against their respective return
periods, T, calcufated using the Gringorten plotting position




Table 121 Mean and standard deviation of monthly and annual
rainfall totals observed at Famborough (1941-1971)
compared with those generalted by PHROG

mean standard deviation

Month Observed Simulated Observed Simulated

JAN 615 67.8 312 324

FEB 40.6 611 264 311

MAR 40.7 594 204 329

APR 45.0 54.7 214 324

MAY 52.0 49.2 234 301

JUN 46.4 477 312 301

JUL 536 48.2 26.5 29.5

AUG 64.5 48.6 210 303

SEP 54.6 484 36.2 304

ocCT 62.3 54.5 40.6 333

NOV 718 60.9 419 330

DEC 604 67.0 232 317

ANNUAL 653.3 666.2 111.3 119.0

SAAR 669.0
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Fig. 121 Distribution of annual maximum simulated depths of 1, 2,
4,6, 12 24 and 48 hours duration compared with those observed at
Farmborough.




Table. 12.2 Rainfall depths of specified duration and return period

observed at Famborough (1941-1971) compared with
those generated by PHROG and those estimated by the
methods given in the Flood Studies Report (NERC,
1975).

Duration Return Period Observed Simulated FSR
1 5 15.5 15.2 15.5
10 189 18.1 19.0

50 28.6 254 26.3

100 339 29.0 30.8

200 330 351

500 38.7 43.0

1000 43.5 514
2 5 211 219 15.2
10 ' 254 26.1 211

50 30.1 36.7 36.5

100 432 420 429

200 479 509

500 563 62.2

1000 63.5 724

4 5 275 28.2 275
10 330 331 336

50 485 453 473

100 568 51.2 55.3

200 57.6 65.1

500 66.6 824

1000 74.2 927

6 5 325 329 325
10 393 384 393

50 584 522 45.8

100 68.7 58.8 552

200 66.0 744

500 76.0 92.0

1000 844 106.3

12 5 384 43.0 384
10 45.8 50.0 453

50 67.1 66.8 629

100 78.8 74.5 72.5

200 325 85.6

500 93.6 102.0

1000 102.6 116.3




Table 122  (cont'd)
Duration Returmn Period Observed Simulated FSR
24 5 46.5 51.5 40.5
10 54.1 60.4 544
S0 73.6 81.7 74.8
100 83.1 91.7 86.0
200 102.2 100.8
500 116.8 120.0
1000 1288 134.7
48 5 54.9 58.7 549
10 63.4 683 63.2
50 72.1 915 851
100 94.1 102.4 972
200 1138 1134
500 129.7 133.0
1000 142.7 148.6
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where £ is the ith ranked annual maximum depth in n years of record. Also
shown, are the observed annual maxima of the same durations plotted in the
same manner and solid lines depicting the rainfall frequency curves estimated
by methods given in the Flood Studies Report (NERC, 1975 Vol. II). To
derive these curves, the 5 year return period rainfall depths were estimated
from the observed data at Farnborough and scaled up using the appropriate
growth factors to give the magnitudes of the less frequent events. This
procedure probably gives the best estimate of the true depths for the specified
durations and frequencies. These data provide the basis for an independent
test of the ability of the model to generate realistic extreme rainfalls. The
envelope of data is coincident upto around the 50 year return period.  This
is the extent of thc observed data, Above this point the Flood Studies
Report curves for the 1, 2, 4 and 6 hour durations are slightly steeper than
those which result from the model simulations. This suggests that the model is
performing well over the range of observed data but is not so good at
extrapolating to more extreme events. At the 12, 24 and 48 hour durations
the model appears to slightly over estimatc the depth of rainfall at all return
periods. However, the shape of the frequency curves is closely matched. The
dominant control over the frequency of the 1 and 2 hour durations is
probably the form of the event profile, whereas the control over the 24 and
48 hour duration is more likely to be the distribution of the event depths for
the longer durations.

In order to interpolate between the points and examine the depths estimated
at specific return periods, a generalised extreme value distribution was fitted to
these annual maxima, separately for each duration, by the method of
probability weighted moments (Hosking et al, 1986). Rainfall depths for return
periods 5, 10, 50, 100, 200, 500 and 1000 years were evaluated for each
duration are given in Table 12.2. In general the model performs well over the
range of return periods

at all durations.

13. Conclusions

A stochastic rainfall model has been developed to gencrate synthetic sequences
of hourly rainfalls at a point. The model has been calibrated using up to 30
years of rainfall data for each of five sites in Southern Britain. These rainfall
data series were divided into wet and dry speils; analysis of the durations of
these spells suggests that they may be represented by exponential and pareto
distributions respectively. The total volume of rainfall in wet spells is
adequately fitted by a conditional gamma distribution. Random sampling from a
beta distribution, defining the average shape of all rainfall profiles, is used in
the model to obtain the rainfall profile for a given wet spell. The model has
a total of 21 parameters, some of which are specific to winter or summer and
vary at each site, whilst some are constant through the year and over all of




southern Britain. Results obtained from the model compare favourably with
observed monthly and annual rainfall totals and with annual maximum
frequency curves of 1, 2, 6, 12, 24 and 48 hours duration.

In order to retain the goodness of fit to the Flood Studies Report curves as
an independent test of the model it can not be used for model calibration.
Furthermore, given that a large part of the model is empirically based, there
is no justification for adjusting the parameter values on a theoretical basis. In
general the generated data approximate those observed at Farnborough
sufficiently well to make these adaptions unnecessary.

14. Future work

Work is continuing on calibrating and testing the model at the four other
sites in Southern Britain. Data for other sites, in northern Britain, are to be
aquired from the Meteorological Office to which the model will be fitted.
Once the model has been calibrated at a wide range of locations the spatial
distribution of the model parameters can be examined. Relationships can be
sought between the model parameters and other mapped data. Maps showing
the spatial distribution of of rainfall statistics, including average annual rainfall
(SAAR) and two-day rainfall of five ycar return period (M52D) are available
in the Flood Studies Report (NERC, 1975). The model will then be in a
form suitable for generating data at any site within Brit ain, whether or not
gauged rainfall data are available.
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The demand for long-term scientific capabilities concerning the
resources of the land and its freshwaters is rising sharply as the
power of man to change his environment is growing, and with
it the scale of his impact. Comprehensive research facilihes
(laboratories, field studies, computer modelling, instrumentation,
remote sensing) are needed to provide solutions to the
challenging problems of the modern world 1n its concern for
approprate and sympathetic management of the fragile systems of
the land's surface,

The Terrestrial and Freshwater Sciences Directorate of the
Natural Environment Research Council brings together an
exceptionally wide range of appropriate disciplines (chemustry,
biology, engineering, physics, geology, geography. mathematcs
and computer sciences) comprising one of the world’s largest
bodies of established environmental expertise. A staff of 550,
largely graduate and professional, from four Institutes at eleven
laboratories and field stations and two University unts provide
the specialised knowledge and expenence to meet national and
international needs in three major areas:

*
Land Use and Natural Resources
b
Environmental Quality and Pollution

*

Ecology and Conservation






