

•

•

•

• • •

•

ullet

•

•

•

•

•

•

•

A Report to South West Water

E. J. Stewart Institute of Hydrology

June 1989

Co	nte	nts

INTRODUCTION

THE PROBLEM OF RAINFALL FREQUENCY IN SOUTH WEST ENGLAND

STUDY REGION

THE ANALYTICAL APPROACH

MAPPING OF RAINFALL STATISTICS

5.1	The requirement	2
5.2	Available data	3
5.3	Geostatistical analysis	3
	5.3.1 Background to geostatistics	3
	5.3.2 Semivariogram analysis	4
	5.3.3. Structural analysis	5
	5.3.4 Kriging	6
	5.3.5 Results	6

FOCUSSED RAINFALL GROWTH ESTIMATION

6.1	Introduction	I
6.2	The station-year method	7
6.3	A model of spatial dependence in maximum rainfalls	8
6.4	A modified station-year method	8
6.5	Focussed rainfall growth curves	9
	for South West England	
	6.5.1 The EORGE method	9
	6.5.2 Results	10
	6.5.3 Discussion	10
	6.5.4. Link with FSR II	11

CONCLUSION

-,•

•

REFERENCES

ACKNOWLEDGEMENTS

Page

REGIONAL RAINFALL FREQUENCY -SOUTH WEST ENGLAND

1. Introduction

The analysis of rainfall frequency is fundamental to reservoir safety assessment. This report presents a detailed study of the frequency of 1 and 2-day rainfalls in South West England. Particular emphasis is placed on the analysis of rainfall depth-frequency relationships for Wimbleball Reservoir, in order to derive estimates of design rainfalls of up to 10,000-year return period.

The report discusses the background to the problem of rainfall frequency estimation in South West England and outlines the methodology adopted in the analysis. Details of the mapping of two key rainfall statistics are given, and growth curves centred on ten locations within the study region are presented.

2. The problem of rainfall frequency in South West England

UK practice in the estimation of rainfall frequency relies on the method presented in Volume II of the Flood Studies Report (Natural Environment Research Council, 1975). The approach taken is a two-stage one, involving the estimation of the rainfall of 5-year return period (M5) to which a growth factor is applied to yield the rainfall of the required duration and return period. Two geographical regions, England & Wales and Scotland & Northern Ireland, are distinguished, across each of which a fixed set of growth factors is assumed.

In an analysis of 2-day rainfall using a number of long-term gauge records in Somerset, Bootman & Willis (1977 & 1981) expressed concern about the applicability of the FSR II growth factors to South West England. It was demonstrated that the FSR method seriously underestimates the frequency of 2-day rainfalls in the region.

More recently, the derivation of regional growth curves for 1-day rainfall (Reed & Dales, 1988) has confirmed strong regional traits within the UK which are not represented in the FSR II growth factors. An alternative generalization of point rainfall frequency has been proposed, based on the regions shown in Fig. 1. It was noted that the West Country region exhibited particularly high values of the coefficient of variation (CV) of 1-day annual maximum rainfall at a number of gauges. Historically, the region has experienced a relatively high frequency of heavy rainfall events, often associated with summer thunderstorms.

In the light of these apparent anomalies in the FSR II model, the availability of long and short-term daily raingauge data in the region has allowed a detailed re-evaluation of rainfall frequency in South West England.

3. Study region

Wimbleball Reservoir is situated in the South West region presented in Reed & Dales (1988), close to the boundary of the West Country region and the area of Somerset for which the FSR method is known to underestimate rainfall frequency (Fig.1). For these reasons, the study region was defined as the area represented by the combined South West and West Country regions.

4. The analytical approach

The two-stage approach to the development of rainfall frequency relationships has been retained in the study. However, at the first stage, the mean annual maximum rainfall (RBAR) of the appropriate duration has been used as the standardizing variable, in preference to the M5 rainfall value. This follows the method adopted by Reed & Dales (1988) in order to correct for regional discrepancies in the FSR model. The advantages of using RBAR are its simplicity and the fact that it avoids a distributional assumption.

The second stage of the analysis has been concerned with the development of 1 and 2-day rainfall growth curves for South West England. A new technique for rainfall growth estimation has been developed which provides a more detailed regionalization than the FSR method, yet avoids imposing regional boundaries.

5. Mapping of rainfall statistics

5.1 THE REQUIREMENT

Detailed maps of 1 and 2-day RBAR values for South West England were required as the first stage of the procedure for deriving point rainfall estimates of any return period. The rainfall regions of Reed & Dales (1988) were determined through the analysis of a second rainfall statistic, the coefficient of variation of 1-day rainfall (CV). Since CV is considered to be a useful measure of the variability of rainfall, maps of 1 and 2-day CV have also been produced.

5.2 AVAILABLE DATA

Several sources of long and short-term daily raingauge data were used for the mapping of RBAR and CV. The Institute of Hydrology holds daily rainfall totals from 1961 to the present for over 4000 gauges in the UK. A selected number of records of length greater than 40 years are also held. Additional long and short-term data were provided by South West Water.

Series of annual maximum 1 and 2-day rainfalls were extracted for each gauge situated within the study region. Maximum values were only accepted if three-quarters of the year's daily totals were available. At each gauge which could provide ten or more maxima, values of RBAR and CV were calculated. The numbers of gauges used in the mapping of RBAR and CV and their record lengths are shown in Table 1.

Number of years of record	Number of gauges
10 · 19	295
20 - 29	190
30 - 39	37
40 - 59	31
>60	37
Total	590

Table	1	Summary	of	daily	gauge	data	used in	the study
-------	---	---------	----	-------	-------	------	---------	-----------

The raingauges are fairly evenly distributed and their positions are shown in Fig. 2. Point values of I and 2-day RBAR and CV are given in Appendix 1.

5.3 GEOSTATISTICAL ANALYSIS

5.3.1 Background to geostatistics

The method adopted in the mapping of the rainfall statistics is that of kriging, which is one of a number of techniques which comes under the general term geostatistics. Geostatistical techniques provide a set of statistical procedures for analysing the spatial structure of random variables and for performing interpolation and areal estimation (Cooper & Istok, 1988). These techniques have been used for some time in the field of mining and geology. More recently geostatistics have been applied to hydrological problem-solving (Delhomme, 1978), particularly in hydrogeology. However, a number of studies have been specifically concerned with the spatial variability of rainfall fields (Bastin *et al.*, 1984; Obled, 1987; Lebel & Laborde, 1988).

A primary advantage of geostatistical techniques is that they can be applied to irregular fields and are tolerant of missing values. Also, their theoretical basis does not take into account the physical nature of the phenomenon being studied, and when interpolation is carried out a measure of the estimation error is given. While the end-product of a geostatistical analysis is often a contour map of the required variable, a description of the nature of the spatial structure of the variable is also produced. Geostatistics therefore provide a powerful methodology for the analysis of point rainfall statistics which are irregularly distributed in space.

The geostatistical approach to mapping can be divided into three stages: description of the spatial correlation of a particular variable, modelling of the spatial structure of that variable and interpolation. The descriptive stage is based on the analysis of experimental semivariograms. A semivariogram expresses the spatial variability of an irregular field in terms of intersite distance; the mean spatial correlation between pairs of observations is plotted at regular distance intervals. The semivariogram generally increases with distance until it becomes approximately equal to the global variance in the field of values. Several semivariograms can be calculated for different directions in order to determine whether the spatial correlation function is isotropic. The second stage of the analysis involves fitting a mathematical model to the semivariogram. Finally, this model is used in kriging to obtain estimates of the variable of interest at unmeasured points.

Valid application of geostatistical techniques relies on certain conditions being met. The first assumption made is that the underlying distribution of the data points is normal. However, deviations from normality can often be corrected by transforming the data, for example by taking the natural logarithm of the observations. The regionalized variable is also assumed to be stationary.

5.3.2 Semivariogram analysis

Semivariograms were derived for 1 and 2-day RBAR and CV (Fig. 3). Firstly the data were checked for normality using the Kolmogorov-Smirnov statistic (Hoel, 1962). In each case it was found that taking the natural log transformation of the data increased the normality and following Rendu (1979) and Cooper & Istok (1988), a constant was added to improve the fit. The transformation used is given by

$$Y(x) = \ln [Z(x) + A]$$
 (1)

where Y(x) is the natural log-transformed variable, Z(x) is the set of observations and A is a constant. Values of A are given in Table 2.

Variable	Α
1-day RBAR	-28.37
2-day RBAR	-26.33
1-day CV	20.75
2-day CV	7.24

Table 2 Values of A used to improve the lognormal fit of the data points

Journel & Huijbregts (1978) give practical rules for estimating a true semivariogram from experimental data. They state that the number of sample pairs should be large, and that the semivariogram should not be estimated over a distance exceeding half the longest dimension of the region of study. Since 590 sample observations of RBAR and CV were available the first rule was easily met, and in accordance with the second, semivariograms were estimated over a maximum distance of 150 km.

Semivariograms in four directions were calculated for each variable and analysed using the UNIRAS graphics package (version 5.4). In each case, the forms of the semivariograms were similar in all directions. Therefore an isotropic semivariogram was derived for each variable and these are shown in Fig. 3.

5.3.3 Structural analysis

Models were initially fitted to the experimental semivariograms by eyc. All four semivariograms showed a spherical shape with a marked discontinuity at the origin ("nugget effect"). The nugget effect is usually ascribed to microregional effects that are too small to be explicitly defined by the data points. In the spherical model, the variance of the field increases with distance until, at a distance called the range, it levels off at a value approximately equal to the global variance of the data points (the sill).

The semivariograms for 1 and 2-day RBAR show similar characteristics, with a small nugget effect and some variability around the sill. Again, the semivariograms for 1 and 2-day CV also resemble one another in shape, this time having a more marked nugget and less irregularity after reaching the range.

Model parameters were fitted using the cross-validation procedure proposed by Delhomme (1978). In this method, each data point is taken out in turn and point kriging is performed with the remaining sample points in order to estimate the value at that point. A number of criteria based on the mean difference between observed and estimated point values are then used to determine the optimum parameters. Details are given in Appendix 2. The fitted parameters are shown in Table 3.

Basic	variable (Z(x))	Nuggett (c0)	Sill (c1)	Range (a) km
1-day	RBAR	0.045	0.190	35.0
2-day	RBAR	0.007	0.090	35.0
1-day	CV	0.026	0.016	40.0
2-day	CV	0.023	0.020	35.0

Table 3 Semivariogram model parameters for $\ln [Z(x) + A]$

5.3.4 Kriging

Kriging is a linear unbiased interpolation technique used to estimate values of a regionalized variable at unmeasured points. The semivariogram model is the basis of the kriging system. Values are assigned to points on a regular grid according to a linear combination of the point observations, and a measure of the estimation variance, or kriging variance, is given. The procedure has the advantage that the original values at observed points are honoured.

Kriging was carried out on the 1 and 2-day RBAR and CV values using the semivariogram models already described. The method adopted was that of strict kriging, using the Krigpak software package within UNIRAS. The method of sliding neighbourhoods was used (Journel & Huijbregts, 1978), in which kriging is performed using only those sample values that lie within the neighbourhood of the point to be estimated. This helps to correct for non-stationarity in the underlying distribution. Since the semivariogram models seemed to be well defined up to a distance of 120 km, this was used as the radius of influence in the kriging process. Points were kriged onto a regular grid of interval 1 km. An inverse log transformation was carried out to produce grid values in millimetres, which were then contoured to produce the maps in Fig. 4 a-d.

5.3.5 Results

The 1 and 2-day RBAR maps (Fig. 4 a & b) show similar patterns, with high values occurring in the upland regions of Exmoor and Dartmoor. The relatively high values of CV of extreme 1 and 2-day rainfalls in the area around Bridgwater in Somerset are clearly demonstrated in Fig. 4 c & d. This is in agreement with the findings of Bootman & Willis (1977 & 1981) and Reed & Dales (1988).

6. Focussed rainfall growth estimation

6.1 INTRODUCTION

The second stage of the analysis of rainfall frequency in South West England has been concerned with the construction of 1 and 2-day rainfall growth curves. In selecting a new procedure for rainfall frequency estimation, the following properties were identified as desirable. The method should:

- (1) fully exploit the daily rainfall data,
- (2) avoid fixed geographical regions or at least minimize boundary problems,
- (3) provide, through regionalization, estimates of relatively high return period rainfalls, including the 10,000-year event,

and

(4) avoid undue regionalization in the estimation of design rainfalls of moderate return period.

The approach taken to the problem has been to modify the so-called "station-year" method to incorporate the concept of spatial dependence in point rainfall extremes.

6.2 THE STATION-YEAR METHOD

The requirement for estimates of high return period events was met in the Flood Studies Report by partial recourse to the station-year method. In the derivation of regional flood growth curves the assumption was made that the largest four standardized flood peaks from groups of N stations of average record length m years could be assigned plotting positions in the extreme value analysis consistent with them being the largest four events in m.N years of record (FSR I.2.6.2); however, care was taken to avoid near neighbours in the *a priori* grouping of stations. Using the Gringorten formula, the plotting position of the ith highest standardized value is:

$$\mathbf{y}_{i} = \ln\left(-\ln \mathbf{F}_{i}\right) \tag{2}$$

where y is the Gumbel reduced variate, F is the non-exceedance probability:

 $F_i = (i - 0.44) / (M + 0.12)$ (3)

and M = m.N is the number of station-years of record.

A similar assumption was made in the derivation of rainfall growth factors (FSR II.2.3) but without the safeguard of segregating near-neighbour stations.

The station-year method has been widely criticized because it assumes spatial independence in hydrological extremes. There is, however, considerable spatial dependence in rainfall extremes and this undoubtedly contributes to spatial dependence in floods. In effect, the N stations of average record length m years provide many fewer than m.N independent station-years of record. Thus the station-year method has a gross error which is only partly corrected by its similar neglect of dependence in the highest values themselves. (The FSR's treatment of the four highest standardized floods allowed particular events such as the September 1968 floods to supply more than one station-year point.)

6.3 A MODEL OF SPATIAL DEPENDENCE IN MAXIMUM RAINFALLS

Reed & Dales (1988) present a simple model for spatial dependence in maximum rainfalls. For any network of N sites, an effective area spanned (AREA km^2) is identified and a regression model applied to estimate an equivalent number of independent sites, N₂:

$$\ln N_{p} / \ln N = a + b \ln AREA + c \ln N + d \ln D$$
(4)

where D is the rainfall duration in days. The UK average model is:

$$\ln N_e = \ln N(0.081 + 0.085 \ln AREA - 0.051 \ln N - 0.027 \ln D)$$
(5)

Thus, for example, four sites spanning 1000 km^2 are deemed equivalent to 2.29 independent sites for 1-day maximum rainfalls.

6.4 A MODIFIED STATION-YEAR METHOD

The spatial dependence model provides a means of correcting the deficiencies of the station-year method. For a fixed network of N gauges operating for m years the equivalent number of independent station-years, M_e , is simply $m.N_e$. However, in practice, the number of gauges operating varies from year to year and M_e is instead calculated by accumulating values of N_e year by year. In the modified station-year method, the r largest independent standardized values are plotted as the r largest events in a record length of M_e station-years, again using the Gringorten formula (Equation 3) but with M_e replacing M. Thus the method gives emphasis to the most extreme events observed in a region.

The modified station-year approach forms the basis of the focussed rainfall growth estimation (FORGE) method. This is designed to produce a rainfall growth curve that is centred on a particular location. The FORGE method meets the criterion to provide regionalized estimates of high return period events while keeping faith with what more local data infer about events of moderate return period.

6.5 FOCUSSED RAINFALL GROWTH CURVES FOR SOUTH WEST ENGLAND

6.5.1 The FORGE method

· . • :

The FORGE method has been used to construct a series of 1 and 2-day rainfall growth curves focussed on ten locations in South West England. These locations, which are shown in Fig. 5, were chosen to give approximately even coverage of the study region, and it can be seen that the area studied by Bootman & Willis (1977 & 1981) is well represented.

The analysis was carried out using daily rainfall data from 1255 raingauges. Of these, 590 were situated within the region of study (see Table 1). The remainder were included either because they were adjacent to the study region, or because they had reliable records of greater than 40 years. Annual maximum 1 and 2-day rainfall series were constructed for each gauge and standardized by the relevant RBAR value at that gauge, each series comprising at least ten values. The standardized annual maxima provided the input dataset for the FORGE analysis.

The FORGE method is largely a graphical one in which an extreme value plot of standardized data is constructed by a series of applications of the modified station-year method.

In the first application, the three gauges nearest to the focal point are analysed. For each year containing at least one annual maximum value, the equivalent number of independent sites is calculated using the spatial dependence model. The N_e values are then cumulated over all the years of record to give the equivalent number of independent station-years, M_e . The six highest independent standardized values are plotted using plotting positions based on Equations 2 and 3, before the analysis is repeated for a larger network of gauges.

In the second application, data are analysed for the six stations nearest to the focal point. Again the six highest independent standardized values are abstracted. Because the larger network provides more equivalent independent station-years, the points plot further to the right in the extreme value plot.

The analysis continues, doubling the number of gauges each time. As gauges at a greater distance from the focal point are gradually included, the reliability of their records becomes more important since they are being used to estimate rainfall frequency at higher return periods. For this reason, in order to be included in the analysis, gauges at a distance of more than 50 km from the focal point must have more than 20 annual maxima. Similarly, gauges more than 100 km from the focal point must have more than 30 maxima, and gauges more than 150 km away must have more than 40 values. Thus, the final iteration incorporates all gauges in the UK with more than 40 years of data, as well as those local gauges with reliable records. Reed & Dales (1988) provide different sets of parameters for the spatial dependence model for each of the regions shown in Fig. 1. In the application of the FORGE method to South West England, the means of the parameter values for the South West and West Country regions were used. Thus, Equation 4 becomes:

 $\ln N_e = \ln N (0.098 \ln AREA + 0.0715 \ln N + 0.0 \ln D)$ (6)

However, in most practical cases the resultant interregional differences in assessments of spatial dependence are generally slight and it is suggested that wider applications of the modified station-year method might reasonably adopt the UK average model (Equation 5).

6.5.2 Results

The forms of the 1 and 2-day rainfall growth curves for the ten foci in South West England are shown in Figs. 6 and 7. Individual curves were sketched in to follow the points plotted in the FORGE method and are given in Figs. 8 and 9 (a to j).

The characteristic S-shape of the growth curves is illustrated in Figs. 6 and 7. That the different curves approach one another at high return period is a feature of the FORGE method. The reason for this is this that long-term gauge records from the whole of the UK are included in the final iteration of the graphical method. Therefore the very highest standardized rainfalls are likely to be common to each focussed growth curve, with the plotting positions varying slightly due to differences between sites in the final number of independent station-years.

From Fig. 6 it can be seen that the 1-day curve focussed on Bridgwater is notably high in the return period range 20 to 200 years, confirming Bootman & Willis' finding that rainfall growth rates in Somerset are especially severe. The curve focussed on Chard is particularly high between return periods of 100 and 300 years. That for Bristol, however, lies beneath the others between return periods of 200 and 1000 years. The curve focussed on Wimbleball Reservoir lies in the middle of the ten curves. The 2-day focussed growth curves (Fig.7) show a similar pattern relative to one another, although the curve for Great Torrington is particularly low between return periods of 50 and 500 years.

In Fig. 10, the 1-day growth curve focussed on Wimbleball Reservoir is shown together with the growth curves for the West Country and South West regions derived by Dales & Reed (1988). It can be seen that up to a return period of about 800 years the Wimbleball curve is remarkably close to that of the West Country. For higher return periods, however, more moderate growth rates pertain.

6.5.3 Discussion

In the study, particular emphasis has been placed on the requirement to

derive estimates of design rainfalls of high return period for Wimbleball Reservoir. In Figs. 11 and 12, 1 and 2-day rainfall frequencies in millimetres derived using the FORGE method are compared with FSR estimates for Wimbleball. The large departures from the curve based on the FSR method are obvious at all return periods for 1-day rainfalls and at return periods of greater than 50 years for 2-day rainfalls.

Estimates of 10,000-year return period rainfalls for Wimbleball are given in Table 4.

	10,000-year	10,000-year rainfall (mm)		
	FORGE	FSR II		
1-day duration	264	239		
2-day duration	314	266		

Table 4 Comparison of 10,000-year rainfall estimates for Wimbleball Reservoir

Similarly, rainfall frequency curves centred on Bridgwater are shown in Figs. 13 and 14. In this case, estimates of design rainfalls derived by the FORGE method exceed those of the FSR method at all return periods.

6.5.4. Link with FSR II

Use of the FORGE analysis technique in South West England has indicated particular shortcomings in the FSR II method when applied to the region. Methods of linking the results of the analysis to the standard FSR method, for example by computing correction factors, are currently being investigated.

7. Conclusion

In this study a two-stage approach to the analysis of rainfall frequency in South West England has been undertaken. The results of the analysis indicate significant departures from the FSR II method, and thus have important implications for flood design in the region. The methods used in the analysis are of considerable interest since they could be applied to any region of the UK, provided sufficient data were available.

The use of the kriging technique in mapping RBAR values has demonstrated

the value of the geostatistical approach in the analysis of rainfall statistics. In view of the relationship between RBAR and altitude, it is thought that extension of the technique to incorporate regression could produce maps of higher quality if digital elevation data were available.

The FORGE method provides a new and powerful technique for estimating rainfall growth curves where sufficient data are available. Development of the technique is continuing and the possibility of seeking parametric forms for the growth curves is being investigated.

8. References

- Bastin, G., Lorent, B., Duque, C. & Gevers, M. (1984) Optimal estimation of the average rainfall and optimal selection of raingage locations. Wat. Resour. Res. 20, 463-470.
- Bootman, A. P. & Willis, A. (1977) Extreme two day rainfall in Somerset. Flood Studies, An Opportunity for Discussion, Univ. Birmingham, March 1977.
- Bootman, A. P. & Willis, A. (1981) Discussion on papers 4-6, Flood Studies Report - Five Years On. Thomas Telford Ltd., London, 62-63.
- Cooper, R. M. & Istok, J. D. (1988) Geostatistics applied to groundwater contamination. I: Methodology. J. Envir. Engg., 114, 2: 270-286.
- Delhomme, J. P. (1978) Kriging in the hydrosciences. Adv. Wat. Resour., 1, 5: 251-266.
- Hoel, P. G. (1962) Introduction to Mathematical Statistics. Wiley, New York.
- Journel, A. G. & Huijbregts, C. J. (1978) Mining Geostatistics. Academic Press, New York.
- Lebel, T. & Laborde, J. P. (1988) A geostatistical approach for areal rainfall statistics assessment. Stochastic Hydrol. Hydraul. 2, 245-261.
- Natural Environment Research Council (1975) Flood Studies Report. (5 vols.) NERC, London.
- Obled, C. (1987) Interpolation optimale et geostatistique appliquee aux precipitations. Deuxiemes journees hydrologiques de l'ORSTOM a Montpellier, 16-17 September 1986, Editions de l'ORSTOM, Paris, 174-222.
- Reed, D. W. & Dales, M. Y. (1988) Regional rainfall risk: a study of spatial dependence. Paper to IAHR Symposium, Birmingham, August 1988.
- Rendu, J. M. (1979) Normal and lognormal estimation. Math. Geol. 11, 4: 407-422.

Acknowledgements -

This study was carried out under contract to South West Water. The focussed rainfall growth estimation method was born out of the spatial dependence model for rainfall extremes developed in research for the Department of the Environment (Contract PECD 7/7/135). Strategic research on flood and rainfall estimation is also supported by the Flood Protection Research Commission of the Ministry of Agriculture, Fisheries and Food. The author gratefully acknowledges the contribution of Dr D. W. Reed to the study.

2. et -

وريده

Figure 4b Mean (RBAR) of annual maximum 2-day rainfalls (mm).

Figure 4d Coefficient of variation (CV) of annual maximum 2-day rainfalls (%).

Reduced variate, y

Standardized rainfall

Figure 6 1-day focussed growth curves for South West England.

•

•

Figure 7 2-day focussed growth curves for South West England.

Figure 8 1-day focussed growth curves for South West England:

- a) b) c) d) e) f)

- Truro Bodmin Plymouth Great Torrington
- Great Torn Exeter Wimbleball Bridgwater Chard Bristol
- ;; g) h)
- i) j)
- Dorchester

b) BODMIN 1 DAY

Reduced variate, y

d) GT TORRINGTON - 1 DAY

f) WIMBLEBALL 1 DAY

Reduced variate.

33

1× =

i

2-day focussed growth curves for South West England: Figure 9

a) b) c) d)

0

•

•

- Truro Bodmin Plymouth Great Torrington
- Exeter Wimbleball
- Bridgewater Chard
- Bristol
- Dorchester

c) PLYMOUTH -- 2 DAY

Standardized rainfal

e) EXETER - 2 DAY

g) BRIDGWATER -- 2 DAY

Reduced variate, y

i) BRISTOL 2 DAY

:

Figure 12

BRIDGWATER - 2 DAY

Appendix I I and 2-day rainfall statistics for gauges in the study region.

•

•

•

0

•

•

Gauge	Gr	id	1-day	2-dav	1-dav	2-dav	No. of
number	refe	rence	RBAR(mm)	RBAR(mm)	CV(%)	CV(%)	vears
11111110 0 1		ence	KDGK (1000)	NDAR (IIIII)	0. (10)	() (())	J
346847	4045	950	35.81	48.32	22.03	25.14	26
346876	4060	924	37.12	48.83	23.15	22.78	26
346881	4074	923	37.86	49.98	25.62	23.98	21
346882	4082	919	36.97	49.19	23.76	25.57	16
346887	4077	926	35.04	44.16	29.54	19.59	10
346975	4016	903	36.17	48.37	21.88	23.65	21
347013	4006	937	36.36	49.35	27.87	25.35	24
347110	3876	928	38.05	50.77	23.17	21.82	15
347766	3805	1030	41.38	52.56	21.62	21.70	14
347819	3804	983	41.60	53.25	28.23	29.23	16
347927	3851	939	38.15	49.98	26.48	19.05	17
347973	3886	889	38.24	48.66	28.39	25.68	23
348392	3575	951	49.67	61.56	53.13	41.14	44
348684	3659	1040	45.66	56.35	22.84	22.14	26
348792	3667	949	43.94	57.35	25.02	25.96	12
348847	3684	905	41.29	53.30	16.15	16.85	26
348903	3716	928	37.24	49.99	21.81	17.08	14
348909	3712	917	40.08	53.61	22.68	19.68	15
348916	3718	912	42.46	54.00	27.14	20.85	24
349024	3648	888	43.74	55.95	25.13	17.88	17
349122	3688	898	39.88	53.69	20.46	18.34	20
349125	3693	899	40.19	53.25	17.25	19.46	10
349326	3741	878	41.15	52.70	23.59	21.54	15
349492	3820	870	40.71	54.18	29.62	25.09	24
349695	3870	866	42.50	53.84	27.07	23.72	18
349784	3911	823	41.75	54.64	33.58	31.90	63
350079	3960	825	42.02	55.16	32.07	28.87	19
350278	4030	794	34.67	47.35	25.18	18.94	26
350531	3707	839	41.96	51.56	17.40	22.00	10
350570	3681	805	37.27	48.14	33.79	26.92	11
350593	3652	857	42 93	53.05	63.40	49.78	67
350749	3661	795	38.18	47.02	35.33	25.99	17
350753	3676	791	36 64	46 07	58.11	46.39	68
350776	3677	692	35 28	44 88	26.62	29.91	18
350790	3687	717	39 11	50 55	30 91	28 41	15
350818	3667	770	31,31	43.68	22.45	20.65	10
350921	3578	852	37.56	46.75	29.98	28.93	26
351053	3550	902	42.22	51.35	23.34	24.89	17
351190	3482	1011	44.54	56.57	33.15	27.54	52
351256	3469	993	41.86	51.67	30.31	22.19	20
351463	3498	940	39.99	48.64	20.64	25.67	10
351827	3371	937	38.96	49.57	25.34	19.00	21
351986	3315	913	39.89	50.97	37.14	25.25	30
352001	3301	909	40.44	52.40	37.46	25.51	12
352281	3373	1086	45.80	60.80	28.85	24.91	48
352316	3359	1051	45.21	56.94	24.52	21.92	62
352461	3358	1006	45.79	58.16	29.57	26.26	17
352519	3291	1073	46.94	60.02	33.64	30.15	18
352634	3290	1037	41.04	52.77	27.22	29.37	10
352686	3307	977	43.47	54.72	29.76	26.63	20
352746	3271	1133	51.08	64.26	34.54	29.03	18
352856	3244	1082	42.91	55.08	43.78	43.23	12
			-	-			

Gauge	Gr	id	1-dav	2-dav	1-dav	2-dav	No. of
number	refe	rence	RBAR(mm)	RBAR(mm)	CV(%)		Vears
							J (
352861	3241	1079	50.96	57 68	46.83	36.14	10
353056	3267	986	39 33	50 30	27 12	23 48	33
353175	3259	926	40 35	46 24	39 93	32 53	11
353394	3207	1022	44 59	56 73	27 85	26 30	24
353419	3214	1004	44.39	57 29	27.05	29.10	14
353623	3210	1000	55 66	69 46	43 33	33.86	10
353672	37/18	966	36.62	47 07	45.55	25.85	10
353510	3240	022	36.64	47.07	14.00	17 61	13
353518	3250	022	54.04	40.09	17.00	33 70	13
223220	2244	72.5	40.00	50.39	10 05	10.25	42
252500	2222	213	52.91	43.12	12.23	19.23	21
252612	2220	094	43.14	51.44	00.13	20.03	17
222012	3220	072	38.87	47.41	40.04	32.01	1/
222000	3124	8/3	37.60	46.00	45.38	35.79	23
353894	3224	1141	47.79	66.31	22.89	27.87	16
353964	3206	1089	47.88	61.51	44.51	33.72	15
353967	3203	1088	42.62	55.47	31.48	34.54	12
354170	3171	1004	48.64	62.00	35.37	30.76	28
354295	3108	994	38.01	49.78	27.58	23.38	56
354352	3101	1048	41.18	50.34	64.32	51.17	17
354492	3110	954	41.53	54.36	34.06	24.50	25
354497	3088	952	40.93	49.04	51.46	42.86	15
354556	3071	928	39.27	48.04	22.45	19.92	32
354568	3067	921	43.23	52.97	40.33	29.22	12
354590	3084	914	38.86	47.70	31.68	24.13	16
354658	3082	882	39.34	48.86	37.51	30.10	23
354778	3064	830	34.52	44.71	21.54	20.81	16
354864	3026	819	38.09	46.82	34.27	28.55	77
354880	3015	813	40.23	49.35	38.68	30.73	26
354895	3013	825	36.34	47.70	26.60	23.19	15
355052	3021	1005	37.94	47.04	46.84	35.47	21
355279	3031	939	39.67	49.77	38.14	27.04	54
355348	2964	940	42.39	50.11	45.64	37.31	18
355363	3001	933	40.51	50.86	44.18	31.64	26
355436	2970	934	41.13	49.94	37.21	32.62	27
355459	3039	892	40.90	52.36	31.98	24.88	19
355639	2843	1383	65.39	85.27	29.25	26.01	38
355650	2857	1384	58.30	77.74	19.90	22.31	23
355735	2906	1348	51,91	67.91	28.14	21.65	45
356081	2961	1338	52.39	71.87	26.08	16.85	16
356232	2784	1389	66.20	82.14	19.29	14.35	11
356262	2797	1392	57.52	78.52	41.34	31.97	44
356466	2877	1327	52.60	69.39	16.62	19.53	26
356616	2912	1280	48.55	60.07	39.32	29.91	22
356650	2930	1243	45.30	56.28	22.50	16.01	12
356671	2875	1266	40.43	54.09	30.70	25.07	24
356984	3022	1230	40.46	51.71	38.07	28.13	23
357054	2966	1255	44.21	57.08	34.41	26.11	31
357055	2964	1256	42.71	56.09	40.10	27.86	16
357187	2916	1185	46.71	55.27	50.47	36.86	11
357205	2928	1171	37.62	50.82	12.85	13.63	13
357435	2990	1180	38.84	49.83	37.68	26.79	22
357477	2965	1132	36.62	48.62	29.20	24.09	34

Gauge	Grid		l-day	2-day	1-day	2-day	No. of
number	referei	nce	RBAR (mm.)	RBAR(mm)	CV(%)	CV(%)	years
357522	2966 1	152	34.26	45.41	16.31	18.16	10
357703	2914 10	080	31.16	44.09	12.06	22.47	10
357958	2925	984	37.39	49.35	36.72	24.72	16
357960	2936	981	35.38	47.81	39.59	28.16	16
357983	3202 1	162	53.79	65.07	42.30	32.71	17
358100	3136 10	076	42.33	52.64	19.90	15.32	21
358232	3139 1	126	46.49	59.85	43.24	35.77	22
358233	3139 1	128	47.04	58.17	46.23	35.34	12
358263	3122 1	147	43.22	55.32	47.34	36.81	17
358300	3102 1	152	37.67	48.69	39.88	32.85	44
358511	3065 10	075	37.70	48.52	47.20	34.16	23
358549	3039 1	194	45.86	54.69	49.49	37.81	11
358550	3041 1	195	36.07	48.20	19.37	15.82	11
358670	3033 1	113	39.86	50.99	50.62	37.11	14
358674	3035 1	103	34.59	43.95	23.01	19.71	15
358795	3020 10	073	35.74	46.87	33.42	25.38	72
358856	3000 10	045	35.97	44.45	30.43	25.21	52
358942	2994 10	033	40.80	49.53	41.27	35.49	25
359171	2819 10	074	37.94	47.32	42.45	29.79	22
359424	2726	943	39.23	54.95	27.42	28.95	12
359600	2760 10	003	40.55	50.52	44.46	34.38	13
359631	2771 10	020	35.21	45.39	32.00	24.47	48
359725	2805 10	014	34.04	45.31	43.00	33.63	20
359869	2832 10	006	35.25	45.34	46.21	34.20	13
359946	2861 10	011	39.65	47.58	38.95	31.43	19
359975	2879	981	41.84	51.16	37.30	27.23	18
360143	2921	926	43.40	51.54	38.61	32.73	14
360155	2928	917	35.11	49.22	17.58	24.00	16
360199	2943	920	38.94	48.94	37.25	33.67	38
360247	2894	917	41.49	55.91	39.87	34.14	18
360333	2905 8	880	41.90	52.74	32.99	35.17	38
360344	2926 8	889	41.07	52.38	28.60	32.11	33
360699	2957 8	836	37.66	52.32	21.44	30.84	16
360709	2959 8	334	37.96	47.35	32.06	29.18	29
360724	2972 8	321	38.35	48.79	35.35	28.47	2.6
360763	2944 8	300	43.46	56.29	39.44	32.31	21
360863	2943	768	41.88	54.10	29.22	27.38	45
360892	2953	751	40.52	51.71	33.89	26.42	26
360901	2961	745	43 52	56 62	31 99	25.46	17
360905	2938	737	37 95	48 46	15 41	19.21	14
360906	2961	728	38 31	40.40	31 68	28 45	77
361067	2674 1	R94	46 77	63.86	21 40	29.53	14
361121	2670	3/4 R42	67 38	89 49	31 32	26.97	30
361123	2672	843	70 45	93 62	25 11	26 68	30
361126	2673 8	843 842	71 76	93.32	17 84	29.00	14
361130	2670 8	850	64 54	88 25	33 01	25.83	56
361155	2692	381	56.62	68.96	43 15	31 64	11
361185	2714	870	55,12	71.51	30 15	28.19	24
361273	2711 9	921	42.48	57.68	50 65	38.64	27
361321	2770	32	39,90	58.01	19 27	26 22	13
361361	2775	208	45.96	61.96	17 71	28 69	11
361704	2807 8	230	46 35	60 22	26.85	23.73	66

Gauge	Gri	d	1-dav	2-day	1-dav	2-dav	No. of
number	refer	ence	RBAR(mm)	RBAR(mm)	CV(%)	CV(%)	vears
			(140)	(Unit)	01(10)	0.(%)	J C1140
361706	2808	838	57 25	70.92	34.80	18.95	23
361710	2807	823	48 83	65 57	32 06	33.37	27
361732	2855	821	40.90	58 66	33.84	45 87	15
361732	2033	805	40.00	57 57	61 86	10 08	32
361737	2030	000	43.12	57.55	41.00	27.70	19
361755	2004	047	47.14		34.20	32.03	10
101820	2000	793	43.45	57.76	30.79	32.30	25
361997	2752	841	55.38	/1.14	28.05	24.02	11
362061	2727	807	66.67	82.57	34,85	28.48	12
362187	2786	783	\$3.49	72.34	32.76	36.86	21
362194	2786	792	56.16	75.15	29.77	32.19	11
362248	2800	770	59.55	80.52	40.59	40.84	11
362452	2828	729	44.36	57.32	37.19	30.58	20
362732	2862	652	45.29	60.35	29.76	25.70	23
362836	2899	744	36.40	53,67	19.51	30.78	11
362891	2927	713	41.09	52.33	27.82	21.32	43
362910	2935	745	39.57	50.82	33.06	28.22	48
363007	2927	646	39.60	50.92	33.93	25.26	22
363036	2909	638	38.41	50.95	27.53	23.32	31
363095	2890	609	37.72	53.21	29.77	21.22	18
363157	2927	556	41 87	54 72	26 68	22 00	19
363294	2653	787	58 76	78 56	32 99	25 30	13
363474	2586	761	85 30	110 29	63 63	48 50	65
363534	2500	760	65 01	86 18	16 49	22 02	13
363505	2022	700	66 27	04.10	10.47	22.02	35
363535	2020	704	7/ 20	33.31 00 41	21.32	24.10	25
363624	2033	719	74.39	90.02	24.00	31.44	23
363097	2004	707	74,44	97.94	23.40	20.33	20
363700	2000	711	70.13	93.04	24.02	27.00	59
3638/1	2/10	707	58.13	/6.00	30.38	33.00	10
363949	2/43	/03	47.39	64.25	19.78	25.54	14
364046	2756	695	62.47	81.26	36.09	30.27	30
364119	2723	643	58.00	84.01	16.34	29.86	13
364177	2749	659	54.35	72.98	30.71	33.82	20
364283	2744	605	50.01	68.46	14.15	25.90	16
364314	2788	620	46.74	63.25	28.90	28.23	38
364375	2804	660	45.09	59.90	42.17	38.67	36
365046	2879	515	44.68	58.86	22.05	23.37	48
365057	2886	512	44.30	57.65	30.37	16.65	10
365060	2880	505	42.64	56.87	25.63	25.28	52
365364	2824	449	43.00	56.17	28.75	18.54	26
365772	2678	398	35.21	48.44	26.00	31.40	16
365789	2725	427	42.81	53.82	31.62	28.06	14
365962	2679	649	74.91	101.55	20.16	23.52	30
365974	2691	628	64 62	89.41	22.14	24.07	22
365998	2671	629	80.65	105.47	27.09	29.36	10
365999	2675	627	69 53	95 04	18,80	22 21	33
366012	2685	617	71.14	91.80	52.00	40.37	60
366105	2712	576	50 55	70 75	30.05	24 96	
366134	2732	558	47 90	64 51	28 11	25 26	23
3662234	2122	520	46.09	67 07	20.11	25.20	21
3661.67	2121	342 1.1.6	41 12	50 10	28.00	24.04	10
366610	2001	440 500	41.14	JU.17 71 20	12 1/	44.76 22 10	12
366704	2030 2642	570	49.20	11.27	23.24	21 10	61

Gauge	Gr	i d	1-day	2-day	1-day	2-day	No. of
number	refei	cence	RBAR(mm)	RBAR(mm)	CV(%)	CV(%)	years
366873	2667	502	38.90	52.66	20.40	22.72	14
368060	2629	612	57.33	75.39	25.49	22.74	21
368119	2588	590	46.06	64.51	19.83	25.42	12
368124	2598	585	48.57	65.06	34.87	24.15	19
368231	2577	512	39.54	52.08	23.80	19.49	38
368235	2574	504	38.86	51.14	21.06	25.09	11
368487	2492	529	40.00	51.62	34.51	26.11	56
368633	2585	735	61.17	79.99	28.36	29.02	35
368668	2566	698	49.35	66.10	25.25	18.02	13
368714	2553	687	53.96	67.90	26.70	25.27	26
368715	2552	685	55.34	68.95	26.63	25.07	23
368717	2558	682	55.64	73.63	22.60	21.25	60
368923	2574	628	52.74	69.73	28.05	22.67	41
369021	2531	571	43.49	55.89	37.84	29.08	30
369051	2486	569	42.16	55.54	46.97	34.42	19
369122	2478	537	37.84	48.12	33.91	27.33	81
369124	2481	551	41.99	53.32	46.97	32.87	17
369296	2474	640	51.17	65.72	34.52	28.80	55
369483	2522	813	55.89	71.77	17.72	33.39	12
369503	2509	784	54.18	69.06	21.26	30.23	12
369680	2482	748	49.41	61.56	58.18	36.94	93
369919	2577	742	60.01	77.30	38.72	40.34	23
370007	2512	701	51.71	64.90	44.60	30.01	22
370096	2513	675	49.84	64.77	43.36	34.20	20
370542	2311	1021	41.28	50.94	40.04	33.69	26
370543	2312	1028	36.75	47.93	28.43	29.49	10
370579	2314	982	37.62	49.07	33.24	29.09	60
370612	2327	1066	40.24	50.02	20.87	25.28	12
370670	2365	1058	43.06	54.85	39.38	27.44	18
370679	2343	1040	39.29	52.03	27.88	22.76	34
370934	2309	947	43.88	54.25	38.89	31.00	28
371160	2169	•916	37.27	52.63	26.15	19.79	12
371322	2227	916	40.68	57.38	20.91	31.98	12
371460	2259	901	42.71	59.07	41.24	31.00	18
371600	2332	872	41.41	55.10	30.81	27.22	30
371634	2413	1013	37.02	52.12	23.93	22.02	12
371724	2388	952	41.12	50.74	35.75	30.45	16
371799	2379	926	38.12	50.96	41.09	39.00	10
371899	2230	869	45.68	65.27	19.73	27.95	12
372003	2327	839	45.51	60.33	36.12	32.38	26
372159	2548	910	54.21	71.14	30.25	25.75	26
372318	2473	848	46.81	60.88	30.87	24.44	58
372437	2397	849	43.43	56.53	22.95	33.96	10
372697	2462	950	33.39	47.53	24.01	34.65	11
372920	2396	819	42.77	56.34	19.26	30.33	12
373078	2349	797	40.69	54.63	29.35	24.48	84
373165	2222	812	54.57	75.16	22.09	26.43	12
373392	2286	803	50.51	-	50.78	-	10
373827	2422	707	48.59	61.87	41.92	30.06	13
373953	2406	647	47.07	59.54	44.88	34.11	23
374086	2401	632	44.76	54.57	56.11	40.68	20
374093	2435	626	43.98	54.44	17.04	16.71	10

D,

Gauge	Gri	id	l-dav	2-dav	1-dav	2-dav	No. of
number	refer	ence	RBAR (mm)	RBAR(mm)	CV(%)	CV(%)	vears
							<i>ycc</i> .
374322	2244	765	54.11	25.00	29 18	26 28	25
374323	2244	765	46.86	62.34	17.17	17.06	17
374360	2295	770	47.78	61 35	16 60	23 61	12
374385	2289	743	46.37	62.69	18.08	28.04	12
374499	2273	707	56 64	74 61	27 97	25 50	21
374514	2290	701	52.72	69 63	35 79	27 46	19
374661	2323	741	46.28	61.47	18.46	20 21	12
375292	2253	675	50.00	66 34	29 97	24 39	24
375396	2282	596	46 42	58 09	21 43	18 44	17
375568	2240	630	44 63	61 72	19 39	23 48	10
375572	2257	642	47 51	60 32	40 14	25.43	13
375746	2209	613	46 68	62 82	35 06	32 79	23
376507	2167	707	40.00	67.86	19 62	22.15	12
376747	2096	624	45.03	61 29	17 11	22.10	13
376770	2107	600	43.03	63 17	20 48	27.51	10
377089	2107	520	37 01	60.17	20.40	27.45	17
377162	1080	510	57.01 //7 35	47.17	24.30	21.30	15
377102	2015	6000 607	47.55	72.05	22.90	23.72	11
377660	2013	507	55.40	12.31	21.77	22.19	11
27750/	2041	552	41.01	51.29	20.10	21.77	11
377504	2002	535	50.04	65.93	19.70	17.70	11
2011221	2010	343	40.47	60.90	44.45	33.95	19
377795	1978	408	41.10	51.24	25.12	23.01	11
378025	1851	350	40.57	53.19	43.35	35.93	12
378032	1823	330	38.52	49.26	37.13	30.50	35
378296	1966	527	49.88	-	24.71	-	10
378299	1966	518	49.64	63.26	44.97	34.68	18
3/8/60	1834	450	43.98	55.84	39.74	34.09	20
270700	1831	435	40.57	53.57	38.06	41.64	11
3/8965	1891	511	43.62	55.23	36.67	32.93	29
379134	1847	404	43.40	55.36	32.58	28.98	82
3/93/2	1730	402	44.53	57.51	30.53	26.41	97
379495	1722	305	51.87	66.85	32.60	32.19	13
379700	1//8	330	45.49	57.46	40.95	32.22	26
3/9/10	1/84	341	46.11	58.54	29.56	26.02	16
3/9/30	1802	325	41.59	52.47	33.45	23.77	89
379919	16//	307	49.85	60.37	51.14	42.96	29
380002	1722	214	52.96	64.35	40.57	42.27	11
380483	1700	119	36.98	48.98	41.77	30.81	25
380837	1676	253	44.59	52.89	39.09	29.69	16
380967	1510	300	38.54	49.13	34.56	32.74	23
381117	1486	317	41.37	52.67	35.21	27.71	21
381210	1469	302	39.42	51.04	28.48	24.91	91
381232	1450	313	47.11	59.63	30.88	32.49	26
381316	1437	286	44.94	57.26	33.81	32.94	25
381319	1442	295	45.96	58.02	34.83	33.15	26
381518	1385	227	39.01	48.84	29.30	26.66	30
381548	1365	217	33.08	42.36	26.29	27.29	14
381584	913	121	35.64	47.10	28.91	26.25	70
381899	1501	392	47.06	60.66	38.04	31.15	28
382035	1581	325	40.23	50.66	22.26	23.49	12
382153	1543	359	41.42	52.00	32.65	28.41	23
382380	1643	412	42.54	54.63	35.80	31.96	26

Gauge	Gr	id	l-day	2-day	1-day	2-day	No. of
number	refe	rence	RBAR(mm)	RBAR(mm)	CV(%)	CV(%)	years
382444	1657	363	47.68	60.71	32.23	31.11	35
382603	1703	459	40.57	52.23	36.36	40.92	12
382793	1721	505	46.36	58.34	50.70	39.00	29
382923	1787	537	46.36	60.28	42.90	38.16	12
383335	1801	604	40.62	50.87	43.67	34.64	16
383351	1812	614	35.91	44.77	41.36	34.20	71
383478	1873	642	40.61	52.31	46.23	34.87	30
383584	1910	638	42.50	56.95	21.44	15.07	10
383815	1867	745	36.05	46.48	37.37	26.55	26
383874	1889	759	37.37	44.80	42.55	34.07	28
383900	1914	755	33.70	44.17	40.58	32.53	12
383902	1917	754	36.15	47.43	32.85	23.43	20
384021	1978	729	46.49	58.75	70.04	50.67	12
384073	2104	832	56.38	70.13	62.62	47.21	28
384101	2128	831	54.77	71.69	40.64	35.30	34
384158	2126	807	47.88	65.40	26.95	26.38	25
384342	2132	765	48.45	65.79	25.20	22.13	26
384541	2076	673	44.73	57.95	27.83	24.70	46
384542	2073	672	43.22	60.02	18.83	25.12	10
384895	2075	835	53.36	62.72	58.19	52.75	18
384966	2075	785	40.22	55.65	21.28	25.49	12
385207	1982	727	34.85	46.62	39.70	37.38	14
385436	1937	772	32.47	43.05	46.85	31.88	10
385503	1990	789	39.52	50.15	55.92	40.87	13
385633	2064	889	38.95	49.02	35.00	29.41	29
385637	2092	866	45.87	56.83	33.76	28.88	18
385701	2130	902	43.26	57.32	29.50	36.52	12
386255	2208	1063	33.48	43.29	27.97	25.97	74
387198	2231	1276	33.18	.43.38	28.12	26.81	26
387253	2310	1250	43.12	55.8 6	27.88	20.70	36
387321	2443	1297	33.08	41.51	35.85	25.80	17
387585	2337	1163	44.71	59.74	21.20	27.93	14
387598	2367	1163	39.40	53.17	20.26	24.48	13
387698	2394	1118	48.98	61.91	30.00	27.53	23
387787	2447	1094	41.11	51.78	41.36	34.15	23
388371	2483	962	47.15	59.76	38.16	31.09	22
388389	2507	940	44.67	59.44	16.52	31.43	10
388514	2445	1016	39.20	50.17	44.49	32.75	21
388667	2547	978	38.85	53.26	12.87	18.48	16
388772	2499	1048	42.46	52.43	52.91	41.20	12
388933	2585	928	56.00	74.53	33.49	29.25	23
388936	2587	938	50.87	66.88	38.48	28.06	34
389005	2615	934	57.07	76.61	22.86	29.00	18
389018	2591	946	47.26	64.20	37.95	29.33	25
389191	2610	1015	34.93	45.79	52.57	39.51	21
389284	2612	1069	41.03	50.19	57.52	44.46	12
389394	2563	1080	37.33	48.38	13.45	16.68	10
389623	2507	1102	39.57	51.64	17.71	15.60	12
389716	2579	1171	37.34	48.08	41.56	30.20	22
389897	2482	1191	39.10	50.03	34.87	29.02	23
390167	2387	1202	46.06	60.70	29.86	25.86	87
390388	7666	1247	36.24	47 42	34 73	29.10	60

••

Gauge	Grid	l-dav	2-dav	1-day	2-dav	No. of
number	referen	ce RBAR(mm)	RBAR(mm)	CV(%)	CV(%)	vears
		· · · · · · · · · · · · · · · · · · ·		0. ()		<i>y</i> e
390467	2483 12	53 37.52	48 54	39 48	28.56	30
390468	2483 12	53 37.00	48 24	38 78	29 35	50
390480	2454 12	71 39 12	40.24	31 44	30 67	20
390516	2424 12	71 37.12	47.05	36 69	30.07 27 20	14
390858	2440 12	66 66 78	40.15	22 67	27 01	21
390881	2034 3	44 44.70 83 70 07	55 01	40.21	30.28	21
300883	2630 0	99 39 60	22.27	40.21	30.20	12
30000.7	2672 10	00 J0.40 22 38 10	52.30	19.47	23.13	20
201262	2072 10	17 20 42	51.00	43.75	41.37	30
301626	2723 10	75 22 0/	51.00	40.70	37.94	20
301607	2772 10	75 55.04 16 22.11	42.92	34.27	23.00	14 15
201405	2022 11		42.89	25.05	23.57	15
201605	2729 10	75 38.92	47.81	45.05	32.40	21
2010/2	2000 11	18 37.80	48.98	40.73	29.09	29
391867	2835 12	JU 39.62	53.28	24.43	14.41	16
391998	2773 11	51 40.94	50.97	44.86	31.20	15
392106	2734 11	34 40.29	50.73	52.65	37.36	13
392196	2711 11	84 38.85	48.95	39.15	24.79	11
392291	2636 11	10 45.53	56.99	33.55	23.42	10
392373	2606 11	58 41.18	53.44	20.86	17.40	12
392465	2639 110	66 44.05	55.56	42.44	28.84	10
392686	2716 12	56 39.48	50.60	41.77	28.31	26
392695	2866 120	65 40.25	56.16	29.95	23.11	27
392970	2739 12	54 41.85	50.94	37.92	27.17	20
393059	2792 12	30 41.69	52.12	33.01	23.01	22
393315	2692 14	11 56.42	67.71	21.09	22.57	16
393330	2689 14	10 55.79	73.88	38.28	30.59	58
393386	2682 13	80 55.68	68.34	23.10	20.93	21
393432	2685 134	47 52.80	67.04	24.31	21.00	23
393619	2672 128	33 46.03	54.85	46.14	35.01	13
393812	2690 119	90 35.36	47.03	32.43	20.02	16
393921	2639 12	39 37.39	49 74	46 15	32 29	12
393986	2632 12	56 36 41	47 14	38 97	30 84	24
394149	2565 124	17 <u>38</u> 79	48 50	43 87	32.06	14
394299	2568 129		45 99	12 61	17 75	12
394318	2648 13	32 45 63	56 14	32 85	24 20	18
394351	2623 130	15 38 20	50.44	35 43	24.20	18
394514	2600 13	37 42	67.88	33 80	25.01	18
394659	2558 13	36 36 32	47.00	26 66	20.01	41
394784	2609 13	00 54.52 84 47.67	44.12 50.63	24.44	24.05	41
394855	2662 130	26 52 62	55.05	24.05	22.40	19
305036	2561 16	00 J2.02	56.02	20.00	24.55	10
205122	2561 13/	22 40.00	34.02	10.77	19.57	10
395125	2501 15	+0 J7.15	47.03	23.05	25.02	20
2052102	2474 139		44.00	33.33	23.92	31
205260	2402 14	19 40.70 15 (0()	57.72	34.05	23.92	15
205601	2550 157	70 40.41 70 70 00	52.90	21.00	22.80	12
305632	2000 14:	a a a a a a a a a a a a a a a a a a a	20.90	24.30	22.44	//
393022	2520 147	0 39.92	51.8/	31.14	24.53	55
742425	2098 149	40.73	50.49	20.98	22.93	13
396100	2822 147	50.37	6/.66	25.13	24.44	28
396384	2133 144	2 36.43	46.48	27.28	28.19	16
397328	2960 140	43.18	53.17	49.28	40.10	11
397445	2956 14:	21 54,50	68.51	46 33	36.73	16

Gauge	Grid	l-day	2-day	l-day	2-day	No. of
number	reference	RBAR(mm)	RBAR(mm)	CV(%)	CV(%)	years
397532	2972 1460	41.11	50.28	38.22	33.01	25
397713	2973 1380	58.89	70.19	48.27	35.18	16
397758	3022 1343	58.12	74.58	37.19	28.03	18
398022	3085 1404	41.76	52.85	48.56	37.25	26
398063	3073 1374	55.05	67.72	44.46	33.69	10
398074	3055 1362	43.98	58.71	18.66	18.25	15
398081	3057 1378	48.87	63.47	41.78	31.42	18
398276	3175 1404	44.00	53.41	52.56	43.87	15
398383	3236 1453	36.26	44.40	48.63	40.39	26
398455	3489 1057	47.90	56.96	27.19	18.69	10
398505	3460 1082	44.29	55.06	27.78	30.38	19
398512	3438 1076	41.29	52.27	32.49	29.43	25
398516	3436 1087	40.96	52.24	32.35	28.27	55
398528	3448 1103	42.51	55.94	26.71	28.23	14
398631	3466 1109	44.07	56.63	23.57	27.00	16
398829	3480 1157	41.21	51.04	28.86	18.95	- 14
398839	3468 1159	42.09	50.57	26.78	20.16	12
398842	3468 1148	41.65	52.17	27.61	24.18	15
398892	3417 1170	45.57	56.58	26.37	19.82	11
398896	3416 1191	41.10	49.55	28 99	23.94	26
399008	3460 1190	43.24	50.72	24.05	23.04	11
399190	3332 1095	45.49	59.13	29 04	32 67	10
399307	3338 1140	42.24	55 63	38 50	29 16	13
399329	3362 1160	43.31	51.84	34.64	25.10	11
399368	3376 1182	41.60	51 72	36 20	27.16	13
399569	3299 1198	39 20	52.05	22 69	20.50	12
399748	3406 1240	38.28	47.42	35.14	26.30	24
399758	3428 1249	37.48	45.93	39.31	28.02	16
399762	3387 1250	39.24	49.11	43.74	32 87	26
399863	3668 1194	34.10	43.43	19.87	23.88	15
399984	3643 1168	37.61	45.11	32.51	24.85	14
399988	3639 1170	35.98	45.56	29.81	20.63	12
400021	3632 1154	36.80	44.44	28.85	25.01	22
400158	3595 1106	40.24	48.90	36.83	33.72	20
400174	3633 1068	44.13	53.97	25.01	31.74	12
400347	3517 1055	46.48	58.15	28.64	32.74	13
400408	3556 1116	43.92	54.29	30.98	32.14	21
400418	3576 1060	47.72	60.27	28.26	32.59	12
400595	3544 1161	42.83	49.74	32.32	22.12	10
400616	3573 1162	35.68	45.01	31.55	25.91	79
401005	3551 1237	37.23	46.01	34.92	31.87	22
401371	3427 1268	39.17	47.24	47.72	36.47	13
401444	3376 1286	37.09	46.60	39.87	32 41	25
401620	3041 1308	45.51	58.26	43 65	30.85	14
401668	3054 1273	45.25	59.82	40.95	30.88	19
402073	3065 1291	44.15	58.81	20 90	23 79	15
402190	3114 1235	40.11	51.49	47 01	36 74	26
402542	3166 1334	43.88	56 35	51 62	64 54	19
402553	3157 1325	49.26	63 08	61 81	33 00	13
402333	3213 1197	38 16	49 73	71.01 21 66	JJ.72 92 71	10
402740	3229 1238	37 05	47 04	45 21	23.71	74
402703	3728 1265	41 12	50 30	4J.21 16 19	36 20	/ U 1 E
772017	JEEV IEVJ		70.72	40.43	JU.JU	10

Gauge	Grid	l-day	2-dav	1-dav	2-dav	No. of
number	reference	RBAR(mm)	RBAR(mm)	ŪV(%)	CV(%)	years
		. ,				2
402938	3244 1216	47.60	56.25	63.05	49.86	13
403058	3264 1284	44.50	54.24	71.68	54.56	10
403115	3286 1291	39.12	48.83	56.69	45.30	25
403116	3289 1291	44.80	53.08	73.13	56.98	12
403138	3333 1289	40.22	50.22	51.43	38.35	25
403143	3344 1288	39.55	48.58	48.50	36.94	24
403146	3357 1305	37.95	48.01	49.68	37.98	26
403219	3331 1330	37.79	48.14	58.30	42.78	2.5
403426	3300 1368	38.15	48.31	46.73	42.64	66
403451	3224 1367	42.05	52.29	60.45	46.21	20
403490	3274 1363	40.74	50.04	46.85	39.83	26
403541	3277 1378	44.07	53.07	63.63	53.12	10
403543	3283 1377	40.08	48.57	54.41	47.00	17
403664	3573 1288	34 08	45 07	38.62	28.46	12
404124	3439 1365	36 65	45 38	41.50	32.90	26
404552	3213 1362	43.20	54.37	51.76	40.39	23
404564	3236 1385	40.24	50.03	47.90	36.74	26
404580	3244 1394	39 58	49 18	48 21	36 97	25
404585	3255 1399	39.91	49.82	46.95	38.76	20
404642	3192 1396	50.28	60.39	56.33	51.33	10
404979	3486 1353	38 29	46 07	39 49	34 76	17
404988	3492 1362	34.62	40.07	43.77	36.29	113
404994	3485 1364	36 38	44.32	44.77	39.04	25
404996	3481 1373	42 46	50 37	46.96	37 00	12
405141	3434 1373	37.46	47.94	39.59	32.49	14
405279	3367 1431	36 22	44 49	37.63	31.90	24
405455	3704 1385	42.50	54.76	38.63	28.89	25
405488	3723 1344	38.47	49.89	33.92	24.07	12
405669	3638 1329	33.82	43.16	30.14	32.06	12
405817	3647 1390	35.72	46.75	36.71	30.21	15
406028	3541 1331	35.85	44.46	38.30	34.75	20
406169	3630 1433	36.31	46.71	36.86	31.15	60
406177	3623 1435	42 60	54 68	26.36	19 11	24
406353	3535 1451	38.31	47.51	43.06	29.17	20
406525	3562 1417	41.35	50.17	24.44	19.92	10
406797	3399 1448	42.04	50 16	48 42	47 93	20
407021	3349 1458	37 15	45 48	49 99	40.84	24
407154	3304 1495	35 67	45.40	43 67	39 36	52
407156	3305 1505	34 43	44.40	15 92	10 68	12
407157	3304 1506	36 50	45 69	51 37	42 27	11
407236	3528 1477	41 48	52 03	42 22	30 70	19
407250	3488 1501	41.40	55 01	51 17	40 71	22
407398	3437 1487	42.66	51.65	70 21	54 66	17
407635	3452 1534	38 70	48 64	46 60	35 92	26
407733	3415 1572	40 62	51 91	57 89	43 00	20
407865	3340 1563	36.25	47 15	39.89	31 74	17
407924	3327 1514	40.44	49 31	47.66	39 28	14
408040	3351 1588	44,83	55 48	50.58	42 49	10
408126	3318 1602	37.13	46.20	33.18	31 06	62
408346	3505 1604	44.52	54.22	52.07	40 03	26
408414	3479 1629	44 27	53 29	45 48	36 18	25
408528	3421 1658	45.81	53.58	64.27	56.27	12

Gauge	Grid	l-day	2-day	l-day	2-day	No. of
number	reterence	KBAR(mm)	RBAR(mm)	CV(%)	CV(%)	years
408549	3447 1577	45.87	57.78	55.75	41.81	20
408723	3473 1680	33.83	44.18	25.61	23.65	18
408772	3466 1670	41.96	50.89	51 39	45.31	17
409013	3489 1721	40.41	51.97	45.22	38.22	23
409085	3425 1715	34.88	46.53	28.14	27.88	67
409224	3472 1754	32.93	45.60	18.36	23.08	15
410324	3899 1887	40.00	49.22	45.68	38.15	26
410444	3786 1855	41.48	51.43	41.84	31.87	23
410524	3807 1829	40.25	50.49	37.52	36.11	24
410598	3863 1864	38.75	48.42	36.80	35.15	26
411524	3955 1804	41.40	50.46	46.84	39.74	19
411686	4006 1784	34.79	43.42	23.11	23.02	18
411950	3974 1699	39.31	49.15	32.36	27.06	26
412205	3912 1751	38.50	49.47	43.86	39.00	23
412209	3919 1727	41.13	52.29	49.45	40.37	22
412297	3921 1702	38.71	49.09	47.90	38.36	26
412386	3874 1694	36.34	49.72	28.75	29.87	17
412392	3885 1694	39.27	51.00	47.53	37.73	18
412507	3909 1647	38.35	48.01	48.93	36.61	15
412728	3858 1633	39.49	51.81	36.49	32.74	20
413479	3862 1483	38.73	48.61	31.86	26.10	26
413747	3858 1577	37.60	48.78	33.06	30.46	25
413787	3843 1562	38.32	49.19	29.69	29.86	26
413825	3845 1583	42.73	53.90	27.39	33.25	11
413886	3825 1606	45.86	58.52	30.26	37.50	10
414290	3774 1487	41.06	53.44	29.15	25.45	25
414372	3631 1494	48.56	62.76	34.13	25.19	14
414415	3657 1481	50.44	62.33	24.11	25.05	10
414743	3756 1480	38.17	49.55	32.08	28.38	55
414744	3756 1480	42.80	52.04	28.15	19.14	12
414829	3774 1514	40.59	55.67	27.83	22.61	22
415086	3647 1524	44.50	59.34	27.63	21.32	26
415125	3656 1508	43.85	58.32	25.69	23.43	24
415161	3668 1535	38.43	51.25	17.48	14.24	13
415176	3712 1527	43.44	55.59	23.71	16.83	24
415375	3594 1570	48.07	61.72	38.06	27.26	21
415583	3750 1617	43.39	55.40	38.03	32.02	23
415588	3763 1616	44.45	56.87	35.06	30.78	24
415725	3772 1744	39.24	53.49	23.77	37.03	12
416056	3794 1669	42.32	56.05	28.71	33.33	14
416081	3755 1711	42.42	54.35	50.70	42.27	24
416128	3769 1685	37.73	49.07	44.42	35.92	113
416213	3750 1668	47.91	60.36	47.04	38.74	26
416224	3754 1653	34.36	44.37	36.29	28.13	64
416242	3751 1638	43.22	54.98	43.39	36.86	24
416263	3743 1662	51.73	64.36	45.29	40.43	19
416282	3718 1676	49.53	62.19	49.01	36.81	14
416742	3667 1699	41.38	51.63	56.68	45.06	24
416743	3664 1692	35.55	45.91	21.81	29.67	10
416771	3597 1528	47.99	62.03	29.36	19.71	20
416807	3589 1554	44.05	57.02	30.43	24.74	78
416950	3597 1604	52 42	63 16	46 59	36 71	12

τ

Gauge	Grid	1-day	2-day	l-day	2-day	No. of
number	reference	RBAR(mm)	RBAR(mm)	CV(%)	CV(%)	years
417005	3570 1617	48.12	58.67	48.43	39.27	26
417634	3537 1679	42.17	53.05	45.66	35.99	62
417640	3535 1699	42.38	53.52	51.53	40.58	26
417899	3668 1884	40.01	53.32	32.59	28.34	26
417986	3669 1819	45.16	56.07	42.18	32.65	11
418120	3600 1805	41.79	52.80	37.90	33.34	20
418288	3645 1746	45.61	55.19	35.88	30.33	16
418317	3589 1763	44.45	56.56	46.27	40.17	24
418367	3577 1737	39.78	52.66	49.92	39.30	26
418545	3516 1732	39.19	52.21	35,48	29.36	82
419131	3623 1872	35.90	48.96	43.38	33.28	21
419364	3636 1906	35.41	48.79	21.19	17.13	15
419746	3773 1914	34.11	46.75	23.24	34.07	13
419751	3780 1870	36.41	50.47	23.93	32.44	14
419869	3743 1929	39.77	53.40	32.48	28.59	23
420216	3674 1995	34.49	48.59	29.25	29.73	14
420259	3670 2022	37.44	47.90	27.49	21.54	14
420320	3764 1988	43.00	53.60	38.47	35.64	14

Appendix 2 Cross-validation procedure for semivariogram model selection

The cross-validation procedure (Delhomme, 1978) was used to aid the identification of the optimum model parameters for each semivariogram. The method requires the definition of three statistics: average kriging error (AKE), mean squared error (MSE) and standardized mean square error (SMSE). AKE is defined as the mean difference between estimated and observed point values; for the estimator to be unbiased, the AKE must be close to zero. MSE is the mean of the squared differences between estimated and observed values. The choice of model is minimized by finding that with the minimum MSE. Finally, SMSE is the mean of the squared difference between estimated and observed values, standardized by the kriging variance at each point. For the estimation errors to be consistent with the kriging variances, SMSE should lie in the interval:

 $1 - 2\sqrt{2/n} \le \text{SMSE} \le 1 + 2\sqrt{2/n}$

where n is the number of point observations. Results of the cross-validation test for each of the four basic variables are now given:

Basic	variable		AKE	MSE	SMSE
1-day	RBAR	590	0.0046	0.0923	0.9890
2-day	RBAR	589	0.0034	0.0225	0.9639
1-day	CV	590	0.0027	0.0329	1.0020
2-day	CV	589	-0.0004	0.0322	1.0328