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Soil moisture can affect rainfall through its control on surface evapotranspiration, 

which in turn influences temperature and humidity in the lower atmosphere and the 

development of convective storms. This provides a potentially important feedback 
 

15 mechanism in regional climate whereby, for example, dry soils could suppress the 
 

initiation of storms, thus prolonging soil water deficits. Climate models have 
 

illustrated the importance of soil moisture feedbacks for weekly rainfall totals in semi- 

arid regions1, though large variations exist between models in their depiction. Here 

we use satellite observations of cloud and land surface temperatures over West 
 

20 Africa to demonstrate that the surface exerts a strong control on storm initiation 
 

through patches of soil moisture on length scales of approximately 10-40 kms. Such 

patterns induce local winds which favour the development of storms. Initiations are 



twice as likely above strong positive soil moisture gradients compared to uniform 
 

soils. We find that 37% of all initiations analysed occurred over the steepest 25% of 
 

25 gradients, implying that the feedback may be important in determining annual rainfall 
 

totals. Similar feedbacks are likely throughout the semi-arid tropics, influencing 

drought frequency and crop yields in regions prone to climate variability and change. 

 

This study focuses on the impact of soil moisture on rainfall in the Sahel, a semi-arid 
 

region bounded to the north by the Sahara desert and to the south by closed canopy 
 

30 tropical forest. The region receives almost all its annual rain in the summer wet 
 

season associated with the northward excursion of Inter-Tropical Convergence Zone 

under the influence of the West African Monsoon2. A strong seasonal cycle in 

vegetation peaks in September, about 3 weeks after the climatological peak in 

rainfall. The region experiences extreme droughts by global standards, with profound 
 

35 consequences for the local population. Modelling studies have illustrated how rainfall 
 

anomalies induced by oceanic variability are amplified by a feedback with Sahelian 

soil moisture and vegetation3-5. Climate models suggest soil moisture feedbacks on 

time scales of days are relatively strong in the Sahel1, a fact supported by 

observational evidence6-7. However, it is unclear which atmospheric processes 
 

40 control the strength, and even the sign of the feedbacks operating at different spatial 
 

scales. 
 

 
Feedbacks are relatively easy to observe in the Sahel. There is strong natural 

variability in soil moisture on a daily time scale, driven by convective rain events, and 

followed by drying of the top centimetres of the soil. This soil moisture variability 
 

45 induces strong variations in surface fluxes in the days after rain because of the 

sparseness of the vegetation8. Accurate estimates of rainfall and surface fluxes do 

not exist on the scales at which land-convection feedbacks operate, but satellite data 



can provide valuable proxies. The presence of cold cloud, in particular when 
 

organised into extensive Mesoscale Convective Systems (MCS), provides a means 
 

50 to examine relationships between convection and the land surface from a statistical 
 

perspective. These long-lived travelling systems produce 80-90% of the annual rain 

in the region9, and the seasonal total of MCS account for the difference between a 

wet and a dry year10. For characterising surface flux variability we use 2 independent 

proxies. Surface soil moisture estimates11 are available typically daily from a passive 
 

55 microwave sensor with a footprint ~40km. For finer spatial resolution, we exploit 
 

Land Surface Temperature (LST) data, available from geostationary satellite every 

15 minutes under clear sky at a resolution of 3km12. Sahelian soil wetting and drying 

cycles create strong anomalies in LST (henceforth LSTA) on a daily time scale. We 

use variability in daytime mean LSTA as a proxy for surface fluxes with negative 
 

60 anomalies indicative of increased evaporation and reduced sensible heat flux. Some 
 

characteristics of spatial variability in LSTA are provided in the Supplementary 
 

Material (Figure S5). Aircraft measurements made during the African Monsoon 
 

Multidisciplinary Analysis (AMMA) campaign13-15 have demonstrated that gradients in 
 

LSTA coincide with horizontal gradients in the Planetary Boundary Layer at 
 

65 wavelengths as low as 5-10 km13. They provided conclusive observational evidence 
 

that antecedent rain can generate mesoscale convergence zones, even at 

wavelengths of 20 km, consistent with modelling studies16-21. These convergence 

zones are important for their potential impact on the development of moist 

convection, a feedback process observed for a single case during AMMA
14

. 
 

 

70 We examined the impact of the land surface on the initiation of MCS using a dataset 

of 3765 storms, within a region ~2.5 million km2 (10°W-10°E, 10-20°N) for the 2006- 

10 wet seasons. We tracked convective cloud areas using commonly-adopted 



thresholds of brightness temperature and areal extent (see Methods). We defined an 
 

MCS initiation event when a cold cloud first appeared, prior to expansion into an 
 

75 MCS. This definition allowed us to assess where deep convection was triggered 
 

relative to the underlying surface. Our study covers the afternoon-evening period 
 

(1200 to 2100UTC) when over 80% of MCS are initiated22. 
 

Figure 1 shows the number of MCS initiations identified as a function of land surface 

properties, on a regular grid of 0.35 x 0.35 ° (approximately 40 x 40 km2). The 
 

80 probability of initiation (PI) for different soil moisture conditions at this scale (Fig 1a) 
 

provides no clear evidence for a link between soil moisture and MCS initiation. 

However, a strong relationship emerges when one considers mesoscale anomalies 

in soil moisture (Fig 1b). Within an area of approximately 200 x 200 km2, the size of 

a typical climate model grid box, the probability of storm initiation is about one third 
 

85 higher over drier soils compared to wet areas. This relationship is consistent with 

previous studies looking at both Sahelian soil moisture6, and land cover in other 

regions23-24, where afternoon convection is favoured over surfaces with a greater 

sensible heat flux. 

 
To assess the relevance of finer-scale soil moisture patterns in the initiation process, 

 
90 we examined the spatial variability of LSTA within each 40km grid box by computing 

 

the standard deviation (σLSTA) of the 3km pixels within. The value of PI increases 

strongly with soil moisture heterogeneity (Fig 1c; χ2 
=119., df=9, P<0.0001). 

Comparing the number of initiations in the lowest decile with the highest decile, PI 

increases by a factor of 2.5. This relationship is robust to the methods used to 
 

95 compute the LSTA, but is sensitive to the choice of grid box size (Supplementary 
 

Fig. S1). In particular, the rise in PI with σLSTA is maximised for grid boxes of lengths 

less than 30 km, and becomes weak for grid boxes of 100 km or larger. The 



sensitivity of PI to σLSTA under different thermodynamic conditions was also assessed 
 

(Fig. 1c) using the pressure difference between the level of free convection (LFC) 
 

100 and the surface (dpLFC) computed from atmospheric analyses. When the atmosphere 
 

is conducive to deep convection (dpLFC<210 hPa), values of PI are high, yet there is 

no clear increase with σLSTA (χ
2 

=8.32, df=9, P=0.50). On the other hand, when 

convective inhibition is large (dpLFC>300 hPa), the sensitivity to σLSTA is stronger, with 

a three-fold increase in PI between the lowest and highest deciles. This strong 
 

105 sensitivity under unfavourable large-scale atmospheric conditions implies that 
 

mesoscale soil moisture patterns trigger MCS which would not otherwise occur. 
 

Mesoscale flux variability can originate from fixed landscape features as well as 

transient soil moisture patterns. The impact of these fixed features on MCS initiation 

was quantified using the standard deviation in the wet season mean LST (σLST; Fig 
 

110 1d). Grid boxes with sub-grid variations in topographic height exceeding 250m were 
 

excluded from this calculation to avoid the well-known orographic effect on initiation. 

Whilst large values of σLST are less common than for σLSTA in the study region, the 

relationships with PI are consistent for both fixed and transient heterogeneity (Figs 1c 

and 1d). The highest values of σLST were found over crop/forest areas in the south25, 
 

115 and rocky areas associated with the Continental Terminal in the north. 
 

 

The mean mesoscale structure of the LSTA field was determined by compositing the 
 

3765 initiations relative to the low-level wind direction provided by atmospheric 

analyses (Fig.2a). This indicates favoured initiations within an elliptical pattern of 

positive LSTA values aligned with the background wind. Notable negative gradients 
 

120 in the composite-mean LSTA are evident about 10 km from the initiation point in the 
 

down-wind and both cross-wind directions, corresponding to transitions to wetter soil. 

The composite soil moisture field from passive microwave is consistent with the 



LSTA field, although rather poorly resolved by comparison. To assess the preferred 
 

surface length scales, we performed a wavelet analysis on along-wind LSTA 
 

125 transects for every initiation. The average of these wavelets reveals strong variability 
 

on wavelengths of 20-75 km centred 0-10 km downwind of initiation (Fig 2b). 
 

We further examined the likelihood of finding strong LSTA gradients 10 km 

downwind of initiation in each case and compared this with the distribution of LSTA 

gradients found by random sampling in the region (see Methods).  The distribution in 
 

130 the initiation sample is shifted to the left relative to the control (Fig.3). We calculated 
 

the LSTA gradient intervals corresponding to the first and central deciles (0-10% and 

45-55%, respectively) of the control sample, which by definition are observed equally 

frequently.  Convective initiations within the lowest interval occur 2.0 times more 

frequently than in the central interval. Thus, initiations are twice as likely over strong 
 

135 LSTA gradients compared to uniform surface conditions (the lowest and central 
 

intervals respectively). Furthermore, we found that 37% of all the initiations occurred 

over moderately strong negative gradients (<-3.2K/100 km), corresponding to the 

first quartile of the control sample. This enhancement of initiations is equivalent to 

one in 8.3 of all MCS in the dataset. 
 

 

140 The feedback is evident throughout the wet season, with differences in the 
 

distributions significant at P<0.0001 for the 4 individual months as well as for the wet 

season mean (Supplementary Fig.S4). However, the effect is most pronounced in 

June and weakest in August. Two factors are likely to determine this seasonality. 

During the core monsoon period (July/August), the LFC tends to be lower, a regime 
 

145 where convective sensitivity to the surface is weaker (Fig. 1). Secondly, spatial 
 

contrasts in fluxes tend to weaken as the season progress, since the developing 

vegetation can maintain transpiration rates over dry spells8. 



Modelling studies have shown26 that convection is favoured over dry soils, but close 
 

to negative upwind gradients in sensible heat flux. This preferred configuration 
 

150 occurs because convergence is maximised where the large-scale wind opposes the 
 

shallow surface-induced flow, as summarised in Fig 4. Strong evidence that such soil 

moisture-induced circulations do favour storm initiation is provided by our results, 

and in particular, the composite surface structure depicted in Fig 2a.The preferred 
 

initiation point in our observations is consistent with model studies, i.e. just upwind of 
 

155 a dry-wet surface transition. 
 

 

This study shows that soil moisture heterogeneity on scales of 10s km has a 

pronounced impact on rainfall at the larger scale in the Sahel. This upscaling occurs 

because, once the convective instability has been released, the MCS expands and 

propagates typically hundreds of kilometres. The new soil wetness patterns 
 

160 produced by an MCS in turn increase the probability of another MCS in the following 
 

day or two. We estimate spatial variability in LSTA on the day following a storm to be 

increased from 1.0 to 1.6 K (Supplementary Fig. S3), leading to positive feedback on 

the MCS scale of 100s km. On the other hand, considering smaller scales of several 

10s km, the feedback is negative due to preferred triggering over dry soils. 
 

 

165 The observed relationships between convective initiation and soil moisture patterns 
 

presented here shed new light on land-atmosphere coupling mechanisms in the real 

world. Though focused on the Sahel, the conclusions are likely to be relevant for 

many semi-arid regions, particularly in the tropics, where a short growing season is 

driven by the seasonal migration of the ITCZ. It is important to note that the 
 

170 feedbacks highlighted here occur on length scales which are not represented in 
 

current climate models, though their effects have large scale consequences. This 



raises questions about the sensitivity of climate models to soil moisture, and their 

predictions for future rainfall changes in the semi-arid tropics. 

 

Methods Summary 
 

 

175 We used thermal infra-red brightness temperature data from the 10.8 µm channel on 
 

the Meteosat Second Generation series of satellites, available every 15 minutes at a 

spatial resolution ~ 3km. We adopted the widely used threshold of -40°C to denote 

cold cloud. An MCS was defined as an area of contiguous cold cloud exceeding 

5000 km2. When an MCS was found which did not overlap with an MCS in the 
 

180 previous time step, we tracked the cold cloud system back in time and space to its 
 

origins. Provided the first cold pixel occurred a maximum of 3 hours prior to the areal 

MCS threshold being crossed, and that it did not overlap with other MCS during that 

time, we defined the location of that first cold pixel to be the initiation point of the 
 
 
 
 

185 

MCS. The results of our simple MCS detection algorithm were very similar to those 
 

produced by a more complex tracking method27. 
 
 

To calculate values of LSTA, we applied a cloud screening to the LST data13. We 

then computed a mean diurnal cycle based on all remaining data within a period of 

21 days, centred on the day in question. Daily LSTA were determined by averaging 
 

the diurnal LST anomalies between 8 and 16UTC. 
 

 

190 We used operational analyses from the European Centre for Medium Range 
 

Weather Forecasting for an estimate of synoptic conditions in the vicinity of MCS 

initiations. These data have a horizontal resolution of 0.35° and comprise 50 vertical 

levels between the surface and 15 km. The low level wind data was taken at 10m 

above the ground from the 12UTC analyses, whilst the LFC was estimated at 06UTC 
 

195 by lifting a parcel from about 50m above the ground. 



The confidence limits in Figure 1 were calculated based on a binomial distribution, 

where the probability of initiation was determined from the observations prior to 

binning. A χ2 test was performed on the histograms in Fig. 1c under the null 

hypothesis that they were uniform. In Figure 3, we sampled the background 
 

200 distribution of LSTA gradients on the day in question using 44 regularly spaced 
 

locations around each initiation point. These points occurred every 0.5° within a 4° x 
 

2° lattice. This sampling strategy ensured that the gradients were appropriately 

weighted by latitude and day of year. Only soil moisture data from descending orbits 

of the Aqua satellite were used (overpass time around 0130 UTC), and data 
 

205 excluded where rain exceeding 2mm was detected in the TRMM3B42 dataset for the 
 

hours between the overpass and midday. 
 

 
Supplementary Information available online. 

 

 
Author Contributions CT and FG conceived the study and wrote the paper, AG 

 
analysed the LST data, CT developed the cloud tracking, FG determined the 

 

210 atmospheric sensitivities, PH devised statistical tests, RE and FC evaluated the 
 

tracking and MK performed the wavelet analysis. All authors discussed the results 

and commented on the manuscript. 



 
 

 
 

 
 

 
  

 

 
  

 

 
 

 
  

 

 
  

 

Figures 
 

 

215 Figure 1 Sensitivity of MCS initiation to land surface properties. Total number 
 

and probability of initiations as a function of (a) volumetric soil moisture (b) 

volumetric soil moisture anomaly compared to the mean over 1.75x1.75°, (c) σLSTA, 

and (d) σLST. Each horizontal line represents one decile, a circle indicates the 

median, and shading delimits the 95% confidence limits. In (c) and (d), the 
 

220 probability of initiation is also shown for sub-samples containing grid points with 
 

dpLFC<210hPa (blue line) and dpLFC>300 hPa (orange line). The relationships in (c) 
 

and (d) are independent as σLSTA is not correlated with σLST  (r=0.018,n>50,000). 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

 

Figure 2 Mesoscale surface variability around initiation point. (a) Composite 
 

225 LSTA (K; shading) and volumetric soil moisture anomalies from the seasonal mean 
 

(%; contours). For clarity, the spatial mean LSTA was removed from each event. 

Anomalies larger than +/-0.2K are statistically different from 0 (2-tailed ttest, P<0.01 

for n=2439). (b) Weighted wavelet Z-transform 28 computed from LSTA transects in 

the along-wind direction. The shading denotes the difference in the mean between 
 

230 the initiation and a control (non-initiation) dataset. Within the black contour line, the 
 

increase in amplitude between the two datasets is significant (P<0.01) according to a 
 

1-tailed t-test. 
 
 
 

 
 

 

 
 

 
 



 
 

 
 

 
 

 
 

Figure 3. Distribution of LSTA gradients associated with MCS initiations. The 
 

235 frequency of along-wind LSTA gradients (K/100km) located 10 km downstream of 
 

the initiation point (black stepped line). The expected frequency of gradients found 

by sampling across the region (see Methods) is shown for comparison (grey line) 

with areas of enhanced (reduced) probability of initiation shaded in orange (grey). 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 

 

240 



Figure 4 Schematic depicting the impact of soil moisture heterogeneity on 

convective initiation. Idealised soil moisture-induced flows (blue arrows) under light 

synoptic winds create an ascent region where the shallow, strong current opposes 

the mean wind (adapted from Fig. 7 in 25). The preferred location for convective 
 

245 initiation in this study coincides with the ascent region induced by the heating 
 

gradient at the downwind edge of the dry patch. Additional convergence over the dry 

patch is provided by a deep, weaker current at its upwind edge, and cross-wind 

gradients in soil moisture (evident in Fig 2a but not shown here). 
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1. The sensitivity of the increase in PI with σLSTA (Fig 1c) to the choice of grid box 
size is assessed by repeating the calculation for grid box sizes ranging from 0.08° to 
2.0° (approximately 9 to 220 km). The results are shown in Figure S1 in terms of the 

frequency of MCS initiation in the 10th decile divided by the frequency in the first 
decile. 
 

Figure S1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

355 



 
 

 

 
 
 
 

360 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365 

2. The sensitivity of the increase in PI with σLSTA (Fig 1c) to the choice of time period 

used to compute the LST anomalies is shown in Figure S2. Replacing a 21 day 
running mean centred on the day in question with the seasonal mean increases 
values of σLSTA generally. However, the underlying relationship between PI with σLSTA 

remains. This confirms that variability in the LSTA field on a particular day is 
dominated by soil moisture on that day. 
 

Figure S2 
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3. The relationship between our tracked MCS and LSTA on the following day is 
illustrated in Figure S3. The northern edge of all the MCS tracks with a lifetime of at 
least 3 hours was identified and used to composite the available LSTA data on the 
following day with respect to this cold cloud edge. The calculation was performed 
over grid boxes of 0.35 x 0.35°, and both the mean and standard deviation values of 
LSTA are shown as a function of distance from the edge. To minimise the impact of 
smaller, possibly rain-bearing cold clouds on the dry side of the track, we excluded 
all data there where cold cloud is detected in the 24 hour period to 12Z. The results 
show a decrease in LSTA over the tracked MCS ~1.5°C (mean value between 0 and 
-100 km), as compared to the adjacent dry area (mean between 0 and +100km). The 
mean value of σLSTA over the storm track increases by 0.6°C compared to the dry 
area. This heterogeneity can feed back on the initiation of new MCS. 
 

Figure S3 
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4. As for Figure 3, but based on data by month: (a) June, (b) July, (c) August and (d) 
September. The total number of inititations (Ninit), and the percentage of those 
initiations which fall within the lower quartile (P25) of LSTA gradients in the 
background sample are: (a) Ninit=604, P25=40.1%, (b) Ninit=619, P25=33.4%, (c) 
Ninit=550, P25=34.2% and (d) Ninit=528, P25=38.8%. 
 

Figure S4 
 

(a) (b) 
 

 
 

(c) (d) 
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5. In this study we use two independent datasets to characterise areas of wet soil. 
Direct estimates of soil moisture are available from AMSR-E, but the footprint of this 
sensor is too large to adequately resolve the key surface features implicated in the 
initiation of MCS (~10-40 km). On the other hand, LSTA data provide a qualitative 
indication of soil moisture at 3km resolution. In particular, mesoscale structures in 
LSTA maps can provide an accurate mapping of areas with contrasting soil moisture 
13-15. By focusing on mesoscale variability rather than its absolute values, the 
impacts on LSTA of large-scale atmospheric forcing (wind speed, atmospheric water 
vapour and aerosol), are minimised. 
 

Figure S5a compares measures of spatial variability on a day-to-day time scale from 
the 2 data sources. These are quantified using the standard deviations of soil 
moisture and LSTA at 0.25° resolution (σsm and σLSTA25 respectively) within boxes of 
1.75x1.75°, centred on 15°N. The shaded contours denote the frequency with which 
binned values of σLSTA25 and σsm are found, and the line presents the mean σLSTA25 

for a given bin of σsm. The figure illustrates that σLSTA25 increases with σsm over the 
full range of σsm. In particular, when antecedent MCS induce high values of σsm (e.g. 
>4%), these tend to be accompanied by high values of σLSTA25. This supports our use 
of LSTA to quantify spatial variability in soil moisture. 
 

Figure S5b illustrates the relationship between mean soil moisture at the 0.25° scale 
from AMSR-E and sub-grid soil moisture variability, inferred from the standard 
deviation of LSTA data at the 3 km scale (σLSTA). These data are sampled from 

across the domain. As mean soil moisture increases from 0 to 10%, so does σLSTA. 

This correponds to a regime where surface fluxes are strongly water-limited and any 
rain creates contrasting patches of wet and dry soil. As soil moisture increases 
further, σLSTA becomes smaller. This is partly due to a weakened sensitivity of 

evaporation to soil moisture in wetter soils, coupled with a decreased likelihood of 
very dry conditions within the grid box. In addition, wetter soils in our dataset are 
associated with more densely vegetated surfaces. These have a higher roughness 
length, which in turn will reduce variability in LST, and thus contribute to the 
observed negative trend. 
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