Klaven, Signe Koch; Madsen, Tom V.; Maberly, Stephen C.. 2011
Crassulacean acid metabolism in the context of other carbon-concentrating mechanisms in freshwater plants: a review. Photosynthesis Research, 109 (1-3). 269-279. 10.1007/s11120-011-9630-8

© Springer Science+Business Media 2011
This version available http://nora.nerc.ac.uk/13857/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the authors and/or other rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access

This document is the author’s final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. Some differences between this and the publisher’s version remain. You are advised to consult the publisher’s version if you wish to cite from this article.

The original publication is available at www.springerlink.com

Contact CEH NORA team at noraceh@ceh.ac.uk

The NERC and CEH trade marks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.
Crassulacean Acid Metabolism (CAM) in the context of other carbon concentrating mechanisms in freshwater plants: a review

Signe Koch Klavsen1,2, Tom V. Madsen2 and Stephen C. Maberly3

1IFM-GEOMAR, Düsternbrookerweg 20, Kiel 24105, D-Germany; 2Department of Biological Science, Aarhus University, Plant Biology, Ole Worms Allé 1135, 8000 Aarhus C, DK-Denmark; 3Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK

Corresponding author: Signe Klavsen. Department of Biological Science, Aarhus University, Plant Biology, Ole Worms Allé 1135, 8000 Aarhus C, DK-Denmark

E-mail:signe.klavsen@biology.au.dk, Telephone: +45 89 42 26 04 Fax: +45 89 42 47 47.
Abstract

Inorganic carbon can be in short-supply in freshwater relative to that needed by freshwater plants for photosynthesis because of a large external transport limitation coupled with frequent depleted concentrations of CO₂ and elevated concentrations of O₂. Freshwater plants have evolved a host of avoidance, exploitation and amelioration strategies to cope with the low and variable supply of inorganic carbon in water. Avoidance strategies rely on the spatial variation in CO₂ concentrations within and among lakes. Exploitation strategies involve anatomical and morphological features that take advantage of sources of CO₂ outside of the water column such as the atmosphere or sediment. Amelioration strategies involve carbon concentrating mechanisms (CCM) based on uptake of bicarbonate, which is widespread, C₄-fixation which is infrequent and Crassulacean Acid Metabolism (CAM) which is of intermediate frequency. CAM enables aquatic plants to take up inorganic carbon in the night. Furthermore, daytime inorganic carbon uptake is generally not inhibited and therefore CAM is considered to be a carbon conserving mechanism. CAM in aquatic plants is a plastic mechanism regulated by environmental variables and is generally down-regulated when inorganic carbon does not limit photosynthesis. CAM is regulated in the long term (acclimation during growth), but is also affected by environmental conditions in the short term (response on a daily basis). In aquatic plants CAM appears to be an ecologically important mechanism for increasing inorganic carbon uptake, since the in situ contribution from CAM to the C-budget generally is high (18-55%).

Keywords: CO₂, elodeids, inorganic carbon, isoetids, macrophytes, regulation.
Inorganic carbon availability in freshwater habitats

In terrestrial environments, autotrophic plants have evolved mechanisms and strategies that allow them to obtain the resources necessary for photosynthesis and growth such as water, light, nutrients and CO₂. Of these, atmospheric CO₂ is most constant and so, coupled with the relatively high rate of diffusion of CO₂ in the gas phase, it seldom limits productivity in natural systems, or directly-affects ecological distribution. Nevertheless, some terrestrial plants have evolved carbon concentrating mechanisms (CCMs), such as C₄ carbon fixation and CAM, that may maximise carbon-uptake but also often solve problems caused by interaction with other environmental factors such as high temperature or shortage of water (e.g. Lüttege 2002; Keeley and Rundel 2003; Sage and Kubien 2003).

In contrast, in freshwaters, water is readily available but the concentration of CO₂ is highly variable and may range from close to 0 to more than 350 μmol L⁻¹ (Bowes and Salvucci 1989; Madsen and Sand-Jensen 1991). Because of a high transport limitation caused by low diffusion coefficients of CO₂ in water and substantial boundary layers, these concentrations are in the lower range of concentrations needed to saturate photosynthesis of freshwater macrophytes, where half-saturation concentrations often vary between 100 and 200 μmol L⁻¹ (Maberly and Spence 1983; Bowes and Salvucci 1989; Madsen and Sand-Jensen 1991; Maberly and Madsen 1998).

Furthermore, photosynthetic removal of CO₂, which often generates very low CO₂ concentrations (e.g. Maberly 1996) also generates high concentrations of oxygen, producing conditions that favours photorespiration via the oxygenase reaction of Rubisco. In situ measurements have demonstrated that photosynthesis and growth of freshwater plants can indeed be limited by inorganic carbon (Madsen and Maberly 1991; Vadstrup and Madsen 1995).

Responses to carbon-limitation in freshwaters
Freshwater plants have evolved anatomical, morphological, biochemical, physiological and ecological strategies to counter this restriction (Bowes 1987; Bowes and Salvucci 1989; Madsen and Sand-Jensen 1991; Raven 1995; Maberly and Madsen 2002; Raven et al. 2008). These strategies can be broadly classified as: ‘avoidance’, ‘exploitation’ and ‘amelioration’.

Avoidance strategies

This is perhaps the simplest strategy and relies on the ability of the plants to avoid low-CO₂ habitats or niches. In the aquatic habitat avoidance of low-CO₂ is possible due to the high within- and among-lake variation in concentration of CO₂. For example, the freshwater moss *Fontinalis antipyretica*, which is restricted to the use of CO₂ (obligate CO₂-user), could survive in a lake with substantial summer CO₂-depletion by exploiting the niche just above the sediment surface with elevated CO₂ concentrations (Maberly 1985). Another example of plants avoiding low-CO₂ is macrophytes from streams, which benefit from the continuous replacement of CO₂-depleted water. Finally, macrophytes from unproductive lakes do not experience the same severe CO₂-depletion as plants from productive lakes and therefore macrophytes from these habitats are more likely to depend on CO₂ taken up from the water column than species from productive lakes (Maberly and Madsen 2002).

Exploitation strategies

Since some of the anatomical and morphological adaptations allow exploitation of alternative inorganic carbon sources besides CO₂ from the water, they are referred to as ‘exploitation strategies’. These include 1/ floating or aerial leaves, which enable freshwater plants to make use of atmospheric CO₂; 2/ aerenchyma or lacunae within roots, stems and leaves, which allow gas transport by diffusion or mass flow and – linked to 2 – 3/ uptake of CO₂ from the interstitial water
in the sediment (sediment-CO$_2$). Carbon uptake by floating or aerial leaves can make a major contribution to the carbon-balance of some freshwater plants (e.g. Prins and De Guia 1986, Nielsen and Borum 2008) and can also allow forced ventilation supplying oxygen and removing ethanol from the roots and hence promoting survival in anoxic sediments (Dacey 1980). The sediment-CO$_2$ is transported through the roots to the leaves in the lacunae system (Bowes 1987; Bowes and Salvucci 1989; Madsen and Sand-Jensen 1991; Madsen and Sand-Jensen 2006). Uptake of sediment-CO$_2$ is only significant in the functional group of isoetids because of their large root-allocation, well-developed lacunae and short stature (Raven et al. 1988; Madsen et al. 2002). In addition to enabling the exploitation of sediment-CO$_2$, the lacunae facilitate transport of O$_2$, produced in the leaves, to the roots.

Many submerged plants have evolved thin or dissected leaves – resulting in a large surface:volume ratio – and have chloroplasts positioned in the outermost cell layers of the leaf (Madsen and Sand-Jensen 1991) which may help to minimise transport limitation. Thin leaves may also match low areal-amounts of photosynthetic machinery to low areal-rates of inward carbon flux (Black et al. 1981). Although these anatomical and morphological adaptations may have evolved to reduce inorganic carbon limitation, their evolution could have been triggered by other environmental factors such as removal of water-shortage, response to shear-stress from water-flow and availability of nutrients or light.

Amelioration strategies

Physiological or biochemical adaptations, as opposed to the anatomical and morphological adaptations, most likely evolved to ameliorate inorganic carbon limitation. They are generally referred to as carbon concentrating mechanisms (CCMs) because they increase the concentration of
inorganic carbon around the active site of Rubisco (Bowes and Salvucci 1989; Madsen and Sand-Jensen 1991; Maberly and Madsen 2002; Raven et al. 2008).

CCMs are not ubiquitous in freshwater plants because their operation has both costs and benefits. The benefits may include increased carbon-uptake, reduced photorespiration, reduced photoinhibition and increased nutrient-use efficiency (Bowes and Salvucci 1989; Madsen and Sand-Jensen 1991; Raven et al. 2008). The photorespiration-cycle is an energy- and carbon-expensive mechanism, since one CO₂ equivalent is lost, when two O₂ equivalents are fixed by Rubisco.

Photorespiration is enhanced by a high [O₂]:[CO₂] ratio near the active site of Rubisco and thus by CO₂ depletion, high O₂ concentrations and high temperature (Bowes 1991). By increasing the internal CO₂ supply and thereby increasing the [CO₂]:[O₂] ratio internally, the operation of the CCM can reduce photorespiration. Due to the higher internal CO₂ supply the CCM may also alleviate photoinhibition, since surplus energy may be dissipated via photosynthetic carbon assimilation (Osmond et al. 1993; White et al. 1996). Theoretically, the CCM, which increases the concentration of CO₂ around Rubisco, may increase the nutrient-use efficiency because of higher efficiency of the carboxylase activity of Rubisco (Ehleringer and Monson 1993). Higher carboxylase efficiency could reduce the Rubisco needed for a given amount of carbon fixation and thereby result in higher nitrogen-use efficiency (NUE). However, bicarbonate use is not increased under nutrient-deficient conditions, but rather depends on a sufficient nutrient-supply (Baatrup-Pedersen 1996). Similarly, for Littorella uniflora the relation between CAM and photosynthetic NUE could not be verified experimentally, although CAM was still present at low nitrogen concentrations (Baatrup-Pedersen and Madsen 1999).

On the flip side of the CCM-coin are the extra costs in terms of energy and nutrient demand needed to produce, maintain and run the CCM apparatus in addition to the basic costs of the C₃-pathway into which it is an accessory (Madsen and Sand-Jensen 1991; Lütge 2002; Madsen et al.)
2002). Investment of nitrogen in various CCM enzymes or transport proteins may have a negative impact in a low-nutrient habitat. In low-light habitats or locations, the energetic cost of the CCM may be significant (Raven and Spicer 1996), since ATP and NADPH production limit photosynthesis at low light. However, in high-light habitats the energetic costs of the CCM are most likely irrelevant – or potentially affect plant performance positively by reducing photoinhibition.

The amelioration mechanisms include 1/ bicarbonate (HCO$_3^-$) uptake 2/ C$_4$-fixation and 3/ Crassulacean Acid Metabolism (CAM).

HCO$_3^-$ uptake

Uptake of bicarbonate from the bulk medium into the cell (HCO$_3^-$ use) appears favourable in most freshwaters since its concentration exceeds that of CO$_2$ at pH values higher than ca. 6.4 (Maberly and Spence 1983; Vestergaard and Sand-Jensen 2000; Madsen and Sand-Jensen 2006). However, the affinity for bicarbonate is lower than the CO$_2$ affinity and thus CO$_2$ is the preferred inorganic carbon source when concentrations of HCO$_3^-$ and CO$_2$ are similar (Bowes and Salvucci 1989; Maberly and Spence 1989; Prins and Elzenga 1989). Bicarbonate use is by far the most frequently observed physiological mechanism for increasing inorganic carbon uptake and has been reported in about 50% of the investigated submerged angiosperms (Maberly and Madsen 2002).

Transport of bicarbonate into the cell can occur directly via a HCO$_3^-$H$^+$ symporter or indirectly via acidification of the boundary layer, thereby shifting the chemical equilibrium towards CO$_2$, which thereafter can diffuse into the cell (Prins and Elzenga 1989). Bicarbonate users have a competitive advantage and are generally most abundant in alkaline habitats, where pH and the absolute concentration of bicarbonate often are high (Maberly and Spence 1983; Vestergaard and Sand-Jensen 2000). In addition to energy costs, species that are able to use bicarbonate have a lower
affinity for CO₂ than species restricted to CO₂ alone (obligate CO₂-users) (Maberly and Madsen 1998; Madsen and Maberly 2003), which may impose an ecological cost at some sites.

4

4 C₄-metabolism

4

4 In addition to bicarbonate use, two inorganic carbon uptake mechanisms exist in freshwater plants that are based on C₄-metabolism. They depend on carbon fixation via the enzyme phosphoenol pyruvate carboxylase (PEPcase) either during the day (C₄) or during the night (CAM), involving either a spatial (C₄) or temporal (CAM) separation of inorganic carbon fixation through PEPcase and Rubisco (Bowes and Salvucci 1989; Ehleringer and Monson 1993; Keeley and Rundel 2003). The light-dependent PEPcase fixation of inorganic carbon in freshwater plants is analogous to the terrestrial C₄ photosynthetic pathway, but in contrast to terrestrial C₄ – which is normally expressed constitutively – freshwater C₄ is a plastic mechanism, induced under inorganic carbon limitation (Van et al. 1976; Salvucci and Bowes 1981; Reiskind et al. 1997). Furthermore, freshwater C₄ plants do not have Kranz-anatomy like most terrestrial C₄ plants. However, single-cell C₄-metabolism has recently been observed in terrestrial plants and may be an overseen phenomenon in freshwater plants (Edwards et al. 2004). C₄-metabolism appears to be relatively rare in freshwater plants, it has been observed in Hydrilla verticillata, Egeria densa (Bowes and Salvucci 1989; Madsen and Sand-Jensen 1991; Casati et al. 2000) and a number of freshwater grasses (Keeley 1998a, Ueno et al. 1988).

4 CAM

4 CAM is primarily known from desert plants as an adaptation to enhance water conservation (Kluge and Ting 1978; Osmond 1978; Winter and Smith 1996; Cushman 2001; Dodd et al. 2002, Silvera et al. 2010). It enables CO₂ to be taken up and fixed via night-time PEPcase activity and the
C₄ product stored in the cell vacuole as malate, causing a decline in cell-sap acidity. During the day, malate is decarboxylated, resulting in de-acidification and the released CO₂ is fixed by Rubisco and enters the Calvin cycle (Fig. 1; Groenhof et al. 1988; Winter and Smith 1996; Nimmo 2000).

However, CAM is also present in some freshwater plants where it serves a different function. Unlike terrestrial CAM plants, where stomata are closed during the day, freshwater CAM plants have no stomata and CO₂ can potentially be taken up 24 hours a day (Osmond 1978; Keeley 1998b). In freshwater plants, the inorganic carbon source for PEPcase fixation (HCO₃⁻) is derived from endogenous (respiratory CO₂) or exogenous sources (CO₂ from the bulk water or sediment-CO₂). Use of HCO₃⁻ as the inorganic carbon specimen being transported into the cell has not been observed in aquatic CAM plants (Maberly and Madsen 2002). In addition to minimising or preventing respiratory carbon loss (potentially a positive carbon gain) in the night, freshwater CAM plants are able to concentrate CO₂ internally during the decarboxylation phase and thus CAM functions both as a carbon conserving mechanisms and a CCM (Keeley 1998b; Madsen et al. 2002).

Freshwater CAM has been observed in five freshwater genera, *Isoetes*, *Littorella*, *Crassula*, *Sagittaria* and *Vallisneria* (Keeley 1998b) and is thus present in isoetids and elodeids.

Habitats with CAM plants

For CAM (and other CCMs) to be of ecological benefit, the plants with CAM must be growing in a habitat with limited inorganic carbon. One such low-carbon habitat is soft-water lakes, which are characterised by relatively low pH, very low total inorganic carbon concentration and bicarbonate concentrations that are too low to support bicarbonate-use. Here, plants with CAM are likely to have an ecological advantage, since inorganic carbon can be taken up throughout the day increasing carbon gain and thus enhancing the chance of survival. In agreement with this, several CAM species – including the isoetids *Isoetes spp.* and *Littorella uniflora* – belong to the plant
community typical of oligotrophic, soft-water lakes (Sand-Jensen and Søndergaard 1997; Keeley 1996; Madsen et al. 2002).

CAM may not only raise the competitive ability of the plants in soft-water lakes, but also in habitats with large fluctuations in the CO₂ concentration. Large daily CO₂ variations occur in low- and high alkaline lakes with a high productivity, thereby giving rise to low daytime and high night-time CO₂ concentrations in the open water (Maberly 1996) and especially in weed beds (Van et al. 1976). In these lakes with large CO₂-fluctuations, plants with CAM are 1/ able to take up inorganic carbon in the night, where the CO₂ concentration is higher and where competition for inorganic carbon with non-CAM species is eliminated and 2/ less dependent on external CO₂ in the daytime – and thus CAM confers a competitive advantage upon these species relative to non-CAM species in these habitats. In accordance with this, isoetid-CAM species are often found in ‘seasonal-pools’, while CAM species such as the invasive *Crassula helmsii* can be found in high-alkaline, more eutrophic lakes (Keeley 1996, 1999; Dawson and Warman 1987). Thus, even in high-alkaline habitats with a relatively high inorganic carbon concentration during the daytime, CO₂ may be limiting and thus make the possession of CAM favourable. However, the reason why high-alkaline lakes are not a typical CAM-plant habitat is likely to be caused by the direct competition with bicarbonate-users, which can take advantage of the high bicarbonate concentration and tend to be larger, faster-growing species.

CAM plasticity

CAM is a plastic mechanism in freshwater plants which is consistent with its function as a carbon conserving and carbon concentrating mechanism: the regulation ensures that resource-allocation to energy- and nutrient-demanding uptake mechanisms is avoided when inorganic carbon does not limit photosynthesis (Bowes and Salvucci 1989; Maberly and Madsen 2002; Madsen et al.
The regulation can involve long-term acclimation over weeks or months or short-term responses (during the 24 hour cycle) to external conditions and has been documented in isoetids and elodeids.

Long-term regulation of CAM

Regulation of CAM is dependent on various environmental parameters e.g. light, CO₂, temperature, nutrients and water level (Aulio 1985; Madsen 1987a; Robe and Griffiths 1990; Hostrup and Wiegleb 1991; Klavsen and Maberly 2009; 2010, Klavsen unpubl. data). However, the outcome of regulation of CAM is dependent on the interaction between these parameters (Table 1). Light and CO₂ interact in the regulation of CAM, and for the invasive elodeid, C. helmsii, low light causes down-regulation, independent of the CO₂ concentration (Klavsen and Maberly 2010) (Table 1). For the isoetid L. uniflora, down-regulation of the CAM apparatus has also been observed at low light, although in this species down-regulation depends on the CO₂ availability during growth, with low CO₂ grown plants not reducing CAM activity (Madsen 1987a; Klavsen unpubl. data) (Table 1). In a low light regime, and particularly at moderate or high CO₂, CO₂ becomes saturating for photosynthesis which most likely triggers down-regulation of CAM. Down-regulation of CAM at low light is ecophysiologically favourable because it removes the energy cost associated with maintaining and running the CAM cycle (Raven and Spicer 1996). Maintenance of the CAM apparatus in a low light regime may also be too costly in terms of nutrients. When CAM is not needed to enhance inorganic carbon uptake, nutrients associated with CAM can be allocated to acquisition of more limiting resources such as investments in light harvesting.

At light intensities saturating for photosynthesis and low CO₂ availability, CAM is generally up-regulated (Madsen 1987a; Robe and Griffiths 1990; Klavsen and Maberly 2010). At saturating light, CAM is generally decreased with raised CO₂ (Table 1). However, the CO₂ concentration, at
which down-regulation is triggered, is very different in *C. helmsii* and *L. uniflora*. The reason for
the differences in the absolute CO₂ concentrations causing down-regulation are likely to be related
to the CO₂ concentration needed to saturate photosynthesis, which for isoetids is relatively high
(half-saturation around 500-600 µmol L⁻¹ CO₂) (Madsen et al. 2002). For *C. helmsii* the half-
saturation concentration of CO₂ is lower and was estimated to be ca. 100 µmol L⁻¹ from the data
from Klavsøn and Maberly (2010). Regarding *L. uniflora* contrary results on CAM regulation at
high light have been found, since CAM down-regulation is not triggered by high CO₂ per se
(Madsen 1987a, Baatrup-Pedersen and Madsen 1999), thereby emphasising the interactive effect of
environmental parameters on CAM.

In agreement with light affecting the regulation of CAM, CAM varies with season and thus light
intensity (Boston and Adams 1985; Klavsøn and Maberly 2009). Indirectly, seasonal regulation
indicates regulation of CAM by temperature in *L. uniflora* and *C. helmsii*. For *L. uniflora* regulation
of CAM by temperature has been observed, since *L. uniflora* appears to optimize CAM at or close
to ambient temperature (Klavsøn unpubl. data). This implies that *L. uniflora* performed better at low
than high temperature in the winter months (Q₁₀ of 0.6-0.7). In the summer, CAM was stimulated
by raised temperature and Q₁₀ was 1.4-1.8 (Klavsøn unpubl.). In contrast to terrestrial CAM plants,
the seasonal variation in CAM cannot easily be determined by differences in δ¹³-C, since the δ¹³-C
values in aquatic plants vary depending on factors such as inorganic carbon source and diffusion
resistance (Keeley and Sandquist 1992).

The seasonal regulation of CAM by light and temperature is in agreement with CAM acting as a
CCM to enhance inorganic carbon uptake under environmental conditions with inorganic carbon
depletion. In the summer – where CAM is highest (Fig. 3, Boston and Adams 1985; Klavsøn and
Maberly 2009) – high temperature and irradiance as well as long daylength enhance the
photosynthetic rate and the overall daily photosynthesis and thus increase the inorganic carbon
demand and the need for CAM. The need for an up-regulated CCM is further accentuated by a potentially higher photorespiration because of higher temperature in summer.

Regulation by nutrients appears to be of minor importance, although nutrient-depletion lowers CAM in *L. uniflora* grown at high light (Madsen 1987a; Robe and Griffiths 1994; Bastrup-Pedersen and Madsen 1999). This is consistent with the higher nutrient demand in the production and maintenance of the CAM apparatus, including CAM-related enzymes and tonoplast transporters.

Theoretically, but not experimentally verified (Bstrup-Pedersen and Madsen 1999), a higher nitrogen use efficiency due to the operation of CAM may have balanced the extra nitrogen cost.

Freshwater CAM plants growing in the near-shore area of the littoral zone or in seasonal pools can be exposed to air. In the water-land transition, CAM is often fully or partially down-regulated (Keeley et al. 1983; Keeley and Busch 1984; Aulio 1985; Keeley 1999; Robe and Griffiths 2000). This is explained by higher inorganic carbon availability caused by the 10³ times higher diffusion rate in air compared to water. Contemporary with CAM being down-regulated, *L. uniflora* also acclimates to the aerial life by traits such as low lacunal volume, high Rubisco activity and production of stomata, which enables the terrestrial life-form to make use of CO₂ from the air and makes the plant less dependent on CO₂ from the sediment and from CAM. However, contrary results on CAM regulation in the shift from water to land occur, since CAM is not always down-regulated in the land-form (Farmer and Spence 1985; Aulio 1986) and exposure to atmospheric CO₂ *per se* therefore does not trigger down-regulation. The factor triggering CAM regulation in the land-form may be water-vapour concentration, thereby down-regulating CAM, when the water-vapour concentration is low (Aulio 1986). However, since the land-form of *L. uniflora* can still rely on sediment CO₂ and dark CO₂ uptake via CAM (Nielsen et al. 1996), the CO₂ concentration experienced by the plant may not differ from the CO₂ experienced under water – and this may be the reason for the lack of CAM down-regulation.
Short-term regulation of CAM

Light and CO₂ does not only affect the diel CAM cycle in the long term (after an acclimation period), but also in the short term and thus on a daily basis and this effect has been observed in both laboratory and field (Keeley et al. 1983; Keeley and Busch 1984; Boston and Adams 1985; Madsen 1987a; Hostrup and Wiegleb 1991; Robe and Griffiths 1990; Rattray et al. 1992; Klavsen and Maberly 2010; Klavsen unpubl.). Generally, malate decarboxylation appears to be dependent on the demand for inorganic carbon relative to its supply rate during the day. Thus, it has been found that high CO₂ availability and/or reduced light intensity, e.g. caused by an overcast sky, affect the amount of malate being decarboxylated, thereby resulting in lower decarboxylation rates – or complete inhibition of decarboxylation – and/or higher minimum acidity level at the end of the light period. Contrary, a high photosynthetic carbon-demand increases the decarboxylation rate and lowers the minimum acidity level obtained in the evening (Boston and Adams 1985; Madsen 1987b; Robe and Griffiths 1990; Rattray et al. 1992; Klavsen and Maberly 2010). However, in C. helmsii grown under low and high CO₂, decarboxylation rates did not vary between CO₂ treatments, but the decarboxylation period was longer and the minimum acidity level lower for low CO₂ grown plants (Klavsen and Maberly 2010). In L. uniflora the rate of decarboxylation was generally high under low external CO₂ concentration, but could be fully inhibited by high CO₂ (Madsen 1987c). This indicates that CAM in L. uniflora operates under most natural CO₂ conditions, although the long-term regulation of CAM, e.g. due to seasonal changes, will affect the actual CAM activity (Boston and Adams 1985; Klavsen and Maberly 2009)

Light not only affects decarboxylation, but also affects photosynthesis and eventually the pool of starch being synthesised during the day. In the night, starch is broken down in glycolysis and serves as the precursor for phosphoenol pyruvate (PEP) – the acceptor-molecule for night-time fixation of
inorganic carbon via PEPcase (see Fig. 1) (Kluge and Ting 1978; Osmond 1978; Winter and Smith 1996). Thus, the light intensity the previous day can potentially have implications for malate (and thereby acidity) accumulation in the night. This indirect effect of light on CAM has been observed in \textit{C. helmsii}, where high concentration of CO$_2$ only had significant effect on the acidity build up in the night after exposure to high daytime light intensity (Klavsen and Maberly 2010). It should be noted that in \textit{I. bolanderi} the starch pool is not always sufficient to account for the malate build-up in the night (Keeley et al. 1983), indicating a role for another carbohydrate precursor-molecule or alternatively that starch production occurs from other carbohydrates simultaneously with starch breakdown.

Decarboxylation and O$_2$:CO$_2$ ratios

The regulatory pattern of CAM indicates that CAM functions as a CCM in freshwater macrophytes. However, for CAM to act as an effective CCM, the photosynthetic rate should at least balance the rate of decarboxylation, since CO$_2$ derived from CAM could otherwise be lost. In \textit{L. uniflora} this was verified experimentally, since less than 2\% of the CO$_2$ resulting from daytime decarboxylation was lost (Smith et al. 1985; Madsen 1987b) and since the photosynthetic rate exceeds the decarboxylation rate in both \textit{L. uniflora} and \textit{C. helmsii} (Klavsen and Madsen 2008; Klavsen and Maberly 2009). In agreement with this, photosynthesis and CAM have been shown to be positively coupled in \textit{L. uniflora} (Klavsen and Madsen 2008).

For CAM to operate efficiently as a CCM, and thus for decarboxylation to influence the rate of photosynthesis positively, it would be anticipated that the O$_2$ evolution relative to the external CO$_2$ uptake (and thus the O$_2$:CO$_2$ ratio) will be well above 1 during the decarboxylation phase. This was found for \textit{L. uniflora} and \textit{I. lacustris} (Madsen 1987b), where the O$_2$:CO$_2$ ratio was up to 3.5 during decarboxylation (Fig. 4). If the oxygen evolution does not increase considerable and thus give rise
to O\textsubscript{2}:CO\textsubscript{2} ratio above 1 during decarboxylation this may be because either 1/ external CO\textsubscript{2} is so high that decarboxylation is inhibited or 2/ the high internal CO\textsubscript{2} obtained during decarboxylation inhibits external CO\textsubscript{2} uptake. This implies that the CCM is working less efficiently and external CO\textsubscript{2} will not be taken up 24 hours a day, thereby minimising C-gain. For \textit{C. helmsii} no considerable change in oxygen evolution was observed during decarboxylation (Fig. 4). This may question the concept of CAM as a CCM in this species. However, since decarboxylation appears to be delayed in \textit{C. helmsii}, maybe due to a circadian rhythm or daytime C4 activity, the plant may benefit from CAM, since decarboxylation occurs around midday, where the inorganic carbon demand is likely to be greatest (Klavs\textsc{sen} and M\textsc{aberly} 2010). Furthermore, CAM may help conserve carbon, since respiratory CO\textsubscript{2} can be re-captured in the night.

\textbf{CAM in relation to C-gain}

For CAM to be of ecological significance as a carbon conserving mechanism, CAM must first of all be present in the field. Although the \textit{in situ} CAM activity is dependent on long term (e.g. season) and short term regulation (e.g. day-to-day changes in, for example, irradiance), significant \textit{in situ} CAM activities have been found in several aquatic CAM species (Fig. 3) (Keeley et al. 1983; Boston & Adams 1985; Rattray et al. 1992; Klavs\textsc{sen} and M\textsc{aberly} 2009). In addition to CAM being present under natural conditions, CAM must contribute considerably to the carbon gain to act as a carbon conserving mechanism. For \textit{L. uniflora}, CAM undoubtedly contributes in a net positive carbon gain, since decarboxylation does not inhibit the external inorganic carbon uptake (resulting in large O\textsubscript{2}:CO\textsubscript{2} ratios (Fig. 4)). Due to the plasticity of CAM, the influence of night-time CO\textsubscript{2} uptake on daily CO\textsubscript{2} uptake in photosynthesis can vary significantly depending on the environmental conditions. Thus, the contribution from CO\textsubscript{2} derived from CAM to daily photosynthesis varies from 0 to 95%. The latter estimate of the contribution from CAM was found
for *L. uniflora* and *I. lacustris* at an external CO$_2$ concentration of 30 μmol L$^{-1}$. At higher external CO$_2$ concentrations the night-time CO$_2$ uptake via CAM in relation to daily photosynthetic carbon uptake was reduced to 34-38% (Madsen 1987b) due to higher uptake of external CO$_2$ and potentially partial inhibition of decarboxylation. In *L. uniflora* grown at low light, the contribution from CAM-derived CO$_2$ to photosynthesis was high (62%), but lower than in plants grown at high light (81%) (Robe and Griffiths 1990). Also in *I. howellii* ca. 30-50% of daily CO$_2$ uptake in photosynthesis was estimated to derive from night-time uptake through CAM (Keeley and Busch 1984). Another estimate of the contribution from CAM to the carbon budget was made on *L. uniflora*, in which 40-55% of the annual carbon gain derived from CAM (Boston and Adams 1985, 1986).

For the elodeid *C. helmsii*, however, no oxygen peak is observed during decarboxylation (Fig. 4)) and thus the benefit from CAM is in principle lost. However, CAM may still be favourable to the C-gain of the plant, if the external CO$_2$ concentration is low. In *C. helmsii* the *in situ* contribution from CAM to daily photosynthesis varied from 18 to 42%, depending on depth of growth and time of year (Klavsen and Maberly 2009). Most likely these estimates are valid as contributions from CAM to the daily carbon balance, since almost all respiratory CO$_2$ in the night was refixed via CAM and since roots make up a very small part of the total plant biomass in this species. Thus, in natural populations of freshwater CAM species, CAM appears to be of high ecophysiological significance for the carbon balance. These estimates are in agreement with estimates for terrestrial facultative CAM plants, in which 10 to nearly 100% of the carbon fixation in daily photosynthesis derive from CAM (Winter and Holtum 2002; Lüttge 2004).

Night time CO$_2$ uptake
CAM potentially enables the plants to take up inorganic carbon 24 hours a day, although this is probably not realised in all species (Keeley 1998b; Madsen et al. 2002; Klavsen and Maberly 2010). Even though external CO₂ is not taken up at night, CAM can still be considered a carbon conserving mechanism, since re-capture of respiratory endogenous produced CO₂ through the operation of CAM can reduce or eliminate C-loss in the night and thereby influence C-gain positively (Keeley and Busch 1984; Madsen 1987c; Robe and Griffiths 1990; Madsen et al. 2002). The contribution of re-captured respiratory CO₂, otherwise lost to the surroundings, to the total CO₂ uptake via CAM is dependent on the external CO₂ concentration, but often makes up a substantial part of the night-time inorganic carbon fixation. For *L. uniflora* between 30 and 99% of night-time CO₂ uptake via CAM derives from CO₂ produced in respiration (Richardson et al. 1984; Smith et al. 1985; Madsen 1987b,c; Boston et al. 1987; Robe and Griffiths 1990) and for *I. howellii* values of 50-66% have been found (Keeley and Busch 1984). Since respiratory CO₂ under natural conditions rarely makes up the total night-time CO₂ uptake, this implies that CO₂ uptake though CAM is at least partly dependent on the external CO₂ availability, which potentially can lead to inorganic carbon limitation at night (Klavsen and Maberly 2010). However, the length of the night period – although not realised under field conditions – can compensate for low external CO₂ availability (Keeley and Bowes 1982; Madsen et al. 2002). Thus, plants relying on CO₂ primarily derived from endogenous sources can reach the same maximum CAM activity as plants incubated in a high CO₂ medium.

Respiratory CO₂ can potentially make up the entire night-time carbon uptake through CAM under low external CO₂ in both *C. helmsii* and *L. uniflora*, since the rate of respiration can exceed the rate of CO₂ uptake through CAM (assuming a constant CO₂ uptake in CAM, a constant respiratory rate and a respiratory quotient of 1) (Boston et al. 1987; Klavsen and Maberly 2010).

Conclusions
CAM is found in aquatic plants belonging to both the functional group of isoeetids and elodeids. In both types of CAM plants, CAM is regulated in relation to environmental cues – in agreement with CAM functioning as a CCM in aquatic plants. For both isoeetid CAM-species (Isoetes sp. and L. uniflora) and the elodeid C. helmsii, CAM appears to be of high ecological importance, since inorganic carbon uptake via CAM contributes significantly to the carbon budget. For C. helmsii – but not the isoeetid CAM-plants – external inorganic carbon uptake seems to be inhibited by decarboxylation, which will lower the significance of CAM. However, CAM may still help conserve carbon, since respiratory CO₂ loss can be eliminated by re-fxation through PEPcase in the night. Furthermore, for C. helmsii, CAM may be beneficial when the external concentration of CO₂ in the water is low.

Acknowledgements

This work was supported by a grant to SKK from the Danisch Research Council for independent research: Natural Sciences.
References

uniflora (L.) Aschers. New Phytol 100:533-536

Ann Bot 58:273-275

Ph.D. Thesis, Aarhus University

Bastrup-Pedersen A, Madsen TV (1999) Interdependence of CO₂ and inorganic nitrogen on
crassulacean acid metabolism and efficiency of nitrogen use by Littorella uniflora (L.) Aschers.
Plant Cell Environ 22:535-542

submerged freshwater macrophytes. New Phytol 89:557-568

Boston HL, Adams MS (1985) Seasonal diurnal acid rhythms in two aquatic Crassulacean acid
metabolism plants. Oecologia 65:573-579

Boston HL, Adams MS (1986) The contribution of crassulacean acid metabolism to the annual
productivity of two vascular plants. Oecologia 68:615-622

Boston HL, Adams MS, Pienkowski TP (1987) Utilization of sediment CO₂ by selected north
American isoetids. Ann Bot 60:485-494

RMM (Ed.). Plant life in aquatic and amphibious habitats. Blackwell Scientific Publications,
Oxford, pp.79-98

Plant Cell Environ 14:795-806

Madsen TV (1987b) Interactions between internal and external CO₂ pools in the aquatic CAM plants Littorella uniflora (L.) Aschers and Isoetes lacustris L.. New Phytol 106:35-50

Madsen TV, Maberly SC (2003) High internal resistance to CO$_2$ uptake by submerged macrophytes that use HCO$_3^-$: measurements in air, nitrogen and helium Photos Res 77:183-190

Winter K, Holtum JAM (2002) How closely do the δ13C values of Crassulacean Acid Metabolism plants reflect the proportion of CO₂ fixed day and night? Plant Physiol 129: 1843-1851

1 Table 1. Regulation of CAM in aquatic CAM plants. Means of available data are presented. ‘-‘ indicates ‘not determined’. Plants have been growing and acclimated to conditions of CO2 and light according to the ones given in the table. Actual CAM was measured as the diurnal change in acidity under growth conditions. Potential CAM was determined as the maximum diurnal acidity change: in the daytime plants were placed in low CO2 (ca. atmospheric equilibrium) and high light (thereby increasing decarboxylation) and in the night plants were incubated in a medium with high CO2 (>500 mmol m⁻³) (thereby increasing night-time CO2 uptake via CAM).

<table>
<thead>
<tr>
<th>Species</th>
<th>Free CO2 (µmol L⁻¹)</th>
<th>Light (µmol m² s⁻¹)</th>
<th>Temp. (°C)</th>
<th>Actual CAM (µeq g⁻¹ FW)</th>
<th>Potential CAM (µeq g⁻¹ FW)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. uniflora</td>
<td>60</td>
<td>40</td>
<td>15</td>
<td>35</td>
<td>65</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>200</td>
<td>15</td>
<td>50</td>
<td>125</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>450</td>
<td>15</td>
<td>66</td>
<td>87</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>200</td>
<td>15</td>
<td>60</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1000</td>
<td>15</td>
<td>52</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>300</td>
<td>18-28</td>
<td>50</td>
<td>55</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>200</td>
<td>15</td>
<td>50</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>1000</td>
<td>15</td>
<td>46</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>40</td>
<td>15</td>
<td>15</td>
<td>60</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>200</td>
<td>15</td>
<td>90</td>
<td>130</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>300</td>
<td>18-28</td>
<td>140</td>
<td>180</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>1000</td>
<td>15</td>
<td>46</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>43</td>
<td>15</td>
<td>-4</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>450</td>
<td>15</td>
<td>70</td>
<td>79</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5500</td>
<td>450</td>
<td>15</td>
<td>-2</td>
<td>36</td>
<td>1</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>50/1000<sup>b</sup></td>
<td>50</td>
<td>19-20</td>
<td>35</td>
<td>-</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>50/1000<sup>b</sup></td>
<td>300</td>
<td>19-20</td>
<td>112</td>
<td>-</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>80/600<sup>c</sup></td>
<td>350</td>
<td>18-19</td>
<td>110</td>
<td>-</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>20/1000<sup>c</sup></td>
<td>50</td>
<td>18-19</td>
<td>60</td>
<td>-</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td><i>C. helmsii</i></td>
<td>3</td>
<td>200</td>
<td>20</td>
<td>14</td>
<td>70</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>15</td>
<td>-</td>
<td></td>
<td>83</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>150</td>
<td>15</td>
<td>-</td>
<td></td>
<td>109</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>30</td>
<td>20</td>
<td>15</td>
<td>23</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>150</td>
<td>20</td>
<td>30</td>
<td>44</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>20</td>
<td>-2</td>
<td>12</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>230</td>
<td>20</td>
<td>35</td>
<td>60</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>23</td>
<td>20</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>230</td>
<td>20</td>
<td>18</td>
<td>30</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>40</td>
<td>15</td>
<td>-</td>
<td>19</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>150</td>
<td>15</td>
<td>-</td>
<td>12</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

2 ^aestimate based on an irradiance of 10-16 mol photons m⁻² day⁻¹
3 ^bplants were grown in natural sediments. The free CO₂ concentrations of the water and interstitial water were 50 and 1000 µmol L⁻¹ respectively.
4 ^cplants were grown in natural sediments. The free CO₂ concentrations of the water and interstitial water were either 20 or 80 and 600 and 1000 µmol L⁻¹ respectively.
Figure captions

Fig. 1. The Crassulacean Acid Metabolism (CAM) cycle. Dark CO₂ fixation occurs through the enzyme, PEPcase, and the sources of inorganic carbon are either of endogenous origin (respiration) or of exogenous origin (water or sediment-CO₂). The grey area represents reactions occurring in the dark, while the white area contain daytime reactions. The round circle symbolises the cell vacuole. Modified from Winter and Smith (1996).

Fig. 2. *In situ* CAM activity measured in the isoetids *Isoetes lacustris*, *I. bolanderi*, *I. kirkii* and *Littorella uniflora* and in the elodeid *Crassula helmsii*. Data are modified from Keeley *et al.* (1983), Boston and Adams (1985), Rattray *et al.* 1992 and Klavsen and Maberly (2009).

Fig. 3. Rates of inorganic carbon uptake and oxygen evolution in the isoetids *Littorella uniflora* (left panel) and *Isoetes lacustris* (middle panel) and oxygen evolution in the elodeid *Crassula helmsii* (right panel). *Crassula helmsii* was grown and photosynthesis measured at low CO₂ (22 mmol m⁻³), but decarboxylation did not start until after 2 hours after light onset. High CAM activity results in high O₂:CO₂ ratios (*L. uniflora* and *I. lacustris*), if external inorganic carbon uptake is not inhibited by decarboxylation. Data modified from Madsen (1987a) and Klavsen and Maberly (2010).