
tional Quiet Days’ as determined by the
International Service of Geomagnetic Indices.

A further two time series, and , were
constructed by computing the difference between
successive sample in the original and time
series. (Fig. 1)

Our analysis was performed on the four time
series for each of the 29 observatories.

dD/dt dH/dt

D H

RAS National Astronomy Meeting
Glasgow, Scotland April 2010
Session: MIST Science Session P18

Predicting Extremes in European Geomagnetic Activity
Ewan Dawson Sarah Reay, Alan Thomson

British Geological Survey, West Mains Road, Edinburgh EH9 3LA, United Kingdom

(ewan@bgs.ac.uk),

Abstract

Acknowledgments References

We would like to acknowledge scientific institutes in Europe for providing their magnetic data via INTERMAGNET and the World
Data Centres. Colleagues at BGS are also thanked for comments on this work.

Coles, S., 2004 An Introduction to Statistical Modeling of Extreme Values, Springer-Verlag, London, ISBN 1-852334-59-2.
Gilleland, E and Katz, R. W., 2005. Tutorial for the Extremes Toolkit: Weather and Climate Applications of Extreme Value Statistics,

t.
R Development Core Team, 2008. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna,

Austria, ISBN 3-900051-07-0, .

http://www.assessment.ucar.edu/toolki

www.R-project.org

Results

Rapid variations in the geomagnetic field constitute a natural hazard, e.g. for naviga-
tion and to power grids and pipeline networks.  In order to better allocate resources
towards mitigating these risks, we must be able to model the recurrence of extremes of
geomagnetic activity over many years.

However, the data we have from which to develop such a model, in the form of continu-
ous series of 1-minute samples of the geomagnetic field, typically stretch back less
than 40 years.  Without a longer record, it is difficult to construct a clear picture of the
magnitude and frequency of extremes in geomagnetic activity.

We therefore apply the statistical technique of ‘extreme value analysis’ on a number of
decades of geomagnetic data recorded at observatories across Europe, and in doing
so arrive at an estimate of the maximum field strength and time-variation that might be
observed once in every 100 and 200 years. Threshold Selection

De-clustering

Determine GPD parameters

Before fitting a GPD curve to the data, we
first define the threshold which determines
which values are to be considered
extreme. All data points below this
threshold are discarded.
An appropriate threshold for each of the
variables was determined by plotting the
scale and shape parameters of the
resulting GPD for a range of thresholds.
The ideal threshold should be low enough
to allow for a meaningful number of
samples, but high enough that the modified
scale parameter is constant and the shape
parameter linear (within error-margins),
above the chosen threshold . (Fig 2).
We found that setting the threshold at the
98.6th percentile was reasonable for each
variable at most observatories.

Clusters of extreme values occur during
geomagnetic storms. This results in
statistical dependency in the data, which
must be eliminated to meet the
assumptions of the model. We identified
clusters by looking for extreme values that
were not separated by at least one day.
Only the peak value from each cluster was
retained.

Applying the threshold and de-clustering
reduces the data set by more than 99.9%.
The remaining data are fitted to a GPD
using the ‘R’ statistics software, along with the ‘eXtremes’ package. The model can
be plotted as a ‘return-level plot’ (Fig 3).

Data Preparation

Extreme Value Theory

Extreme Value Analysis

Future Work

We use a Generalised Pareto Distribution (GPD) to describe the tail of the distribution
of geomagnetic activity (see e.g. Coles, 2004). The GPD is a unification of the Gumbel,
Frechet and Weibul distributions, widely used in the scientific literature when modelling
extremes in variables.  By fitting a GPD curve to the extreme values in our data set, we
can make estimates about the probability of geomagnetic conditions more extreme
than those in our data set, and thus provide estimates of the largest extremes likely to
be observed over a given period.

To accurately characterise the probability of extreme values, we must exclude all non-
extreme samples from our data. This can be achieved using a ‘point over threshold’
approach, where some value is chosen as a threshold for extreme geomagnetic
activity.

There are some assumptions implicit in the theory behind the GPD which must be
examined: namely that the data are stationary (show no time-dependancy) and the
probablility of a particular sample exceeding the threshold is not dependant on the
value of previous samples; that is, the data are independent.

Clearly, geomagnetic data are not independent; storms lasting several hours are likely
to produce a number of extreme values, which cannot be considered to be
independent of one-another. This may be dealt with through de-clustering the data; this
technique is described later.

Neither are the data stationary; the geomagnetic field exhibits cyclic behaviour with
many periods from days to years. However, we assume there to be no significant time-
dependance on the scale of centuries and that any non-stationarity does not affect the
results at these time scales.

One-minute geomagnetic time series of (horizontal field) and (declination) were
downloaded from the World Data Centre for Geomagnetism in Edinburgh
( ) for 29 European observatories.

The observatories were chosen to provide a representative spread of locations across
the continent, covering a range of magnetic latitudes and for which there exists contin-
uous data spanning a number of years.

From and , we computed time series of the variations from quiet levels due to the
influence of the external field. These were computed for each observatory by remov-
ing the quiet mean level, which was established for each month from the five ‘Interna-
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For each observatory we have computed the peak
variation and rate-of-change predicted by the GPD
to occur over periods of 100 and 200 years. The
results for two of the four time series are summa-
rised in Figure 4. The results from the UK obser-
vatories at Lerwick, Eskdalemuir and Hartland are
shown below.

This statistical analysis could be improved by, for
example, treating variables D (H) and dD/dt (dH/dt)
as components of the same multi-variate statistic.

It should also be possible to extend the application of
this technique to look at extremes in global activity
levels, dependant on data availability.
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Figure 3. Return periods for observed Hartland (upper) and
(lower) residuals (circles) and the fitted and extrapolated GPD (line) to
each of and . Vertical scales are degrees and nT respectively; hori-
zontal scale is time in years. The blue lines are the approximate sym-
metric +/-95% confidence limits from the fit of model to data, via an

function.
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eXtremes

Figure 2. Response of modified scale and shape parameters of
GPD function to threshold. The red arrows indicate a reasonable
choice of threshold for these data (residual D values at Eskdalemuir
observatory).

Figure 1. (nT), (degrees) residuals and one-minute rates-of-change for the
Hartland mid-latitude observatory (one minute data, 1983-2009). Daily maxima of
the absolute residuals are shown, as is sunspot number, to identify any solar cycle
dependence.

H D

0

5

10

15

20

25

30

35
Degrees

-30˚

-20˚

-10˚

0˚

10˚

20˚

30˚

40˚

30˚

40˚

50˚

60˚

70˚

80˚

-30˚

-20˚

-10˚

0˚

10˚

20˚

30˚

40˚

30˚

40˚

50˚

60˚

70˚

80˚

-30˚

-20˚

-10˚

0˚

10˚

20˚

30˚

40˚

30˚

40˚

50˚

60˚

70˚

80˚

0

1000

2000

3000

4000

5000
nT/min

-30˚

-20˚

-10˚

0˚

10˚

20˚

30˚

40˚

30˚

40˚

50˚

60˚

70˚

80˚

-30˚

-20˚

-10˚

0˚

10˚

20˚

30˚

40˚

30˚

40˚

50˚

60˚

70˚

80˚

-30˚

-20˚

-10˚

0˚

10˚

20˚

30˚

40˚

30˚

40˚

50˚

60˚

70˚

80˚

Figure 4. The measured maximum, 100-year return-level and 200-
year return-level, for (top) and d /dt (bottom). The +/-95% confi-
dence interval is represented by the translucent segments of each
column.
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D (residual) dD/dt H (residual) dH/dt

LER 100 year: 6.64

200 year: 7.59
(5.76, 7.51)

(6.57, 8.62)

100 year: 2.90

200 year: 3.32
(2.30, 3.50)

(2.63, 4.02)

100 year: 3441

200 year: 3808
(3133, 3749)

(3462, 4154)

100 year: 1297

200 year: 1582
(996, 1599)

(1208, 1956)

ESK 100 year: 4.53

200 year: 5.03
(3.57, 5.78)

(3.84, 6.46)

100 year: 3.42

200 year: 4.44
(1.86, 5.53)

(2.13, 7.28)

100 year: 4130

200 year: 4855
(3115, 5144)

(3641, 6069)

100 year: 1591

200 year: 1995
(1016, 2166)

(1261, 2729)

HAD 100 year: 3.08

200 year: 3.59
(2.29, 3.86)

(2.62, 4.52)

100 year: 0.73

200 year: 0.80
(0.58, 1.08)

(0.62, 1.19)

100 year: 2164

200 year: 2652
(1656, 2673)

(2016, 3288)

100 year: 434

200 year: 510
(294, 600)

(323, 710)


