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Impact of sediment-induced stratification and turbulence closures on
sediment transport and morphological modelling

Laurent O. Amoudry∗,a, Alejandro J. Souzaa

aNational Oceanography Centre, Joseph Proudman Building, 6 Brownlow Street, Liverpool, L3 5DA, UK

Abstract

Appropriate descriptions of turbulence are important in predicting sediment transport and seabed evolution.

We use here a three-dimensional model to investigate the impacts of sediment-induced stratification, erosion

parameterization, and turbulence closures on sediment transport and morphological simulations. The model

is implemented in the Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS),

which couples a hydrodynamic model to the General Ocean Turbulence Model (GOTM) and to a sediment

transport model. This sediment transport model calculates both suspended sediment concentrations and

bed evolution. A large number of turbulence closures can be tested and we focus on the methods used to

calculate the turbulent length scale and the stability functions. Different modelling scenarios are assessed

against experimental data of velocity profiles, suspended sediment concentrations, and trench migration in

a laboratory flume. Numerical results show that the processes investigated have little impact on the flow

velocity profiles, in spite of some differences on the bed shear stress. The only exception is the one-equation

turbulence closure, which can not reproduce velocity profiles appropriately. Sediment-induced stratification,

erosion parameterization, and turbulence closures can all have significant impacts on the suspended sediment

concentration and the bed evolution. Model-data comparisons are found to be particularly sensitive to the

method used to calculate the turbulent length scale.

Key words: sediment transport, morphological modelling, turbulence modelling, sediment-induced

stratification

1. Introduction

Nearshore and estuarine areas are under increasing pressures and forecasting tools are needed for man-

agement, regulation and coastal engineering. This in turn highlights the demand for ever evolving coastal

modelling systems. Since sediment transport is a key component in coastal interactions, models representing

the fate of particles in the coastal ocean and in estuaries as well as morphological evolution are essential in

order to conduct large scale coastal predictions.
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Morphological models applied to coastal problems have seen sustained development in the past few

decades. Two-dimensional depth-averaged (2DH) models, to which quasi three-dimensional concepts were

often added, were developed for river flows and then used in coastal areas (de Vriend et al., 1993). However,

such models have limited applicability and the three-dimensional flow structure has to be described in

complex situations. In particular, depth-averaged models do not describe adequately cases for which density

gradients are significant, which is common in estuarine and coastal waters (e.g., Burchard et al., 2008).

Progressively, along with the increase in available computer resources, fully three-dimensional flow models

have been developed. Gessler et al. (1999) reported such an effort for river morphology and three-dimensional

models have recently been introduced for coastal situations (e.g., Lesser et al., 2004; Warner et al., 2008).

These models have commonly been tested against several simple benchmark tests. An important one

considers the migration of a trench under a steady current and uses the experimental data of van Rijn (1987).

This test allows to validate the model’s ability to reproduce both suspended sediment concentration profiles

and morphological evolution and is usually chosen because of the opportunity to study such processes without

complications introduced by wave-current interactions, water density stratification, and mixed sediments.

In spite of its simplicity, the flow over a trench is also a good test scenario for hydrodynamic simulations

(e.g., Stansby and Zhou, 1998; Christian and Corney, 2004).

A good description of turbulence is fundamental in three dimensional models and numerical results de-

pend on the closure employed. Numerical predictions of stratification in the coastal ocean are impacted by

the turbulence closure employed (e.g., Holt and Umlauf, 2008). For the flow over a shallow trench, Christian

and Corney (2004) found significant differences for the hydrodynamic results depending on the turbulence

closure used. Turbulence modelling may also impact significantly numerical simulations of suspended sedi-

ment (e.g., Warner et al., 2005) and the calculation of bed shear stresses (e.g., Puleo et al., 2004), which is

critical in estimating sediment transport and morphological evolution. While such results help to address

which turbulence closure is best suited for sediment transport, formal assessment of turbulence closures

with data of morphological evolution is still lacking. Other processes may also impact significantly sediment

transport numerical predictions. Sediment-induced stratification (SIS) is often implemented as an optional

process in coastal models, and can affect the movement of coastal morphological features (e.g., Falchetti

et al., 2010) as well as turbulence. Sediment bed erosion and sediment deposition may also employ different

parameterizations. The numerical results are usually sensitive to empirical parameters such as the critical

erosion bed shear stress (e.g., Gerritsen et al., 2000; Harris et al., 2008). Predictions of suspended sediment

may also vary depending on the formulations implemented (e.g., Amoudry et al., 2005). It is thus important

not only to investigate the impact due to turbulence closures, but also to compare such effect to the impacts

due to sediment-induced stratification and erosion parameterization.

To that goal, we use here an advanced coupled hydrodynamics, sediment transport and turbulence model,

which is part of the Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS).
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In this system, a fully three-dimensional hydrodynamic model (Holt and James, 2001) is coupled to a

sediment transport module (Amoudry et al., 2009) and to the General Ocean Turbulence Model (GOTM)

(Umlauf et al., 2005). Following previous developments of three-dimensional models, we use the migration

of a trench under a steady current as a benchmark test case and the experimental data will be used to

quantitatively assess the effects considered. We will first provide a description of the model employed. The

hydrodynamic component is only briefly summarized in the manuscript and presented in the appendix, while

the turbulence and sediment transport models are described in details since they are essential components

of the model comparisons undertaken here. We then describe the numerical setup implemented to reproduce

the experiments of van Rijn (1987). In sections 4.1, 4.2 and 4.3, results on the effects of sediment-induced

stratification, erosion parameterization, and turbulence closure are presented both independently of and

in comparison with each other. The mechanisms responsible for the differences observed in the numerical

results are then discussed in section 5.

2. Model description

POLCOMS consists of a baroclinic three-dimensional hydrodynamic model that can be used in regions

covering both the deep ocean and continental shelves (Holt and James, 2001). It can be coupled to several

external models, in particular a wave model (Osuna et al., 2004; Bolanos et al., 2008), GOTM (Holt and

Umlauf, 2008), and an ecosystem model (Allen et al., 2001). A sediment transport and morphological model

has recently been added to the hydrodynamic model (Amoudry et al., 2009).

2.1. Hydrodynamic model

The hydrodynamic model solves the three-dimensional, hydrostatic, Boussinesq equations of motions.

The governing equations can be formulated either in spherical polar coordinates, or in Cartesian coordinates,

which we will use here. The vertical coordinate is taken to be σ = (z − ζ)/(h+ ζ), where z is the Cartesian

vertical coordinate, h the reference water depth and ζ the elevation above the reference water level. A

time-splitting technique is used to calculate barotropic and baroclinic components and the velocities are

thus divided into a depth varying and depth independent parts. The equations of motions for both parts

have been presented in Holt and James (2001) and Souza and James (1996) and are only summarized here

in the appendix.

The turbulent stresses and turbulent fluxes in the depth varying governing equations are modelled follow-

ing turbulent viscosity and turbulent gradient diffusion hypotheses, which respectively introduce the eddy

viscosity and eddy diffusivities. Both quantities require further closure, which is the aim and focus of the

turbulence model and is discussed in the next section.

Surface stresses are not considered in the present study. The determination of the bottom stresses is an

important part of the sediment transport and near-bed modelling because the bed shear stress explicitly
3



determines both the bed load transport rate and the erosion rate. In this study, only steady currents are

considered and the bottom shear stress is calculated using a drag coefficient expression that relies on a

logarithmic velocity profile and leads to the following expression for the stress components FB and GB

(FB, GB) = (uB, vB)
[

κ

ln (δ0/z0)

]2√
u2

B + v2
B (1)

where (uB, vB) are the near-bed velocity (velocity of the bottom vertical grid) defined at an elevation δ0

above the sea bed. κ = 0.41 is the von Karman constant and z0 the bed roughness, which is set here as a

user-defined constant. In GOTM, the von Karman constant is calculated from the model constants (Umlauf

and Burchard, 2003), which leads to values that may differ slightly from 0.41 depending on the model. This

has however no effect on the present simulations.

2.2. Turbulence modelling

Since salinity and temperature are not considered in the present application, the turbulence closure really

aims at representing the turbulent stresses and turbulent sediment fluxes. Using the turbulent viscosity and

turbulent gradient diffusion hypotheses, it does so by calculating eddy viscosity and eddy sediment diffusivity.

Two models are implemented directly within POLCOMS: a one equation model solving a balance equation

for q2 = 2k with k being the turbulent kinetic energy and using a parabolic length-scale (Holt and James,

2001), and the two-equation model (q2 − q2l) of Mellor and Yamada (1982) as modified by Galperin et al.

(1988). For both these models, the eddy viscosity and the sediment diffusivity are respectively given by

νt = SM lq, and Ks
z = Sslq. (2)

Several other turbulence closures are available by coupling GOTM to POLCOMS (e.g., Holt and Umlauf,

2008). For these closures, the turbulent eddy viscosity and the sediment diffusivity Ks
z are written as

νt = cμl
√
k and Ks

z = csμl
√
k. (3)

For both approaches (equations 2 or 3), l is a length scale and the dimensionless quantities SM , Ss, cμ, and

csμ are referred to as stability functions. All the models used in the present study solve a balance equation

to calculate the energy scale (q2 or k) and they all limit the turbulent length scale following Galperin et al.

(1988):

l ≤ 0.53
q

N
(4)

whereN is the buoyancy frequency and is defined in the next section. Different methods are used to calculate

l and different formulations are implemented for the stability functions.
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2.2.1. One-equation model

A one-equation model is implemented within the POLCOMS hydrodynamic model. It follows equation

2. The velocity scale is found by solving a balance equation and the length scale is prescribed algebraically.

The balance equation for q2 is given by

∂q2

∂t
= T (q2) + Pq + Gq − εq (5)

where T (q2) represents the diffusive transport term (see equation 37) with the diffusivity for q given by Kq
z =

Sqlq. Pq = 2νtM
2 is the shear production, Gq = −2Ks

zN
2 is the buoyancy production, and εq = 2q3/16.6l

is the turbulence dissipation rate. The squares of the shear and buoyancy frequencies are respectively

M2 = H−2

[(
∂u

∂σ

)2

+
(
∂v

∂σ

)2
]
, (6)

and

N2 = H−1 ∂b

∂σ
. (7)

where b is the buoyancy and H = h + ζ. These two quantities yield the gradient Richardson number

Ri = N2/M2.

The length scale is specified algebraically and follows Holt and James (2001) by taking

l = κH (1 + σ) (−σ)0.5
. (8)

2.2.2. Two-equation models

Several two-equation models can be chosen either directly within POLCOMS or through coupling with

GOTM. They all solve one balance equation for the turbulent energy (q2 or k) and a second one to obtain

the turbulent length scale. Even though the q2 − q2l model of Mellor and Yamada (1982) as modified by

Galperin et al. (1988) is implemented in POLCOMS and GOTM, it was found to lead to solutions that

diverged to unrealistic strong turbulent diffusivities. It is therefore not further discussed in the present

study.

The k − ε model (Rodi, 1987) and the k − ω model (Umlauf and Burchard, 2003) are available through

coupling with GOTM. These models use equation 3 and the turbulent kinetic energy k is the solution of the

following balance equation

∂k

∂t
= T (k) + P + G − ε (9)

where P = νtM
2 and G = −Ks

zN
2 are respectively the shear and buoyancy productions. ε is the turbulent

dissipation rate.

The k − ε model then solves a balance equation for ε

∂ε

∂t
= T (ε) +

ε

k
(Cε1P + Cε3G − Cε2ε) , (10)
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while the k−ω model considers the balance of the inverse turbulent time scale ω ≡ ε/k, originally formulated

by Wilcox (1988) and extended to oceanographic applications by Umlauf et al. (2003):

∂ω

∂t
= T (ω) +

ω

k
(Cω1P + Cω3G − Cω2ε) (11)

The diffusivities in the T (.) transport terms (see equation 37) are taken to be Kk
z = νt/σk, Kε

z = νt/σε, and

Kω
z = νt/σω. Both models are fully closed by setting the model constants as summarised in table 1. Exact

values for Cε3 or Cω3 depend on the choice of stability function and are calculated following Umlauf et al.

(2003) with a steady state gradient Richardson number of Rist = 0.25. This so-called steady state gradient

Richardson number is the value at which homogeneous turbulence with constant shear and constant stable

stratification is in equilibrium. For Ri > Rist, turbulence decays due to stable stratification. For Ri < Rist,

turbulence increases due to shear instabilities.

All balance equations for turbulence quantities neglect the advective terms and the horizontal diffusion

(Holt and Umlauf, 2008), based on the boundary layer approximation following which horizontal scales are

much larger than vertical scales. We will discuss this assumption further with respect to the numerical

results in the discussion and conclusion.

2.2.3. Stability functions

For the one-equation model, the stability functions SM , Ss, and Sq are taken after Galperin et al. (1988):

SM =
0.3933− 3.086G

(1− 34.68G) (1− 6.127G)
,

Ss =
0.4939

1− 34.68G
,

Sq = 0.2 (12)

with G = −l2N2/q2.

For the two two-equation turbulence models in GOTM, the stability functions cμ and csμ can either be

constant, empirical functions, or can result from higher-order turbulence models under some simplifying

assumptions. Three choices are available for empirical stability functions following Munk and Anderson

(1948), Eifler and Schrimpf (1992), or Schumann and Gerz (1995). All three empirical formulations set

cμ = c0μ as a constant and take csμ as a function of the gradient Richardson number Ri. For the Munk and

Anderson (1948) formulation, this function is given by

csμ =
c0μ
Pr0

(1 + 10Ri)1/2

(1 + 3.33Ri)3/2
, Ri ≥ 0

csμ = c0μ, Ri < 0 (13)

For the Eifler and Schrimpf (1992) approach, we have

csμ =
c0μ
Pr0

⎡
⎣( c0μ

Pr0
Ri+ 1

)1/2

− c0μ
Pr0

Ri

⎤
⎦ (14)
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And finally for the Schumann and Gerz (1995) expression, csμ is related to cμ through a turbulent Prandtl

number (i.e., csμ = c0μ/Pr), which is a function of the gradient Richardson number

Pr = Pr0 exp
(
− Ri

Pr0Ri∞

)
− Ri

Ri∞
(15)

with Ri∞ = 0.25. All three formulations require the specification of c0μ and Pr0 (summarized in table 2),

which are preset for Eifler and Schrimpf (1992) and can be set by the user for Munk and Anderson (1948)

and Schumann and Gerz (1995).

In addition to constant and empirical stability functions, the third approach results from the solution of

simplified forms of full Reynolds Stress Models. Even though such models solve balance equations for the

Reynolds stresses and as such cannot be reduced to eddy viscosity and diffusivity forms for the turbulent

stresses and turbulent fluxes, they can be simplified following an approximation of the transport terms. This

leads to Reynolds stresses being obtained by solving a linear system of algebraic equations (e.g., Umlauf and

Burchard, 2005) in so-called Algebraic Reynolds Stress Models (ARSM). Further simplification following the

boundary layer approximation then results in formulations for the turbulent stresses and turbulent fluxes

that are similar to that of the turbulent eddy viscosity and gradient diffusion hypotheses (Burchard and

Bolding, 2001). The vertical diffusivities are then a consequence of the model and the stability functions

can be shown to be function of the shear number and the buoyancy number (e.g., Umlauf and Burchard,

2005)

αM =
k2

ε2
M2 and αN =

k2

ε2
N2 (16)

A quasi-equilibrium state, which is defined as the state where production and dissipation are in balance, is

also used to further simplify the stability functions leading to expressions that depend on the Richardson

number only. A number of model constants that depend on the ARSM employed are associated with such

implementation of the stability functions. In the present study, we choose to use the constants associated

with both versions of the model described in Canuto et al. (2001).

2.3. Sediment transport model

The sediment transport model follows the description of Amoudry et al. (2009). Different sediment

transport modules yield outputs such as suspended sediment concentration (SSC) and bed location that are

in turn used in the hydrodynamic and turbulence models. An unlimited number of non-cohesive sediment

classes can be prescribed. Each sediment class is defined by values for the sediment particle density ρs,

the sediment particle diameter d, a critical shear stress for erosion τce and an erodibility constant E0. We

follow the bed representation of Warner et al. (2008), in which a layered structure is implemented as the

sediment bed and only the top bed layer interacts with the bottom flow grid (figure 1). The number of

layers characterizing the sediment bed is user-defined and each layer is described by a spatially and time

varying thickness, sediment-class distribution, and porosity (φ).
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2.3.1. Suspended load transport

For each class, the suspended sediment concentration follows an advection-diffusion equation

Dc

Dt
= T (c) +

Ws

H

∂c

∂σ
+ Sc (17)

where Sc is a sediment source/sink term. Ws is the sediment settling velocity and is determined from the

sediment and fluid parameters following the van Rijn (1993) formula.

The effect of suspended sediment on the fluid density may be accounted for by summing the contribution

of each sediment class:

ρ = ρw + Σc (ρs − ρw) (18)

where ρ is the density of the fluid-sediment mixture, ρw the density of the fluid alone (ρw = ρ0 here but could

be a function of temperature and salinity in other more complicated cases) and c the volumetric suspended

sediment concentration for a given class.

At the free surface, the vertical flux of sediment is set to vanish. At the bottom boundary (sediment bed),

the vertical flux of sediment is taken to be equal to the sum of erosion E and deposition D. This condition

is implemented by including erosion and deposition as a source/sink term for the bottom grid of the water

column and preventing advective and diffusive fluxes into the bed. Deposition is due to gravitational settling

and is considered to occur for all bed shear stresses (D = ρsWsc). Two approaches have been implemented

to represent the erosion flux. It can be taken to be directly related to the excess bed shear stress via a linear

dependence: (e.g., Ariathurai, 1974):

E = E0(1− φ)
(
τb
τce

− 1
)

(19)

where E0 is the user-defined erodibility constant, φ is the top bed layer porosity and τb the bed shear stress

magnitude. The erosion flux may also be determined from a reference concentration approach (e.g., Garcia

and Parker, 1991) E = ρs(1 − φ)Wscref . The reference concentration is usually expressed as empirical or

semi-empirical functions of bed shear stress, and we choose here to use the van Rijn (2007b) formula

cref = 0.015
d

zref

(θ/θcm − 1)1.5

d0.3
�

(20)

where θ = τb/(ρs − ρ)gd is the non-dimensional bed shear stress, θcm is the critical non-dimensional bed

shear stress for initiation of motion according to Shields, d� = d[(ρs/ρ− 1)g/ν2]1/3. g is the acceleration of

gravity and ν the water kinematic viscosity. The reference level is chosen as zref = 20d with a minimum

value of 1 cm and θcm is estimated numerically following van Rijn (1984a). In both cases, the erosion is

limited by the amount of sediment available in the top bed layer, which is enforced to be at least as thick

as the active bed layer of Harris and Wiberg (2001)

δa = max [0.007ρw (τb − τce) , 0] + 6d̄ (21)
8



where δa is the thickness of the active layer and the overbar denotes an average over all sediment classes.

Equations 19 and 20 have traditionally been used for cohesive sediments and non-cohesive sediments

respectively. Recent studies have however implemented equation 19 for non-cohesive sediments with success

(e.g., Warner et al., 2008). Equation 19 can also be thought of as similar to a linear reference concentration

formula (Amoudry and Liu, 2010). For a given particle diameter, the differences between the two approaches

concern the power dependence on the excess shear stress and the numerical values of the free parameters.

The reference concentration approach as implemented does not present any free parameter, while both E0

and τce are free parameters in equation 19. The direct specification of the erosion flux may then offer greater

flexibility but needs to be determined through model-data comparisons for example.

The T (c) term is the sediment diffusion transport term and is closed using the turbulence model. It is

interesting to notice that in the present case the specification of the stability functions implicitly determines

the Schmidt number, which is the ratio of momentum diffusivity over sediment diffusivity. Here, this results

in the Schmidt number being a function of both shear, throughM2, and the concentration gradient, through

N2, whichever empirical or second-order approach is used to calculate the stability functions.

2.3.2. Bed load transport

Sediment motion is initiated when the moments of the driving forces exceed the stabilizing moments.

Grains then roll, slide, and jump along the bed resulting in bed load transport. If the lift forces exceed the

grain weight, particles may be entrained into suspension. This results in critical values for the bed shear

stress required to initiate motion (τcm) and suspension (τce). These critical stresses can be estimated as

functions of particle size (e.g., van Rijn, 1984b) and usually define three regimes: no motion, bed load only,

and combined suspended and bed loads. For small particles (d� less than about 3), the two critical stresses

are almost equal and the bed load only regime vanishes.

Bed load capabilities have been implemented in the sediment transport model following a power relation-

ship to the bed shear stress which has been modified to take into account local bed slope effects (Amoudry

et al., 2009). The multiplicative constant to the power relationship can vary by up to an order of magnitude

and is left as a user input. In spite of its widespread use, this method is based on measurements for which

uncertainty is generally not small and limited to grains of diameter larger than 200 to 300 μm (Amoudry

and Souza, 2011). For finer particles, bed load predictive power is uncertain at best, and detailed numerical

results under the sheet flow regime seem to indicate that traditional formulations overestimate bed load

transport rate (Amoudry and Liu, 2010). Instead, for these fine particles, most of the the transport occurs

in the suspended load (van Rijn, 2007a).

In addition to the high uncertainty associated with the relatively small particle size used in the present

study, implementing bed load would also introduce extra modelling issues. Free parameters for the bed load

multiplicative constant, the erosion coefficient E0, and the critical stress for erosion τce would need to be

9



specified. Another consequence would be that the two erosion approaches would then not employ the same

critical stress. Instead, we choose to neglect the explicit formulation of bed load transport rate and specify

τce = τcm. This approach has the advantage of reducing the number of free parameters to one as τcm is

estimated following van Rijn (1984a). Motion of sediment is, in effect, still considered for all values of the bed

shear stress above τcm. The most important issue is to estimate which method would result in the smaller

uncertainty. Calibration of separated bed load and suspended load would have to rely on the bed load and

suspended load transport rate values reported in van Rijn (1987), while our proposed approach would only

rely on the total load transport rate value. The experimental results provide the total load transport rate

with significantly less uncertainty and we thus believe that our approach will simultaneously be simpler and

more accurate. Finally, the reasonable results that we obtained can be considered as a validation that such

appraoch may indeed perform well.

2.3.3. Bed evolution

The bed morphology follows approaches previously introduced in Harris and Wiberg (2001) and Warner

et al. (2008), and implemented in Amoudry et al. (2009) for the present model. The location of the sediment

bed is updated at each barotropic time step following conservation of mass for the bed. The change in bed

level Δzbed results in general from the vertical exchange between the top bed layer and the water column

(erosion and deposition) and the convergence or divergence of bed load transport rates. Bed load is neglected

here, which leads to the following bed level change (also see figure 1):

Δzbed =
Δt

ρs(1− φ)
(E −D) (22)

where Δt is the time step. This change in bed level can be scaled up by a morphological factor Fmorph

that allows computations for accelerated bed changes (Lesser et al., 2004). The new bed location is then

computed while solving the depth-averaged governing equations and the bottom boundary condition of the

vertical velocity is set as the rate of change of the sea floor.

2.4. Numerical solution

The numerical domain is discretized using a B-grid in the horizontal plane (Arakawa, 1972). Both

components of the velocity are defined at u-points which are the centres of the computational cells, half a

grid-box to the southwest of the points at which all scalars are defined (b-points, corner points of the cells).

Sediment transport variables are defined at the b-points (corners of grid cells) to the exception of the output

bed load transport rate, the bed shear stress and the bed roughness, all three defined at u-points. The

water column is divided into σ levels, which can vary in the horizontal (Holt and James, 2001) to maintain

resolution near the surface and the sea bottom.

A detailed description of the numerical solution for the hydrodynamic model is given in Holt and James

(2001) and we only aim to summarize here the important features. The depth averaged equations and the
10



free surface equations are solved using a forward time centred space differencing technique, and, to prevent

grid-scale noise, the surface elevations are filtered following Killworth et al. (1991). The advective terms are

calculated following a Piecewise Parabolic Method scheme (James, 1996) and the vertical diffusion terms

following a fully implicit scheme.

The numerical solution for the sediment transport module is presented in Amoudry et al. (2009), and

uses the same techniques as the hydrodynamic model. Advective and settling terms are thus calculated

following the PPM scheme and the diffusive terms following the fully implicit scheme.

3. Model validation and numerical setup

The ability of the model to accurately reproduce suspended sediment concentration profiles and morpho-

dynamic evolution was tested and presented in Amoudry et al. (2009). To that end the standard test case

from the laboratory experiment of van Rijn (1987) on trench migration under a steady current was employed.

It was found that the present model was indeed able to accurately predict flow velocities and suspended

sediment concentrations over the trench, and the bed evolution. Here, a series of numerical experiments are

conducted to assess the impact of erosion parameterization, sediment-induced stratification, and turbulence

closure on predictions of suspended sediment concentration profiles and bed evolution. The same case of

flow over a trench and trench migration is used to isolate processes in the absence of waves and stratification.

The experimental data (van Rijn, 1987), which provide trench migration for three initial trench slopes and

velocity and sediment concentration profiles for the steepest slope, also allow a quantitative assessment of

the quality of the numerical results under several modelling assumptions.

We use here the same numerical setup as in Amoudry et al. (2009), which is summarized in table 3 and

figure 2. The 30 m long and 0.5 m wide straight channel is represented numerically using a grid size of 0.1

m in both horizontal directions and 20 constant vertical levels. A flow of 0.51 m/s upstream depth-averaged

velocity Ū in 0.39 m upstream water depth h0 is imposed and a no-gradient condition is set upstream for the

concentration. No-slip conditions are applied to the lateral walls. The bed slope and a constant sediment

bed roughness are determined so that the flow rate remains uniform along the domain. Trenches with initial

side slopes of 1/3, 1/7, and 1/10 are excavated in a bed of well-sorted sand of median diameter 160 μm,

modelled here as a single class with d = 160 μm and ρs = 2650 kg/m3. Both the suspended sediment and

flow velocity are then allowed to reach steady state before the bed evolution is tracked using a morphological

factor of 10. Different values for this morphological factor (1 and 10) have been tested and no influence was

observed on the results.

Both erosion parameterizations have been employed. Using equation 19 requires values for E0 and τce.

The default value for the critical bed shear stress τce has been chosen to correspond to τcm (see section

2.3.2). A default value for E0 has been chosen based on model-data comparisons of SSC profiles and trench
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migrations for the steepest initial trench case. The best value for E0 depends on the turbulence model

chosen and the presence of sediment-induced stratification. We were able to find a good agreement for the

k−ω model with SIS, which leads to the value E0 = 0.0082 kg/m2/s, but were unable to obtain satisfactory

results for the k − ε model with SIS (see section 4.2.2) without changing τce = τcm.

The different characteristics of the numerical experiments conducted are summarized in table 4. Several

modelling assumptions and parameterizations can then be assessed from intercomparisons between these

experiments. The effects of sediment-induced stratification are studied for two turbulence closures. The

impact of modifying the erosion parameterization either via different parameters or different formulations

can also be investigated for two different turbulence closures. Two values for E0 and three values for the

critical bed shear stress τce are tested. The larger critical stress value corresponds to a non-dimensional

value of 0.1 and the smaller value to a non-dimensional value of 0.04. Finally, different turbulence closures

are assessed: three differ on the approach employed to calculate the turbulent length scale, and five differ

on the stability functions implemented. As mentioned previously, the q2− q2l model of Mellor and Yamada

(1982) as modified by Galperin et al. (1988) has been found to consistently lead to solutions that diverge to

unrealistic strong turbulent diffusivities, and it is thus not discussed further.

4. Numerical results

Results from the numerical experiments in table 4 are investigated independently and compared with

each other in this section. We will also compare the values obtained for the upstream bed shear stress

(summarized as friction velocity in table 5). Upstream of the trench, the flow should reduce to a simple

open channel flow, and the clear flow bed shear stress can thus be estimated analytically from the water

depth and the bed slope. While the bed shear stress could be modified for the sediment laden flow, the

clear flow value still provides a good reference value. The quality of the trench migration simulations is also

assessed numerically via the Brier Skill Score (Sutherland and Soulsby, 2004) in table 6.

BSS = 1−
∑

i (znum,i − zexp,i)
2∑

i (zbase,i − zexp,i)
2 (23)

where zexp,i are the experimental observation of the bed location, znum,i the corresponding numerical pre-

dictions, and zbase,i base values usually taken to be the initial condition. All scores are positive as all cases

predict a trench migration in the correct direction, and perfect agreement gives a score of 1. Most values

remain high, but this skill factor does not provide information on whether trench migration and filling are

overestimated or underestimated.

4.1. Impact of sediment-induced stratification on sediment transport model

The effect of sediment-induced stratification is isolated for two turbulence models by comparing experi-

ment S1A with N1A for the k − ω model, and experiment S2B with N2B for the k − ε model. The impacts
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observed are consistent. As expected, the upstream bed shear stress is reduced when SIS is added (table

5). While this corresponds to a reduced near-bed velocity due to the presence of sediment, the velocity

profiles over the trench are not significantly altered by the inclusion or exclusion of the SIS (figure 3). The

SSC profiles do show differences due to SIS that are mainly occurring away from the bed and following

which there is less suspended sediment when stratification is included. Both reductions of upstream bed

shear stress and SSC in the presence of SIS are consistent with how stratification is taken into account

in the turbulence closures. The buoyancy production term in the turbulence model is proportional to the

concentration gradient for SIS (i.e., G ∝ ∂c/∂z). This term is usually negative and results in turbulence

damping, which leads to reduced bed shear stresses, reduced vertical mixing of sediment and finally less

suspended sediment high in the water column.

While the numerical results obtained in the absence of stratification seem to better match the suspended

concentration data (figure 3), the experimental data revealed that the suspended particles had a diameter

of 160 μm near the bed, but only 120 μm near the surface (van Rijn, 1987). This effect is not presently

included in the model since only one fixed particle diameter is specified. However, the effect of such a particle

diameter discrepancy is far from being negligible on the suspended sediment concentration (figure 4). We

thus believe that the lack of agreement between SIS simulations and data in figure 3 is probably due to a

poor representation of the sand grain size distribution by a single class in the model.

The effect of SIS on the bed evolution is a consequence of the generally smaller bed shear stresses and

transport rates under SIS. The trenches do not migrate as far and are not filled as much when stratification

is included (figure 5). For example, the amount of downstream migration changes by as much as 15 % (0.5

m out of 3 to 4 metres) for the k − ω model. The differences in trench filling are more significant and can

reach up to a factor two. The overall effect of SIS on trench migration, as measured by the Brier Skill Score

in table 6, depends on the turbulence model employed. For the k−ω model, the impact is small in all cases

and neglecting SIS leads to better model-data comparisons in one case. For the k − ε model, the effect is

clearly more pronounced. As mentioned previously and discussed in details in section 4.2.2, no reasonable

trench migration could be obtained for the k − ε model with sediment-induced stratification. This issue of

particularly strong and negative effect of SIS for the k − ε model is not unique to POLCOMS and is also

present in the DELFT3D system (Delft Hydraulics (2007), page 11-3).

4.2. Impact of erosion parameterization on sediment transport model

4.2.1. Comparison of bed-flow exchange approaches

The choice of the erosion approach implemented has a significant impact on bed shear stress (table 5),

SSC profiles (figure 6), and trench migrations (figure 7). The van Rijn reference concentration approach leads

to predictions of severely reduced upstream bed shear stress and higher near-bed concentrations. The bed

shear stress reduction is consistent with the effect of sediment stratification following which a stronger near-
13



bed concentration gradient results in stronger turbulence damping and lower bed shear stress. Compared

with the experimental data, the van Rijn reference concentration approach leads to somewhat better results,

but generally overpredicts the amount of suspended sediment especially close to the bed. The linear erosion

flux approach generally underpredicts the data. Further taking into account the effect of the sediment size

distribution (figure 4 and related discussion), this could mean that the van Rijn approach may significantly

overpredict the SSC experimental values.

Dramatic differences are found for the trench migrations (figure 7 and table 6). The van Rijn reference

concentration approach leads to trench migrations and trench filling that are both much too large. The

numerical trench reaches the final state of the experiment in about the tenth of the time (about 1.5 hours

versus 15 hours). At the end of the 15 hours, the trench has then entirely filled and migrated out of

the numerical domain. Such behaviour is explained by the significantly larger near-bed concentrations

which result in much larger sediment fluxes since velocities remain similar (figure 6). While this obviously

questions the use of this implementation as specified in section 2.3 (i.e., an off-the-shelf formulation for

cref ), the present results do not provide conclusive evidence against the use of the same method with a

different cref formula, or against the use of the specific power relationship in equation 20 independently

of all numerical parameters. For example, the 0.015 coefficient was originally determined empirically from

flume and field data for sediment of diameters larger than 180 μm, and this value may not be valid in the

present case. It may furthermore be possible to obtain good numerical results by having a free parameter

to be determined from model-data comparisons instead of the fixed value of 0.015, as in van Rijn (1987).

4.2.2. Sensitivity of numerical results to erodibility constant and critical erosion stress

When the direct erosion flux formulation following equation 19 is chosen, user-defined values for E0 and

τce are required. In general, highly precise information on either quantity is not easily obtained, which raises

the issue of how sensitive results are to such values. Even though the present model implements τce = τcm

and thus relies on a known and well-accepted expression of the critical stress as a function of particle size,

the value may not be obtained with absolute certainty. Numerical results for cases S1A, S1B, S1C and

S1D (figures 8 and 9) help assess the sensitivity to a 35 % change in E0 and to “worst-case” errors on

τce = τcm. The effect on the bed shear stress (table 5) is small, and velocity profiles are again very similar.

The resulting behaviour for the SSC (figure 8) is expected as increasing E0 and τce do respectively lead

to more and less suspended sediment. These discrepancies on the SSC appear to be of similar magnitude

as those due to stratification, but remain smaller than the changes incurred from modifying the settling

velocity via a different particle diameter (figure 4).

The different bed evolutions computed for cases S1A, S1B, S1C and S1D are presented in figure 9. An

increase in erodibility causes larger downstream migration and more trench filling. An increase in critical

bed shear stress leads to less migration and less filling, and vice versa. The result in absence of sediment-
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induced stratification is also included in figure 9 to allow for easy comparison of the different effects. In all

cases, the impacts observed due to the changes in E0 and τce are significantly larger than that of neglecting

sediment-induced stratification (table 6). Errors in the migrated distance are of the order of one to two

metres, and correspond to at least twice the error due to stratification. The effect on the trench infilling is

less evident, but still present.

The impacts of E0 and τce are also relevant for the k− ε model, in particular concerning the difficulty in

obtaining reasonable trench migration predictions with sediment-induced stratification. Following from the

sensitivity results displayed in figure 9, improving the numerical results for the k − ε model would require

increasing E0 or decreasing τce. The latter could only be justified by uncertainties in the Shields curve or

correspondence to a particle size larger than reported in van Rijn (1987). The effect of increasing E0 or

decreasing τce for the k − ε model is shown in figure 10. As expected and consistent with results of figure

9, both do increase how far downstream the trench migrates. However, both parameter changes do not

lead to more trench filling, but to the opposite and a deeper final trench. While an absolute conclusion

on a complete inability of the k − ε model to reproduce the trench migration is difficult, good model-data

comparisons would require changes to E0, τce, or both, which would hardly be physically justifiable.

4.3. Impact of turbulence modelling on sediment transport model

4.3.1. Turbulence model

While there seems to be a general consensus on the use of a balance equation for k and its form, it is not

necessarily the case for the method employed to calculate the turbulent length scale l. We compare here the

three models described in section 2.2: the one-equation model hereafter called k model (experiment S3A)

and two two-equation models, the k − ε model (experiment S2A) and the k − ω model (experiment S1A).

Both two-equation models lead to velocity and SSC profiles displaying little differences (figure 11), and

the k − ω upstream bed shear compares best with the analytical value. The effect of different two-equation

models on the SSC profiles is found to be smaller than that of the sediment-induced stratification. While the

impact on velocities and bed shear stress may be considered independently of sediment erosion calibration,

this is not be the case for the SSC profiles, and the better k − ω profiles have to be considered cautiously.

In comparison, the one-equation model is dramatically not able to reproduce the experimental data. The

upstream bed shear stress severely underpredicts the analytical value, and is significantly worse than both

two-equation predictions. The velocities predicted by the k model exhibit profiles that are quite different to

the k−ω and k−ε profiles and that are a very poor match to the data. Finally, the k model fails profoundly

in predicting the SSC compared to the two-equation models.

The three different models lead to widely different trench migrations (figure 12). The k − ω performs

relatively well and the k model poorly, both of which can be expected in light of the previous results. The

k − ε model surprisingly performs poorly. While the sediment erosion has been calibrated with the k − ω
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model, no physically reasonable value for the sediment erosion parameters was found to lead to good trench

migration predictions with the k − ε model (see section 4.2.2). This model was however found to produce

reasonable migrations when neglecting sediment-induced stratification (figure 5). The effect represented in

figure 12 is obviously much larger than that of neglecting SIS. Both the k and the k−ε models underpredict

the extent of horizontal migration about equally bad. In addition, they also both do not produce enough

trench filling, the k − ε model being worse (table 6). Finally, while the k model does predict a reasonable

bathymetry far downstream (past about 18 metres along the channel), the k − ε leads to a bathymetry

profile that return to the initial unexcavated bed too quickly.

4.3.2. Stability functions

Last, we investigate the effects of the method chosen to calculate the stability functions. While they may

not always be negligible, they are indeed small in comparison with some effects already investigated. The

main difference occurs between the empirical approaches as a group (experiments S5A, S6A and S7A) and

the second-order models as a group (experiments S1A and S4A). The velocity profiles are almost the same

for all cases (figure 13) and the upstream bed shear stress shows very little variation between the different

experiments (table 5). Some discrepancies can be observed for the SSC between the empirical approaches

and the second-order models, the former leading to higher concentrations that are also slightly larger than

in the unstratified (N1A) case (figure 13). The effects on the trench migration in figure 14 and table 6

also show the main difference being between empirical approaches and second-order models and being very

similar in magnitude to the impact of stratification. Comparison between different empirical approaches or

between different second-order models shows negligible impact. Overall, this illustrates that only the choice

between empirical formulations or expressions derived from second-order models matters for this particular

application.

5. Discussion

The numerical results presented in the previous section expose an important influence of the choice

of turbulence model on morphological predictions. While this is not necessarily surprising given previous

findings (e.g., Puleo et al., 2004; Warner et al., 2005), it requires further explanation and discussion. The

mediocrity of the one-equation k model is not unexpected. This turbulence model is indeed inherently flawed

as being highly empirical and flow dependent (e.g., Pope, 2000). In particular, the algebraic length scale

expression that is valid for a given flow may not be appropriate to describe the turbulence in other more

complicated situations.

The justification for discrepancies between two-equation models is however less evident. Figure 15

presents numerical results of the bed shear stress, erosion, and deposition along the channel at the start of

the morphological computations for the k − ε and k− ω models, both with sediment-induced stratification.
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Upstream of the trench, the bed shear stresses are not identical and the k − ε value is smaller (see also

table 5). For both models, erosion and deposition are in equilibrium. Over the trench, the flow deceleration

results in the bed shear stress first reducing sharply before increasing slowly to reach a constant value at

the end of the trench. Downstream of the trench, the flow acceleration leads to a peak in bed shear stress.

For both the channel deepening and the end of the trench, the k − ε model results in bed shear stress that

relaxes more quickly to the “far-downstream” value. In turn, such behaviour for the bed shear stress leads

to differences in the balance between erosion and deposition. In the trench, both models give no erosion

just after the deepening as the bed shear stress falls below the critical value τce, then the higher bed shear

stress values for the k−ε model lead to stronger erosion. Simultaneously, the deposition flux in the trench is

reduced from the upstream value, which leads to lower values for the k− ε model. These combined patterns

of erosion and deposition result in net deposition throughout the trench for the k − ω model, but not for

the k − ε model, for which an erosion zone can be distinguished in the middle of the trench. This explains

the observation of deeper final trenches for increased E0 values in figure 10. Downstream of the trench, the

numerical results lead to net erosion for the k − ω model, and net erosion followed by deposition for the

k − ε model. Overall, the k − ω model results in relatively simple pattern of bed accretion followed by net

bed erosion. In comparison, the combination of (i) lower upstream bed shear stress and (ii) faster return to

uniformity of the k− ε model lead to more complicated and lower intensity successions of accretion and bed

erosion zones. In turn, these result in less perceived trench migration and in a deeper final trench.

A remaining important issue then concerns the fundamental difference between the two two-equation

models. Physically, the k− ε and k−ω models are based on the same cascading relation for the turbulence

dissipation, and should be equivalent. However, this equivalence may not be assured in mathematical terms.

The ω equation implied by the modelled ε equation (equation 10) is

∂ω

∂t
=
T (ε)
k

− ε

k2
T (k) +

ω

k
[(Cε1 − 1)P + (Cε3 − 1)G − (Cε2 − 1) ε] . (24)

The k − ε model and the k − ω model are thus mathematically equivalent if the model constants satisfy

Cω1 = Cε1 − 1 (25)

Cω2 = Cε2 − 1 (26)

Cω3 = Cε3 − 1 (27)

and if the diffusive terms follow

T (ω) =
T (ε)
k

− ε

k2
T (k) (28)

It is worthwhile noting that the advective terms are physically and mathematically exactly identical in all

models. Neglecting them does not change any of the right-hand side terms in equations 9, 10, 11 and 24;
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only the left-hand side term changes to from ∂/∂t to D/Dt. Advective processes will thus not generate

discrepancies between different models, even if they can transport differences that are already introduced.

The relationship between the model constants can be assessed from table 1 for the shear production and

dissipation terms. The constants related to the buoyancy production are calculated following the constraint

discussed in Umlauf et al. (2003), which leads to Cω3 = −0.642 and Cε3 = −0.629 for the stability functions

from Canuto et al. (2001). Equations 25 and 26 are indeed close to be satisfied, which should only induce

minor differences between the k − ε model and the k − ω model. Equation 27 is not satisfied. Physically,

the values for Cω3 and Cε3 mean that the buoyancy term would act in opposite ways in the turbulence

dissipation rate balance. While this could help explain the particular issues encountered by the k − ε

model in combination with sediment-induced stratification, the gradient Richardson number observed in the

numerical results always remains small (less than 0.1). Turbulence in the stratified flow is thus controlled

by shear instabilities and changes to the buoyancy production term should not lead to significant impacts

on the results. We confirmed this by changing the Cε3 value to 0.358 and only finding a small impact of the

trench migration. The model constants chosen are thus not the cause of the important differences observed

in the morphological computation.

The closure of the diffusive terms is the other primary source of discrepancies between the models.

Equation 28 is assessed in figure 16 at the five locations across the trench that have been used for model-

data comparison previously. The left-hand side and the right-hand side terms of equation 28 cannot be

considered to be equal. This is particularly prounounced near the sediment bed and confirms that the

diffusive terms in the k − ε and k − ω models are not equivalent. The resulting additional term has been

referred to as a cross-diffusion term and discussed for boundary layers in Wilcox (1993), where it has been

related to the rate of increase of l. In the present study, the k−ω turbulence length scale is larger than the

k − ε value when T (ω) < T (ε)
k − ε

k2 T (k) close to the bed (first and last profiles in figure 16), and vice versa

(second and third profiles in figure 16). This difference on the diffusion terms is further compounded by the

different values that are taken for σk (table 1).

6. Conclusions

We have applied a coupled hydrodynamics, turbulence and sediment transport to a classical test scenario

in order to investigate the effects that several modelling approaches have on numerical predictions of sediment

transport and morphological evolution. Some important simplifications have been assumed throughout the

study. In particular, we use a hydrostatic model and neglect advection of turbulent quantities. The validity

of these assumptions is related to the value of the trench slope. For the two gentle slopes, we expect the

hydrostatic model to perform reasonably well compared with a non-hydrostatic model (e.g., Stansby and

Zhou, 1998) and the horizontal length scale is reasonably large with respect to the vertical one. This is
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however not the case for the steepest case and both assumptions may be the source of numerical errors.

This may help explain the relatively poor results obtained for the velocity profiles, which would probably be

better predicted by a non-hydrostatic model. Such a model would help to better reproduce the recirculating

pattern near the upstream trench edge (e.g., Stansby and Zhou, 1998), and higher accuracy of the k − ω

model in this situation is well documented (e.g., Wilcox, 1993). However, flow errors due to steep changes in

bathymetry will be mitigated in morphological predictions by the natural sediment transport response which

leads to more gentle slopes. Even though a more comprehensive assessment of the effect of the hydrostatic

assumption on the numerical bed evolution may be justified, the present model has been able to match

reasonably well the experimental data in some cases.

We have investigated the effects of sediment-induced stratification, different erosion parameterizations,

and turbulence closures on the numerical results. These effects lead to modifications that are often not

negligible, in particular for the bed evolution. Most numerical experiments undertaken predict very similar

velocity profiles in spite of differences in the bed shear stress that can be significant. Discrepancies are

observed for the suspended sediment concentration profiles, and significant changes are found for the mor-

phological predictions, even for this simple idealized scenario. Even though the Brier Skill Scores remain in

general relatively high, the extent of horizontal migration can vary by more than one metre, corresponding

to a 25 to 30 % error, and the amount of trench filling can vary by up to a factor two. This illustrates a high

sensitivity of morphological predictions to a number of modelling parameterizations. This is in turn a severe

limitation to the predictive power of morphological models, even for this simple idealized scenario. For more

complex situations, the model sensitivity shown here highlights the crucial need of thorough hindcasting.

Observed underpredictions of the suspended sediment concentration in a number of cases may be due

to a poor representation of the sediment size. The overall sediment transport problem should thus be

modelled using more than one class of fixed particle size, even for the present simple case. This leads to

a series of inferred issues. One concerns how many sediment classes are needed and others relate to the

erosion parameterization. Using equation 19 requires the specification of sediment parameters that are not

easily determined and to which the numerical results are sensitive. While this can be seen as an important

advantage for only one sediment class, it may prove difficult to determine such parameters for more classes.

Another approach is to use an “off-the-shelf” formulation devoid of free parameters, such as the van Rijn

(2007b) reference concentration, which was not found to be a viable alternative here.

In the present study, the erosion parameterization presented the most dramatic impact on the predictions

of sediment transport and bed evolution. However, several other erosion formulations exist and erosional

parameters can exhibit significant variability, in particular under field conditions. This makes precise and

quantitative comparisons of the different impacts investigated with respect to that of the erosion parame-

terization difficult. In effect, little more than a qualitative assessment that the erosion parameterization has

the most dramatic effect can be made.
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Sediment-induced stratification and turbulence closures are clearly interrelated. Sediment-induced strat-

ification directly impacts the turbulence closure through the buoyancy production term, while turbulence

closures impact vertical mixing and the level of suspended sediment, thus stratification. The method used

to calculate the turbulence length scale is the crucial issue, as it leads to the largest discrepancies. In ad-

dition to consistently leading to poor results for hydrodynamics, sediment transport and bed evolution, the

one-equation model is not complete since it requires a flow-dependent specification for the length scale (e.g.,

Wilcox, 1993; Pope, 2000). In contrast, two-equation models are indeed complete. In this application, the

k − ω model has been found to lead to better numerical results than the k − ε model, in particular for the

morphological predictions. The main source of discrepancy between the two two-equation models has been

found to be the closure of the diffusion terms. The method employed to calculate the stability functions

is found to have a small impact here. The only noticeable difference is between empirical formulations

and expressions derived from second-order models, and the specific method within each of these two global

approaches seems to be interchangeable.
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A. Hydrodynamic model description

We summarize here the governing equations of motion for the hydrodynamic model in Cartesian co-

ordinates. The velocities are divided into depth-varying and depth-independent parts, respectively u =

ū(x, y, t) + ur(x, y, σ, t) and v = v̄(x, y, t) + vr(x, y, σ, t). Surface stresses are neglected and the atmospheric

pressure is constant. The depth averaged equations are

∂ū

∂t
= f v̄ − g ∂ζ

∂x
− FB

H
+NLBx (29)

and

∂v̄

∂t
= −fū− g ∂ζ

∂y
− GB

H
+NLBy (30)

The equation for the free surface is

∂ζ

∂t
= −∂Hū

∂x
− ∂Hv̄

∂y
(31)
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The depth varying governing equations are

∂ur

∂t
= −L(u) + fvr + T (u) +

FB

H

−∂ψ
∂x
−
(
∂ζ

∂x
+ σ

∂H

∂x

)
b−NLBx (32)

and

∂vr

∂t
= −L(v)− fur + T (v) +

GB

H

−∂ψ
∂y
−
(
∂ζ

∂x
+ σ

∂H

∂x

)
b−NLBy (33)

In these equations, f is the Coriolis parameter, H = h+ ζ is the total water depth, FB and GB are the two

components of the bottom stresses. L(.), T (.), and NLBx,y are respectively the advective, diffusive, and the

depth averaged non-linear and buoyancy terms. The buoyancy is b = g (ρ0 − ρ) /ρ0, where ρ0 = 1000kg/m3

is a reference density. ψ then relates to the buoyancy following

ψ = H

∫ σ

0

bdσ (34)

The advective terms are expressed following

L(a) = u
∂a

∂x
+ v

∂a

∂y
+ Ω

∂a

∂σ
(35)

where the vertical velocity Ω is found by

Ω = − σ

H

∂ζ

∂t

− 1
H

[
∂

∂x

(
H

∫ σ

0

udσ

)
+

∂

∂y

(
H

∫ σ

0

vdσ

)]
(36)

The vertical turbulent diffusion terms are given by

T (a) =
1
H2

∂

∂σ

(
Ka

z

∂a

∂σ

)
(37)

where Ka
z is either the eddy viscosity or eddy diffusivity.
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Table 1: k − ε and k − ω model constants. The Cε3 and Cω3 given result from the Umlauf et al. (2003) constraint with the

Canuto et al. (2001) stability functions.

Model C0
μ σk σε, σω Cε1, Cω1 Cε2, Cω2 Cε3, Cω3

k − ε 0.5477 1.0 1.3 1.44 1.92 -0.629

k − ω 0.5477 2.0 2.0 0.555 0.833 -0.642

Table 2: Stability functions and turbulent Prandtl number constants.

Method c0μ Pr0

Munk and Anderson (1948) 0.5477 0.74

Eifler and Schrimpf (1992) 0.5 0.7143

Schumann and Gerz (1995) 0.5477 0.74

Table 3: Summary of model setup parameters.

Δx, Δy 0.1 m

Δt 0.01 s

Bed slope 4.2× 10−4

Bed roughness 8× 10−4 m

h0 0.39 m

Ū 0.51 m/s

d 160× 10−6 m

ρs 2650 kg/m3

Fmorph 10

φ 0.4
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Table 4: Summary of numerical experiments. SIS: Sediment-induced stratification. NSS: No sediment stratification. C01-A:

Canuto et al. (2001) Model A. C01-B: Canuto et al. (2001) Model B. G88: Galperin et al. (1988). MA48: Munk and Anderson

(1948). ES92: Eifler and Schrimpf (1992). SG95: Schumann and Gerz (1995).

Experiment Stratification Turbulence

length scale

method

Stability

functions

Erosion E0

(kg/m2/s)

τce (N/m2)

S1A SIS ω C01-A Eq. 19 0.0082 0.17

S1B SIS ω C01-A Eq. 19 0.012 0.17

S1C SIS ω C01-A Eq. 19 0.0082 0.26

S1D SIS ω C01-A Eg. 19 0.0082 0.10

S1V SIS ω C01-A Eq. 20

N1A NSS ω C01-A Eq. 19 0.0082 0.17

S2A SIS ε C01-A Eq. 19 0.0082 0.17

S2B SIS ε C01-A Eq. 19 0.012 0.17

S2D SIS ε C01-A Eg. 19 0.0082 0.10

N2B NSS ε C01-A Eq. 19 0.012 0.17

S3A SIS Algebraic G88 Eq. 19 0.0082 0.17

S4A SIS ω C01-B Eq. 19 0.0082 0.17

S5A SIS ω MA48 Eq. 19 0.0082 0.17

S6A SIS ω ES92 Eq. 19 0.0082 0.17

S7A SIS ω SG95 Eq. 19 0.0082 0.17
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Table 5: Friction velocities upstream of the trench found analytically and from the different numerical experiments.

Case u�(cm/s)

Analytical 4.0

S1A 3.92

S1B 3.87

S1C 3.94

S1D 3.86

S1V 3.41

N1A 3.97

S2A 3.65

S2B 3.59

S2D 3.58

N2B 3.71

S3A 3.21

S4A 4.02

S5A 4.01

S6A 4.02

S7A 3.99
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Table 6: Brier Skill Scores for the different numerical experiments for the 3 trenches of different initial slopes S

Case S = 1/3 S = 1/7 S = 1/10

S1A 0.9838 0.9499 0.9850

S1B 0.9048 0.9710 0.9443

S1C 0.8637 0.7579 0.8561

S1D 0.8568 0.9251 0.8834

S1V 0.7012 0.8046 0.7483

N1A 0.9503 0.9949 0.9807

S2A 0.6120 0.4134 0.5618

S2B 0.7631 0.5351 0.6679

S2D 0.7837 0.5519 0.6495

N2B 0.9173 0.8971 0.9002

S3A 0.7451 0.6392 0.7090

S4A 0.9836 0.9644 0.9899

S5A 0.9445 0.9855 0.9699

S6A 0.9399 0.9837 0.9670

S7A 0.9577 0.9898 0.9799
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Figure 1: Two-dimensional sketch of the sediment model layered structure. Three bed layers are represented here.

The active layer is of thickness δa and always part of the top bed layer. Changes in bed location are computed

following equation 22 and results from vertical exchange between the bed and the suspended load via erosion E and

deposition D.

Figure 2: Sketch of the trench setup in the 30 m long, 0.5 m wide flume. The dashed vertical lines show the locations

at which velocity and suspended sediment concentration profiles were measured.

Figure 3: Velocity profiles (top) and suspended sediment concentration profiles (bottom) obtained with or without

sediment-induced stratification.
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Figure 4: Velocity profiles (top) and suspended sediment concentration profiles (bottom) obtained for experiment

S1A d = 160μm (black) and d = 120μm (red). The circles represent the data of van Rijn (1987).

Figure 5: Trench migrations with or without sediment-induced suspension for trenches with initial slopes of 1/3 (top),

1/7 (middle), and 1/10 (bottom). The circles show the data, and the lines numerical results. Black solid: case S1A;

grey solid: case N1A; black dashed: case S2B; grey dashed: case N2B.

Figure 6: Velocity profiles (top) and suspended sediment concentration profiles (bottom) obtained using equation 19

with E0 = 0.0082kg/m2/s and τce = 0.17N/m2 (experiment S1A) (black) or equation 20 (experiment S1V). The

circles are the data of van Rijn (1987).

Figure 7: Trench migrations for different erosion approaches for trenches with initial slopes of 1/3 (top), 1/7 (middle),

and 1/10 (bottom). Circles: experimental data; black solid: bathymetry after 15 hours for experiment S1A; grey

solid: bathymetry after 15 hours for experiment S1V; dashed grey: bathymetry after 1.5 hours for experiment S1V.

Figure 8: Velocity profiles (top) and suspended sediment concentration profiles (bottom) obtained for different

values of E0 and τce. Solid black: E0 = 0.0082kg/m2/s and τce = 0.17N/m2 (experiment S1A); solid red:

E0 = 0.012kg/m2/s and τce = 0.17N/m2 (experiment S1B); solid blue: E0 = 0.0082kg/m2/s and τce = 0.26N/m2

(experiment S1C); dashed blue: E0 = 0.0082kg/m2/s and τce = 0.10N/m2 (experiment S1D). The circles are the

data of van Rijn (1987).

Figure 9: Trench migrations for different values of E0 and τce for trenches with initial slopes of 1/3 (top), 1/7

(middle), and 1/10 (bottom). Circles: experimental data; black solid: E0 = 0.0082kg/m2/s and τce = 0.17N/m2

(experiment S1A); black dashed: E0 = 0.012kg/m2/s and τce = 0.17N/m2 (experiment S1B); black dot-dashed:

E0 = 0.0082kg/m2/s and τce = 0.26N/m2 (experiment S1C); black dotted: E0 = 0.0082kg/m2/s and τce =

0.10N/m2 (experiment S1D); grey solid: experiment N1A.

Figure 10: Trench migrations for increasing values of E0 and τce for the k − ε model for trenches with initial slopes

of 1/3 (top), 1/7 (middle), and 1/10 (bottom). Circles: experimental data; black solid: E0 = 0.0082kg/m2/s and

τce = 0.17N/m2 (experiment S2A); black dashed: E0 = 0.012kg/m2/s and τce = 0.17N/m2 (experiment S2B); black

dot-dashed E0 = 0.0082kg/m2/s and τce = 0.10N/m2 (experiment S2D).

Figure 11: Velocity profiles (top) and suspended sediment concentration profiles (bottom) for different turbulence

models. Solid black: k − ω model; red: k − ε model; blue: one-equation k model; dashed black: case N1A; circles:

experimental data.

Figure 12: Trench migrations for different turbulence models for trenches with initial slopes of 1/3 (top), 1/7 (middle),

and 1/10 (bottom). Circles: experimental data; solid black: k − ω model; dahed black: k − ε model; grey solid:

one-equation k model.

Figure 13: Velocity profiles (top) and suspended sediment concentration profiles (bottom) for different stability

functions. Circles: experimental data; black solid: Canuto et al. (2001) Model A; grey solid: Canuto et al. (2001)

Model B; dashed blue: Munk and Anderson (1948); dashed red: Eifler and Schrimpf (1992); dashed green: Schumann

and Gerz (1995); dashed black: case N1A.

29



Figure 14: Trench migrations for different stability functions for trenches with initial slopes of 1/3 (top), 1/7 (middle),

and 1/10 (bottom). Circles: experimental data; black: Canuto et al. (2001) Model A; grey: Canuto et al. (2001)

Model B; blue: Munk and Anderson (1948); red: Eifler and Schrimpf (1992); green: Schumann and Gerz (1995).

Figure 15: Top: Non-dimensional bed shear stress across the trench for the k − ω model (black) and k − ε model

(grey). Bottom: Erosion (solid) and deposition (dashed) across the trench for the k − ω model (black) and k − ε

model (grey).

Figure 16: Assessment of equation 28 at the five locations across the trench by plotting the left-hand side term T (ω)

(solid) and the right-hand side term (dashed).
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� We�model�suspended�sediment�concentrations�and�sediment�bed�evolution.�

� We�investigate�the�impact�of�several�modelling�approaches�on�numerical�results.�

� A�good�representation�of�the�sediment�size�distribution�is�important.�

� The�parameterization�of�sediment�erosion�has�the�most�dramatic�effect.�

� The�choice�of�turbulence�model�also�impacts�numerical�results.�




