Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Modelling the effects of climate change and its uncertainty on UK Chalk groundwater resources from an ensemble of global climate model projections

Jackson, Christopher R.; Meister, Rakia; Prudhomme, Christel ORCID: https://orcid.org/0000-0003-1722-2497. 2011 Modelling the effects of climate change and its uncertainty on UK Chalk groundwater resources from an ensemble of global climate model projections. Journal of Hydrology, 399 (1-2). 12-28. 10.1016/j.jhydrol.2010.12.028

Abstract
Projections of climate for the 2080s from an ensemble of global climate models (GCMs) run under a medium–high (A2) emissions scenario are used to simulate changes in groundwater resources of a Chalk aquifer in central-southern England. Few studies that have investigated the impacts of climate change on groundwater resources have addressed uncertainty. In this paper the uncertainty associated with use of a suite of GCM outputs in catchment scale impact studies is quantified. A range of predictions is obtained by applying precipitation and temperature change factors, derived from thirteen GCMs, to a distributed recharge model and a groundwater flow model of the Chalk aquifer of the Marlborough and Berkshire Downs and south-west Chilterns in the UK. The ensemble average suggests there will be a 4.9% reduction in annual potential groundwater recharge across the study area, although this is not statistically significant at the 95% confidence level. The spread of results for simulated changes in annual potential groundwater recharge range from a 26% decrease to a 31% increase by the 2080s, with ten predicting a decrease and three an increase. Whilst annual recharge is not found to change significantly, the multi-model results suggest that the seasonal variation in the groundwater resource will be greater, with higher recharge rates during a reduced period of time in winter. The spread of predictions for changes in river baseflow, at the bottom of the largest river sub-catchment, is from −16 to +33% in March and from −68 to −56% in October. The effects of climate change are shown to depend significantly on the type of land-use. It is concluded that further research is required to quantify the effect of different vegetation types on Chalk covered by different thicknesses of soil and their response to a changing climate.
Documents
13494:27192
[thumbnail of NORA version Jackson_Meister_Prudhomme_2011.pdf]
Preview
NORA version Jackson_Meister_Prudhomme_2011.pdf

Download (2MB) | Preview
Information
Programmes:
UNSPECIFIED
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item