nerc.ac.uk

CO2 balance of boreal, temperate and tropical forests derived from a global database

Luyssaert, S.; Inglima, I.; Jung, M.; Richardson, A. D.; Reichstein, M.; Papale, D.; Piao, S. L.; Shulze, E.- D.; Wingate, L.; Matteucci, G.; Aragao, L.; Aubinet, M.; Beer, C.; Bernhofer, C.; Black, K. G.; Bonal, D.; Bonnefond, J.- M.; Chambers, J.; Ciais, P.; Cook, B.; Davis, K. J.; Dolman, A. J.; Gielen, B.; Goulden, M.; Grace, J.; Granier, A.; Grelle, A.; Griffis, T.; Grunwald, T.; Guidolotti, G.; Hanson, P. J.; Harding, R.; Hollinger, D. Y.; Hutyra, L. R.; Kolari, P.; Kruijt, B.; Kutsch, W.; Lagergren, F.; Laurila, T.; Law, B. E.; Le Maire, G.; Lindroth, A.; Loustau, D.; Malhi, Y.; Mateus, J.; Migliavacca, M.; Misson, L.; Montagnani, L.; Moncrieff, J.; Moors, E.; Munger, J. W.; Nikinmaa, E.; Ollinger, S. V.; Pita, G.; Rebmann, C.; Roupsard, O.; Saigusa, N.; Sanz, M. J.; Seufert, G.; Sierra, C.; Smith, M. - L.; Tang, J.; Valentini, R.; Vesala, T.; Janssens, I. A.. 2007 CO2 balance of boreal, temperate and tropical forests derived from a global database. Global Change Biology, 13 (12). 2509-2537. https://doi.org/10.1111/j.1365-2486.2007.01439.x

Full text not available from this repository.

Abstract/Summary

Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are being collected at many sites around the world, but syntheses of these data are still sparse. To facilitate future synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics. This publicly available database can be used to quantify global, regional or biome-specific carbon budgets; to re-examine established relationships; to test emerging hypotheses about ecosystem functioning [e.g. a constant net ecosystem production (NEP) to gross primary production (GPP) ratio]; and as benchmarks for model evaluations. In this paper, we present the first analysis of this database. We discuss the climatic influences on GPP, net primary production (NPP) and NEP and present the CO2 balances for boreal, temperate, and tropical forest biomes based on micrometeorological, ecophysiological, and biometric flux and inventory estimates. Globally, GPP of forests benefited from higher temperatures and precipitation whereas NPP saturated above either a threshold of 1500 mm precipitation or a mean annual temperature of 10 °C. The global pattern in NEP was insensitive to climate and is hypothesized to be mainly determined by nonclimatic conditions such as successional stage, management, site history, and site disturbance. In all biomes, closing the CO2 balance required the introduction of substantial biome-specific closure terms. Nonclosure was taken as an indication that respiratory processes, advection, and non-CO2 carbon fluxes are not presently being adequately accounted for.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1111/j.1365-2486.2007.01439.x
Programmes: CEH Programmes pre-2009 publications > Biogeochemistry
UKCEH and CEH Sections/Science Areas: Harding (to July 2011)
ISSN: 1354-1013
Additional Keywords: carbon cycle, CO2, forest ecosystems, global database, gross primary productivity, net ecosystem productivity, net primary productivity
NORA Subject Terms: Meteorology and Climatology
Hydrology
Atmospheric Sciences
Date made live: 10 Dec 2007 11:59 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/1347

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...