- 1 HJ-2009-1278
- 3 Brighid E. Ó Dochartaigh, Alan M. MacDonald, William G. Darling, Andrew G.
- 4 Hughes, Jin X. Li and Li A. Shi
- 5 6 7 Determining groundwater degradation from irrigation in desert-marginal northern
- China

8 9 **Electronic Supplementary Material**

10

2

11

12 Location of water quality sampling sites and field measurements for Table ESM1 groundwaters from Chahaertan. See Figure 3, main text, for sample locations. 13

Site	Site Name	Long. E	Lat. N	Elevation	Irrig-	Well	Sample	Temp	pН	Diss.	SEC
NO				m asi	ated	m bal	date			ma/L	µS/cm
1	Zhang Zhong	105.7188	39.2910	1195	I	120	07-Sep-06	16.1	7.70	8.50	822
2	Chen Qinglai & Si Chunyuan	105.7216	39.2827	1205	1	120	07-Sep-06	16.5	7.46	8.31	888
3	Sumuto No. 3 Well	105.7158	39.3006	1200	1	120	07-Sep-06	15.9	7.39	9.39	1768
4	Power Station Pumping Well	105.7373	39.3100	1191	1		07-Sep-06	16.2	7.61	11.50	679
5	Dong Feng No. 2	105.7078	39.3021	1193	1	120	08-Sep-06	17.0	7.59	9.68	893
6	Wang Guoyao	105.7048	39.2499	1226	1	132	08-Sep-06	15.9	7.55	9.85	861
7	Water Management Stn Well	105.7073	39.2597	1228	1	120	08-Sep-06	16.4	7.98	8.50	840
8	Shang Yuchang	105.7043	39.2818	1227	1	110	08-Sep-06	17.0	7.60	9.10	823
9	Zi Leishui	105.7188	39.3205	1185	1	105	08-Sep-06	15.7	7.65	9.18	765
10	Hu He Xing No. 4	105.7152	39.3147	1191	1	110	09-Sep-06	15.8	7.66	9.49	745
11	Hu He Xing No. 2	105.7145	39.3254	1182	1	95	09-Sep-06	17.8	7.65	6.20	1802
12	Wu Da Mu No. 20	105.7156	39.3474	1175	1	100	09-Sep-06	15.2	7.41	10.32	2800
13	Wu Da Mu No. 15	105.7200	39.3427	1168	1	100	11-Sep-06	15.7	7.69	11.49	705
14	Wu Da Mu No. 2	105.7268	39.3453	1169	1	105	11-Sep-06	15.0	7.63	8.04	1330
15	Wu Da Mu No. 7	105.7159	39.3295	1187	1	110	11-Sep-06	16.0	7.68	11.75	1025
16	Nowgan Tone No. 2	105.7248	39.3295	1185	1	100	11-Sep-06	16.3	7.80	11.30	656
17	Yu Chang	105.7267	39.3601	1171	1	60	11-Sep-06	15.7	7.69	8.54	1274
18	Drinking Water Well, L. Chah.	105.6465	39.4706	1094	1	>90	12-Sep-06	21.6	8.04	6.50	527
19	Fu Qing Dui No. 1, L. Chah.	105.6495	39.4608	1096	1	100	12-Sep-06	15.6	8.03	6.40	462
20	Lu Xing Jun Homestay	105.6762	39.6150	1046	N-I	70	12-Sep-06	18.2	8.22	1.78	606
21	Salt Mine Factory	105.7462	39.7428	1012	N-I		12-Sep-06	19.1	8.63	0.00	662
22	Xilingaole Naoertao G. No. 3	105.7957	39.3663	1186	N-I	145	13-Sep-06	17.4	7.80	8.34	673

¹Irrig: I – Irrigated; N-I – Non irrigated 14

15 Table ESM2 Analyses of major and minor inorganic species in groundwaters from the Chahaertan area, with calculated saturation indices (SIs)

16	with respect to	calcite and gynsur	n and nH for con	narison See Figur	re 3 main text fo	r sample locations
10	with respect to	calche and gypsui	n, and pri toi con	iparison. See Figu	16 J, main (6A), 10	i sample locations.

Site	Са	Mg	Na	К	HCO ₃	CI	SO ₄	NO₃-N	Si	Br	Ва	Sr	Fe	Mn	В	рН	Si-	Si-
No	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	-	calcite	gypsum
1	78.6	24.6	46.2	2.92	140	111	95.4	9.8	6.77	0.157	59.5	0.840	<10	0.15	78	7.70	-0.097	-1.611
2	86.8	24.1	55.7	2.94	142	127	112.0	7.4	6.79	0.165	93.6	0.847	31	0.19	86	7.46	-0.096	-1.517
3	169.0	48.5	75.8	4.05	119	192	166.0	71.7	6.45	0.400	123.0	1.620	<10	0.29	87	7.39	-0.032	-1.2
4	64.7	17.9	35.6	2.63	148	65	89.8	3.6	6.85	0.083	65.6	0.646	12	0.35	61	7.61	-0.029	-1.679
5	83.9	24.2	53.5	3.01	126	109	69.0	28.9	6.87	0.184	92.7	0.870	<10	0.37	101	7.59	-0.012	-1.729
6	84.2	24.0	49.4	3.31	130	121	104.0	8.5	6.44	0.153	66.1	0.854	46	3.7	80	7.55	-0.062	-1.552
7	71.0	22.5	50.5	2.99	140	98	103.0	6.6	6.31	0.132	69.5	0.711	21	0.89	91	7.98	0.335	-1.613
8	78.9	22.7	47.6	3.24	131	108	99.4	10.2	6.40	0.153	79.3	0.815	<10	0.33	82	7.60	-0.013	-1.591
9	73.9	22.1	49.7	2.99	133	107	91.9	9.1	6.54	0.143	72.8	0.774	<10	0.99	86	7.65	0	-1.641
10	66.4	19.8	46.7	2.90	132	102	74.8	6.6	6.72	0.141	62.9	0.697	10	0.74	93	7.66	-0.025	-1.754
11	184.0	54.7	91.1	3.98	115	285	218.0	51.3	6.47	0.423	102.0	1.760	70	1.92	87	7.65	0.254	-1.083
12	281.0	92.1	149.0	5.17	102	369	314.0	137.0	6.28	0.721	80.7	2.890	21	0.43	86	7.41	0.046	-0.857
13	67.2	21.0	51.3	3.03	132	103	83.1	7.4	6.60	0.142	58.7	0.748	<10	0.43	100	7.69	0.004	-1.712
14	150.0	41.3	68.3	3.39	126	248	154.0	23.5	6.33	0.329	89.9	1.420	<10	0.75	82	7.63	0.18	-1.249
15	104.0	31.5	70.5	3.13	130	168	125.0	19.3	6.59	0.229	78.7	1.040	26	0.54	100	7.68	0.134	-1.434
16	65.9	19.3	42.4	2.98	138	90	79.2	4.8	6.42	0.124	62.1	0.679	45	1.07	83	7.80	0.136	-1.732
17	120.0	38.2	70.8	3.34	118	215	137.0	21.0	6.33	0.254	60.7	1.370	19	0.44	82	7.69	0.142	-1.363
18	23.3	12.4	51.0	2.50	138	44	34.8	3.3	6.26	0.053	48.8	0.409	12	0.57	138	8.04	0.051	-2.444
19	28.5	15.4	43.3	2.69	135	51	39.5	3.9	6.22	0.064	45.1	0.511	<10	0.32	133	8.03	0.025	-2.307
20	18.5	10.7	92.7	2.20	125	65	90.0	1.7	5.51	< 0.02	21.2	0.629	<10	0.14	156	8.22	-0.003	-2.167
21	13.3	12.5	111.0	3.30	123	90	92.1	1.2	4.03	0.035	33.5	0.614	136	10.11	168	8.63	0.24	-2.319
22	58.4	23.9	38.8	2.88	124	100	67.9	5.6	6.74	0.137	61.7	0.802	102	12.14	65	7.80	0.06	-1.848

Table ESM3	Analyses of	f CFCs and	stable	isotopes	in	groundwaters	from	the	Chahaertan
------------	-------------	------------	--------	----------	----	--------------	------	-----	------------

Site No	CFC-12	CFC-11	δ ¹⁸ Ο	$\delta^2 H$	
	pm	ol/L	% VSMOW		
1	0.43	0.21	-11.18	-76.7	
2			-11.46	-82.1	
3	0.26	0.42	-11.02	-80.8	
4	0.70	0.46	-11.04	-78.9	
5			-11.55	-82.1	
6	0.15	0.13	-10.72	-81.2	
7			-10.94	-78.9	
8	0.15	0.14	-11.03	-78.1	
9	0.15	0.16	-10.94	-75.0	
10			-11.08	-77.2	
11			-10.84	-77.4	
12	0.87	1.31	-11.24	-74.1	
13	0.21	0.09	-10.91	-79.3	
14			-10.82	-76.9	
15	0.33	0.29	-11.25	-77.6	
16			-10.99	-78.9	
17	0.29	0.33	-11.10	-80.5	
18			-12.60	-87.1	
19	<0.02	<0.02	-12.02	-83.0	
20	<0.02	<0.02	-13.09	-89.9	
21	0.38	0.37	-11.94	-82.5	
22			-10.88	-79.6	

area. See Figure 3, main text, for sample locations.

Table ESM4 Recharge model details

Input data	Data source	Data preparation					
Daily rainfall	Partial dataset of daily rainfall (Chahaertan 2006, Bayanhot and Jilantai 2003-2005). Long term average monthly rainfall at Bayanhot, Jilantai and the Helan Mountains.	A synthetic daily rainfall series for 1 year created by disaggregating long term average monthly rainfall into separate rain events, determined by available data on actual daily rainfall events and by total long term average monthly rainfall.					
Calculation methods							
Distributing rainfall and evaporation	Standard Theissen polygons and spatia and evaporation.	I distribution of long term average rainfall					
Wetting threshold	Effective precipitation (EP) calculated as difference between rainfall and potential evaporation. If EP > wetting threshold, the remainder is available for runoff and recharge. A proportion is partitioned to runoff, which is routed downhill to adjacent model nodes. If it doesn't subsequently become recharge, runoff is eventually routed to the nearest river node. The remainder after the final runoff partition is recharge.						
Infiltration through wadi beds	Based on a river loss coefficient (see be	elow)					
Model boundary	Standard Terman-Onnoiey approach	Illustrated in					
Surface water catchment south of the flank of Helan Mountains	lake at Jilantai, including northwest	Figure 12					
Model grid							
1000 m square mesh							
Model parameters	Quaternary aquifer	Tertiary rocks					
Wetting threshold	10 mm	3 mm					
Runoff coefficient	0.1	0.5					
River loss coefficient	0.075	0.01					
Model timestep							
Input	Daily						
Output	Monthly						
Calibration data	Data description						
Anecdotal data on the magnitude and duration of river flows; limited qualitative observations of river channel characteristics; empirical estimate of river flows based on Manning equation for open channel flow (20-30 m ³ /sec)							
Groundwater flow model	Realistic calculation of groundwater hea	ads by groundwater flow model, as shown					
groundwater head calculation	by groundwater level calibration data (s	ee Table VI).					

Table ESM5. Groundwater flow model para	meters
---	--------

Model boundaries	Boundary location		Illustrated in			
Southeast, south and	Contact between Quaternary aquifer basin a	nd Tertiary	y Figures 12, 13			
west boundary	rocks.					
East, north and	Surface water catchment boundary.					
northwest boundary						
Northern boundary	The lake at Jilantai (the main natural ground)	vater	Figures 1, 12			
5	discharge point).		Figure 0			
Base	Base of Quaternary deposits overlying Tertia	ry rocks		Figure 2		
Model layering	t Oustamany hasin any ifan yuhish has na kasuu		ata wa al las sa visa			
Model grid	L Quaternary basin aquiler, which has no know	n persistent ir	itemai layenn			
1000 m squaro mosh						
Steady state model	Data aquiroa			Value (range)		
input data	Data source			value (range)		
Transmissivity	Groundwater Development and Litilisation Te	aching and		<u>^</u>		
Transmissivity	Research Office 1984, Yuan and Wu 1996.	600 – 1500) m³/day			
Groundwater	Groundwater Development and Utilisation Te	150 produc	tion wells; total			
abstraction	Research Office 1984; Left Banner Water Ma	abstraction	18.4 Mm [°] /a. In steady			
	and Water Resource Office 1992; data collect	ted during	state mode	l, a constant average		
	current project.		daily pump	ing rate was assigned to		
			each well,	ranging from 108-		
Desharra	Long town over a sockering from ZOODDM		646 m²/day	/.		
Recharge	model	See Table	V			
Model discharge	model					
Lake at Jilantai	Leakage nodes allow groundwater to dischar	ae from aquit	fer controlled	by groundwater head		
Abstraction through		ge nem aqui		2) g. caa.ratorcaal		
boreholes	See above & below.					
Dynamic balance		-	ime eten			
model – input data	Data source	I	ime step	value (range)		
Recharge	Recharge model	Monthly				
Storage coefficient	Groundwater Development and Utilisation					
	Teaching and Research Office 1984, Yuan			0.1		
	and Wu 1996, data from similar Quaternary			0.1		
-	aquifers in other areas.					
Groundwater	Groundwater Development and Utilisation					
abstraction from	Teaching and Research Office 1984; Left	••		0 (winter) to 1600		
production wells	Banner Water Management and Water	Monthly		m [°] /day (peak irrigation		
	Resource Office 1992; data collected			months).		
Calibratian data	auring current project.					
	Data description			their the invigente diagona		
Groundwater levels	from 1094 1004; limited encodetal groundwater	a for six mon	for some proc			
	outside the irrigated area		ior some proc	inclini wells, two values		
Groundwater	Production well abstraction data: estimate of	evanoration	from the lake a	t lilantai (120 Mm^3/a)		
Ci Sanawator						