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Abstract

Forests are experiencing an environment that changes much faster than in at
least the past several hundred years. In addition, the abiotic factors determining forest
dynamics vary depending on its location. Forest modeling thus faces the new challenge
of supporting forest management in the context of environmental change. This review
focuses on three types of models that are used in forest management: empirical,
process-based and hybrid models. Recent approaches may lead to the applicability of
empirical models under changing environmental conditions, such as (i) the dynamic
state-space approach, or (ii) the development of productivity-environment relationships.
Twenty-five process-based models in use in Europe were analyzed in terms of their
structure, inputs and outputs having in mind a forest management perspective. Two
paths for hybrid modeling were distinguished: (i) coupling of EMs and PBMs by
developing signal-transfer environment-productivity functions; (ii) hybrid models with
causal structure including both empirical and mechanistic components. Several gaps of
knowledge were identified for the three types of models reviewed.

The strengths and weaknesses of the three model types differ and all are likely to
remain in use. There is a trade-off between how little data the models need for
calibration and simulation purposes, and the variety of input-output relationships that
they can quantify. PBMs are the most versatile, with a wide range of environmental
conditions and output variables they can account for. However, PBMs require more data
making them less applicable whenever data for calibration are scarce. EMs, on the other
hand, are easier to run as they require much less prior information, but the aggregated
representation of environmental effects makes them less reliable in the context of
environmental changes. The different disadvantages of PBMs and EMs suggest that
hybrid models may be a good compromise, but a more extensive testing of these models

is required in practice.



Introduction

The need for a new forest modeling paradigm

In the 21 century, forests are experiencing an abiotic environment that changes
much faster than in at least the past several hundred years. Abiotic factors determining
forest dynamics range from temperature limitations in northern boreal and high
mountain elevations, to water limitation in the continental and Mediterranean contexts,
and include large-scale disturbances such as windthrow, insect infestations and fires.
Changes in the climate may therefore have a wide range of effects across Europe
(Lindner et al. 2009). Also, while most forest ecosystems have been traditionally nitrogen
limited, eutrophication due to atmospheric deposition has led to nitrogen saturation in
some of them (Hégberg 2007). Forest management across such large areas thus needs
to be adaptive to changing conditions. Here we review how forest modeling may assist in
adapting management to rapidly changing abiotic conditions. Our focus is on
management for forest productivity and carbon sequestration. Forests also provide other
ecosystem services, e.g. regulation of the water cycle, protection from gravitative natural
hazards, or biodiversity, but these are not frequently covered by output provided by
forest models.

Empirical models (EMs) have been used most frequently for studying issues
related to sustainable forest management (Pretzsch 2009; Vanclay 1994). Typically, such
models are based on statistical analyses of the dependency of target variables, such as
timber production, on a number of predictor variables available from forest inventories
and site data. These models primarily rely on the classical assumption of the stationarity
of site conditions (Skovsgaard and Vanclay 2008; Vanclay and Skovsgaard 1997), and
are often inadequate under conditions of a changing environment. However, recent
approaches may lead to the applicability of EMs under changing environmental
conditions, such as (i) the dynamic state-space approach (Nord-Larsen and Johannsen
2007; Nord-Larsen et al. 2009), or (ii) the development of productivity-environment
relationships (Seynave et al. 2005; Tyler et al. 1996), as explained further below.

An alternative approach for modeling forest dynamics is to explicitly consider the
processes that are believed to influence long-term forest dynamics (i.e., the abiotic and
biotic controls operating on establishment, growth and mortality of trees). In many of
these so-called process-based models (PBMs), physiological processes such as
photosynthesis, transpiration and respiration are modeled explicitly. As these processes
fundamentally depend on environmental conditions, PBMs are likely most relevant for
understanding the present and future growth and composition of forests. Thus, PBMs are
regarded as promising tools in this context. A classical example of regulation that can be

mathematically described in these models concerns water limitations, which affect
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mesophyll conductance thereby severely impacting the CO, concentration in the
chloroplast and thus the rate of photosynthesis. However, there is still a considerable
controversy regarding which physiological processes are actually limiting long-term forest
dynamics (Braun et al. 2010; Bugmann and Bigler 2010; Bugmann and Martin 1995;
Korner 1998, 2006; Reynolds et al. 2001). The challenge is to identify the relevant
processes, and to describe them in a proper form to be incorporated in forest models for
operational management.

A third category of models, the so-called Hybrid Models (HMs), is based on the
pragmatic principle that an exhaustive mechanistic description of all processes, though
fundamental for understanding forest growth responses, is an untenable approach as it
ultimately leads to explaining ecosystem dynamics based on the principles of particle
physics (Bugmann et al. 2000). Instead, empirical relationships estimated from inventory
data are used in HMs to make up for incomplete knowledge about some mechanisms
(e.g., carbon allocation, relationship between growth rate and longevity of an organism)
and the resulting partial predictive ability (Makela et al. 2000). Two paths for hybrid
modeling can be distinguished: (i) coupling of EMs and PBMs by developing signal-
transfer environment-productivity functions (Luxmoore et al. 2002; Matala et al. 2005);
(ii) hybrid models with causal structure including both empirical and mechanistic
components (Bartelink and Mohren 2004; Landsberg 2003; Makela et al. 2000; Pretzsch
2007; Taylor et al. 2009).

Although physiological processes are directly affected by climate, it is also
important to consider indirect effects of the changing environment on disturbance
regimes (e.g. fire, storm, pests) and their impacts on forests. Further information on
modeling the risk of natural hazards will be provided, in detail, in another review of this

special issue (Hanewinkel et al. in press).

Models and stakeholders

Most models of long-term forest dynamics are not designed exclusively as
research tools within academia, but they should also be suitable for providing decision
support in ecosystem management. Thus, the interaction with model users is an
important step in model development. Particularly, model users are likely to have a
range of objectives depending on whether they belong to the communities of forest
management or industry, of the broad public or the academic and scientific communities
(Landsberg 2003). In this review, forest modeling is evaluated as a tool for supporting
forest management in the context of environmental change. Therefore, it provides a
different scope from several other forest model comparisons which have been published
before (King 1993; Korzukhin et al. 1996; Landsberg 2003; Makela et al. 2000; Robinson
and Ek 2000; Tiktak and van Grinsven 1995; Van Oijen et al. 2008; Van Oijen et al.
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2004). This review also brings a more up-to-date view on forest modeling, which is
continuously evolving. It was carried out in the framework of the European COST Action
FPO603 "Forest Models for Research and Decision Support in Sustainable Forest
Management", and emphasis was placed on recent forest modeling advances in Europe.
However, this review should be relevant to other parts of the world, despite that there
are quite some forested areas (e.g. tropical forests) for which most models presented
here are not directly suitable.

Models for forest management can be perceived in two ways: from a user’s
perspective, which requires operational models to assist forest management, and a
modeler’s perspective, which needs to understand the strengths and weaknesses of such
models in order to identify further needs for model development. Users need to be aware
of the range of existing models and their usefulness for simulating forest management
under changing environmental conditions. Modelers need to evaluate the conceptual
approaches underlying the models, and to understand what new approaches should be
adopted to be useful for forest management in a changing environment. The present
review therefore intends to provide an overview of present and future modeling options
namely: (I) to discuss the use of empirical models in a changing environment; (II) to
identify the main process-based models in use in the European forests and see how they
encompass and represent forest management options; (III) to discuss the importance
and possible implementation of hybrid forest modeling; (IV) to identify the key

knowledge gaps associated with the different modeling approaches.

1 Using empirical models in a changing environment

Empirical models (EM) for forest management are generally calibrated on forest
inventory data or data from long-term forest experiments and are consequently
considered as being unable to incorporate the effects of changing environmental
conditions on tree and stand growth (Kahle et al. 2008). However, in contrast to the
classical 'static' approach of EMs, recent empirical modeling approaches can actually
accommodate the dynamics of environmental conditions, including climate change, and
are thus capable of reflecting the effects of changing conditions on natural as well as

management-driven forest dynamics, at least within the historical range of variability.

1.1 Dynamic state-space approach

More flexible EMs can be achieved using the dynamic state-space approach
(Garcia 1994; Nord-Larsen and Johannsen 2007; Nord-Larsen et al. 2009). In this
concept, site productivity effects are incorporated implicitly through a combination of

common stand-specific parameters at any stage of stand development and the possible
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interactions between site, tree growth and management actions. By doing so, they
account implicitly for (1) temporal variations in site and stand productivity, and (2) the
combined effect on stand dynamics and growth as a function of site potential, the
genetically determined potential for volume growth, and possible management effects.
The state-space approach assumes that variables describing the current state of a given
system at any time include the information needed to predict the future behavior of the
system. It is assumed that the n-dimensional state vector at some point in time, x(t),
can be predicted by a transition operator F of the state vector, x(ty), and a vector of
input variables, U at some other point in time. Current additional outputs from the
model, y(t), are deduced from the current state by a function g (Garcia 1994):

y(t) = g [x(1)]

x(t) = F [x(to),U, t — to]
The state-space approach thus predicts any future states of the system from the initial
state, x(tg), through iteration. For example, an initial observation of the two-dimensional
state vector of height and basal area may be used to predict height and basal area after
one period. The new estimates of the two state variables are then re-entered into the
model to predict the state after one more period, and so forth. Abrupt changes in, for
example, basal area due to thinnings are handled by simulating the shifts in the state
vectors (U) and are seen as shifts between different growth paths.
Mortality, growth and stand development may thus be modeled through iterations based
on simple site and stand variables combined with numeric information on management

actions.

In contrast to classical (i.e., static) EMs and most PBMs, models based on the
dynamic state-space approach rely on a minimum of assumptions regarding allometric
relations and management effects. For example, no assumptions on mortality due to self-
thinning or the relationship between height growth and basal area growth are needed.
The use of plot- or stand-specific calibration for operators F and g is fundamental, and it
ensures that the model adapts to changing site, stand and management conditions at
any time, as they are manifest in simple mensurational variables. Simultaneous
estimation procedures are used to account for the joint effects of the variables employed
to describe stand dynamics. Updates are possible whenever new data become available,

which renders the approach adaptive. .

1.2 Productivity-environment relationships for growth and yield models
Site index - or top height of a stand at a given base age - is a traditional and
popular proxy for site fertility in even-aged forestry (Assmann 1970; Skovsgaard and

Vanclay 2008). It is a key input to most growth and yield simulators that are applied in
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forest management (Dhote 1996; Garcia and Ruiz 2003). Environmental change however
challenges the assumption of constant site quality (Bontemps et al. 2009), which
underlies the use of the site index concept, and thus the use of these traditional models.
Because EMs remain an accurate tool for yield prediction, there has been a renewed
interest for uncovering the environmental determinants of site index (Albert and Schmidt
2010; Diaz-Maroto et al. 2006; Seynave et al. 2005), based on regression models of site
index against soil and climate environmental indicators.

Such productivity-environment relationships have to be designed at scales much
larger than individual stands, to cover a wide range of environmental conditions, ranging
from regional (Sanchez-Rodriguez et al. 2002; Szwaluk and Strong 2003) to national
(Seynave et al. 2005; Tyler et al. 1996). They are therefore especially relevant for forest
management. They further encompass large environmental gradients that often cover a
considerable fraction of the species’ range, including northern and southern margins, and
this is a key advantage for the sound anticipation of species productivity levels in a
future climate. At national scales, forest inventories (NFI) were found to be a major
support tool for providing comprehensive growth and environmental data (Seynave et al.
2008; Seynave et al. 2005). The specification of climate-productivity relationships should
not include implicit climate dependencies. Hence, the use of geography (e.g.,
latitude/longitude) and topography proxies (e.g., altitude, slope) alone (Chen et al.
2002) or in combination with climate indicators (Albert and Schmidt 2010) should be
avoided, despite their usually high predictive power in regression models.

Because empirical growth models are principally well suited for the investigation
of a wide range of management alternatives, their coupling with productivity-
environment models based on large ecological gradients (Dhote 1996; Seynave et al.
2008) provides a cost-effective and accurate alternative approach for the prediction of

timber production in the context of environmental change.

2. Process-based models in use for simulating natural and management

dynamics of European forests

2.1 The structure of PBMs

PBMs were originally designed and used for research purposes, although they
have been developed more recently towards use in practical forest management
(Monserud 2003). Rather than being based on empirical relationships between
productivity and environmental/stand variables at small or large spatial scales, they rely
upon the modeling of the underlying processes that are thought to directly determine the

rates of productivity and forest development. Great care is taken to incorporate the
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influence of environmental variables. PBMs have thus been considered particularly
convenient for the investigation of forest dynamics under environmental conditions that
are not found in current landscapes (Johnsen et al. 2001; Korzukhin et al. 1996; Stage
2003). The PBM approach has initially been concentrated on the growth of trees in even-
aged and monospecific stands, facing more recently the challenge of application to
multispecies and heterogeneous stands (Makela 2003). PBMs are often regarded as
overly complex, requiring too many estimates of parameter values and variables for
model initialization to be used as forest management tools (Bartelink and Mohren 2004),
despite not being exhaustive in terms of the inclusion of ecological processes and their
interactions (Zeide 2003). In addition, the complexity of PBMs often makes it difficult to
track a certain model behavior down to the specific causal process representation, which
would however be important to assess whether a model is trustworthy and robust.
Nevertheless, there are simple PBMs, such as 3-PG, which have already been used
operationally in forest management (Almeida et al. 2004). In addition, there are cases
where comparisons of forest models have shown that PBMs perform as well as, or even
better than, traditional statistical growth and yield models from a forest management
perspective (Fontes et al. 2006; Miehle et al. 2009; Pinjuv et al. 2006).

The proper description of plant ecological processes in PBMs and their calibration
and validation typically require large quantities of detailed data that are not always
available. While there has been an increase in computational capacity, there is still a
deficiency in data for model calibration and validation that would encompass a wide
range of site, species and management conditions.

Several process-based models have been used in Europe (Table 1). The following

trends were identified:

- Although there are already many European countries that have been using PBMs of
various types, these models have not yet been utilized in some of them. Hence, the
use of PBMs is not yet as widespread as that of EMs;

- PBMs have been parameterized for a range of conifer and broadleaved tree species,
typically the most important species in national forest resources;

- PBMs are a relatively new tool in the forestry sector; they have become more widely
used since the late 90’s only. This is in stark contrast to EMs, which have a history of
more than 200 years (Pretzsch et al. 2008).

To be useful, PBMs have to deal with a range of processes that take place at very
different scales, i.e. from the chloroplast and cell to the stand and landscape level.
However, PBMs should not aim to bridge too many levels of biological organization, e.g.

they should not attempt to go from chloroplasts to landscapes (Leffelaar 1990).
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Appropriate levels are from chloroplasts to foliage; from foliage to canopy processes and
stand growth and from stand growth to landscapes. Furthermore, it is important to
consider the temporal scale (time step and maximum temporal extent of the simulation)
at which the models operate (see Table 2). For instance, a model that is not able to
simulate several rotations may be unable to evaluate the long-term impact of a changing
environment. Yet, the smaller the simulation time step (e.g., daily, hourly, or even
minutes), the more likely it is that there are serious constraints on the simulation extent
achievable from a practical point of view (time required for executing the simulation). In
addition, the use of smaller time steps in these models — while forest rotations addressed
are the same and simulation procedures remain iterative — comes along with increasing
prediction uncertainty due to error propagation (Reed 1999). All PBMs reviewed here
focus on the stand level, and most of them are able to run on a daily, monthly or at least
yearly basis. Most of them can be run during at least a complete rotation or several
rotations, and consequently they potentially have a role to play in long-term forest

planning.

2.2 Input data for PBMs
Environmental and biological inputs

PBMs vary in their complexity and therefore in their applicability to forest
management issues. As a major constraint for models used in operational forest
management, they must be capable of running based on easily obtainable input data. A
summary of the main inputs necessary to run PBMs is given in Table 3. Temperature and
rainfall followed by radiation and vapor pressure deficit (VPD) are the main climate inputs
required by the majority of PBMs. Biological data required by most models for the
initialization are size distributions of stem diameter (for individual-based models) or
biomass in foliage, stems and roots (for more lumped models), as well as the number of
trees per ha and stand age, this latter variable only in some models, though. Latitude (to
determine sun angle), soil texture and soil depth are the most commonly required site
and soil data inputs.
Management operation inputs

As forest managers have to make decisions about operations (thinning, weed
control, fertilization, etc.), it is important for them to know which of the available PBMs
are able to take into account the effects of such management operations. They also need
to know if a model can be used in their forest, which may be mixed-species or mono-
specific. These aspects vary considerably across the available PBMs (see Table 5). Most
PBMs will consider operations such as thinning or planting, although just a few will
consider operations such as weed control and pruning. Fertilization and natural

regeneration are taken into account by approximately half of the models. Clearcutting is
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the harvesting system that is covered by most PBMs. Selection, group selection and
conversion system methods are also addressed, but less commonly. Most of the PBMs
are suitable for even-aged single species stands, and about half of them are able to deal
with uneven-aged and mixed stands.

Disturbances

A strength of PBMs is their ability to simulate responses to changing
environments. However, an aspect not yet thoroughly addressed is the ability of PBMs to
simulate forests subject to increasingly frequent disturbances (Table 4). Drought is the
disturbance that all PBMs are able to deal with. Further, some models are able to deal
with fire, grazing and insect pests. However, the majority of PBMs are not currently able

to simulate the impact of any other disturbance (e. g. fungal diseases or soil erosion).

2.3 Outputs of PBMs

Wood related outputs

As not all PBMs were developed with operational forest management in mind, it
can be expected that their outputs are not always relevant for forest management (see
Table 6). In addition, the concepts underlying the model necessarily limit the suitability
of outputs for management use. For example, the "tree" scale, which is needed for
defining a selection cut system, cannot be simulated by "big leaf" models. However,
many of the outputs considered relevant to forest management (Table 6) are addressed
by most PBMs. Moreover, most PBMs will predict stand volume, mean dbh, LAI and stand
height. Regarding the carbon balance outputs, Table 6 shows that they are addressed by
about half the models. This result is mainly due to a group of models that are able to
predict all carbon balance outputs such as 3-PGN, 4C, Anafore, etc., whereas another
group of models such as ForClim, LandClim or MEPHYSTO are not able to predict any of
these outputs because they emphasize the modeling of attributes such as tree diameters
and stem size distributions rather than a closed carbon balance.
Non-wood product outputs

Although timber production is usually one of the main aims of forest
management, non-wood products (e.g. cork production from cork oak stands) may be
locally quite or even most important. The non-wood products as well as the disturbances
that are taken into account in current PBMs are summarized in Table 7. Carbon storage is
the non-wood product that most PBMs are able to account for. Some PBMs developed for
mountain regions also account for gravitative natural hazards. Important non-wood
products in southern Europe such as cork and pine nuts are not yet addressed by current
PBMs.
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3 Hybrid forest modeling

The term ‘hybrid modeling’ refers to approaches that are grounded in both
empirical and process-based concepts of forest dynamics (Pretzsch 2007), thus trying to
capitalize on the advantages of each approach. Specifically, the underlying idea is to
benefit from the predictive ability and parsimony in the calibration data needs of
empirical approaches (Zeide 2003) as well as the explicit environment-dependence of
process-based formulations (Johnsen et al. 2001). This approach offers potentially the
best prospects for developing models to support forest management (Bartelink and
Mohren 2004; Battaglia and Sands 1998; Monserud 2003; Pretzsch et al. 2008). To date,
hybrid modeling strategies addressing the issue of environmental change have been
explored in two ways: (i) coupling of existing EMs and PBMs that were developed for the
same forest context. This coupling relies on the development of environment-productivity
signal-transfer functions from simulations of the process-based model, that are then
incorporated into the empirical model; (ii) the development of hybrid models sensu
stricto, based on concepts from both empirical and process-based modeling that are
embodied within the same piece of computer code. Such models should hence be able to
cope with environmental changes while keeping the predictive and parsimonious

properties of EMs.

3.1 Signal-transfer modeling

In a hierarchy of models, signal-transfer modeling designates the transfer of
input/output relationships (signal functions) established from smaller-scale process
models into larger spatial- and temporal-scale models of ecological and economic
phenomena (Luxmoore et al. 2002). Signal-transfer modeling approaches have been
developed to incorporate the effects of environmental changes in empirical growth and
yield models, based on their assessment in more detailed process models (Baldwin et al.
2001; Matala et al. 2006; Matala et al. 2005). As signal-transfer functions are calibrated
once for all, the approach avoids the computational complexity of applying process
models to large regional forest contexts, and allows forest management alternatives to
be addressed in the efficient way of traditional growth and yield models.

In the calibration of signal-transfer functions, an indicator of forest productivity
common to each class of model is selected (e.g., tree volume increment, site index). The
response surface of the indicator to environmental factors is calibrated from the process-
based model outputs based on a high-dimensional simulation design (Luxmoore et al.
2000). Interactions can also be taken into account, for example to extend the effect of
climate scenarios to enlarged local site conditions of regional or national case studies

(Luxmoore et al. 2000; Matala et al. 2006). The approach thus results in a multi-
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dimensional space that can be queried e.g. in a database to yield the appropriate value
of the response variable.

This type of approach has been implemented for the main tree species of Finland
to estimate future resource use in industrial and energy wood under different
management and environment scenarios of temperature and CO, (Karkkainen et al.
2008; Matala et al. 2006). It was based on FinnFor (a PBM) and Motti (a growth and
yield model), and annual stem volume increment was the transfer variable (Matala et al.
2003). An original aspect of the approach was the effective incorporation of
environmental scenarios in a simulation system optimizing management scenarios based
on economic indicators (Karkkainen et al. 2008).

Another example is provided by the coupling of PTAEDA2 (EM) with MAESTRO
(PBM) (Baldwin et al. 2001) for Pinus taeda across 13 States in the USA, to address
changes in five environmental factors (precipitation and temperature, atmospheric CO,
and ozone concentrations, nitrogen deposition). The objective was to render site index,
which is the driver variable of the dynamics in PTAEDA2, adaptive to changing
environmental conditions. The simulation system was coupled to a GIS system, thus
facilitating the handling of large amounts of environmental data and a cluster analysis of
the forest resource in homogenous simulation sets (Luxmoore et al. 2000).

Inherent to the approach, short-term responses of physiological processes to
environmental drivers are extrapolated to larger time scales, although some
extrapolations such as the long-term stimulation of NPP by CO, (Koérner et al. 2005;
Nowak et al. 2004) may be questionable. Also, because growth and yield models are
often calibrated in regional or national contexts, the response of processes to

environmental factors may not apply outside these areas (Matala et al. 2006).

3.2 “True” hybrid models

While the functional components of genuine PBMs are all defined at the same level
of system organization, “true” hybrid models incorporate both causal (functional) and
empirical components at a given level (Mdkela et al. 2000). They result from the
recognition that classical PBMs embody too many uncertainties, due to poorly understood
processes such as carbon allocation (Zeide 2003) or parameters for which calibration
data are available only rarely or not at all. For example, Valentine & Makela (2005)
proposed a process-based model of tree growth where physiological rates and
morphological ratios - usually estimated at lower level processes - could be aggregated
and calibrated from forest inventory data. Actually, no typical structure may be defined
for hybrid models, as there is a continuum from purely empirical to purely process
models (Korzukhin et al. 1996). Actually, fully process-based models may not exist, as

any model at some point needs to rely on statistical procedures for estimating “process”
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functions. Hence, tree or stand management models using inventory data-based
statistical relationships that incorporate ecophysiological process knowledge are usually
also termed “hybrid” (Pretzsch 2007; Zeide 2003).

While the potential of hybrid models for providing reliable estimates of growth
responses to new combinations of environmental conditions should not be
underestimated (Pretzsch 2007), their use in the exploration of environmental change
impacts has remained limited to date. A recent example is provided by the Forest v5.1
growth model (Schwalm and Ek 2004), designed to generate model outputs that are: (i)
able to respond to boundary conditions altered by environmental change (including CO,,
03 and climate change) and (ii) useful for operational forest management. The model is
based on both a comprehensive mechanistic description including photosynthesis,
carbon, water and nutrient balance processes as well as empirical weight-dimension
allometric relationships, thus allowing it to be initialized from forest inventory data.

The issue of hybrid modeling has also been debated in the specific case of forest
gap models (Reynolds et al. 2001), developed for investigating spatial dynamics and
succession in forest ecosystems, and thus of interest for assessing at least the relative
importance of species in forest resources. Recent developments have shown that they
can also be used to simulate managed stands (Didion et al. 2009). The incorporation of
process components has traditionally been limited in these models, where the influence
of environmental factors mostly relies on empirical relationships (Bugmann 2001). Due to
increasing concern regarding long-term forest dynamics in the context of environmental
changes, further developments to enhance the robustness and accuracy of these models
under climate change scenarios is unavoidable (Reynolds et al. 2001). However it is
questionable that process-based formulations can be calibrated for a wide range of
species, due to the absence of detailed data for all except the commercially currently

most interesting species.

4 Existing gaps of knowledge within current modeling approaches

4.1 Knowledge gaps: EMs

There is no doubt that at least some of the relationships used in EMs will change
in a changing environment. However, very little information is available regarding how
these changes will materialize, particularly since changes in multiple variables and under
partly novel conditions need calibration data that are not easily available. For example,
the allometric relationships that provide a very useful framework (if not a theory) for
modeling plant growth are based on a limited set of assumptions (Enquist et al. 2009;
West et al. 2009). However, parameter estimation of many allometric relationships (such

as root-to-shoot ratios of large trees) faces a lack of data under current conditions, and it
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is not clear how the relationships would change in the range of future abiotic conditions
and their interactions. EMs are widely used, although not all of them have been published
in the open literature. This partly restricts the overview of possible options considered to
ground these models (sets of assumptions), and their scope of application as well as
their limitations.

It is noteworthy that for a given phenomenon, such as allocation pattern, a wide
range of relationships is used in the different models. It is not clear whether this is due
to the fact that empirical relationships inevitably are valid only locally, or whether this
just represents historical legacies. In addition, most EMs are restricted to aboveground
volume, whereas the assessment of soil C sequestration would be highly relevant (Vallet
2008). Thus, existing EMs need to be upgraded to become more robust in their functions
when applied under changing environmental conditions, and they need to be extended to
include traditionally overlooked parts of a forest stand such as belowground biomass.
Cooperative strategies for acquiring related high-cost data are needed. A promising
option for this may lie in the use of airborne laser measurements of belowground
biomass (Naesset and Gobakken 2008).

4.2 Knowledge gaps: PBMs

To run PBMs, information is required about a wide range of input variables (Table
3) and parameters. This information is rarely available in a comprehensive manner,
which leads to considerable uncertainty in model predictions. This problem is particularly
severe when PBMs are used in forest management. PBMs for forests generally operate by
simulating the carbon balance of forest stands, and they calculate tree and stand
properties (e.g. height, dbh, volume) using allometric functions. This means that the
PBMs tend to require values of carbon content or biomass of stems, branches, leaves and
roots for initialization - and knowledge about such quantities is rarely available to the
forest manager. Modern data assimilation techniques have eased this problem by
allowing forest PBMs to be calibrated using Bayesian inversion, where measurements of
model output variables like tree height are used to infer what biomass parameter values
are plausible (Van Oijen et al. 2005), but this procedure is fairly complicated and does
not remove all parameter uncertainty. In addition, systematic analyses of model
uncertainty regarding parameter values and initialization data have suggested that highly
accurate empirical data would be required in some cases, which often are not available
from inventories or ecophysiological investigations (Schmid et al. 2006). Data availability
is thus a major challenge to the approach.

Besides information about input variables and parameters, it is also important to

analyze the way processes are dealt with in the structure of models. To understand how
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PBMs were developed and how they can be used to analyze the way physiological

processes are dealt with, several aspects should be considered:

- Although most PBMs include temperature as an input, the way responses to
temperature are modelled varies. In carbon balance models, it is standard to
emphasize temperature controls on photosynthesis and respiration, often using the
Farquhar model for photosynthesis and Qio (or related) relationships for respiration.
As mentioned earlier, it is not clear that these are the processes that actually
constitute the bottleneck for plant growth, as growth (cell division and elongation)
itself is subject to temperature controls (Kérner 1998) that are not modeled in any
available PBM. In models that emphasize structural aspects of forest stands (e.g., gap
models), considerable advances have been made over the past 15 yrs in the
representation of abiotic factors (Bugmann 2001; Reynolds et al. 2001), but also
there significant uncertainties continue to exist.

- BASFOR, 3PG and some derivatives of that model estimate whole-plant respiration as
a constant fraction of GPP. There is good evidence that this is a reasonable
assumption (Van Oijen et al. 2010), but it may be argued that the lack of
temperature-dependent respiration makes this assumption less appropriate if
respiration and photosynthesis do not respond in the same way to temperature
increase (Hartley et al. 2006), which may be the case under global change.

- Moisture limitation is crucial particularly in southern Europe, but some PBMs use very
simple soil water models that may not be suitable for evaluating the ecological

impacts of a changing precipitation regime on plant water availability.

Overall, in spite of their attractiveness the existing PBMs are characterized by
important gaps that may severely limit their applicability for managing natural resources
under both the current and possible future climates. To recognize the main gaps and the
poorly understood processes, on which it is important to focus future research, PBMs
need to be made more efficient and effective (Johnsen et al. 2001). Some of these gaps
are summarized in Table 8. On a practical side, the use of PBMs in forest management
often faces the problem of documentation availability and ease of understanding to
managers for their use; this is due to the fact that many PBMs have primarily been
conceived as research tools. To date, many PBMs thus tend to be difficult to use by forest
managers. Emphasis should therefore be placed on model documentation and updating.
The development of decision support simulation systems (de Coligny et al. 2002), is
therefore crucial in making models efficiently available to forest managers and model

users.
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4.3  Knowledge gaps: Hybrid models
By definition, hybrid models combine elements of both EMs and PBMs, and therefore they
will inevitably share some of the knowledge deficiencies of the EMs and PBMs. In theory,
hybrid models would capitalize on the advantages of either approach without being prone
to the respective deficiencies. However, this is rarely the case in practice since few
features of any model have only advantages or only disadvantages. In addition, since
PBMs are fairly recent, so are hybrid models, and thus more extensive testing of their
suitability in practice is needed. There is still a lack of knowledge regarding the best ways
to combine EMs with process submodels, and of PBMs with empirical submodels.
Signal-transfer modeling implies using not just one, but two models, including the
calibration of signal-transfer functions. This complicates the task, because in addition to
the error involved in the existing calibration there will be two other errors coming from
an initial input and an intermediate estimate as well as an intermediate input and a final
result. The assessment of error propagation from final results based on the initial input

suggests a need for further developments in uncertainty analysis (Cariboni et al. 2007).

4.4 General knowledge gaps within current forest modeling

A general issue that deserves attention in future research concerns genetic
differences between provenances that may be crucial in projecting growth responses.
Forest ecosystem responses to environmental conditions are widely considered species-
specific, but intra-specific ecotypic responses may restrict the domain of application of
most current models (Kramer et al. 2008; Kramer et al. 2010). In general, we lack
virtually any information about differences in parameter values for PBMs across various
genotypes. In addition, ecotypic responses may confuse the productivity-environment
relationships approach from EMs when these are developed at larger spatial scales (from
regional to national). Therefore, there is a need for data to characterize ecotypic
variations and, from the point of view of the modeler, unequivocal differences must be
identified before attempts can be made to incorporate them in models. In this context,
provenance trials should be considered more widely to uncover and model provenance-
climate interactions and their effects on the dynamics of forest stands (Matyas 1994).
Further information on genetic modeling will be provided in another review of this special

issue (Kramer in press).

Furthermore, challenges associated with carbon sequestration and bioenergy require a
better focus on wood structure, general wood properties and their dependence on the
environment. While the integration of these aspects into forest models remains poorly
covered (Deckmyn et al. 2008), there are recent insights how wood properties are

influenced by environmental changes (Franceschini et al. in press). Briggs (2010) has
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identified the following gaps of knowledge concerning this issue: <«a lack of
understanding of how physiological processes, silviculture, and growing environment
conditions affect properties of wood at different scales; a lack of models that integrate
fiber quality into decision support systems that can be used to improve planning of

investment, silviculture, harvest, and marketing activities».

5. Discussion & Conclusions

5.1 The use of empirical models in a changing environment

The dynamic state-space approach, the productivity-environment relationships for
growth and yield models approaches, and their use in combination with PBMs in the
signal-transfer modeling approach provide promising opportunities for empirical modeling
to remain useful in a changing environment. EMs should thus not be disregarded, but
there is still a clear challenge for forest researchers to explore in more detail the
consequences of a changing environment regarding appropriate assumptions and the
structure of this early type of forest models. The issue of site variation in space and its
effect on growth and yield relationships has historically been fundamental in model
development for forestry. Environmental changes as a cause for temporal site variation
now constitute a renewed driver of interest from forest managers and forestry research,
regarding the representation of environment in such models. Here, the paradigm of site
likely needs to be replaced, and it is actually already evolving towards making explicit the

underlying environmental factors (temperature, water and nutrient availability).

5.2 Strengths and weaknesses of process-based forest models

There are already a considerable number of PBMs being applied to European
forestry. However, compared with traditional EMs, PBMs have a much shorter history,
and therefore it is not surprising that they are not yet as widespread in terms of
countries and species covered. PBMs differ amongst each other in many respects, as can
be seen from Tables 2 to 7. However, the data collected in these tables reveal several
common PBM characteristics:

- All PBMs work at the stand level, and most of them can be run on a daily, monthly or
yearly basis and for one or several rotations — making the models potentially suitable
tools for long-term forest planning;

- PBMs are mostly designhed for single-species and even-aged stands with a clearcut
harvesting system, although a few exceptions exist;

- Thinning and planting are the forest operations that most PBMs take into account;
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- Temperature and rainfall followed by radiation and vapor pressure deficit (VPD) are
the main climate inputs required for PBMs, at varying temporal resolution (from sub-
daily to monthly);

- Drought is the disturbance that all PBMs are able to deal with;

- Latitude, soil texture and soil depth are the most required site and soil data inputs;

- Biomass pools of foliage, stem and roots, the number of trees per ha and stand age
are biometric input data necessary by many PBMs;

- Most PBMs predict stand volume, mean dbh, LAI and stand height;

- C storage is the non-wood product that most PBMs are able to account for, whereas
non-wood products such as cork and pine nuts are not simulated by current PBMs;

- About half the PBMs considered here predict all major components of the carbon

balance, whereas the other half provides just a few or none at all.

The above information about PBMs should help to assess the state-of-the-art in
current process-based forest modeling. A single “super PBM” to be used in all countries
for all species and for all situations could not be identified and is unlikely to ever exist,
because modeling is a deliberate simplification of reality, and the simplification will
always include and induce site- or at least region-specific aspects. A model cannot at the
same time be completely general in its scope and applicability while providing locally
highly accurate results (Levins 1966), as it observed in a concrete case study (Didion et

al. 2009). Furthermore, there are other challenges to be met, such as:

- data availability;

- to evaluate the accuracy (bias and precision) of PBMs;

- to discuss the importance of creating new model outputs which might be required to
assess management-environment interactions, e.g. finding an easy way to understand
which thinning regime would allow a lower water consumption under a warmer
climate;

- to assess which PBMs could be used in a spatial version with GIS systems, and using
information from remote sensing. An example is the model Physiological Principles
Predicting Growth from Satellites (3-PGS), a spatial version of the 3-PG model (Coops
and Waring 2001; Nightingale et al. 2008 ). Additionally, see Lemaire et al (2005) and
Soudani et al (2006) for an illustration of the use of remote sensing data for assessing

leaf area index at higher spatial scales.

Relatively simple models may remain most helpful for forest management in the
foreseeable future, whereas the more complex models will keep their key role for
improving our scientific understanding of forest ecosystems. There must be a balance
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between detail and practicality. The real world is immensely variable, and highly detailed
models that intend to account for all detail would be as complex as reality itself.
Complexity leads to problems with model parameterization and testing. In addition it
should be explored whether the best way to test PBMs is at the level of their (stand-
scale) outputs, or rather at the level of the simulated processes. Indeed, a model may
provide accurate outputs based on misleading but undetectable model formulations
where errors may cancel each other under current conditions, and thus produce biased
results under changing environmental conditions. For the forest manager, accurate
outputs may be sufficient, but a realistic representation of the processes is crucial to
increase confidence in model extrapolations whenever they are applied to new
conditions.

A way to facilitate the development of PBMs is to identify the current key gaps in
knowledge (Table 8). However, even if all knowledge gaps could be considered equally
important, due to the inherent high complexity of some it may not be feasibly to tackle
all of them in the near future. Priority should be given to research where results in the

near future can be achieved.

5.3 The scope for hybrid models

Compared to EMs and PBMs, hybrid models constitute the most recent way to
approach forest modeling. Hybrid modeling has been considered the best way to model
forest yield and growth to support forest management (Bartelink and Mohren 2004;
Battaglia and Sands 1998; Monserud 2003; Pretzsch et al. 2008) and two different paths

towards developing hybrid models were considered in this review.

5.4 Synthesis: what model type to use?

This review has focused on three types of models that are used in European forest
management: empirical, process-based and hybrid models. The strengths and
weaknesses of these model types differ, and therefore it is likely that all three will remain
in use. There is a trade-off between how little data the models need to run, and the
variety of input-output relationships that they can quantify. PBMs are the most versatile,
with a wide range of environmental conditions and output variables they can account for.
They can even be used to assess forest ecosystem services other than productivity, but
this was not the focus of the present review. PBMs require information on the leaf, tree
and stand level which is difficult to obtain , which makes them less applicable whenever
data for calibration or initialization are scarce, which unfortunately is often the case. EMs,
on the other hand, are easier to run as they require require plot information only, which
is relative easily obtained. However, unless specific developments to tackle changing

environmental conditions have been accomplished, their simplicity makes them less
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reliable when environmental conditions change (Spiecker et al. 1996). These different
deficiencies of PBMs and EMs suggest that hybrid models may be a good compromise,
but the corroboration of this conclusion requires more extensive testing of hybrid models

in practice.
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Table 1. Identification of PBMs in use in Europe. Note: the European Country refers to

where the model has been applied in Europe and not necessarily where the model has

been developed.

Acronym Main reference

European
Country

Tree species

3-PG (Landsberg and Waring 1997)

Portugal

3-PGN (Xenakis et al. 2008) UK

4C (Lasch et al. 2005) Germany

ANAFORE (Deckmyn et al. 2008) Belgium

(Grote and Pretzsch 2002; Rotzer
et al. 2010)

BALANCE Germany

BASFOR (Van Oijen et al. 2005)

countries

BIOME- (Pietsch et al. 2003; Pietsch et al.
BGC 2005; Thornton 1998 )

CASTANEA (Dufrene et al. 2005) France

(Chertov et al. 1999; Komarov et
al. 2003)

EEM (Thornley 1991; Thornley and

Cannell 1992)

EFIMOD .
countries

countries

FINNFOR (Kellomaki and Vaisanen 1997) Finland

Forclim

FORGEM

(Bugmann 1996)
(Kramer et al. 2008)

Switzerland
Netherlands,

Germany, Austria,
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Great Britain,
Sweden, Finland,

non-Mediterranean

Austria, Slovakia,
Czech Republic

non-Mediterranean

non-Mediterranean

Eucalyptus globulus
Labill, Picea
sitchensis, Picea
abies L. Karst.,
Pinus sylvestris L.
Fagus sylvatica L.,
Picea abies L. Karst.,
Pinus sylvestris L.,
Quercus robur L.,
Quercus petraea
Liebl., Betula
pendula Roth.,
Populus tremula (L.),
P. tremuloides
(Michx.), Pinus
halepensis Mill.,
Pseudotsuga
menziesii
Pinus sylvestris L.,
Quercus robur,
Populus alba, Fagus
sylvatica
Fagus sylvatica L.,
Quercus robur L.,
Picea abies L. Karst ,
Pinus sylvestris L.
Coniferous tree
species
* Picea abies L.
Karst., Pinus
sylvestris L., Fagus
sylvatica L., Quercus
robur L./petraea L.,
Larix decidua, Pinus
cembra
Fagus sylvatica L,
Quercus petraea,
Pinus sylvestris,
Quercus ilex, Picea
abies
Coniferous tree
species
Coniferous tree
species

Picea abies L. Karst.,

Pinus sylvestris L.,
Betula pendula
30 tree species

Fagus sylvatica L.

Quercus spp. L.



FORSPAC

FORUG

GOTILWA+

GRAECO

LandClim

MEPHYSTO

PICUS
PipeQual
Q

TreeMig

WoodPaM

Yield-SAFE

2003)

(Verbeeck et al. 2006)

(Keenan et al. 2008)

(Porte 1999)

(Lischke 2009)

et al. 2005)

and Agren 1999)

(Lischke et al. 2006)

(Gillet 2008)

E (Kramer et al. 2006; Kramer et al.

(Schumacher et al. 2004)

(Lexer and Honninger 2001; Seidl

(Makela and Makinen 2003)
(Agren and Bosatta 1998; Rolff

(Van der Werf et al. 2007)

France, Italy

Netherlands

Belgium

Spain

France
Switzerland
Switzerland

Austria

Finland

non-Mediterranean
countries

Switzerland

Switzerland

Netherlands, UK,
Switzerland,
France, Italy, Spain

Pinus sylvestris L.,
Pseudotsuga
menziesii Mirb. Picea
abies L.

Fagus sylvatica L.,
Quercus robur L.,
Betula pendula
Roth., Pinus
sylvestris L.
Fagus sylvatica L.,
Quercus, Pinus,
Picea
Fagus sylvatica L.,
Quercus ilex,
Quercus pubescens,
Pinus halepensis,
Pinus sylvestris L.,
Pinus nigra, Pinus
pinaster
Pinus pinaster
Several tree species
in complex mountain
landscapes
Several (ca 30) tree
species in complex
mountain landscapes
Several tree species
in mixed stands
Pinus sylvestris L.
Coniferous tree
species
Several (ca 30) tree
species in mixed
stands,
temperate/boreal
Europe
Several tree species
in complex mountain
landscapes
Populus spp., Prunus
avium, Juglans hybr,
Pinus pinea, Quercus
ilex, Eucalyptus
globulus, Quercus
suber, Pinus pinaster
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Table 2. Spatial scale, time step and simulation duration of PBMs currently used in

Europe.

Spatial scale Time step Simulation
=
0 2« 5 e
v 9 E=RS = A=)
(0] o C c (1] )
5 (o) = = o ©
© o o (@] = o 4('6 l—
=) wn o * [ - i —_
T £ 5 8 € ©° £ c o ©
> 0 c 5 2 & c v o v
T § ®8 c 9 3 & © ® 5 @ >
acronym c 8§ & ¢ 25 E S &8 5 8
3-PG X X X X X X
3-PGN X X X X X X
4C X X X X X X X
ANAFORE X X X X X X X X X
BALANCE X X X X X X
BASFOR X X X X X
BIOME-BGC X X X X X X X X X
CASTANEA X X X X X X X X X
EFIMOD X X X X X X X
EFM X X X X X
FINNFOR X X X X X X X X X X
Forclim X X X X X X X X
FORGEM X X X X
FORSPACE X X X X X X X X
FORUG X X X X X X X
GOTILWA + Xx X X X X X X X X X
GRAECO X X X X X X X
LandClim X X X X X X X X
MEPHYSTO X X X X X X X X X X
PICUS X X X X X X X X
PipeQual X X X X X X
Q X X X X X
TreeMig X X X X X X X X X
WoodPaM X X X X X X X X
Yield-SAFE X X X X X
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Table 3. Model inputs which are necessary to run PBMs.

Inputs
Tree & Stand

Site & Soil

Climate

yadap 10s

9IS 3>dNq |10S

N [I0S

MSY wnuwixey
21N3xa] |10S

Bunnes Ajijiue4
apninieT

oby pueis

ssewolq Wwals pueis
Ssewolq S}00Y puels
ssewolq abeljo4 pueis
S9aJ3 JaquuinN

paads puim
uonisodap usboajiu
sAep 1s04)

ddAN

uoneidipaud

¢0D

alneladwa)

uonelped

acronym

3-PG
3-PGN

X

X

4C
ANAFORE

X
X
X

X
X

BALANCE

X

BASFOR

BIOME-

BGC
Castanea

X
X

X

EFIMOD

EFM
FINNFOR

X

X

Forclim
FORGEM
FORSPACE x

X
X
X

X

X

X

FORUG
GOTILWA

+
GRAECO

X
X
X

X

LandClim
MEPHYSTO x

X
X

PICUS
PipeQual

Q
TreeMig

X
X

WoodPaM
Yield-SAFE x
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Table 4. Disturbances acknowledged by PBMs.

Disturbance

generic, small scale

avalanches
fire

storm
grazing
diseases

acronym

soil erosion

flooding

3-PG

3-PGN

4C
ANAFORE
BALANCE

BASFOR
BIOME-BGC X
CASTANEA

EFIMOD

EFM X
FINNFOR X X
Forclim X
FORGEM X
FORSPACE X X
FORUG
GOTILWA + X X
GRAECO

LandClim X X X X
MEPHYSTO x

PICUS X
PipeQual X

Q

TreeMig X X
WoodPaM X
Yield-SAFE

X X X pests

X
X

X X X X X X X X X X XXX XXXXXXXXXXXXdrought
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Table 5. Silvicultural operations, forest harvesting system and forest types included in

PBMs.
Harvesting
Silvicultural operations system Forest type
- 3
E oz
5 2 5 @ @
[ -
S S 9 5 = c 5 & 0 & & S8
o 38 9 Z € 3 6 v ©» 2D cc o o
= = N © c © +=2 o [0 © ()] () ©
ET3EE 3 S 888 2255302 ¢
acronym £ £ 598 8 5 585835 G €
3-PG X X X X X X
3-PGN X X X X X X
4C X X X X X X X X X X
ANAFORE X X X X X X X X X
BALANCE X X X X X X X
BASFOR X X X X X X X
BIOME-BGC x* X* X* X x*
CASTANEA X X
EFIMOD X X X X X X X X
EFM X X X X X X X
FINNFOR X X X X X X X X X X X X
Forclim X X X X X X X X X X X X
FORGEM X X X X X X X X X X X X X
FORSPACE X X X X X X X X X X X X
FORUG X X X X
GOTILWA + X X X X X X X X X X
GRAECO X X X X
LandClim X X X X X X X X X X
MEPHYSTO X X X
PICUS X X X X X X X X X X X X X X
PipeQual X X X X X X X X
Q X X X X X X
TreeMig X X X
WoodPaM X X X X
Yield-SAFE X X X X X
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Table 6. Model outputs which are produced by PBMs.

Carbon Balance

Forest management

d3N
d3iN
saxnyj uogJed |10S

S3203S U0gJed [10S

uoljedidsay
ddN

ddS
siajowelp
1ybiay pueis
Iv1

HdQ uesai
ealy |eseqd
IVIA

3WnN|oA puels

acronym

3-PG
3-PGN

X

4C
ANAFORE
BALANCE

X
X
X

X
X
X

BASFOR
BIOME-BGC

X
X

Castanea

X

EFIMOD

EFM
FINNFOR

X

X

X
X
X
X
X
X

Forclim
FORGEM
FORSPACE

X
X

FORUG
GOTILWA +

X
X

GRAECO

X
X

LandClim

MEPHYSTO

X
X

PICUS
PipeQual

Q
TreeMig

X
X
X

WoodPaM
Yield-SAFE
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acronym

pine nuts

Table 7. Non-wood products acknowledged by PBMs.

Non-wood product

size herbivore populations

cork

C storage

gravitative natural hazards

fodder

livestock

3-PG
3-PGN
4C
ANAFORE
BALANCE
BASFOR
BIOME-BGC
CASTANEA
EFIMOD
EFM
FINNFOR
Forclim
FORGEM
FORSPACE
FORUG
GOTILWA +
GRAECO
LandClim
MEPHYSTO
PICUS
PipeQual
Q
TreeMig
WoodPaM
Yield-SAFE

X X X X X X X X X X

X X X X
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Table 8. Knowledge gaps that limit the applicability of PBMs to managing natural

resources.

Gaps of knowledge

Downregulation of basic processes such as photosynthesis or respiration is poorly
understood and some lab or field experiments give contradictory results: Is there some
room to be explored by the models?

Changes in mesophyll conductance beyond certain water thresholds affect assimilation
dramatically. Important effects are expected for Southern European forests, especially in
a future changed climate. Need to incorporate these effects in models of photosynthesis.
Some progress has been made in the last years.

Some aspects of population dynamics are poorly simulated, i.e. the initial steps (seeds,
seedlings or saplings), mortality. In forestry, we lack consistent techniques to track tree
regeneration and mortality. Need to improve modeling of early seral stages, mainly small
trees.

European forest at present can’t be understood without a good knowledge of history
(including severe disturbances), management and genetics. These components are
poorly addressed in our models.

Need to improve simulation of management regimes.

Below-ground biomass accounts for more than 60 per cent of total biomass in some
forest types, such as evergreen Mediterranean forests. The belowground component of
the forest is rarely addressed in our models (but see Rotzer et al. (2009)) although it
represents a large fraction of ecosystem respiration. There is a lack of reliable data on
the structure and function of the belowground component.

Interactions between species in mixed forests are complex and depend on the species
composition and the proportion of the different species in the stands. This represents a
severe limitation for modeling these forests. However, single tree based models like, for
example, BALANCE or FORGEM are able to simulate these complex relationships and
interactions. More effort needed to understand the mechanisms of interaction.

The rate of adaptation of critical processes (response to water limitation, phenology,
growth response), in particular at the limits of species area distribution and how this
depends on management actions is a crucial next step for model application. This may be
better than treating species as monolithic entities or reparameterizing the model for a
species on every new location.

There are lack of information on forest nutrition, many forests in Europe are N-limited,
others K- or P-limited. This may be an increasing problem under conditions of elevated
CO2, where the nutrients may become more limiting.

The way mycorrhizae and other soil organisms such as decomposers will respond to
environmental change including change in soil temperature and the quality of plant litter
needs to be better understood
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