Beggan, Ciaran; Whaler, Kathy. 2010 Forecasting secular variation using core flows. Earth Planets Space, 62 (10). 821-828. 10.5047/eps.2010.07.004
Abstract
Over the past ten years satellite measurements in combination with data from ground-based observatories
have allowed very detailed models of the secular variation (SV) of the Earth’s magnetic field to be constructed.
However, forecasting the change of the main field still remains a challenge, primarily because the core processes
controlling SV are not sufficiently well understood. Hence, most forecasts do not appeal to any physical
modelling constraints but use, for example, polynomial extrapolation from previous measurements. We attempt
to apply a physical model to forecast the average SV during 2010–2015 by developing a core flow model. This
steady flow model, derived from SV data during 2004.5 to 2009.5, generates a set of Gauss SV coefficients which
are used to advect the large scale magnetic field forwards in time. Although this model has not been submitted
as a candidate for IGRF-11, we present our SV prediction model and compare it to other candidate IGRF-11
SV models. In addition, we examine the use of the Ensemble Kalman filter to optimally assimilate field models
derived from (1) forecast methods and (2) noisy data measurements. Such a scenario might conceivably arise if
high quality satellite data with global coverage are not available for a significant period of time. We show that
the overall misfit of the assimilated model to the actual field can be lower than the individual misfits of the input
models, provided the uncertainties of each model are reasonably well known.
Documents
Full text not available from this repository.
(Request a copy)
Information
Programmes:
UNSPECIFIED
Library
Metrics
Altmetric Badge
Dimensions Badge
Share
![]() |
