nerc.ac.uk

Anomalous resistivity in non-Maxwellian plasmas

Petkaki, P.; Watt, C.E.J.; Horne, R.B.; Freeman, M.P.. 2003 Anomalous resistivity in non-Maxwellian plasmas. Journal of Geophysical Research, 108 (A12), 1442. 11, pp. 10.1029/2003JA010092

Full text not available from this repository. (Request a copy)

Abstract/Summary

Vlasov simulations of the current-driven ion-acoustic instability produced in Maxwellian and non-Maxwellian (Lorentzian, kappa = 2) electron-ion plasma with number density 7 x 10(6) cm(-3), reduced mass ratio m(i)/m(e) = 25, and electron to ion temperature ratio T-e/T-i = 1 are presented and compared. A concise stability analysis of current-driven ion-acoustic waves in Maxwellian and non-Maxwellian plasmas modeled by generalized Lorentzian distribution function with index 2 less than or equal to kappa less than or equal to 7 and electron to ion temperature ratio 1 less than or equal to T-e/T-i less than or equal to 100 is also presented. The ion-acoustic instability is excited in low temperature ratio Lorentzian (kappa = 2) plasma for lower absolute electron drift velocity (up to half the critical electron drift velocity of a Maxwellian). The anomalous resistivity resulting from ion acoustic waves in a Lorentzian plasma is a strong function of the electron drift velocity and in the work presented here varies by a factor of similar to100 for a 1.5 increase in the electron drift velocity. Furthermore, ion-acoustic anomalous resistivity is excited for electron drift velocities that would be stable for Maxwellian plasmas. The magnitude of resistivity which can be generated by unstable ion-acoustic waves may be important for magnetic reconnection at the magnetopause.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1029/2003JA010092
Programmes: BAS Programmes > Antarctic Science in the Global Context (2000-2005) > Magnetic Reconnection, Substorms and their Consequences
ISSN: 0148-0227
Additional Keywords: magnetic reconnection, ion-acoustic instability, anomalous resistivity, Lorentzian distribution, wave-particle interactions
NORA Subject Terms: Physics
Atmospheric Sciences
Date made live: 22 Feb 2012 11:25
URI: http://nora.nerc.ac.uk/id/eprint/12924

Actions (login required)

View Item View Item