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[1] We demonstrate the first use of marine mammal dive‐
depth data to improve maps of bathymetry in poorly sampled
regions of the continental shelf. A group of 57 instrumented
elephant seals made on the order of 2 × 105 dives over and
near the continental shelf on the western side of the Antarctic
Peninsula during five seasons, 2005–2009. Maximum dive
depth exceeded 2000 m. For dives made near existing ship
tracks with measured water depths H<700 m, ∼30% of dive
depths were to the seabed, consistent with expected benthic
foraging behavior. By identifying the deepest of multiple
dives within small areas as a dive to the seabed, we have
developed a map of seal‐derived bathymetry. Our map
fills in several regions for which trackline data are sparse,
significantly improving delineation of troughs crossing
the continental shelf of the southern Bellingshausen Sea.
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L. A. Huckstadt, A. Jenkins, B. I. McDonald, and D. R. Shoosmith
(2010), Seals map bathymetry of the Antarctic continental shelf,
Geophys. Res. Lett., 37, L21601, doi:10.1029/2010GL044921.

1. Introduction

[2] Bathymetry for much of the ocean surrounding the
Antarctic continent is poorly known due to the difficulty of
ship operations in these remote and frequently ice‐covered
seas. Given the fundamental impact of bathymetry on
oceanographic processes, we seek ways to improve the
database of Antarctic depth measurements. This data deficit
has resulted in novel approaches to mapping bathymetry,
such as using the measured freeboard of grounded icebergs
to estimate ice draft and water depth at those points
[Luckman et al., 2010].
[3] Instrumenting marine mammals with conductivity‐

temperature‐depth satellite relay data loggers (CTD‐SRDLs)
is an important technique for investigating their behavior
and preferred environmental conditions, and provides a
basis to predict impacts of climate change on their habitats
[Costa et al., 2010a]. These data can also be used to map
ocean hydrography over broad areas including regions

typically covered by sea ice see, e.g., Nicholls et al. [2008].
With a sufficient number of instrumented individuals, CTD‐
SRDL data can significantly extend the region of monitored
hydrographic variability presently undertaken by the Argo
network of autonomous profiling floats [Boehme et al.,
2008; Charrassin et al., 2008; Costa et al., 2010a].
[4] In the present study, we exploit the CTD‐SRDL data

set to map bathymetry rather than hydrography. We use
measurements of maximum dive depth by elephant seals
foraging over the continental shelf on the western side of the
Antarctic Peninsula to demonstrate that these data can be
used to augment traditional bathymetry datasets (Figure 1).
The seal measurements help map significant troughs cutting
across the continental slope from the shelf break to the ice
shelves of the Bellingshausen Sea. Mapping these troughs
provides information on the flow paths of paleo ice streams
and improves our ability to model ocean circulation, includ-
ing the onshore flow of warm Circumpolar Deep Water
(CDW) across the continental shelf [Klinck et al., 2004;
Dinniman and Klinck, 2004; Thoma et al., 2008] that pro-
vides ocean heat to drive basal melting of ice shelves [e.g.,
Thoma et al., 2008; Jenkins and Jacobs, 2008].

2. Dive Depth Data From Instrumented Seals

[5] We obtained dive data from 57 individual southern
elephant seals (Mirounga leonina) instrumented after molt-
ing in 2005 (6 seals), 2006 (12), 2007 (12), 2008 (12), and
2009 (15). The seals were all tagged at a colony near the US
AMLR Program’s summer field camp at Cape Shirreff,
Livingston Island (62° 29’S, 60° 47’W), in the South
Shetland Islands, Antarctica. These seals made on the order
of 2x105 dives over the region of the western Antarctic
Peninsula (wAP) continental shelf; see Figure 1b for dive
locations. Each seal was equipped with a CTD‐SRDL
(or “tag”) manufactured by the Sea Mammal Research
Unit of St. Andrews University, UK [Boehme et al., 2009].
Locations were derived from the ARGOS PTT transmitters
incorporated into the tags. The accuracy and frequency of
unfiltered ARGOS locations is quite variable [Vincent et al.,
2002; Costa et al., 2010b], so we filtered and interpolated
the ARGOS location using a forward looking particle filter
to provide a location at the start and end of each dive
[Tremblay et al., 2009]. The particle filter provides an
estimate for each location, and all of our locations had a
99% confidence interval of being within ∼4.2 km of the
true position. Further, when multiple positions are used,
as done here, the overall quality of the position estimate for
that bottom depth improves significantly The typical lateral
displacement during each dive was <0.5 km (mode = 0.3 km;
mean = 0.42 km), about 10% of the ARGOS position error.
Dive parameters are assigned to the location and time at
the end of the dive.
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[6] Maximum dive depth D(x,y) was recorded for each
dive. The depth resolution varied from ∼0.5 dbar at the
surface to ∼5 dbar at the full scale reading of 2000 dbar
[Boehme et al., 2009]. The mean and modal values of D for
the complete data set were ∼350 m; however, a few dives
(∼0.5% of the total) exceeded 1000 m off the continental
shelf. While on the continental shelf, elephant seals feed
predominantly on or near the sea floor, thus reaching the sea
floor on a high proportion of their dives [McConnell et al.,
1992; McConnell and Fedak, 1996].

3. Bathymetry Estimation From Seal Dive Depths

[7] We first determined the probability that a specific seal
dive was to the seabed, by comparing dive depth with
trackline measurements of water depth (H) within a specified
small search radius rs of each seal dive location. Our choice of
rs is a compromise between finding sufficient “co‐located”
trackline and seal data, uncertainty in seal dive location
(∼4 km) and the increasing variance of real bathymetry
within an area as we increase rs. For all available trackline
measurements within rs of a seal dive, we calculated the
mean and maximum values of these data, Hav and Hmax,
respectively.
[8] Using a value of rs = 2 km we found, as expected, that

many seal dives were much shallower than Hav and Hmax

but few were significantly deeper (Figures 2a and 2b). For
Hav < 700 m, about 30% of all seal dives reached within
20 m of the measured value of Hav; we interpret these as

dives to the seabed. The limit of Hav < 700 m encompasses
most of the wAP continental shelf with the exception of
portions of some deep glacial troughs. The typical difference
between Hmax and Hav for Hav < 700 m is ∼20 m (Figure 2c).
[9] Most of the continental shelf region east and north of

Marguerite Bay has been extensively mapped along ship
tracks (see Figure 1 and Bolmer [2008]) and is also densely
sampled by seal dives (Figure 1b). For a site west of Ade-
laide Island (see Figure 1a for location) where Hav = 487 m,
43 seal dives were recorded within a circle of radius 1 km.
The range of D was from 246 m to 494 m (Figure 3) with
13 dives (∼30%) being within 5 m of the measured depth,
consistent with the previous analysis based on the more
broadly distributed data set.
[10] Given a probability of 0.3 that a particular seal dive is

to the seabed and assuming that these dives are randomly
distributed within the entire sample of dives, we require
eight or more dives to have a >95% probability that the
deepest dive in a random sample is to the seabed. For each
dive, we located all N dives within a search radius rs of the
central dive. If N ≥ 8 and the central dive was the deepest
dive in the set, we identified it as a dive to the seabed. If
N < 8, we did not record a bathymetry value.
[11] Increasing rs increases the number of bathymetry

estimates obtained by this method but also increases the
uncertainty in depth due to true bathymetric variability.
Based on seal dive distribution (Figure 1b), reasonable
coverage of the continental shelf south of Marguerite
Bay with the present dive‐depth data set requires rs ≈ 4 km.

Figure 1. (a) Available ship trackline bathymetry (gray dots) for the western Antarctic Peninsula continental shelf. Darker
gray dots indicate recent ship trackline data not used in generating TOPO12.1 (http://topex.ucsd.edu/marine_topo/; see
section 4). Location of study region is indicated by the rectangle on the map of Antarctica (upper left). (b) Locations of
all seal dives (gray dots) from 2005–2009. In Figures 1a and 1b, locations of five ice shelves are indicated: Wilkins (W);
Bach (B); George VI (G); Stange (S); and Venable (V). Case Island (CI), Adelaide Island (AI), Ronne Entrance (RE),
Eltanin Bay (EB) and Marguerite Bay (M.Bay), discussed in the text, are indicated. Symbol (+) west of Adelaide Island
indicates location of data used in Figure 3. Black line is the 1000 m isobath from TOPO12.1.
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Figure 4b shows the depths of dives interpreted as
bathymetry for this value of rs.

4. Discussion

[12] The map of seal‐derived bathymetry (Figure 4b),
even though incomplete due to the inhomogeneous distri-
bution of seal dives, reveals bathymetric features that are not

well represented in a recent bathymetry grid, TOPO12.1
(http://topex.ucsd.edu/marine_topo/) shown in Figure 4a.
TOPO12.1 was developed using satellite marine gravity to
interpolate between existing trackline data, following the
methodology of Smith and Sandwell [1997]. The trackline
data set incorporated into TOPO12.1 (points shown in
Figure 4a) excludes several recent cruises that significantly
improve data density over the southern portion of the wAP
continental shelf; see Figure 4c. Differences between seal‐
derived bathymetry and the TOPO12.1 topography grid, and
between updated trackline bathymetry and TOPO12.1, are
presented in Figure S1 in the auxiliary material.1

[13] The troughs between islands abutting the western
side of Wilkins Ice Shelf (WIS) are much deeper than in the
TOPO12.1 grid; see features ‘1’ and ‘2’ on Figure 4. In
TOPO12.1, sills ∼400 m deep (features marked ‘3’) separate
the deep troughs of the inner shelf from the shelf break,
whereas the seal data indicate a minimum sill depth of
∼600 m. The onshore flow of warm CDW along these
troughs and into the sub‐ice‐shelf cavity may have played a
role in preconditioning WIS for the large mass loss events
beginning in 2008 [Braun et al., 2009]. The same trough
system constitutes the primary pathway for deep water into
Ronne Entrance and to the southern front of George VI Ice
Shelf.
[14] The southernmost trough in our domain (feature ‘5’

on Figure 4), trending northwest from the channel between
Case Island and the mainland, is more linear than in
TOPO12.1, providing a different view of ice stream
behavior during the last glacial maximum; however, more
data are required to better map its path across the outer
continental shelf.
[15] The seal dive depth data extend the sampling of

the deep continental shelf across the northern boundary of
Eltanin Bay and north of Venable Ice Shelf west of Eltanin
Bay. The seal data more clearly delineate the bank north of
Eltanin Bay (feature ‘6’ on Figure 4). Trough and bank
features ‘5’ and ‘6’ will influence the cross‐slope flow of
water into and out of this region where a coastal polynya is
frequently found [Tamura et al., 2008]. Holland et al. [2010]
noted the importance of correctly modeling the Eltanin Bay
polynya, as its dense water production can have a significant
impact on cross‐shelf flows in this region.
[16] Recently acquired trackline data, not included in

TOPO12.1, greatly improves the mapping of RonneFigure 2. (a) Plot of seal dive depth (D) vs average water
depth (Hav) for all seal dive locations within 2 km of a track-
line depth measurement. (b) Same as Figure 2a, but for max-
imum water depth (Hmax) within 2 km of each seal dive
location. (c) Plot of Hav vs Hmax for all trackline measure-
ments within 2 km of each seal dive location.

Figure 3. Histogram of dive depth for 43 seal dives within
a radius of 1 km of a point east of Adelaide Island (see
Figure 1 for location). Mean depth at this site, from ship‐
based measurements, is 487 m (dashed vertical line). Max-
imum seal dive depth in this set is 494 m.

1Auxiliary materials are available in the HTML. doi:10.1029/
2010GL044921.
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Entrance and the southern trough (features ‘4’ and ‘5’ in
Figure 4c) relative to TOPO12.1. However, even with these
new trackline data, the bathymetry derived from seal dive
depths significantly improve the coverage of the southern
portion of this domain.
[17] Further work is required to improve the map of this

region by merging the trackline and seal‐derived data sets.
Based on the statistics of benthic to total dives, up to ∼5% of
dives interpreted as reaching the seabed may be shallow:
these cells appear as localized shallow points in Figure 4b.
Furthermore, occasionally the seal data indicate depths that
are significantly greater than found in nearly co‐located
trackline data (Figure 2), requiring a more rigorous assess-
ment of data quality for both data sets. Nevertheless, the
preceding analysis demonstrates that seal dive depth data
can be used to improve bathymetric maps for regions with
sparse trackline depth data.
[18] There are several benthic foraging marine mammals

that are easily instrumented [Costa and Gales, 2000, 2003;
Le Boeuf et al., 2000; Arnould and Hindell, 2001; Villegas‐
Amtmann et al., 2008]; thus, there is considerable potential
for extending this methodology to other regions around
Antarctica, in the Arctic, and elsewhere. Furthermore, the
instruments used in this study were optimized for collection
of hydrographic data. If, instead, the primary goal is col-
lection of bathymetric data, tags can be programmed dif-
ferently to report the bottom of the dive with depth
resolution of less than 1 dbar. Tags that obtain locations
from GPS would significantly improve position accuracy,
but are not presently available with CTD sensors. However,
if bathymetry and water temperature data alone were suffi-
cient, GPS tags that provide spatial accuracy to within 36 m
and water temperatures to ±0.1°C could be deployed [Costa
et al., 2010b; Simmons et al., 2009].
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0645 to DPC; NSF grants OPP‐0338101 to ESR, and ANT‐0440687 and
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ESR contribution 134.

References
Arnould, J. P. Y., and M. A. Hindell (2001), Dive behaviour, foraging

locations, and maternal‐attendance patterns of Australian fur seals
(Arctocephalus pussilus doriferus), Can. J. Zool., 79 , 35–48,
doi:10.1139/cjz-79-1-35.

Boehme, L., M. P. Meredith, S. E. Thorpe, M. Biuw, and M. Fedak (2008),
The ACC frontal system in the South Atlantic: Monitoring using merged
Argo and animal‐borne sensor data, J. Geophys. Res., 113, C09012,
doi:10.1029/2007JC004647.

Boehme, L., P. L. Lovell, M. Biuw, F. Roquet, J. Nicholson, S. E. Thorpe,
M. P. Meredith, and M. A. Fedak (2009), Animal‐borne CTD‐Satellite
Relay Data Loggers for real‐time oceanographic data collection, Ocean
Sci., 5, 685–695, doi:10.5194/os-5-685-2009.

Bolmer, S. T. (2008), A note on the development of the bathymetry of the
continental margin west of the Antarctic Peninsula from 65° to 71°S and
65° to 78°W, Deep Sea Res., Part II, 55, 271–276, doi:10.1016/j.
dsr2.2007.10.004.

Braun, M., A. Humbert, and A. Moll (2009), Changes of Wilkins Ice Shelf
over the past 15 years and inferences on its stability, Cryosphere, 3,
41–56, doi:10.5194/tc-3-41-2009.

Charrassin, J.‐B., et al. (2008), Southern Ocean frontal structure and sea‐
ice formation rates revealed by elephant seals, Proc. Natl. Acad. Sci.
U. S. A., 105, 11,634–11,639, doi:10.1073/pnas.0800790105.

Costa, D. P., and N. J. Gales (2000), Foraging energetics and diving behavior
of lactating New Zealand sea lions, Phocarctos hookeri, J. Exp. Biol.,
203, 3655–3665.

Costa, D. P., and N. J. Gales (2003), Energetics of a benthic diver: Seasonal
foraging ecology of the Australian sea lion, Neophoca cinerea, Ecol.
Monogr., 73, 27–43, doi:10.1890/0012-9615(2003)073[0027:EOABDS]
2.0.CO;2.

Figure 4. (a) Bathymetry (m) for the southwestern Antarctic Peninsula continental shelf from the Global Predicted
Bathymetry V12.1 (TOPO12.1) grid (see section 4). White dots indicate cells in the TOPO12.1 grid containing at least
one trackline depth measurement. (b) Depth of seal dives interpreted as benthic dives (see section 3). (c) Depth from
updated trackline data set, shown only where at least one measurement is available in a 1 km box. Color scale is the same for
all panels and is shown below the map. Identified features 1–6 are described in section 4. Differences between seal and
updated trackline data are presented in the auxiliary material.

PADMAN ET AL.: SEALS MAP ANTARCTIC BATHYMETRY L21601L21601

4 of 5



Costa, D. P., L. A. Huckstadt, D. E. Crocker, B. I. McDonald, M. E. Goebel,
and M. A. Fedak (2010a), Approaches to studying climatic change and
its role on the habitat selection of Antarctic pinnipeds, Integr. Comp.
Biol., doi:10.1093/icb/icq054, in press.

Costa, D. P., P. W. Robinson, J. P. Y. Arnould, A.‐L. Harrison, S. E.
Simmons, J. L. Hassrick, A. J. Hoskins, S. P. Kirkman, H. Oosthuizen,
S. Villegas‐Amtmann, and D. E. Crocker (2010b), Accuracy of ARGOS
locations of pinnipeds at‐sea estimated using Fastloc GPS, PLoS ONE,
5(1):e8677, doi:10.1371/journal.pone.0008677.

Dinniman, M. S., and J. M. Klinck (2004), A model study of circulation
and cross‐shelf exchange on the west Antarctic Peninsula continental
shelf, Deep Sea Res., Part II, 51, 2003–2022, doi:10.1016/j.dsr2.
2004.07.030.

Holland, P. R., A. Jenkins, and D. M. Holland (2010), A regional model of
ocean processes in the Bellingshausen Sea, Antarctica, J. Geophys. Res.,
115, C05020, doi:10.1029/2008JC005219.

Jenkins, A., and S. S. Jacobs (2008), Circulation and melting beneath
George VI Ice Shelf, Antarctica, J. Geophys. Res., 113, C04013,
doi:10.1029/2007JC004449.

Klinck, J. M., E. E. Hofmann, R. C. Beardsley, B. Salihoglu, and S. L.
Howard (2004), Water‐mass properties and circulation on the west
Antarctic Peninsula continental shelf in austral fall and winter 2001, Deep
Sea Res., Part II, 51, 1925–1946, doi:10.1016/j.dsr2.2004.08.001.

Le Boeuf, B. J., D. E. Crocker, D. P. Costa, S. B. Blackwell, P. M. Webb,
and D. S. Houser (2000), Foraging ecology of northern elephant seals,
Ecol. Monogr., 70, 353–382, doi:10.1890/0012-9615(2000)070[0353:
FEONES]2.0.CO;2.

Luckman, A., L. Padman, and D. Jansen (2010), Persistent iceberg
groundings in the western Weddell Sea, Antarctica, Remote Sens. Envi-
ron., 114(2), 385–391, doi:10.1016/j.rse.2009.09.009.

McConnell, B. J., C. Chambers, and M. A. Fedak (1992), Foraging ecology
of southern elephant seals in relation to the bathymetry and productivity
of the Southern Ocean, Antarct. Sci., 4, 393–398, doi:10.1017/
S0954102092000580.

McConnell, B. J., and M. A. Fedak (1996), Movements of southern elephant
seals, Can. J. Zool., 74, 1485–1496.

Nicholls, K. W., L. Boehme, M. Biuw, and M. A. Fedak (2008), Wintertime
ocean conditions over the southern Weddell Sea continental shelf, Ant-
arctica, Geophys. Res. Lett., 35, L21605, doi:10.1029/2008GL035742.

Simmons, S. E., Y. Tremblay, and D. P. Costa (2009), Pinnipeds as ocean
temperature samplers: Calibrations, validations and data quality, Limnol.
Oceanogr. Methods, 7, 648–656.

Smith, W. H. F., and D. Sandwell (1997), Global seafloor topography from
satellite altimetry and ship depth soundings, Science, 277, 1956–1962,
doi:10.1126/science.277.5334.1956.

Tamura, T., K. I. Ohshima, and S. Nihashi (2008), Mapping of sea ice pro-
duction for Antarctic coastal polynyas, Geophys. Res. Lett., 35, L07606,
doi:10.1029/2007GL032903.

Thoma, M., A. Jenkins, D. M. Holland, and S. S. Jacobs (2008), Modeling
Circumpolar Deep Water intrusions on the Amundsen Sea continental
shelf, Antarctica, Geophys. Res. Lett., 35, L18602, doi:10.1029/
2008GL034939.

Tremblay, Y., P. W. Robinson, and D. P. Costa (2009), A parsimonious
approach to modeling animal movement data, PLoS ONE, 4(3),
doi:10.1371/journal.pone.0004711.

Villegas‐Amtmann, S., D. P. Costa, Y. Tremblay, S. Salazar, andD. Aurioles‐
Gamboa (2008), Multiple foraging strategies in a marine apex predator,
the Galapagos sea lion Zalophus wollebaeki, Mar. Ecol. Prog. Ser., 363,
299–309, doi:10.3354/meps07457.

Vincent, C., B. J. McConnell, V. Ridoux, and M. A. Fedak (2002), Assess-
ment of Argos location accuracy from satellite tags deployed on captive
gray seals, Mar. Mamm. Sci., 18, 156–166, doi:10.1111/j.1748-7692.
2002.tb01025.x.

S. T. Bolmer, Woods Hole Oceanographic Institution, 360 Woods Hole
Rd., Woods Hole, MA 02543, USA.
D. P. Costa, Ecology and Evolutionary Biology, University of California,

100 Shaffer Rd., Santa Cruz, CA 95060, USA.
M. E. Goebel, Antarctic Ecosystem Research Division, SWFSC,

National Marine Fisheries Service, NOAA, 3333 N. Torrey Pines Ct., La
Jolla, CA 92037‐1508, USA.
L. A. Huckstadt, Ocean Sciences, University of California, Santa Cruz,

CA 95060, USA.
A. Jenkins and D. R. Shoosmith, British Antarctic Survey, Madingley

Road, Cambridge CB3 0ET, UK.
B. I. McDonald, Scripps Institution of Oceanography, Scholander Hall,

La Jolla, CA 92093‐0204, USA.
L. Padman, Earth and Space Research, 3350 SW Cascade Ave.,

Corvallis, OR 97333‐1536, USA. (padman@esr.org)

PADMAN ET AL.: SEALS MAP ANTARCTIC BATHYMETRY L21601L21601

5 of 5



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


