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Preface to the second edition 
The production of the second edition of the ZOOPT manual coincides with the release of version 
1.03 of the code.  This version of the code incorporates one only change to version 1.02. 

DIFFERENCES BETWEEN VERSION 1.03 AND 1.02 OF ZOOPT 

• All executables should now be placed in a suitable directory e.g. ‘c:\Program Files\ZOOM’ 
and this folder should be added to the Windows system PATH variable.  ZOOPT can then be 
run from any working directory by typing the name of the executable followed by the path of 
the working directory e.g. ‘ZOOPT c:\myDirectory’.  Alternatively, this string could be 
placed in a batch file and the batch file run from the command line. 
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Summary 
This report describes the development of a steady-state particle tracking code for use in 
conjunction with the object-oriented groundwater flow model, ZOOMQ3D (Jackson and 
Spink, 2004).  Like the flow model, the particle tracking software, ZOOPT, is written using an 
object-oriented approach to promote its extensibility and flexibility. 

ZOOPT enables the definition of steady-state and time-variant path lines in three dimensions.  
Particles can be tracked in both the forward and reverse directions in steady-state flow fields 
enabling the rapid definition of borehole catchments, recharge and discharge areas and the 
visualisation of groundwater flow fields, for example.  The program also enables the 
visualisation of steady-state particle tracks that are based on the node-by-node flows at a specific 
instant of a time-variant simulation.  For example, this capability allows the examination of the 
changing shape of an approximate borehole catchment over an annual recharge or abstraction 
cycle.  Particles can currently only be tracked in the forward direction in dynamic, or time-
variant, flow fields. 

Path lines are defined using the semi-analytical method (Pollock, 1988), however, around 
particular model features the Runge-Kutta technique is implemented in order to solve some 
specific problems associated with particle tracking.  The problem of particle termination at 
‘weak’ sink nodes is solved by the application of the special velocity interpolation scheme 
presented by Zheng (1994).  This approach enables the definition of borehole catchments around 
wells that induce weak sinks which is not possible with many other widely used particle tracking 
codes. 

ZOOMQ3D incorporates the representation of the vertical variation of hydraulic conductivity 
with depth (VKD) within finite difference nodes.  This has been implemented in the flow model 
to enable the more accurate description of the variation of hydraulic conductivity in limestone, 
and particularly Chalk aquifers.  ZOOPT is fully compatible with VKD models. 

ZOOMQ3D also enables the local refinement of the finite difference grid, for example, around 
pumping wells.  Again, ZOOPT is fully compatible with this model feature and can be used to 
track particles through such refined meshes. 

ZOOPT has been rigorously tested through its comparison with an analytical solution and 
another particle tracking code and through the inspection of path lines generated using numerous 
test models (Jackson, 2002b). 
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1 Introduction 
ZOOPT is the particle tracking code associated with the groundwater flow model ZOOMQ3D.  
The program can track the advective movement of particles through steady-state flow fields in 
both the forward and backward directions.  It can also be used to forward track particles through 
non-steady groundwater flow fields. 

The particle tracking model is straightforward to run and only requires a few input files in 
addition to those required by the flow model, ZOOMQ3D.  All input to ZOOPT is in the form of 
ASCII text files.  ZOOPT produces ASCII text and dxf files as output.  To run ZOOPT a subset 
of the ZOOMQ3D input files is required (Table 1), in addition to two of the output files 
produced by the flow model (Table 2).  A further small number of input files are required which 
are specific to ZOOPT (Table 3).  Detailed descriptions of the files listed in Table 1, which form 
input to both ZOOMQ3D and ZOOPT, are presented in the ZOOMQ3D manual (Jackson and 
Spink, 2004).  Consequently, they are not described here. 

This document describes the development of the particle tracking code, ZOOPT, which is based 
on the object-oriented groundwater flow model, ZOOMQ3D (Jackson and Spink, 2004).  Particle 
tracking methods are described prior to the description of how to run the program. 

1.1 TERMINOLOGY 
ZOOPT is written using an object-oriented programming language.  Whilst the users do not need 
to concern themselves with what this means, the term object-oriented is used within this manual 
and consequently, a brief explanation is required. 

The object-oriented method is an approach to structuring and developing software applications. 
Instead of an application being based on a step-wise process, a set of objects are defined that 
exchange messages.  The user of ZOOPT can think of an object in abstract terms as any distinct 
entity that stores data and performs tasks.  In ZOOMQ3D and ZOOPT objects are defined to 
represent real world features.  For example, a pumped well is represented by an object.  Pumped 
wells are described by data such as a depth and radius, and have the capability to pump water out 
of an aquifer.  References are made in this manual to particles and these are also represented by 
objects.  Each particle is characterised by a position and can move by advection through the 
aquifer. 

1.2 UNIT CONVENTION 
All lengths in ZOOPT are specified in metres.  The unit of time is specified as days. 
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Table 1 List of the ZOOMQ3D input files required by ZOOPT 

1 anisotropy##.map & anisotropy##.cod OR anisotropy##.dat per layer  
2 aquifer.map     
3 boundary.dat     
4 clock.dat     
5 entry_method.dat     
6 fixedheads.dat     
7 grids.dat     
8 hydcond##.map & hydcond##.cod OR hydcond##.dat per layer  
9 leakage.dat     
10 noflow##.map   per layer  
11 pumping.dat     
12 recharge.dat     
13 recharge.cod & recharge.map & / OR recharge_rates.dat   
14 rivers.dat     
15 springs.dat     
16 vcond##.map & vcond##.cod OR vcond##.dat per layer  
17 vkd.cod & vkd.map     
18 vkd.dat     
19 vkdkx##.map & vkdkx##.cod OR vkdkx##.dat per vkd scheme  
20 vkdky##.map & vkdky##.cod OR vkdky##.dat per vkd scheme  
21 vkdzp##.map & vkdzp##.cod OR vkdzp##.dat per vkd scheme  
22 vkdgrad##.map & vkdgrad##.cod OR vkdgrad##.dat per vkd scheme  
23 zbase##.map & zbase##.cod OR zbase##.dat per layer  
24 zoomq3d.dat     
25 ztop##.map & ztop##.cod OR ztop##.dat per layer  
 Note the names of these files are fixed.  The names of the remaining files can be specified by the user in the input file 

‘zoomq3d.dat’ 

 

Table 2 List of the ZOOMQ3D output files required by ZOOPT 

1 heads.txt     
2 flowbal.txt     
 Note the names of these files are fixed. 

 

Table 3 List of the additional input files required by ZOOPT 

1 zoopt.dat     
2 particles.dat     
3 porosity##.map & porosity##.cod OR porosity##.dat per layer  
4 porosity##a.map & porosity##a.cod OR porosity##a.dat per layer  
 Note the names of these files are fixed. 
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2 Particle tracking theory 
Particle tracking is commonly used to define the path lines of solute particles under purely 
advective transport.  The technique is often applied for the definition of borehole catchments and 
associated source protection zones, the identification of recharge and discharge areas and the 
visualisation of groundwater flow patterns.  However, the method also forms the basis of a 
number of solute transport models, which simulate the effects of hydrodynamic dispersion.  
Random walk methods (Prickett et al., 1981; Farahmand-Razavi, 1995) and the method of 
characteristics (Konikow and Bredehoeft, 1978; Zheng, 1990) use particle tracking to describe 
the advective component of solute transport. 

2.1 MATHEMATICAL BACKGROUND 
Assuming that fluid density is uniform, the path lines of contaminants under advection alone are 
governed by the equation 

( )t,pv
dt
dp

=  (2.1) 

where 

p  =  x i  +  y j  +  z k is the position vector and, 

v  =  vx i  +  vy j  +  vz k is the seepage velocity vector, 

x
hKv x

x ∂
∂

θ
= , 

xK  is the hydraulic conductivity in the x-direction, 

θ  is the porosity and, 

( )t,z,y,xh  is the groundwater head, which is a function of space and time. 

 

The solution of Equation 2.1 for the position of a particle at time, t, is 

( ) ( ) ( )∫+=
t

t
0

0

dtt,pvtptp  (2.2) 

where 

( )0tp  is the initial position of the particle at time 0t . 
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The solution of Equation 2.2 requires the evaluation of the velocity field at any given time and 
position in the model domain.  If an exact solution for the velocity field exists then Equation 2.2 
can be solved analytically for p(t).  However, this is generally not the case and Equation 2.2 must 
then be solved numerically.  In a finite difference model velocity components are only known at 
specific locations in the aquifer, that is, at the position of the cell wall between two adjacent 
nodes.  Consequently, an interpolation scheme must be used to evaluate the velocity field at 
arbitrary positions and times.  This means that an analytical solution to Equation 2.2 cannot be 
calculated.  Furthermore the selection of the interpolation method determines which numerical 
integration techniques can be used to define the path line.  These considerations are discussed 
next. 

2.2 VELOCITY INTERPOLATION 
Different velocity interpolation methods have been used in particle tracking codes, of which a 
number are listed in Table 4.  Each velocity interpolation scheme has its advantages and 
disadvantages, though the selection of a method is often based on the comparison between linear 
and multi-linear interpolation techniques.  The benefit of using simple linear velocity 
interpolation in each co-ordinate direction is that the technique satisfies finite difference cell-by-
cell mass balances (Goode, 1990) and preserves velocity discontinuities at cell boundaries in 
heterogeneous systems.  A disadvantage of the method is that it can produce less realistic path 
lines in homogeneous aquifers when compared to higher order interpolation methods, such as bi-
linear interpolation.  However, a significant benefit of the use of linear velocity interpolation is 
that it allows Equation 2.2 to be solved using a semi-analytical method, which is 
computationally efficient.  The efficiency of the method is discussed in Section 2.3.1. 

 

Table 4 Velocity interpolation and solution methods used in particle tracking codes 

Particle Tracking Code Author Interpolation scheme Particle movement technique 

MOC Konikow & Bredehoeft (1978) Bi-linear Euler integration 

RANDOM WALK Prickett et al. (1981) Bi-linear Euler integration 

GWPATH Shafer (1987) Bi-cubic Runge-Kutta 

MODPATH Pollock (1989) Linear Semi-analytical 

PATH3D Zheng (1989) Linear Fourth order Runge-Kutta 

FLOWPATH Franz and Guiger (1990) Reverse distance Euler integration 

WHPA Blandford & Huyakorn (1991) Linear Semi-analytical or Euler 

 

Linear velocity interpolation is implemented in ZOOPT.  As stated above, this enables the 
analytical solution of the integral in Equation 2.2.  The approach also maintains consistency with 
the finite difference mass balance equations, is generally more accurate than other methods in 
heterogeneous media and is computationally efficient.  These issues are discussed by Zheng and 
Bennett (1995) who state that simple linear interpolations schemes are generally preferable to 
multi-linear interpolation schemes.  Furthermore, the approach can easily form the basis of a 
semi-analytical time-variant particle tracking technique presented by Lu (1994). 

The calculation of the velocity at the cell wall between two nodes is based on the inter-nodal 
volumetric flow rate calculated by the flow model, ZOOMQ3D.  Considering the component in 
the x-direction, as illustrated in Figure 1, the velocity at the cell wall at position (i-⏐, j), denoted 
by 

j,
2
1

i
xV

−

 is 
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zy

Q
V

j,
2
1

i

j,
2
1

i

x

x ΔΔθ
=

−

−

 (m day-1) (2.3) 

where 

j,
2
1

i
xQ

−

 is the inter-nodal flow rate calculated by the flow model (m3day-1), 

θ is the  aquifer porosity of cell (i, j), 

( ) 2yyy 1j1j −+ −=Δ  (m) and zΔ  is the aquifer thickness of cell (i, j) (m). 

 

ii-1 i+1

v
i - 1_

2
x v

2
1x i +_

Finite difference

Cell wall
node

j

j-1

j+1

 , j  , j

x

y

 

Figure 1 Inter-nodal velocity components in the x-direction 

 

Given the inter-nodal velocities obtained from Equation 2.3, the x-component of the velocity at 
any arbitrary location within the cell (i, j) can be calculated using linear interpolation between 
the two opposite cell walls.  The component of the velocity in the x-direction is calculated at an 
arbitrary x co-ordinate between 

2
1i

x
−

 and 
2
1i

x
+

 using the following linear interpolation equation 

( )
2
1i

x
2
1ixx VxxAxV

−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−
 (2.4) 

where 

( )xVx  is the component of the velocity in the x-direction at x and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

−+−+
2
1i

2
1ixxx xxVVA

2
1i

2
1i

 (2.5) 

Similar equations to Equations 2.3-2.5 are defined in the y and z-directions by replacing the 
terms, x and i, by the terms y and j, or z and k, respectively.  These are used to calculate the 
remaining two directional components of the velocity vector at any arbitrary position in the 
model domain. 
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2.3 PATHLINE DEFINITION 

2.3.1 Semi-analytical technique 
If linear interpolation is used to calculate the x, y and z-directional components of the velocity 
field at a particular position in the finite difference model domain, as described above, then the 
integral in Equation 2.2 can be solved analytically.  Pollock (1988) called this method of particle 
tracking the ‘semi-analytical’ technique because of the combination of a numerical velocity 
interpolation routine and an analytical path line definition procedure.  Considering the x-
component of the velocity field only, then the equation of the particle track, Equation 2.1, is 
written 

xV
dt
dx

=  or dtdx
V
1

x

=  (2.6) 

Substituting Equation 2.4 into 2.6 and integrating between two arbitrary times, t1 and t2, gives 

( )

( )

∫ ∫=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−

2

1

2

1

2
1

i

tx

tx

t

t
x

2
1ix

dtdx
VxxA

1  (2.7) 

where 

( )1tx  and ( )2tx  are the particle co-ordinates at arbitrary times t1 and t2. 

Equation 2.7 is integrated to give 

( )

( )
tA

vxtxA

vxtxA
ln x

x
2
1i1x

x
2
1i2x

2
1

i

2
1i

Δ=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−

−

−

−

 (2.8) 

where 

( )1tx  and ( )2tx  are the particle x co-ordinates at time 1t  and 2t  and, 

( )12 ttt −=Δ . 

Noting that from Equation 2.4 

( ) ( )
2
1i

x
2
1i1x1x VxtxAtV

−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−
 (2.9) 

then Equation 2.8 can be re-arranged to give 

( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−Δ⋅+=

−−
2
1i

xx1x
x2

1i2 vtAexptv
A
1xtx  (2.10a) 

Equivalent equations to Equation 2.10a can be derived in the y and z-directions.  These are 

( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−Δ⋅+=

−−
2
1j

yy1y
y2

1j2 vtAexptv
A
1yty  (2.10b) 

( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−Δ⋅+=

−−
2
1k

zz1z
z2

1k2 vtAexptv
A
1ztz  (2.10c) 
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Equations 2.10a to 2.10c are used to delineate the path line of the particle as it moves through the 
model domain.  However, these equations are only applicable when the linear interpolation 
coefficients, xA , yA  and zA  are constant.  Consequently, a particle cannot be allowed to cross 
a cell wall between the time t1 and time t2.  Pollock (1988) presents an efficient algorithm, which 
eliminates the possibility of this event by calculating the length of the tracking step that is 
required for a particle to travel from its current location to the cell wall through which it exits the 
node.  For example, consider Figure 2, which shows the path of a particle in a two-dimensional 
model grid from its initial position (xp, yp) at time, tp, to the point at which it exits the cell, (xe, 
ye), at time te.  In this example the cell wall velocities are denoted by Vx1 and Vx2 in the x-
direction and Vy1 and Vy2 in the y-direction for simplicity. 

vx1 vx2

Finite difference

Cell wall
node

x

y
vy1

vy2

x  ,y  , t( )p p p

eteex  ,y  , )(

Particle track

x x

y

y

1

1

2

2

 

Figure 2 Particle track through a two-dimensional cell 
 

To illustrate Pollock’s algorithm, the assumption is made that all the cell wall velocities are 
greater than zero.  Then if we also assume, in a first instance, that the particle leaves the cell 
through the wall at x2, that is, in the positive x-direction, then Equation 2.10a can be used to 
calculate the length of time, xtΔ , that the particle takes to travel from xp to x2.  Equation 2.10a 
gives 

( )[ ]1xxxxp
x

12 vtAexpv
A
1xx −Δ⋅+=  (2.11) 

since 

( ) 22 xtx =  and, 

xpv  is the x-component of the velocity at the point (xp, yp) 

Rearranging Equation 2.11 gives 

( ) ( )xxxp1x12x tAexpvvxxA Δ=+−  (2.12) 

From Equation 2.4 

( ) 2x1x12x vvxxA =+−  (2.13) 

and therefore by substituting this in Equation 2.12 we obtain 
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⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=Δ

xp

2x

x
x v

vln
A
1t  (2.14) 

If it is assumed that the particle leaves the cell through the wall at y2, then by a similar process 
the length of time, ytΔ , that the particle takes to travel from yp to y2 can be derived 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=Δ

yp

2y

y
y v

v
ln

A
1t  (2.15) 

The comparison of xtΔ  and ytΔ  defines through which cell wall the particle exits.  The time for 
the particle to exit the cell, etΔ , is taken as the smaller of xtΔ  and ytΔ .  If xtΔ  is smaller than 

ytΔ  the particle will exit the cell through the interface at x = x2 and vice versa.  If yx tt Δ=Δ  
then the particle will exit at the corner of the cell through the point (x2, y2). 

This method of moving the particle from cell wall to cell wall is easy to implement and 
computationally efficient.  If the particle track needs to be defined in greater detail, Equations 
2.10a to 2.10c can be used to define intermediate points along the path line within the cell.  This 
is achieved by dividing etΔ  by the number of intermediate steps within the cell and then using 
multiples of this smaller time-step to calculate the intermediate points using Equations 2.10a to 
2.10c. 

In the above discussion it has been assumed that the interfacial velocities are all greater than zero 
for simplicity.  However, there are three other possible flow conditions that must be identified 
before the semi-analytical solution algorithm can be applied.  These are shown in Figure 3. 
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Figure 3 Cell wall velocity conditions needing consideration during particle tracking 
 

In Figure 3a, the interfacial velocities are the same.  In this case Equation 2.14 is undefined and 
the time of travel to exit the cell must be estimated by 

( ) ( )0vifvxxt 1x1xp2x >−=Δ  (2.16a) 

( ) ( )0vifvxxt 1x1xp1x <−=Δ  (2.16b) 
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In Figure 3b a local groundwater divide exists.  In this case, if the particle is to the left of the 
divide it exits to the left otherwise it exits the cell to the right.  Finally, Figure 3c shows the 
situation in which flow is toward the cell centre from both x-directions.  In this case the particle 
cannot leave the cell in the positive or negative x-direction.  If this is simultaneously true of the 
flows in the y and z-directions then the node is termed a ‘strong sink’ and the particle is 
terminated at the cell. 

2.3.2 Numerical integration techniques 
Equation 2.2 can also be solved numerically.  In fact, if a higher order interpolation scheme is 
used then it can only be solved using numerical methods.  Numerical integration methods 
involve the movement of the particles in discrete tracking steps along the path line.  Of the 
numerical integration techniques, Euler’s method is the simplest.  In this method the velocity at 
the current point is extrapolated over the tracking step.  The particle is moved along the path line 
using the equations 

tvxx xpp Δ+=′  (2.17a) 

tvyy ypp Δ+=′  (2.17b) 

tvzz zpp Δ+=′  (2.17c) 

where 

zandy,x ′′′  are the co-ordinates of the particle’s new location, 

ppp zandy,x  are the co-ordinates of the particle’s current location, 

zpypxp vandv,v  are the components of the particles velocity at its current location and, 

tΔ  is the length of the tracking step. 

Whilst Euler’s method is straightforward to implement, the length of the tracking step, Δt, must 
generally be small to maintain accuracy.  This is because the velocity is extrapolated over the 
tracking interval.  A numerical method with a higher order of accuracy is that of the Runge-Kutta 
technique.  This is implemented in ZOOPT in addition to the semi-analytical technique.  The 
Runge-Kutta method moves a particle over a tracking step, Δt, by combining information from a 
number of Euler-type steps.  It is generally more accurate than Euler’s method but 
computationally less efficient, however, the Runge-Kutta method need only be implemented in 
ZOOPT in a few specific situations.  These are discussed in detail in Section 3 of this report. 

In the Runge-Kutta method the velocity is calculated four times for each tracking step; once at 
the current particle location, twice at two trial midpoints and once at a trial end point.  With 
reference to Figure 4, a two-dimensional case, the process is defined using the following 
equations 

( )
t

6
vv2v2v

xx 4xp3xp2xp1xp
n1n Δ

+++
+=+  (2.18a) 

( )
t

6
vv2v2v

yy 4yp3yp2yp1yp
n1n Δ

+++
+=+  (2.18b) 

where 

( )ypixpi v,v  are the velocity components at the points ( )pipi y,x  for i = 1 to 4, 

tΔ  is the length of the tracking step and, 

( )1n1n y,x ++  is the final position of the particle at the end of the tracking step. 
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Equations 2.18a and 2.18b cannot be applied directly because the velocities, 1xpiv +  and 1ypiv +  
depend on the co-ordinates of pix  and piy .  Hence, the co-ordinates of the particle at the end of 
the tracking step are calculated iteratively. 
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Figure 4 Intermediate steps taken during fourth-order Runge-Kutta method 
 

The velocities at each of the points p1, p2, p3 and p4 are calculated using linear interpolation of 
the cell wall velocities after the co-ordinate of each previous trial point has been calculated.  The 
co-ordinates of these points are calculated by performing the following steps.  The co-ordinates 
of p2 are calculated using 

2tvxx 1xp1p2p Δ+=  (2.19a) 

2tvyy 1yp1p2p Δ+=  (2.19b) 

from which the co-ordinates of the point p3 are subsequently calculated using 

2tvxx 2xp1p3p Δ+=  (2.20a) 

2tvyy 2yp1p3p Δ+=  (2.20b) 

and then finally the co-ordinates of the point p4 are determined using 

tvxx 3xp1p4p Δ+=  (2.21a) 

tvyy 3yp1p4p Δ+=  (2.21b) 

By repeating this procedure the particle is moved through the model domain until it reaches a 
discharge point.  The above equations are easily extended for application of the technique to 
three-dimensional problems as in ZOOPT, the particle tracking code developed here. 

Whilst the Runge-Kutta technique incorporates a higher order of accuracy than the simpler 
Euler’s method, it is computationally less efficient.  Consequently, it is important to optimise the 
length of the tracking step during the procedure to both maintain accuracy and minimise 
computational effort.  This is performed in ZOOPT using the ‘step doubling’ procedure 
presented by Zheng and Bennett (1995).  In this procedure the tracking step is performed twice.  
First the tracking step is made using a time interval of tΔ  and then it is repeated by taking two 
steps of half the length i.e. 2/tΔ .  The distance, sΔ , between the two points calculated using a 
full step and two half steps is used to adjust the full length of the tracking step.  As Zheng and 
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Bennett (1995) state, if the fourth-order Runge-Kutta technique is used, the tracking solution is 

accurate to the fourth-order, hence, tΔ  can be scaled as ( )5
1

sΔ .  Equation 2.22 is used to 
calculate the required tracking step size, 0tΔ , that will yield an error less than 0sΔ , given an 
initial calculation of sΔ  using an initial tracking step of tΔ .  The term fs is a safety factor and is 
given a value slightly smaller than one e.g. 0.9. 

5
1

0
s0 s

stft ⎟
⎠
⎞

⎜
⎝
⎛

Δ
Δ

Δ=Δ  (2.22) 
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3 Capabilities of the particle tracking code, ZOOPT 

3.1 INTRODUCTION 
The particle tracking code ZOOPT has been developed for use in conjunction with the object-
oriented groundwater model ZOOMQ3D.  ZOOMQ3D is described in detail in Jackson (2001, 
2002a and 2002b) and Jackson and Spink (2004).  In addition to representing hydrogeological 
features, such as rivers and pumped wells, that are commonly simulated using groundwater flow 
models, ZOOMQ3D incorporates the vertical variation of hydraulic conductivity with depth and 
local grid refinement.  Particle tracking within ZOOPT is compatible with all of these 
mechanisms. 

At this stage of development, ZOOPT enables steady-state particle tracking under advective 
transport in both the forward and reverse directions.  The code can be applied to the definition of 
borehole catchments and associated source protection zones, the identification of recharge and 
discharge areas and the visualisation of groundwater flow patterns, for example.  Back tracking 
is easy to implement within a particle tracking code.  Steady-state particle tracking can be 
applied easily at any time step of a time-variant simulation.  The flows calculated at the end of a 
time step are used to define an approximate borehole catchment by implementing steady-state 
particle tracking routine.  This approach can be useful to analyse, for example, the approximate 
change in shape of a borehole catchment during a seasonal recharge or abstraction cycle. In 
addition to tracking particles under steady-state conditions, the code can be used to forward track 
particles in unsteady flow fields. 

Particles are tracked using the semi-analytical technique described above.  However, around 
particular model features, for example ‘weak’ sink nodes or nodes which exhibit a vertical 
variation of hydraulic conductivity, particles have to be tracked using the Runge-Kutta method.  
The switch between the use of the semi-analytical and Runge-Kutta methods is made 
automatically within the model code.  Though the Runge-Kutta technique is only implemented 
occasionally, the user can enforce its continuous use.  This option provides an alternative to the 
semi-analytical technique, though, the semi-analytical method is computationally more efficient 
and should be used in preference to Runge-Kutta tracking. 

ZOOPT is designed to track particles in models where the horizontal hydraulic conductivity 
varies with depth (VKD) and this is one feature that requires the application of the Runge-Kutta 
method.  In this case the horizontal velocity depends on the hydraulic conductivity at the 
elevation of the particle within the node.  Consequently, the integral in Equation 2.2 cannot be 
determined analytically and a fully numerical tracking method must be employed. 

In addition to the application of the particle tracking code to VKD nodes, the code is compatible 
with the local grid refinement technique incorporated within ZOOMQ3D.  Local grid refinement 
enables the zooming of the mesh within discrete areas of a model grid to increase accuracy or 
model detail.  ZOOPT tracks particles through these locally refined grids. 

The occurrence of ‘weak’ sinks, which is a problem associated with particle tracking is 
circumvented by ZOOPT.  Weak sinks are commonly generated when, for example, an 
abstraction well, which distributes its effect over the volume of the cell, is not sufficiently strong 
to cause groundwater to flow into the associated finite difference node through all of its faces.  In 
this case, it is not possible to determine whether a particle should leave the cell through one of its 
walls or whether the particle should terminate at the well.  An approach is adopted in ZOOPT 
that eliminates the problems associated with weak sinks.  This is discussed in Section 3.2. 
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3.2 VELOCITY CALCULATION 

3.2.1 Weak sinks 
A problem that can be associated with particle tracking codes is that of ‘weak’ sinks.  In finite 
difference models groundwater can flow out of a node through a sink that is distributed 
throughout the whole volume of the cell.  For example, abstraction wells, rivers, leakage nodes 
and springs are all simulated in ZOOMQ3D using such sinks.  If the discharge rate of the sink is 
sufficient, water will flow into the node across all of its six faces.  This is termed a ‘strong’ sink.  
However, if the discharge rate of the sink is insufficient to cause inflow across all sides of the 
node, that is, water flows out of the cell across one or more of its six faces, then a weak sink is 
generated.  Weak sinks present a problem because it is not possible to determine whether a 
particle leaves the node through a cell wall or through the sink.  This is because the calculation 
of the velocity within the cell is based on the discharge rates across the cell interfaces only and 
does not take account of the effect of a distributed sink on the velocity field. 

Weak sinks caused by abstraction wells are dealt with separately in the next section.  With regard 
to the other model features listed above that can cause weak sinks, the problem can be 
circumvented by assuming that the discharge to the sink actually occurs through one of the cell 
walls.  In effect, therefore, the sink is removed from the node and one of the cell wall velocities 
is re-calculated.  In ZOOPT the flows between the aquifer and rivers, head dependent leakage 
nodes and springs, which are represented as distributed sinks, are all assigned to the upper face 
of the corresponding finite difference node.  The velocity is then recalculated across the node’s 
upper face. 

Recharge is dealt with in a similar manner.  Recharge is assumed to fall vertically onto the 
aquifer.  Consequently, the velocity across the upper face of the node is adjusted to account for 
this inflow.  Abstraction wells are the other features of ZOOMQ3D that can generate weak sinks.  
These are less straightforward to deal with and are thus discussed separately in the next section. 

3.2.2 Weak sinks caused by abstraction wells 
As stated in the last section, the creation of weak sinks by mechanisms other than wells is dealt 
with by assigning the discharge to one of the walls of the finite difference node.  The selection of 
the appropriate wall to which the flow is assigned is based on physically justifiable assumptions, 
for example, groundwater recharge arrives at the water table from above.  However, with regard 
to abstraction wells, such an assumption is not justifiable because groundwater is drawn towards 
wells from all directions.  Consequently, abstraction wells present a more significant problem.  
To identify if a particle terminates at a weak sink well Zheng (1994) uses a special velocity 
interpolation scheme within the corresponding finite difference node.  This is based on the 
superposition of an analytical solution for radial flow to a well and a solution for unidirectional 
regional groundwater flow.  The interpolation scheme alters the velocity components in the x and 
y-directions but continues to use linear interpolation in the z-direction.  With reference to 
Figure 5, the horizontal components of the particles velocity are given by 
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where 

px  and py  are the particle’s x and y co-ordinates with respect to the centre of the node, 
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xpV  and ypV  are the x and y components of the particle’s velocity, 

1xV , 2xV , 1yV , 2yV , 1zV , and 2zV  are the x, y and z components of the cell wall velocities, 

( ) ( ) ( )[ ]12122z1zWELLw yyxxVVQQ −⋅−⋅−−=′ , 

WELLQ  is the abstraction rate of the well, 

1x , 2x , 1y , 2y , 1z  and 2z , are the x, y and z co-ordinates of the cell walls, 

a = ( )xy KK  is the ratio of hydraulic conductivities in the x and y-directions and, 

θ is the porosity of the node. 

 

This interpolation scheme forces particles either to converge towards the well or to leave the 
finite difference node through one of its interfaces.  Particles are terminated if they enter within 
the radius of the well.  The scheme is implemented in ZOOPT and is an elegant solution to the 
problem of weak sink wells.  At wells that generate strong sinks this interpolation scheme is not 
applied and all particles are terminated as they enter the node. 
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Figure 5 Illustration of a well as a distributed sink at the centre of a finite difference node 
showing surrounding cell walls in a) three dimensions and b) plan view 

3.3 GRID CONSIDERATIONS 

3.3.1 Distorted vertical discretisation 

Because of efficiency considerations finite difference models are often constructed in which the 
elevation of the top and bottom of model layers varies over the model domain.  This variation 
generally results from the need to approximate the changing shape of hydrogeological units.  
However, vertical distortion of the mesh causes problems because the particle tracking solution 
is based on a fixed orthogonal grid.  For example, consider that it is calculated that a particle 
leaves a model cell in the horizontal and positive x-direction.  If the particle leaves towards the 
top of the cell and the grid is distorted then it is possible for the particle to enter a node contained 



 

15 

in an upper layer.  This situation is shown in Figure 6a.  If this occurs the particle position must 
be corrected before the next particle move is made. 

When the semi-analytical solution is adopted the particle’s elevation is adjusted on the interface 
between nodes, that is, when its passes from one node to the next.  At this point the local z  
co-ordinate of the particle prior to the correction, with respect to the top and bottom elevations of 
the first node, must be equal to its local z co-ordinate in the node it is entering after the 
correction.  This calculation is shown in Figure 6b.  Because of this correction the particle path 
can appear unsmooth when plotted.  This problem is inherent in the representation of three-
dimensional models as vertically varying layers. 

When the Runge-Kutta method is used the particles position must be modified after the tracking 
step within the node the particle has entered.  The required vertical correction is calculated by 
considering that if the vertical velocity component was zero, the particle’s local z co-ordinate 
within each cell would have remained the same.  The correction factor, czΔ , is calculated using 
this assumption and is given by 

( ) n21n
1

2
c zzzz

z
zz −+−

Δ
Δ

=Δ  (3.3) 

The correction procedure is illustrated in Figure 6c.  A full derivation of this correction term is 
presented by Zheng (1994). 

3.3.2 Unconfined aquifer layers 

In phreatic aquifer layers the elevation of the water table determines the vertical thickness of the 
finite difference node.  The elevation of the water table is defined as the simulated groundwater 
head.  Consequently, in unconfined model layers the nodes are distorted vertically again.  The 
position of particles that are tracked through unconfined nodes are corrected in the same way as 
described for fixed but vertically distorted grid nodes. 

3.4 QUASI THREE-DIMENSIONAL LAYERING 
Not all hydrogeological layers are always included explicitly in a groundwater model.  Consider 
that a groundwater system is composed of a sequence of high permeability horizontal layers that 
are separated by a series of low permeability aquitards.  Often these aquitards are not represented 
by a series of finite difference nodes in a groundwater model.  This is because the assumption 
can be made that the flow in the low permeability layers will be essentially vertical.  
Consequently, low permeability layers are commonly modelled by adjusting the vertical 
conductance between the two adjacent aquifer layers.  When this approach is adopted the model 
is stated to be quasi three-dimensional. 

Whilst this method of representing aquitards in groundwater models is computationally efficient, 
the particle tracking routine has to be modified because there are no grid nodes associated with 
these low permeability layers.  ZOOPT recognises the presence of quasi three-dimensional layers 
and moves the particles vertically through them.  The time of travel through the low permeability 
layer is calculated from the leakage between the two adjacent simulated aquifers, however, the 
user must specify the porosity of each aquitard. 
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Figure 6 Correction of particle elevation in vertical distorted model layers 
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3.5 VERTICAL VARIATION OF HYDRAULIC CONDUCTIVITY WITH DEPTH 
The flow model ZOOMQ3D incorporates the variation of hydraulic conductivity with depth 
within layers of the finite difference grid.  This representation of the vertical variation of 
hydraulic conductivity provides an alternative to the development of multi-layer models, in 
which individual layers are characterised by uniform horizontal hydraulic conductivity in the 
vertical direction. 

The approach has been developed to enable the more accurate description of the variation of 
hydraulic conductivity in limestone, and particularly Chalk, aquifers, in which higher 
hydraulic conductivity values are often associated with the zone of fluctuation of the water 
table.  The method circumvents numerical difficulties that are related to the de-watering of 
layers in multi-layer models.  The variation of the horizontal hydraulic conductivity with 
depth is defined by profiles such as that shown in Figure 7. 

A VKD profile describes the change in hydraulic conductivity with depth at a particular point 
in the aquifer.  Profiles are defined by two sections.  In the lower section, between BOTTOMZ  
and PZ  in Figure 7, hydraulic conductivity is constant.  In the upper section, between PZ  and 

TOPZ , hydraulic conductivity increases linearly with elevation.  Because different values of 
hydraulic conductivity can be specified in the two orthogonal horizontal directions (x and y), 
six values are used to parameterise the profile: 

1. The elevation of the base of the profile, BOTTOMZ . 

2. The elevation of the top of the profile, TOPZ . 

3. The elevation of the point of inflection, PZ . 

4. The hydraulic conductivity in the x direction, *
xK , below PZ . 

5. The hydraulic conductivity in the y direction, *
yK , below PZ . 

6. The gradient of the profile above PZ , VKDGrad.  This is equal to the increase in 
hydraulic conductivity per metre rise in elevation. 
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Figure 7 Parameters used to define VKD profiles in ZOOMQ3D 
 

The value of the VKDGrad parameter may be either negative, zero or positive.  Consequently, 
in addition to an increase in hydraulic conductivity with depth above PZ , hydraulic 
conductivity can be specified to decrease or remain constant. To calculate transmissivity the 
following equations are used 

( ) ( )2
PBOTTOM

*
xx ZhVKDGrad5.0ZhKT −⋅+−=  

( ) ( )2
PBOTTOM

*
yy ZhVKDGrad5.0ZhKT −⋅+−=  

for PZh > , and 

( )BOTTOM
*
xx ZhKT −=  

( )BOTTOM
*
yy ZhKT −=  

for PZh ≤ , where h is the water table elevation. 

 

At those nodes of the finite difference grid where hydraulic conductivity varies with elevation 
the Runge-Kutta particle tracking technique must be used to define path lines.  The integral in 
Equation 2.2 cannot be evaluated analytically because the horizontal velocity varies in the z-
direction, that is, towards the top of the VKD profile the horizontal velocity is greater than 
towards its base.  Consequently the semi-analytical method cannot be used.  Within ZOOPT 
the assumption is made that the horizontal velocity of the particle is proportional to the 
horizontal hydraulic conductivity at its location.  With reference to Figure 8, the component 
of the velocity in the x-direction at the cell walls at x1 and x2 are given by 
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( ) ( )
( )12
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x
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2x zzy

Q
K

zKzV
−Δθ

⋅=  (3.5) 

where 

( )zV 1x  and ( )zV 2x  are the x-components of velocity (m day-1) on the cell walls at 
elevation z, 

1xQ  and 2xQ  are the flow rates entering and exiting the cell in the x-direction (m3day-1), 

( )zK x  is the hydraulic conductivity (m day-1) in the x-direction at elevation z, 

( ) ( ) dZzK
zz

1K
2

1

z

z
x

12
x ∫−

=  is the mean hydraulic conductivity (m day-1) in the 

x-direction, 

θ is the porosity of the node, 

yΔ  is the width of the node in the y-direction (m) and, 

1z  and 2z are the elevations of the bottom and top of the node (m). 

 

Similar equations are written for the component of velocity in the y-direction.  However, 
because the hydraulic conductivity in the z-direction is considered uniform throughout the 
node, no modification is made to way in which the z-component of velocity is calculated.  
ZOOPT recognises when a particle enters a node in which hydraulic conductivity varies with 
depth and then invokes the use of the Runge-Kutta technique and the application of Equations 
3.4 and 3.5. 
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Figure 8 Illustration of the interpolation of velocity in VKD nodes 
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4 Running ZOOPT 
To install ZOOPT on a Windows PC copy the executable ‘zoopt.exe’ into suitable directory 
such as ‘c:\Program Files\ZOOM’.  Then add this directory to the Windows system PATH 
variable (Control Panel System Advanced Tab Environment Variables).  No installation 
procedure is run in which ZOOPT program files are added to the system registry.  All the 
input files required by ZOOPT must be located in a single directory.  All the output files 
produced by ZOOPT will be created in the same directory 

ZOOPT should be run from the command line in a MS-DOS console box and not started from 
Windows Explorer.  To start a command window select ‘Run’ from the Windows start menu 
and type ‘cmd’ in the drop down list box (Figure 9).  The user should then change directory to 
that of the working directory where the input files are located (Figure 10).  For help on the 
commands used to change directory type ‘help cd’ within the console box (Figure 10).  To run 
the model type ‘zoopt’ followed by the path to the working directory on the command line 
e.g. ‘zoopt  c:\myDirectory’.  Alternatively, this string can be placed in a batch file (a text 
file with a .bat extension e.g. ‘runzoopt.bat’) and the name of this batch file can be typed on 
the command line (omit the extension when doing this e.g. type ‘runzoopt’). 

 

 

Figure 9 Starting a command line window from the Windows start menu 
 

In the event that an error occurs, messages are written to the screen.  If ZOOPT is run from 
Explorer it may terminate before the user is able to read the error messages.  The program 
reads data from ASCII text input files, which must be located in a single working directory.  
The formats of all the input data files, which are specific to ZOOPT and not also required by 
ZOOMQ3D, are described in detail in the relevant section of this manual. 

Running the particle tracking ZOOPT model is straightforward.  The following procedure is 
undertaken. 

• Run the flow model ZOOMQ3D. 

• Copy the ZOOMQ3D input files listed in Table 1 and the ZOOMQ3D output files 
‘heads.txt’ and ‘flowbal.txt’ into the ZOOPT directory. 

• Create and edit the ZOOPT input files listed in Table 3. 

• Run ZOOPT. 
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Figure 10 Example of changing the working directory within a console window 
 

The size of the console box can be adjusted by clicking on the icon in the top left hand corner 
of its window and selecting ‘Properties’ from the menu list.  Suitable values for the width and 
height of the window and its associated screen buffer are shown in Figure 11. 

 

 

Figure 11 Changing the properties of the console window 
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5 ZOOPT input files 
Most of the input files for ZOOPT are also required to run the flow model ZOOMQ3D.  Only 
a small number of additional input files need to be created to run the particle tracking model.  
The ZOOMQ3D input files that also form input to ZOOPT are listed in Table 1.  These relate 
to the structure of the numerical model, to the aquifer’s hydraulic parameters and to the 
stresses applied to the system.  The format of these files is discussed in detail in the 
ZOOMQ3D user’s manual (Jackson and Spink, 2004) and consequently, they are not 
described within this document. 

In addition to the ZOOMQ3D input files listed in Table 1, two output files produced by the 
flow model are required as input for ZOOPT: ‘heads.txt’ and ‘flowbal.txt’.  These contain the 
groundwater heads and components of flow simulated at each model node for each time-step 
of the simulation.  The formats of these two files are discussed in Section 5.5. 

Finally, the files listed in Table 3 are also required as input to ZOOPT.  These are specific to 
the particle tracking model.  The formats of these input files are discussed in Sections 5.1 
to 5.4 

5.1 INPUT FILE ‘ZOOPT.DAT’ 
This input file is the main control file for the particle tracking simulation.  It is used to specify 
the direction of tracking and whether the flow field is steady or dynamic, in addition to 
parameters relating to the particle tracking technique.  An example file and its format is 
shown in Figure 12.  It is composed of seven pairs of lines, the first of each being a comment 
line and the second a data line.  A description of each of the data lines is presented next. 

Line 2.  Two character flags are specified on this line separated by a space.  The first specifies 
whether the tracking direction is forward (f) or backward (b).  The second specifies whether 
the run is a steady-state (s) time-instant (i) or time-variant (t) simulation.  If it is a steady-state 
run the particles are tracked using the flow field simulated during the first time-step of the 
flow model simulation.  Steady-state particles tracks can also be produced for any other time-
step of the flow model simulation.  This is referred to here as time-instant tracking.  The 
steady-state flow field can be based on the nodal flows and heads for any time-step of the 
flow model simulation (see line 16).  Finally, particles can be tracked through unsteady flow 
fields across a number of model time-steps.  Time-variant backward tracking has not been 
implemented yet. 

Line 4.  A single integer is entered on this line.  This specifies the number of points at which 
the particles position will be calculated between the cells walls.  If a zero is entered, the 
particles path lines will only be defined at those points on the interface between two finite 
difference nodes.  In this case the path lines may appear non-smooth when visualised. 

Line 6.  Two decimal numbers are entered on this line.  They are the Runge-Kutta safety 
factor and error criterion, which are discussed in Section 2.3.2 of this manual.  The safety 
factor should be a assigned a value slightly smaller than one e.g. 0.9.  The error criterion is a 
distance in metres. 

Line 8.  A single character flag is entered on this line, which can be used to enforce the use of 
the Runge-Kutta technique to track the particles.  If this is not enforced the semi-analytical 
method is used to track the particles except within weak sink nodes, where Runge-Kutta is 
implemented automatically. 
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Line 10.  A single decimal value is entered on this line.  Three-dimensional plots of the 
particles path lines are plotted as dxf files.  The plots can be stretched in the z-direction by 
entering a number greater than 1.0.  This number is used to multiply the z values of all the 
particle locations when writing the dxf file. 

Line 12.  A single character flag is entered on this line.  This determines if the model grid is 
written to the dxf files for visualisation in addition to the particle path lines. 

Line 14.  On this line the length of time is specified (days) for which to track the particles.  
The distance that particles move during this period is dependent on the porosity of the model 
layers. 

Line 16.  On this, the last line of the input file, three integers are defined.  These are the time-
step, stress period and block used to define time-instant particle tracks (see description of 
line 2).  The block number is a counter and not the actual value of the block i.e. if the blocks 
represented years, which had values starting from 1970, a value of five would be entered to 
define the fifth year, not the number 1974. 

5.2 INPUT FILE ‘PARTICLES.DAT’ 

The number of particles to be tracked and their starting positions are defined in the input file 
‘particles.dat’.  This file has the following format: 

   n 

   x  y  z  layer  tr  (one line of data for each of n particles) 

where 

n is the number particles to be tracked, 

x is the x co-ordinate (m) of the particle on release, 

y is the y co-ordinate (m) of the particle on release, 

z is the z co-ordinate (m) of the particle on release (local or global depending on the 
layer number), 

Layer is the number of the layer in which the particle is released and, 

tr is the time of release of the particle (days). 

The z co-ordinate can be specified as either a local co-ordinate within a layer or as a global 
co-ordinate.  If the layer number specified in the file is 0, the z co-ordinate is global and is 
related to the elevation of the datum of the model as defined by the user.  If the layer integer 
number is greater than zero, the z co-ordinate is local and must be between 0.0 and 1.0 i.e. it 
is defined as a fraction of the layer thickness.  If it is 0.0 then the particle is placed on the 
bottom of the layer.  If it is 1.0 then it is placed at the top of the layer. 

If the program is tracking particles backwards the time of release tr is automatically re-set to 
zero days. 
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 ‘zoopt.dat’ File format 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

// Forward (f) or back tracking (b), steady-state (s), time-instant (i) or time-variant (t) 

b s 

// Number of intermediate tracking points within cell (>=0) 

10 

// Runge-Kutta safety factor (<1.0) and error criterion (m) 

0.9 0.000001 

// Enforce the use of Runge-Kutta (y or n) 

n 

// DXF drawing z scale factor (>=1.0) 

10.0 

// Draw grid in DXF file (y or n) 

y 

// Length of time for which to track particles (days) 

100000.0 

// Time-step, stress period & block for time-instant tracking 

3 12 4 

Comment line 

Two character flags 

Comment line 

Integer 

Comment line 

Two decimal numbers 

Comment line 

Character 

Comment line 

Decimal 

Comment line 

Character 

Comment line 

Decimal 

Comment line 

Three integers 

Figure 12 Example ‘zoopt.dat’ input file and file format 
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5.3 FILE FORMATS FOR INPUTTING SPATIAL DATA (POROSITY) 
Spatial information can be entered into the model using two different methods, or sets of input 
files.  These methods employ either: 

1. map and code input files or, 

2. numeric input data files 

In method 1 a pair of ASCII text files is required for each model layer with the file extensions 
map and cod.  A map file contains a single array, or multiple arrays if grid refinement is 
incorporated, of characters in the range [ a, b, ... y, z, A, B, ...Y, Z ] to define zones of 
different parameter values.  That is, the range is composed of the lower case alphabet 
followed by the upper case alphabet.  Each array represents one of the grids contained in the 
model.  These characters define zones across the model mesh at which a particular value of a 
parameter is specified.  The values of the parameters are specified in the corresponding file 
with the cod extension.  A maximum of fifty-two zones can be used to define the spatial 
distribution of model parameters when using this method.  The name of each of these pairs of 
files is suffixed with a two-digit number that represents the model layer that the data applies 
to.  For example, the pair of files ‘porosity01.map’ and ‘porosity01.cod’ would be used to 
specify the spatial distribution of porosity in layer 01, the upper model layer. 

In method 2 a single ASCII text file is required for each model layer with the dat file 
extension.  Each of these files contains a single array, or multiple arrays, of numeric data with 
each array representing one of the grids contained in the model.  These numbers specify the 
value of a specific parameter at each finite difference node within the model directly.  The 
name of each of these files is suffixed with a two-digit number that represents the model layer 
that the data applies to.  For example, the file ‘porosity03.dat’ would be used to specify the 
spatial distribution of porosity in layer 03, i.e. two layers below the top layer of finite 
difference nodes. 

5.3.1 Selection of spatial data entry method 
Either of the methods described above can be used to assign values for each of the parameters 
that can vary spatially across the model domain.  To specify which data entry method is to be 
used, the user must adjust the input file ‘entry_method.dat’.  The format of this file is shown 
in Figure 13.  It consists of a series of integers, each of which is preceded by a comment line.  
There is also an additional comment line at the top of the file.  Each comment line, except for 
the first, notifies the user of the related parameter, e.g. specific yield.  The entry mode of the 
specified parameter is entered on the next line as an integer value.  If this integer is equal to 1, 
a pair of map and code files is required for each model layer.  If the integer is equal to 2, one 
numeric data file, with the dat extension, is required for each layer. 
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// Entry method 1: Map and codes files  2: Raw data 
// Base elevations 
2 
// Top elevations 
2 
// Specific storage 
1 
// Specific yield 
2 
// Hydraulic conductivity 
2 
// Anisotropy 
1 
// VKD 
1 
// Vertical conductance 
2 
// Wetting thresholds 
1 
// Post wetting heads 
1 
// Porosity 
1 

Figure 13 ‘entry_method.dat’ file format 
 

5.3.2 Specifying spatial data using map and code files 
In this method the spatial distribution of parameter values is defined using ‘maps’.  These 
maps are contained in files with the map extension.  For example ‘porosity02.map’ would be 
used to define porosity in layer 02 of the model, i.e. one layer down from the top layer.  The 
map files contain one character array for each grid in the model.  For example, in Figure 14 
the model mesh is composed of four grids: the coarsest base grid, two child grids (on grid 
level 2) and one grandchild grid (on grid level 3).  Consequently, four character arrays are 
required in each of the map files for this example model.  These are listed in grid level order 
and are separated by a comment line. 

Grid level 1
Base grid
8 columns by 8 rows

Grid level 2
5 columns 
by 5 rows

Grid level 2
9 x 9

Grid
level 3
9 x 9

a) b)  

Figure 14 a) Example mesh composed of four grids and b) representation of the grid 
hierarchy 
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The structure of the map file for this example model is shown in Figure 15.  As described 
above, this contains four character arrays separated by comment lines.  The comment lines 
contain information required to identify to which grid each array relates.  ZETUP, the set up 
program for ZOOMQ3D, produces this file and writes the co-ordinates of the bottom left and 
top right hand corners of the mesh within the comment lines.  Consequently the user need 
only adjust the letters in the arrays in order to modify the model’s parameter values. 

 

---- Map for grid on level: 1  Bottom left: 0,0  Top right: 700,700 ---- 
aaaaaaaa 
bbbbbbbb 
cccccccc 
dddddddd 
eeeeeeee 
ffffffff 
gggggggg 
hhhhhhhh 
---- Map for grid on level: 2  Bottom left: 100,100  Top right: 300,300 ---- 
bbbbbbbbb 
bbbbbbbbb 
bbbbbbbbb 
bbbbbbbbb 
bbbbbbbbb 
aaaaaaaaa 
aaaaaaaaa 
aaaaaaaaa 
aaaaaaaaa 
---- Map for grid on level: 2  Bottom left: 400,400  Top right: 600,600 ---- 
abcde 
abcde 
abcde 
abcde 
abcde 
---- Map for grid on level: 3  Bottom left: 150,150  Top right: 250,250 ---- 
aaaaaaaaa 
aaaaaaaaa 
aaaaaaaaa 
aaaaaaaaa 
aaaaaaaaa 
aaaaaaaaa 
aaaaaaaaa 
aaaaaaaaa 
aaaaaaaaa 

Figure 15 Example map file for the entry of spatial data within a layer 
 

Each letter in the array represents a value of a parameter that is specified in the corresponding 
code file i.e. the file with the same name but with the cod extension.  Code files have the same 
structure as map files, except each of the character arrays is replaced by a set of data defining 
the values of the letters contained within the array. 

The code file which corresponds to this example model and map file is shown in Figure 16.  
Similarly to the map file, the code file contains four sets of data separated by comment lines.  
The comment lines contain the information required to identify to which grid each data set 
relates.  Again, ZETUP, the set up program for ZOOMQ3D, produces this file and writes the 
co-ordinates of the bottom left and top right hand corners of the mesh within the comment 
lines.  Consequently, the user need only adjust the parameter values for each grid. 

In Figure 15, eight letters are used in the base grid, so eight parameter values must be defined 
in the code file for this grid.  On the second grid listed in the map file, only two zones are 
defined (by the letters ‘a’ and ‘b’) and consequently only two parameter values must be 
assigned in the code file for this grid.  This relationship is the same for the final two grids in 
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the map file.  Re-iterating, because eight letters are defined on the base grid in the map file, 
eight corresponding parameter values must be defined in the code file for this grid.  The first 
integer number in each block of data between the comment lines in the code file is the number 
of zones, or letters, specified in the character array.  After this integer value, an equivalent 
number of parameter values must be specified.  Therefore, for example if twenty-six letters 
were used in the map file for a specific grid, i.e. the letters a to z, twenty-six parameters 
values must defined within the code file for the corresponding grid. 

In the above description it is stated that there must be an equivalent number of parameter 
values specified in the code file to the number of letters used in the corresponding character 
array in the map file.  However, this is not strictly the case.  In fact, there must be at least the 
same numbers of parameters specified in the code file as are used in the map file for the 
corresponding grid.  Therefore it is allowable for example, to specify, parameter values for all 
fifty-two characters in the range [ a, b, ... y, z, A, B, ...Y, Z ] but only use a subset of these 
letters in the map file. 

The final rule to follow when editing the map and code files is that, the minimum number of 
parameters to enter in the code file is determined by the ‘highest’ letter in the range 
[ a, b, ... y, z, A, B, ...Y, Z ].  For example, if C is the ‘highest’ letter used then twenty-nine 
parameters values must be defined in the code file.  Similarly, if m is the ‘highest’ letter used 
then thirteen parameters values are required.  This means that if only the two letters ‘a’ and 
‘z’ are used to define a grid character array in a map file, at least twenty-six parameters values 
must still be defined in the corresponding code file for the corresponding grid.  This is 
because the parameter values defined in code files must be listed in the order ‘a’ to ‘z’ then 
‘A’ to ‘Z’ i.e. in alphabetical order with the lower case alphabet preceding the upper case 
alphabet in the fifty-two character scheme. 

 

---- Codes for grid on level: 1  Bottom left: 0,0  Top right: 700,700 ---- 
8 
0.10 
0.12 
0.14 
0.20 
0.01 
0.02 
0.03 
0.07 
---- Codes for grid on level: 2  Bottom left: 100,100  Top right: 300,300 ---- 
2 
0.10 
0.20 
---- Codes for grid on level: 2  Bottom left: 400,400  Top right: 600,600 ---- 
5 
0.13 
0.15 
0.09 
0.08 
0.07 
---- Codes for grid on level: 3  Bottom left: 150,150  Top right: 250,250 ---- 
1 
0.05 

Figure 16 Example code file for the entry of spatial data within a layer 
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5.3.3 Specifying spatial data using numeric data files 
Instead of using a pair of map and code files to specify the spatial variation of a parameter 
within a model layer, a single data file can be used containing raw numeric data.  This has the 
same name as the map and code files but has the dat extension.  For example, the file 
‘porosity04.dat’ could be used to specify porosity values in layer 04 of the model (i.e. three 
layers down from the top layer) instead of the files ‘porosity04.map’ and ‘porosity04.cod’.  
The numeric data file has the same structure as the map file except that each character array is 
replaced by an array of numbers representing the parameter values that will be applied at the 
corresponding nodes of the finite difference mesh within the model layer that the file relates 
to. 

An example numeric data file is shown in Figure 17.  This specifies exactly the same model 
data as that specified in the example above, in which a pair of map and code files are used for 
defining a hydraulic conductivity distribution. 

 

 

---- Map for grid on level: 1  Bottom left: 0,0  Top right: 700,700 ---- 
0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 
0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 
0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 
---- Map for grid on level: 2  Bottom left: 100,100  Top right: 300,300 ---- 
0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 
0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 
0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 
0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 
---- Map for grid on level: 2  Bottom left: 400,400  Top right: 600,600 ---- 
0.13 0.15 0.09 0.08 0.07 
0.13 0.15 0.09 0.08 0.07 
0.13 0.15 0.09 0.08 0.07 
0.13 0.15 0.09 0.08 0.07 
0.13 0.15 0.09 0.08 0.07 
---- Map for grid on level: 3  Bottom left: 150,150  Top right: 250,250 ---- 
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Figure 17 Example numeric data file for the entry of spatial data within a layer 
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5.3.4 Definition of data at coincident points on multiple grids 
It is apparent from the example model and input files described above that parameters values 
at particular finite difference nodes are specified more than once in an input file when the 
model mesh is locally refined.  This occurs at those nodes on a refined grid that are coincident 
with the nodes on a coarser grid.  Where this occurs the data defined on the refined grid will 
always override that defined on the coarse mesh. 

5.4 SPATIAL DEFINITION OF POROSITY 
Layers of finite difference nodes in ZOOMQ3D and ZOOPT may abut or may be separated 
by a quasi-layer.  This quasi-layer is not represented by a layer of finite difference nodes.  
Rather, flow in this layer, which for example could represent a low permeability aquitard 
between two aquifers, is assumed to be vertical and depends on the vertical conductance that 
is assigned between the numerical layers.  In ZOOPT values of porosity must be assigned to 
all of the finite difference layers and to the quasi-layers.  This is achieved though the use of 
two sets of data files; one set for the finite difference layers and one for the quasi-layers. 

Input file names and format 

As described above, the porosity of nodes in the finite difference layers must be entered into 
the model using either, 

1. pairs of map and code files named ‘porosity##.map’ and ‘porosity##.cod’ or, 

2. numeric data files named ‘porosity##.dat’. 

The porosity of nodes in the quasi-layers must be entered into the model using either, 

1. pairs of map and code files named ‘porosity##a.map’ and ‘porosity##a.cod’ or, 

2. numeric data files named ‘porosity##a.dat’. 

The ## symbols must be replaced by a two digit (01 to 99) number representing the layer to 
which the data files refer.  The upper layer is layer 01 and layer numbers are incremented 
from the top to the bottom of the model.  Either a pair of map and code files is required for 
each of the model layers or a single numeric data file is required for each of the layers.  The 
format of these files is described in Section 5.3.  The user specifies whether map and code 
files or numeric data files are used in the input file ‘entry_method.dat’. 

Note that file names relating to the input of porosity in the quasi-layers are appended with the 
letter ‘a’ after the layer number.  The quasi-layer 01a is below layer 01 of finite difference 
nodes.  Consequently, there are never porosity input files for a quasi-layer beneath the bottom 
finite difference layer.  The file numbering scheme is illustrated in Figure 18. 
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Figure 18 Layer numbering scheme used for specification of porosity in a) a model 
without quasi-layers and b) a model with quasi-layers 

5.5 NODE-BY-NODE HEADS AND FLOWS 

Two space delimited ASCII text output files are produced by ZOOMQ3D if the user specifies 
that particle tracking simulations are to be performed after it has been run.  These are named 
‘heads.txt’ and ‘flowbal.txt’.  The first contains simulated groundwater head values for each 
model node for each time step of the simulation.  The second contains the flow rates (m3day-1) 
into and out of each node for each time-step during the simulation.  These ZOOMQ3D output 
files are required by ZOOPT as input.  The formats of each of the files are described next. 

5.5.1 Output file ‘heads.txt’ 

Heads are contained in this file for each model node at the end of each time-step of the 
ZOOMQ3D simulation.  The heads are written in the following order during the flow 
simulation: 

1. For each time-step of the simulation 

2. For each layer in the model.  Starting with the top layer (layer 01). 

3. For each model grid in the layer.  Listed in the same order as they are in the ‘grids.dat’ 
input file.  The base grid is the first grid listed.  Grids are then listed in grid level 
order.  Heads are output as an array representing each grid. 

This format of this file is illustrated in Figure 19.  Some points on a grid may be located 
outside the model boundary, however, a groundwater head value is written for all elements of 
the rectangular array, or matrix, of grid points.  For the nodes outside the model boundary a 
dummy head value of –999.0 is output.  This head value is also output at those nodes that 
have de-watered during the time-step. 

5.5.2 Output file ‘flowbal.txt’ 

All the components of flow into and out of a node are contained in this file for each model 
node at the end of each time-step of the simulation.  The flows are written in the following 
order during the ZOOMQ3D simulation: 
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1. For each time-step of the simulation 

2. For each layer in the model.  Starting with the top layer (layer 01). 

3. For each model grid in the layer.  Listed in the same order as they are in ‘grids.dat’.  
The base grid is the first grid listed.  Grids are then listed in grid level order. 

4. Data for each node within the model are written on separate lines.  The grids are 
scanned sequentially by row.  Data are written for the nodes in the top row (furthest in 
the positive y-direction) first and bottom row (furthest in the negative y-direction) last. 
Within each row nodes are scanned from left to right (in the positive x-direction).  
Data for a node within a subgrid is only output to the file if it does not also exist on a 
grid at a coarser grid level i.e. if it is not located on a parent grid line. 

Because the data is not structured in grid arrays, dummy flow values relating to nodes outside 
the model boundary are not written to the file.  Table 5 shows the flow components that are 
listed within each line of nodal data.  The first parameter output is an integer flag, which 
specifies if the node was active during the time-step i.e. if it was wet (1) or dry (0).  If the 
node was dry a zero is written on the line for the node but its flow components are not.  Flow 
data is only output if the node was active (wet) during the time-step. 

 
Base grid array 
Subgrid 1 array Layer 1 
Subgrid 2 array 
Base grid array 
Subgrid 1 array Layer 2 
Subgrid 2 array 
Base grid array 
Subgrid 1 array 

Time-step 1 

Layer 3 
Subgrid 2 array 
Base grid array 
Subgrid 1 array Layer 1 
Subgrid 2 array 
Base grid array 
Subgrid 1 array Layer 2 
Subgrid 2 array 
Base grid array 
Subgrid 1 array 

Time-step 1 

Layer 3 
Subgrid 2 array 
Base grid array 
Subgrid 1 array Layer 1 
Subgrid 2 array 
Base grid array 
Subgrid 1 array Layer 2 
Subgrid 2 array 
Base grid array 
Subgrid 1 array 

Time-step 3 

Layer 3 
Subgrid 2 array 

NB.  Example file structure for three time-steps only for a model containing three layers and three grids. 

Figure 19 Order of data written in ‘heads.txt’ 
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Table 5 Order of variables listed on line of ‘flowbal.txt’ 

 Flow component  

1 Active / inactive integer flag 0 = inactive/dry,  1 = active/wet,  

2 Inflow from left (x-direction) Positive into node 

3 Outflow to right (x-direction) Positive out of node 

4 Inflow from below (y-direction) Positive into node 

5 Outflow above (y-direction) Positive out of node 

6 Inflow from base (z-direction) Positive into node 

7 Outflow through top (z-direction) Positive out of node 

8 Specified inflow to node if boundary Positive into node 

9 Increase in storage Positive values are equivalent to an outflow 
in terms of the flow balance calculation 

10 Recharge Positive into node 

11 River leakage Positive out of node 

12 Leakage Positive out of node 

13 Pumping Positive into node 

14 Spring flow Positive out of node 

 

Considering that the flow components 2 to 14 in Table 5, are represented by the terms 
141322 Q,Q......,Q,Q , then the following equation represents the flow balance for a node 

0QQQQQQQQQQQQQ 141312111098765432 =−+−−+−+−+−+−  

 

5.6 CONSIDERATIONS WHEN UNDERTAKING STEADY-STATE PARTICLE 
TRACKING RUNS 

When the user specifies that the program is to be used to perform a steady-state particle 
tracking simulation by entering ‘s’ on line 2 of the input file ‘zoopt.dat’, it reads head and 
flow data from the files ‘heads.txt’ and ‘flowbal.txt’ for a single time-step only.  However, if 
ZOOMQ3D was used to model the steady-state flow field by running time-variantly to steady 
conditions using multiple time-steps, the data relating to the steady-state conditions, i.e. to the 
last time-step of the time-variant flow model simulation, will be located at the end of the 
‘heads.txt’ and ‘flowbal.txt’ files and not at their beginning.  In this case time-instant tracking 
must implemented in order to track the particles through the steady-state flow field.  This is 
achieved by entering an ‘i’ on line 2 of ‘zoopt.dat’ and by specifying the use of the last time-
step’s heads and flow data on line 16 of the input file. 
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6 ZOOPT output files 
ZOOPT produces six output files, two giving information on particle tracks, three DXF files 
used to plot the path lines for visual examination and, an error message file.  These are listed 
in Table 6 and described below. 

Table 6 ZOOPT output files 

1 tracks.out 
2 ptend.out 
3 tracks_xy.dxf 
4 tracks_xz.dxf 
5 tracks_yz.dxf 
6 zoopt.err 

6.1 OUTPUT FILE ‘TRACKS.OUT’ 

This output file contains information describing the movement of the particles during the 
tracking process.  The file contains six space-delimited columns that contain the data listed 
below.  Each line of the file relates to a single position of a single particle. 

1. Particle number 

2. x co-ordinate of the particle 

3. y co-ordinate of the particle 

4. z co-ordinate of the particle 

5. Total travel time (days) 

6. Total distance moved (m) 

6.2 OUTPUT FILE ‘PTEND.OUT’ 
This output file contains information on the starting and finishing positions of each particle 
and the total distance and time of travel.  The file contains nine space-delimited columns that 
contain the following data listed below.  Each line of the file relates to a single particle. 

1. Particle number 

2. x co-ordinate of the end position of the particle (m) 

3. y co-ordinate of the end position of the particle (m) 

4. z co-ordinate of the end position of the particle (m) 

5. Total travel time (days) 

6. Total distance moved (m) 

7. x co-ordinate of the start position of the particle (m) 

8. y co-ordinate of the start position of the particle (m) 

9. z co-ordinate of the start position of the particle (m) 
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6.3 VISUALISATION OF PARTICLE PATHS 
ZOOPT produces dxf files for visualisation of the particle path lines.  This is a standard file 
format used by CAD software which can be viewed using for example, AutoCAD, 
ArcView / ArcMap, or Surfer.  If these commercial products are not available to the user, dxf 
viewers can be downloaded from the internet. 

Three dxf files are produced by ZOOPT which are the same except for the orientation of the 
Cartesian axes: ‘tracks_xy.dxf’, ‘tracks_xz.dxf’ and ‘tracks_yz.dxf’.  Only one of these files 
is required if the software package used to open them enables visualisation in three 
dimensions, such as AutoCAD.  If such software is not available, and the files can only be 
viewed in two dimensions, ‘tracks_xy.dxf’ shows the path lines in the x-y plane, 
‘tracks_xz.dxf’ shows the path lines in the x-z plane and ‘tracks_yz.dxf’ shows the path lines 
in the y-z plane.  An example of the three different views in two dimensions is shown in 
Figure 20.  This shows the advective movement of particles towards two abstraction 
boreholes. 

When time-variant particle tracking simulations are performed each particle’s path line is 
drawn using four colours.  Each coloured section of the path line represents the distance the 
particle moved during one time-step of the simulation. 

As described in Section 5.1 the user can specify if the model mesh is drawn within the dxf 
files by adjusting one of the parameters in the ‘zoopt.dat’ input file.  In this case the model 
mesh is placed in a different dxf layer to the particle paths.  The dxf layers can be turned on 
and off when using certain software packages to view the file, for example AutoCAD. 

6.4 ERROR FILE ‘ZOOPT.ERR’ 

The file ‘zoopt.err’ contains a log of errors that are encountered during the particle tracking.  
This might for example include messages informing the user that the co-ordinates have been 
incorrectly defined for certain particles and that consequently these are not created. 
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(a)  

(b)  

(c)  

Figure 20 Example dxf files for visualisation of particle path lines in a) x-y plane, b) x-z 
plane and c) y-z plane 
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