1	Sedimentary records of sewage pollution using faecal markers in contrasting
2	peri-urban shallow lakes.
3	
4	C. H. Vane ^{1*} , A.W. Kim ¹ , S. McGowan ² , M.J. Leng ³ , T.H.E. Heaton ³ , C.P. Kendrick ³ , P.
5	Coombs ¹ ., H. Yang ⁴ ., G.E.A. Swann ³
6	
7	¹ British Geological Survey, Keyworth, Nottingham, NG12 5GG
8	NG12 5GG, UK, ² School of Geography, University of Nottingham, University Park,
9	Nottingham, NG7 2RD, UK, ³ NERC Isotope Geosciences Laboratory, British Geological
10	Survey, Keyworth, Nottingham, NG12 5GG, ⁴ Environmental Change Research Centre,
11	University College London, WC16BT
12	
13	*Corresponding author. Tel+44 (0)115 936 3017; fax+44 (0)115 936 3460. E-mail address:
14	<u>chv@bgs.ac.uk</u>
15	
16	Keywords: Attenborough; Coprostanol; Gravel Pit; Pb-210; Sewage; Stable Isotopes
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	ABSTRACT: Sewage contamination in shallow lake sediments is of concern because the pathogens, organic matter and nutrients contribute to the deterioration of the water-bodies health and ecology. Sediment cores from three shallow lakes (Coneries, Church and Clifton Ponds) within Attenborough nature reserve located downstream of sewage treatment works were analysed for TOC, C/N, δ^{13} C, δ^{15} N, bacterial coliforms and faecal sterols. ²¹⁰ Pb and ¹³⁷ Cs activities were used to date the sediments. Elemental analysis suggest that the source of organic matter was algal and down profile changes in δ^{13} C indicate a possible decrease in productivity with time which could be due to improvements in sewage treatment. δ^{15} N for Coneries Pond are slightly higher than those observed in Church or Clifton and are consistent with a sewage-derived nitrate source which has been diluted by non-sewage sources of N. The similarity in δ^{15} N values (+12‰ to +10‰) indicate that the three ponds were not entirely hydrologically isolated. Analysis by Gas-Chromatography Mass-Spectrometry (GC/MS) reveal that Coneries Pond had sterol concentrations in the range 20 to 30 µg/g (dry wt.), whereas, those from Clifton and Church Ponds were lower. The highest concentrations of the human-sourced sewage marker 5β–coprostanol were observed in the top 40 cm of Coneries Pond with values of up to 2.2 µg/g. In contrast, Church and Clifton Pond sediments contain

1 only trace amounts throughout. Down-profile comparison of 5_β-coprostanol/cholesterol, 2 5β -coprostanol/(5β -coprostanol+ 5α -cholestanol) and 5β -epicoprostanol/coprostanol as well 3 as 5α -cholestanol/cholesterol suggest that Coneries Pond has received appreciable amounts of faecal contamination. Examination of 5β-stigmastanol, (marker for herbivorous / ruminant 4 5 animals), down core concentrations suggest a recent decrease in manure slurry input to 6 Coneries Pond. The greater concentration of β-sitosterol in sediments from Church and 7 Clifton Ponds as compared to Coneries is attributed in part to their greater diversity and 8 extent of aquatic plants and avian faeces. 9

10 **1. Introduction**

11

12 Sewage pollution is a major cause of decreasing water quality in rivers and lakes within the 13 UK and throughout the world. The presence of human and animal faecal matter at elevated 14 concentrations in waters and surface sediments in shallow lakes is of widespread concern for 15 two reasons. Firstly, the complex chemical mixture causes nutrient enrichment, 16 eutrophication, toxic algal blooms and water column anoxia which in turn can lead to a reduction in species diversity and ecosystem instability. Secondly, untreated sewage can, 17 18 under specific conditions, provide a growth medium for bacterial and viral pathogens that if 19 ingested by humans leads to diseases such as Salmonella, Cholera, Diarrhoea, Typhoid, 20 Gastroenteritis and Hepatitis A (Mudge and Ball, 2006).

21

Estimation of sewage pollution is normally elicited from the quantification of total coliforms, faecal coliforms and faecal *Streptococci*, which, although not pathogenic, serve as proxies for pathogenic bacteria and total sewage input. However, the use of these indicator organisms provides little information concerning the source or age of the faecal material and requires that waters and sediments be analysed soon after collection. A complementary approach to evaluate sewage discharge and accumulation in rivers, lakes, estuaries and marine environments is to characterise specific groups of molecules contained within the sewage

- such as faecal sterols (Bull et al., 2002; Leeming et al., 1996; Mudge et al., 1999; Mudge and
 Duce, 2005; Peng et al., 2005; Readman et al., 2005; Seguel et al., 2001).
- 3

4 Previous investigations of faecal sterol contents in waters and sediments have tracked 5 concentrations of between five to seventeen sterols including coprostanone, coprostanol, 6 epicoprostanol, cholesterol, cholestanol, campestrol, stigmasterol, β-sitosterol, fucosterol and stigmastanol (Isobe et al., 2002; Leeming et al., 1996; Shah et al., 2006). The abundance and 7 8 distribution of faecal sterols in excreta is controlled in part by an animal's diet as well as 9 bacterially-mediated reductive modifications in the gut and also endogenous production of 10 sterols such as cholesterol (Leeming et al., 1996). For example, in the intestinal tracts of 11 many higher mammals, the biological precursor compound cholesterol is converted to 5βstanols via biohydrogenation of the Δ^5 double bond to give 5 β (H) stereoisomers. Similarly, 12 13 cholesterol is converted in the gut of higher mammals to coprostanol via various 14 intermediates by oxidation of the OH group at the C-3 position (Bull et al., 2002). Once in the 15 aquatic or terrestrial environment compounds such as coprostanol can undergo further 16 microbial reduction to yield the product epicoprostanol (Bull et al., 2002).

17

The Attenborough Ponds Nature Reserve (52° 53'58''N, 1° 14'09''W) is located within the conurbation of Nottingham, UK, and is designated a site of special scientific interest (SSSI) primarily because of the wide diversity of birds. The ponds are a series of ex-gravel pits covering an area of about 1.67 km² located on the floodplain of the River Trent. Excavation of Church Pond occurred from 1962-1965, Coneries Pond 1966-1968 and Clifton Pond 1964-68. Their location, similar size (0.49 to 0.1 km²), depth (~3m) and mode of formation make them ideally suited to ecosystem-scale comparisons. The ponds (including Church, Clifton

1 and Coneries Ponds) have varying histories of connectivity to the polluted Erewash, which 2 drains a heavily urbanised catchment and receives effluent from seven sewage treatment 3 plants. The first discharge information for the sewage treatment works were issued between 4 1981 and 1990 (Severn Trent Water, unpublished.). Methods of sewage treatment for works 5 discharging into the river prior to this time are unavailable. In 1972, the course of the 6 Erewash was diverted directly into Coneries Pond, which was at that time hydrologically connected to Church and Clifton Pond during periods of high water level. In 1981, 7 8 engineering works isolated Clifton from Coneries Pond, resulting in the system that exists 9 today where Church and Clifton Pond are isolated from the Erewash and Coneries Pond 10 system in all but the most extreme flood events. Consequently Coneries waters are enriched 11 in total P (TP; 540 µg/L) and total dissolved inorganic nitrogen (TDIN; 6 mg/L) and are 12 turbid whereas Clifton (TP 73 µg/L, TDIN 0.2 mg/L), and Church (TP 184 µg/L, TDIN 0.2 13 mg/L) have much lower nutrient concentrations and clear water (mean concentrations 14 between 2005-2008) (Cross, 2009).

15

The objectives of this work were three fold: (i) Identify the main sources of organic matter entering the Ponds; (ii) Establish whether Coneries, Church and Clifton Ponds had received the same amounts of faecal organic matter through time; and (iii) ascertain using sterol biomarker whether the source(s) of faecal organic matter had changed.

20

21 **2. Sampling and methods**

22

23 2.1 Sample Collection

Sediment cores were collected on 22 and 23rd May 2007 from Church Pond (SK 51600, 1 2 34150), Clifton Pond (SK 52300, 33697) and Coneries Pond (SK 51234, 33856) (Fig. 1). 3 The deepest part of the lake was located for coring using a handheld echo sounder and 4 position marked using a Garmin 12 GPS system. Cores were sampled using a wide-diameter 5 (14 cm i.d.) Livingstone type corer specially designed for the retrieval of large volumes of 6 sediment. The core tube was pushed into the sediment until an impenetrable layer (basal gravel and sands) assumed to mark the inception of the lakes was reached. After each 7 8 successful deployment-retrieval cycle the core was transported back to shore, whereupon the 9 core was extruded and sampled every 1 cm for coliform counting and every 2 cm for 10 elemental and isotopic analyses. Sub-samples for faecal sterol and stanol concentrations were 11 collected at 4 cm resolution (~10 g wet/wt) and were stored in polyethylene bags and transported back to the laboratory at ~4 °C, then immediately frozen (-70 °C). Aside from the 12 13 basal gravel/ sand layer none of the cores showed a clear sediment stratigraphy being 14 comprised of a homogeneous mixture of dark organic rich silty clay.

15

16 2.2^{210} Pb and 137 Cs Chronology

17

Dried sediment samples from cores taken from Church Pond and Clifton Pond were analysed for ²¹⁰Pb, ²²⁶Ra, ¹³⁷Cs and ²⁴¹Am by direct gamma assay in the Bloomsbury Environmental Isotope Facility (BEIF) at University College London, using ORTEC HPGe GWL series well-type coaxial low background intrinsic germanium detector (Appleby et al., 1986). Lead-210 was determined via its gamma emissions at 46.5keV, and ²²⁶Ra by the 295keV and 352keV gamma rays emitted by its daughter isotope ²¹⁴Pb following 3 weeks storage in sealed containers to allow radioactive equilibration. Cesium-137 and ²⁴¹Am were measured by their emissions at 662kev and 59.5kev (Appleby et al., 1986). The absolute efficiencies of
the detector were determined using calibrated sources and sediment samples of known
activity. Corrections were made for the effect of self absorption of low energy gamma rays
within the sample (Appleby et al., 1992).

5

6 2.3 %TOC, C/N, carbon and nitrogen isotope ratios

7

8 Total organic carbon and nitrogen from which we derive weight C/N ratios were analysed alongside carbon (δ^{13} C) and nitrogen (δ^{15} N) isotope ratios. %C, %N and δ^{13} C were measured 9 on homogenized, acid-washed sediment while the $\delta^{15}N$ was measured on raw homogenized 10 sediment. ¹³C/¹²C analyses were performed by combustion in a Costech Elemental Analyser 11 (EA) on-line to a VG TripleTrap and Optima dual-inlet mass spectrometer, with δ^{13} C values 12 13 calculated to the VPDB scale using within-run laboratory standards calibrated against NBS-14 18, NBS-19 and checked using NBS-22. Replicate analysis of well-mixed samples indicated a precision of + <0.1‰ (1 SD). %TOC and C/N ratios were calibrated against an Acetanilide 15 standard, with a precision of $\pm <0.1$ for C/N. All C and N values in this current work are 16 expressed on a weight ratio basis. ¹⁵N/¹⁴N analysis was performed on a ThermoFinnigan 17 18 system comprising an elemental analyser linked under continuous flow with a Delta+XL mass spectrometer. Isotope ratios were calculated as $\delta^{15}N$ versus atmospheric N₂ by 19 comparison with standards calibrated against IAEA N-1 and N-2. Analytical precision (1 20 21 S.D.) is typically <0.3‰.

22

1 In the laboratory two grams of sub-sample was transferred to a sterile universal container 2 using aseptic technique. To each sub-sample 20 ml of sterile demineralised water was added 3 and the contents centrifuged at 750 g for 10 minutes to disassociate bacterial cells from 4 sediment samples (Furtado and Casper, 2000). The supernatant was then removed and used 5 for microbial inoculations. The method used for enumeration studies was based on the 6 standard method of membrane filtration (MF). The supernatant was filtered through a 0.45 7 µm cellulose nitrate filter (Gelman). Each filter was then placed onto a petri dish containing a 8 pad saturated with Membrane Lauryl Tryptose Broth (Oxoid). The dishes were incubated for 9 24 hours at 35 °C. Yellow colonies of between 1 mm and 3 mm were counted as presumptive 10 coliform bacteria (total coliforms).

11

12 2.5 Faecal Steroid Preparation

13

14 Sediments were freeze-dried, sieved through a mesh aperture of 2 mm and ground to a fine 15 powder in a ball mill (Retsch PM400). A 4-5 g aliquot of each powdered sediment was 16 placed on a watch-glass and spiked with deuterated cholesterol (cholesterol-2,2,3,4,4,6-d6) 17 standard in toluene (5 ng/µl) (Sigma Chemical Co.). Thereafter, sediments were extracted 18 with methanol/dichloromethane (MeOH/DCM) (1:1 v/v) using an accelerated solvent 19 extraction system ASE 200 (Dionex) operated at a temperature of 100 °C and a pressure of 20 1500 psi. Activated copper powder (2 g) was added to remove elemental sulphur. The solvent 21 was removed by evaporation using a turbovap system. The residue was reconstituted in 1 ml 22 acetone, then transferred onto the surface of a silica gel column containing 5% H₂O deactivated silica (100-200 mesh) using a glass pipette. The silica column (1 \times 9 cm) was 23 24 first eluted with 20 ml hexane/DCM (3:1 v/v) then 40 ml DCM and finally with 30 ml

acetone/DCM (3:7 v/v). The latter two fractions were combined, the solvent evaporated under a gentle stream of N₂ and the residue dissolved in 0.5 ml acetone prior to quantitative transfer to a glass vial (1.75 ml). Acetone was removed by evaporation with N₂ and the sample reconstituted in 0.9 ml of pyridine to which perylene- $_d$ 12 extraction efficiency standard in toluene was added. Prior to analysis, mixtures were silylated by heating in an oven at 50°C for 30 min with 50 µl of N, O *bis* (trimethylsilyl)trifluoroacetamide (BSTFA) with 1% TMCS (Sigma Chemical Co.).

8

9 2.6 Gas Chromatography-Mass Spectrometry

10

11 Faecal sterols were analysed using a Varian CP3800 series gas chromatograph (GC) directly 12 coupled with a Varian 1200L triple Quadropole MS/MS system (GC/MS). Sample injection 13 (1.0 µl) was in splitless mode. Compounds were separated using a Varian Factor 4 VF-5MS 14 column (30 m length \times 0.25 mm i.d. \times 0.25 µl film thickness). The oven temperature was programmed from 60 °C (1 min isothermal) to 250 °C at 20 °C min⁻¹ then to 310 °C at 4 °C 15 min⁻¹ and held isothermally at 310 $^{\circ}$ C for 10 min. The mass spectrometer was operated at 70 16 17 eV with a mass range of m/z 30-550 (beam current 150 µA, source temperature 150 °C) with 18 helium as carrier gas at a flow rate of 1 ml/min. Data acquisition was carried out using a 19 Varian MS workstation v6.5. Peak assignments were made by comparison with published 20 mass spectra and mass spectra and retention times of authentic standard compounds 21 (Appendix 1). The limit of quantification for individual compounds ranged from 0.01-0.04 22 $\mu g/g$ (dry wt), procedural blanks as well as reagent blanks contained no significant amounts 23 of sterols.

3 Common compound names were used throughout this work to enable comparison with 4 previous studies. The eleven faecal sterols measured were cholestane (5 α -cholestane), 5 coprostanol (5 β -cholestan-3 β -ol), 5 β -epicoprostanol (5 β -cholestan-3 α -ol), cholesterol 6 (cholest-5-en-3β-ol), 5α-cholestanol (5α-cholestan-3β-ol), coprostan-3-one (5β-cholestan-3-7 one), campesterol (24α-methyl-5-cholesten-3β-ol), stigmasterol (3β-hydroxy-24-ethyl-5,22-8 cholestadiene), fucosterol ($(3\beta, 24E)$ -stigmasta-5,24(28)-dien-3-ol), β -sitosterol (24-9 ethylcholest-5-en-3 β -ol) and 5 β -stigmastanol (24 α -ethyl-5 α -cholestan-3 β -ol); chemical 10 structures are presented in Appendix 1.

11

```
12 2.8 Statistical Analyses
```

13

14 Multi-variate ordination techniques were carried out using the vegan package in R (Oksanen 15 et al., 2010; R Development Core Team, 2010) to explore the dominant patterns and inter-16 relationships in the sterol data. Following Detrended Correspondence Analysis (DCA), which 17 indicated a linear response, Principal Component Analysis (PCA) was carried out to assess 18 the main gradients of variation at each of the three sites. All data were down-weighted to 19 reduce the influence of abundance sterols on the ordination outputs with samples containing 20 no measureable sterol concentrations removed from the dataset. Sample depth 62 cm at 21 Church Pond was also removed as an outlier in the ordination analyses, due to the high 22 amount of coprostanol within the sample.

3. Results and Discussion

2

3 3.1 Lead-210 activity and artificial fallout radionuclides

4

Cores from Church and Clifton were first assessed using ¹³⁷Cs radionuclide and ²¹⁰Pb activity 5 6 in order to develop a sediment chronology (Figs. 2 and 3). Lead-210 (half-life is 22.3 year) is 7 a naturally-produced radionuclide, derived from atmospheric fallout (termed unsupported ²¹⁰Pb). Caesium-137 (half-life is 30 years) and ²⁴¹Am are artificially produced radionuclides, 8 9 introduced to the study area by atmospheric fallout from nuclear weapons testing deposition 10 (maximal ~1963) and nuclear reactor accidents (e.g. Chernobyl, Ukraine 1986). They have 11 been extensively used in the dating of recent sediment in lakes and estuaries (Appleby, 2001; Vane et al., 2009). 12

13

The ¹³⁷Cs activity versus depth profile for Church Pond reveals a broad peak between 20 and 14 44 cm, suggesting 1963 occurs between these depths (Fig. 2). Unsupported ²¹⁰Pb activity, 15 calculated by subtracting ²²⁶Ra activity from total ²¹⁰Pb activity, declines more or less 16 exponentially with depth in the top 20 cm (Fig. 2). Deeper than 20 cm, unsupported ²¹⁰Pb 17 activities show non-monotonic features, with relatively low unsupported ²¹⁰Pb at 29.5 cm. 18 The inventory of unsupported ²¹⁰Pb yields a mean unsupported ²¹⁰Pb flux to the sediments at 19 137 Bq m⁻² yr⁻¹, which is at a similar level of deposition in the region. Lead-210 chronologies 20 21 were calculated using the CRS dating model (Appleby and Oldfield, 1978). The raw CRS 22 dating model places the 1963 layer at 40 cm, which is in between 20 and 44 cm suggested by the 137 Cs record. The average sedimentation rate of the core was about 0.28 g cm⁻² yr⁻¹. 23 Sedimentation rates calculated by unsupported ²¹⁰Pb data were relatively uniform but with a 24 sharp peak, suggesting rapid accumulation in the late 1970s and may represent disturbance of 25

1 lake bed material associated with blockage of the lake from the Coneries chain ca. 1980.
2 Prior to isolation, variable river flows would have resulted in high sedimentation rates and a
3 greater degree of sediment disturbance. Once isolated, the monotonic decline in Pb-210
4 activity is consistent with a more stable depositional environment. Historical records date the
5 time of last gravel extraction and presumably the on-set of sedimentation in Church Pond at
6 1964 and in 1967 at Clifton Pond.

7

The Clifton Pond ¹³⁷Cs profile is poorly defined (Fig. 3) and consequently radionuclide 8 9 depositional events such as Chernobyl and maximal emissions from atomic weapons testing are not identifiable. The relatively constant ¹³⁷Cs activities below 19 cm may be due to 10 11 variable deposition of material transported into the lake while it was connected to the main lake chain. There is an irregular decline in unsupported ²¹⁰Pb in the top 20 cm of the core, 12 but little net decline in unsupported ²¹⁰Pb activities below this with low unsupported ²¹⁰Pb 13 activities suggesting relatively high and variable sedimentation rates, with sediment 14 disturbance. Mean unsupported 210 Pb flux to the sediments was calculated at 148 Bg m⁻² yr⁻¹. 15 ²¹⁰Pb chronologies were calculated using the CRS dating model. Mean sedimentation rate 16 was about 0.29 g cm⁻² yr⁻¹ and was higher between the 1960s and 1980s. The ²¹⁰Pb profile is 17 consistent with greater disturbance below ca. 20cm core depth (1980s), suggesting that the 18 19 isolation of Clifton Pond in 1981 resulted in more uniform sediment deposition and less 20 sediment disturbance (Sayer and Roberts, 2001). As for Church Pond, the lake inception date 21 of 1964 would infer more rapid sedimentation in the lower part of the core than calculated by the CRS model. 22

23

24 3.2 %TOC, C/N and carbon isotope ratios

2 These data are presented in Figure 4. Downcore %TOC profiles for the three ponds show a 3 systematic decrease in organic carbon content from the surface to the base (approximately 75 4 cm). The organic carbon contents range from ca. 2 to 6% in Coneries, 2 to 5% in Church, and 5 4 to 5% in Clifton. These concentrations are fairly typical of modern shallow lakes located in a peri-urban environment accumulating decaying vegetation from a variety of sources, as 6 7 well as atmospheric and waterborne anthropogenic pollution. C/N ratios are widely used as 8 source indicators for organic matter (Meyers, 1997) and tend to range 3-9 (in aquatic; protein 9 rich plants), 10-20 (in aquatic/terrestrial plants) and > 20 (in terrestrial biomass; protein poor 10 plants) and are thus used as an indicator of changes in allochthonous and autochthonous 11 organic matter in freshwater systems (Meyers and Teranes, 2001). In the Attenborough 12 Ponds, C/N ratios are fairly constant at between 8-10; values which tend to be indicative 13 organic matter of aquatic origin. From the work of (Cross, 2009) this most likely represents 14 Synedra), cryptophyceae (Cryptomonas, phytoplankton (Aulacoseira, Asterionella, 15 Rhodomonas), and chlorophyceae (Ankyra, Chalmydomonas, Tetradon, Tetrastrum). Cross 16 (2009) reported elevated concentrations of the latter class of green algae, ranging from 73 17 μ g/L in Coneries Pond to 13 μ g/L in Clifton Pond.

18

19 Most types of algae produce organic matter with δ^{13} C values about 20‰ lower than the value 20 for dissolved bicarbonate (HCO₃⁻), the main reservoir of inorganic carbon (Leng et al., 2005). 21 On this basis the δ^{13} C values of –29 to –25‰ typical of the ponds' sediments would suggest a 22 bicarbonate source with δ^{13} C_{bicarbonate} within the range –9 to –5‰; values that are higher than 23 those typical of UK groundwaters (Andrews et al., 1993; Andrews et al., 1997), suggesting an 24 additional source of inorganic carbon (e.g. atmospheric CO₂, through long residence time, or 25 carbonate from limestone aquifers). δ^{13} C_{bicarbonate} values will also be influenced by organic productivity, with values increasing with production as the lighter isotopes are utilised by the algae and incorporated into the organic sediment. A reduction in the proportion of additional sources of inorganic carbon, or a decrease in productivity are therefore some of the factors which might cause changes in the ponds' organic δ^{13} C values (Leng et al., 2005). The upward decrease in core δ^{13} C values might for example reflect reduced limestone influence with the cessation of quarrying, or changes in nutrient inputs with changes in sewage management.

7

8 *3.3 Nitrogen isotope ratios*

9 In common with carbon, the isotope composition of sources of nitrogen and factors influencing productivity are amongst the most important controls on the $\delta^{15}N$ values of 10 11 organic matter depositing to sediment in these shallow, well-mixed lakes (Leng et al., 2005). A comparison of the up-core changes in $\delta^{15}N$ and $\delta^{13}C$ values in fact reveals some co-12 13 incidence: the largest changes for both values are observed for Coneries between 70 to 60 cm depth, and for Church between 50 to 0 cm depth. However, the fact that the changes are in 14 the opposite direction (δ^{15} N increasing and δ^{13} C decreasing upwards) tends to argue against a 15 16 change in organic productivity as the dominant cause. We therefore consider the potential 17 sources of N.

Sewage is clearly a major potential source of nutrient N in some of the Attenborough ponds. In many cases it has high δ^{15} N values, above +10‰ (Heaton, 1986; Kendall et al., 2007), and this is confirmed for our study by a single analysis of Erewash river nitrate from close to the Toton sewage works in April 2007, which gave a δ^{15} N value of +14.2‰. In contrast, most other sources of N (atmospheric deposition, fertilisers, soils, etc.) tend to have δ^{15} N values well below +10‰ (Heaton, 1986; Kendall et al., 2007), and where N-fixing cyanobacteria contribute to sediment (as they may do in Church and Clifton Ponds (Cross, 2009)), this will also reduce δ^{15} N values. Sediments in lakes in remote regions of the UK, for example, typically have δ^{15} N values below +5‰ (Jones et al., 2004). In simple source terms we would therefore expect δ^{15} N values to be most affected by the relative proportions of sewage and non-sewage inputs of N to the different ponds; and increases in macrophyte δ^{15} N in response to increased sewage inputs have been well documented elsewhere (Cole et al., 2004).

It is therefore perhaps surprising that the $\delta^{15}N$ values of recent sediments in the Church, 6 7 Clifton and Coneries Ponds are so similar: the uppermost sections of the cores all have $\delta^{15}N$ values between +10 to +12‰ (Figure 4), and sediment traps have also yielded $\delta^{15}N$ values 8 9 above +10% for all three ponds. These values may be expected for Coneries Pond, which is 10 directly supplied by the Erewash. The fact that Church and Clifton Ponds have similarly high δ^{15} N values suggests that they may also derive much of their nutrient N from a similar 11 sewage source, albeit at a lower concentration. This could occur as leakage of Erewash water 12 through the gravel banks surrounding Church and Clifton Ponds. 13

14

15 3.4 Coliform counts

16

17 Total coliform counts in sediment cores from Clifton, Church and Coneries Ponds are 18 presented in Figure 5. Bacterial coliform numbers were highest between 0-10 cm for all three 19 cores and no coliforms were detected at depths >64 cm at any of the sites. Coliform numbers 20 in Church and Coneries were maximal at ~400 colony forming units (CFU)/g sediment, whereas the coliform counts for Church remained at <200 CFU/g sediment throughout (Fig. 21 22 5). Comparison of the depth profiles reveals that Clifton and Church were somewhat similar, 23 with the greatest coliform numbers just beneath the sediment surface and no detectable 24 coliforms observed between 30-40 cm and 50-60 cm. In contrast, relatively high numbers of

1 coliforms were detected between 20-30 cm and 30-40 cm as well as 50-60 cm at Coneries 2 (Fig. 5). Research on faecal coliforms in sediments and waters has shown extended survival 3 in the former due in part to factors such as organic matter content and sorption which 4 provides protection against bacteriophage (Burton et al., 1987; Stenstrom and Carlander, 5 2001). However, survival of viable enteric bacteria (Pseudomnas aeruginosa, Salmonella 6 Newport, Escherichia coli and Klebsiella pneumoniae) in two lake and two river sediments in 7 USA extended to no more than a few months (Burton et al., 1987). Similarly, T50- values of 8 E. coli, faecal enterococci, Clostridium and coliphages in constructed wetland sediments 9 ranged from 27-370 days (Stenstrom and Carlander, 2001). Sediments act as a reservoir for 10 bacteria and can via the mechanism of sediment re-suspension contribute to bacterial 11 numbers in overlying surface waters (Obiri-Danso and Jones, 2000). In light that indictor 12 organism tests such as total coliform counting require viable bacteria, and that the literature 13 suggest that these are not particularly long lived, it is not unexpected that the highest number 14 of coliforms were observed in the uppermost interval of the sediment cores. The frequent 15 occurrence of detectable coliforms down core at Coneries maybe attributed to the combined 16 effect of either: Coneries receiving a greater amount and more regular supply of faecal matter 17 than either Clifton or Church; or bioturbation of the sediment column.

18

19 3.5 Sterol and Stanol Concentrations

20

Total sterol concentrations decrease down profile in all three shallow lake sediment cores. Church and Clifton are broadly similar, with the highest values observed at the surface (0-4 cm) and a gradual fall in sterol concentration to $<10 \ \mu g/g$ at 12-16 cm (Fig. 6). Small changes in sterol concentrations occur from 12-16 to 56-60 cm and an increase in sterol values occurs in Clifton at 58-68 cm and Church at 60-64 cm (Fig. 6). In contrast, Coneries total sterol 1 depth-profile shows higher concentrations in the range of 20 to 30 μ g/g at the surface to 36-2 40 cm depth; thereafter, there is a progressive decrease in concentrations to the base of the 3 core at 74 cm.

4

5 Ten of the eleven individual sterols were observed in this study; the compound 5α -cholestane 6 was not detected in any of the sediments. As expected cholesterol is the most abundant sterol 7 in the surface sediments at Coneries with concentrations in the range of 4.1 to 8.5 μ g/g 8 whereas, β-sitosterol is the principal sterol at the surface in Church and Clifton with 9 concentrations in the range of 6.5 and 16.1 μ g/g (Fig. 6). β -sitosterol is known to be derived 10 from vascular plants and together with cholesterol, stigmasterol and campesterol are the main 11 sterols which undergo reduction by enteric bacteria to yield 5β -stanols (Leeming et al., 1996). 12 The greater concentration of β -sitosterol in the surface sediment at Church and Clifton as 13 compared to Coneries may be due to the diverse range of aquatic plants whereas Coneries is 14 devoid of aquatic plants. However, sterols from avian faeces are reported to be mainly 15 comprised of β -sitosterol with lower amounts of cholesterol as well as 24-16 ethylepicoprostanol and trace quantities of other sterols (Shah et al., 2007). Therefore, the 17 predominance of β-sitosterol in the surface sediments at Clifton and Church could be due to 18 direct input from higher plants or possibly from the accumulation of avian derived faecal 19 matter or a combination of the two. The latter multiple-source explanation is probably most 20 plausible because Attenborough Ponds is an important wildlife refuge for ~80 species of 21 birds and the shallow gravel-pit lakes are vegetated with Phragmites communis (Reed) Typha 22 latifolia (Bull-rush) and Spargamium erectum (Bur-reed) and the banks are populated with 23 willow, ash and alder trees. Although this supposition appears to contradict the TOC, C/N and δ^{13} C interpretation (section 3.2) which suggests that all three ponds mainly accumulated 24 25 organic carbon from algal sources, it should be borne in mind that molecular biomarkers

including sterols presented herein only represent a small fraction of the bulk organic matterthat maybe undetected in the bulk measurements.

3

4 A different situation occurs in Coneries Pond where 5 β -stigmastanol is present at relatively 5 high concentrations of up to 14.5 μ g/g at 32-36 cm depth (Fig. 6). Previous studies have 6 reported that 5β-stigmastanol is derived from the intestinal microbial reduction of the plant 7 derived marker sitosterol (Grimalt et al., 1990). Therefore, the presence of 5β-stigmastanol at 8 elevated concentrations relative to other sterols could indicate faecal matter from herbivorous 9 animals and, particularly, ruminant animals such as cows and sheep. Within Coneries Pond, 10 the high proportion of 5β -stigmastanol relative to other sterol markers in the mid-portion of 11 the core profile suggests a possible manure/slurry input and that the accumulation had 12 recently decreased as evidenced by the decline in 5β-stigmastanol values at the near surface 13 <10 cm (Fig. 6). Clear evidence that Coneries has also received input from plant matter is 14 suggested by the presence of another sterol plant marker, campesterol, at concentrations up to 15 3.5 µg/g in 12 out of 18 sediment levels analysed (Reeves and Patton, 2005). The absence of 16 aquatic plants in Coneries Pond confirm the notion that plant derived matter and associated 17 sterols have been washed into the shallow lake. Comparison of the Clifton total sterol and 5β-18 stigmastanol profiles show a clear co-variance which suggests that the small increase in total 19 sterol values at 58 cm depth was probably due to input of herbivore faecal matter.

20

Concentrations of coprostanol in the samples from Coneries range from 2.2 at surface to 0.04 $\mu g/g$ (dry wt) at a depth of 70 cm with an average of 0.64 $\mu g/g$ (Fig. 6). In contrast, coprostanol concentrations are low and declined rapidly at Church and Clifton with the exception of a single coprostanol peak at a depth of 62 cm in Church. In general, sediments with coprostanol concentrations of 0.5 $\mu g/g$ are considered to have received appreciable

amounts of sewage pollution (Readman et al., 2005). Thus, using this criteria, almost the 1 2 entire Coneries core is polluted with sewage, Church is contaminated at 2 cm and 62 cm 3 depth and Clifton is not polluted, the highest coprostanol concentration being 0.4 μ g/g at 4 surface. This likely reflects the fact that although both Church and Clifton Ponds were connected to the Erewash system prior to 1981, they were less directly connected than 5 6 Coneries, which lies directly between the main river inflow and the major outflow. Although 7 treated sewage effluent is discharged into the Erewash in liquid form, the high abundance of 8 coprostanol in Coneries as compared to Church and Clifton supports the view that faecal 9 sterols rapidly partition into the solid phase (Mudge and Ball, 2006) and their accumulation is 10 then controlled by fluvial/lacustrine sedimentation processes.

11

12 *3.3 Application of sewage indicator ratios to source apportionment*

13

14 The ratio 5β -coprostanol to total sterol provides one measure of human derived sewage input; 15 it has also been demonstrated that human faecal contamination is indicated by 16 coprostanol:cholesterol values >0.2. Raw untreated sewage typically has a 5 β -coprostanol / 17 cholesterol ratio of ~10, which decreases through a sewage treatment plant (STP) such that in 18 the discharged liquid wastewaters the ratio is approximately 2; undiluted STP wastewaters 19 may be identified by this high ratio. As the faecal matter is dispersed in the environment, the 20 ratio will decrease as more (non-faecal) cholesterol from animals is encountered (Grimalt and 21 Albaiges, 1990; Grimalt et al., 1990). In this study, coprostanol was detected in 16 out of 18 22 sediment levels in Coneries Pond, ranging from 2.2 ng/g at the surface to 0.1 ng/g at a depth 23 of 62 cm (Fig. 6). Down core, coprostanol to cholesterol ratios are greater than or equal to the 24 0.2 threshold value in 14 of the 18 sediment depth intervals, confirming that Coneries Pond 1 has been subject to human sourced faecal matter which had been treated (Fig. 7). One 2 plausible explanation is that the sewage treatment plants on the Erewash had discharged into 3 the river which flows into Coneries Pond. Lower ratios ranging from 0.1 to 1.9 occur in the 4 three levels at the base of the sediment core suggesting lower contribution of sewage sourced 5 faecal matter in the early 1970s. In contrast, sediments from Clifton or Church Ponds gave 6 coprostanol:cholesterol ratios ranging from 0 to < 0.2, which suggests that the sediments have 7 not been subject to a significant amount of human-sourced sewage pollution (Fig. 7). Taken 8 together this suggests that earth embankments that separate the Ponds (Fig. 1) may act as 9 filters for the particulate organic matter (including sewage).

- 10
- 11

12 Human sourced faecal contamination can be tracked in sediments using the proportion of 13 coprostanol:(coprostanol+5α-cholestanol) (Grimalt et al., 1990; Grimalt and Albiages, 1990). 14 5α -cholestanol is formed naturally in the environment by bacteria and generally does not 15 have a faecal origin. Sediments with coprostanol:(coprostanol+5 α -cholestanol) values > 0.7 16 are considered contaminated with human faecal matter whereas those with values < 0.3 are 17 categorised as uncontaminated. Sediments with ratios between these criteria can not be 18 readily apportioned on the basis of this ratio alone. In this work, Coneries sediments at 54, 19 62, 66 and 70 cm depth gave ratios of 1.0 because no 5α -cholestanol was detected; at 20 shallower depths, ratios varied in a non-systematic manner from 0.1 to 0.34 (Fig. 7). 21 Examination of the Clifton coprostanol:(coprostanol+5a-cholestanol) profile showed low 22 values indicating minimal human faecal pollution and similarly Church yielded ratios of between 0 to <0.3 with the exception of 62 cm depth which gave a value of 1.0 (Fig. 7). 23 24 During sewage treatment, 5 β -coprostanol may be converted to the 5 β -cholestan-3 α -ol form, 25 epicoprostanol, and there is also a slow conversion of 5β-coprostanol to epi-coprostanol in 1 the environment and so this ratio will indicate either the degree of treatment of sewage or its 2 age in the environment (Mudge and Ball, 2006). In the current study Coneries 5β-coprostanol 3 to epicoprostanol ratio varied from 0.2 to 0.6 and Clifton gave ratios of 1.1 and 0.6 at 2 and 6 4 cm depth respectively (Fig. 7). A cross-plot of the 5 β -coprostanol / cholesterol ratio against 5 the epi-coprostanol / 5\beta-coprostanol ratio can indicate both faecal contamination and 6 treatment (Fig. 8). The sediments from Church and Clifton Pond indicate little sewage input 7 and / or a high degree of treatment whereas sediments from Coneries Pond plot in an area 8 indicative of greater sewage input.

9

10 It has been previously reported that in sediments, bacteria preferentially produce 5α -11 cholestan-3 β -ol (5 α -cholestanol) from cholesterol rather than the 5 β isomer (Bull et al., 2003; 12 Bull et al., 2002). This reaction occurs principally in anaerobic reducing sediments and the 13 5α -cholestanol / cholesterol ratio may be used as a secondary (process) biomarker for such 14 conditions. No cut-off values have been suggested for this marker and so it is used in a 15 relative sense; the greater the ratio, the more reducing the environment. The 5α -cholestanol / cholesterol vertical profiles are presented in Figure 9. Clifton sediments show a rather 16 17 constant value of ~1, Church sediments were maximal at 2.8, whereas Coneries values range 18 from 0.5 to 6.1 indicating a possibly more reducing environment at 20 to 50 cm (Fig. 9). It is 19 also plausible that the rise in 5α -cholestanol / cholesterol ratios between 50 to 25 cm depth in 20 Coneries could be related to changing redox conditions in the sedimentary column and or 21 varying sewage treatment practices such as the introduction of filter beds and activated 22 sludge plants.

23

24 3.3 Principal component analysis

PCA indicates that a single variable at each lake is dominating the main patterns of variability in the sterol data with the first axis explaining 82.5%, 71.0% and 67.7% of the variability for Clifton, Church and Coneries Pond respectively (Figs. 10-11). Combining the datasets together indicates that that this variable is constant across all sites (PCA axis 1 eigenvalue = 0.613) and when combining sites individually (Fig. 10 Clifton and Church). The first axis is dominated by sterol characteristic of faecal matter such as β -sitosterol and and the by product of sewage treatment epicoprostanol.

8

9 The presence of faecal sterols strongly aligned to the first PCA axis that are representative of 10 increasing faecal matter content suggests that the first PCA axis represents a sewage gradient, 11 reinforcing our interpretation that the three lakes have been strongly dominated by changes in 12 influx over their history. The observation that the uppermost samples in each lake are 13 increasing aligned and to the right of PCA axis 1 (increasing faecal matter input) further 14 suggest that inputs have significant increased in recent time. Conversely, the cluster of 15 sample depth below c. 30 cm to the centre and left of the axis suggest that another unknown 16 variable is controlling sterol input.

17

18 **4.** Conclusions

19

20 The application of bulk geochemical and isotopic (TOC, C/N, δ^{13} C, δ^{15} N), total coliforms and 21 eleven faecal sterol biomarkers in sediment cores from three shallow lakes have proved 22 useful for several reasons.

23

1) In a system of ponds where some are supposedly isolated the δ^{13} C and δ^{15} N show significant inter-lake consistency. Taken together, C/N and δ^{13} C values indicate that 1 the main source of organic matter in the sediments was of algal origin possibly 2 augmented by minor contributions of vegetation and that the productivity of the lakes 3 varied temporally. One plausible explanation is that the changes in productivity were 4 driven by improvements in sewage treatment works (which remove nutrients other than N, utilised by phytoplankton) located upstream of the ponds and nitrate pollution 5 does not decrease with time. $\delta^{15}N$ values of up to +12‰ suggest that Coneries Pond 6 received a greater amount of sewage pollution than the other ponds. The relatively 7 elevated $\delta^{15}N$ of +10‰ at Church and Clifton implies that they also receive treated 8 9 sewage effluent from the Erewash and connected Coneries Pond.

10

11 2) Molecular level characterisation of sterol and stanol content of sediment cores from 12 three shallow peri-urban lakes (ex-gravel pits) reveal that Coneries Pond had received a greater input of sewage than Church or Clifton Ponds. Using the coprostanol / 13 14 cholesterol criteria of >0.2 to indicate sewage pollution it is possible to infer that 15 Coneries has continually received and accumulated sewage since it's excavation in 16 1968. We hypothesise that the greater amounts of treated human sourced faecal matter 17 in Coneries as compared to Church or Clifton is a function of partitioning of faecal 18 sterols to the particulate phase and, the sinking of these particulates when the Erewash 19 current slows as it enters Coneries Pond.

20

3) This study also demonstrates the utility of a molecular approach to understanding the shallow lake sediments in that the dominance of β -sitosterol indicated vegetation sourced organic matter in Clifton and Church Pond even when bulk geochemical and isotope do not. Furthermore, the concentration of specific biomarkers such as 5 β coprostanol and ratio of coprostanol to cholesterol ratios clearly distinguish human from ruminant sources at Coneries Pond. However, application of epicoprostanol to

2

 5β -coprostanol ratios and 5β -coprostanol to cholesterol values to infer the degree of treatment of sewage or its age in the environment gave results which were ambiguous.

3

4 Overall, the extraction and analysis of sewage biomarkers in sediments provides 5 environmental forensic information that complements bulk geochemical and isotopic data and 6 supplements traditional microbiological methods used in the study of lakes.

7

8 4. Acknowledgements

9 The authors would like to thank Dr Thomas Davidson and colleagues of the University 10 College London for assistance in coring Attenborough Ponds, Iain Cross and Teresa 11 Needham (University of Nottingham) for help with the field and laboratory work, Cemex and 12 Nottinghamshire Wildlife Trust for permitting access to the site and Sandy Aitken for 13 providing historical information about the formation of the ponds. We are also grateful to 14 three anonymous reviewers for constructive comments. Severn Trent Water Ltd. provided information about discharge consents into the River Erewash. The fieldwork was funded by 15 16 the School of Geography, University of Nottingham. This paper is published by permission 17 of the Executive Director, British Geological Survey.

18

19 **5. References**

- Andrews JE, Riding R, Dennis PF. Stable isotopic compositions of recent fresh-water
 cyanobacterial carbonates from the British Isles: local and regional environmental
 controls. Sedimentology 1993; 40: 303-314.
 - Andrews JE, Riding R, Dennis PF. The stable isotope record of environmental and climatic
 signals in modern terrestrial microbial carbonates from Europe. Palaeogeography
 Palaeoclimatology Palaeoecology 1997; 129: 171-189.

1	Appleby PG. Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP,
2	editors. Tracking environmental change using lake sediments: Basin analysis, coring
3	and chronostratigraphic techniques. 1. Kluwer Academic Publishers, Dordrecht, 2001,
4	pp. 171-203.
5	Appleby PG, Nolan PJ, Gifford DW, Godfrey MJ, Oldfield F, Anderson NJ, et al. ²¹⁰ Pb
6	dating by low background gamma counting. Hydrobiologia 1986; 143: 21-27.
7	Appleby PG, Richardson N, Nolan PJ. Self-absorption corrections for well-type germanium
8	detectors. Nuclear Instruments & Methods in Physics Research Section B-Beam
9	Interactions with Materials and Atoms 1992; 71: 228-233.
10	Bull ID, Elhmmali MM, Roberts DJ, Evershed RP. The application of steroidal biomarkers to
11	track the abandonmentof a roman wastewater course at the Agora (Athens, Greece).
12	Archaeometry 2003; 45: 149-161.
13	Bull ID, Lockheart MJ, Elhmmali MM, Roberts DJ, Evershed RP. The origin of faeces by
14	means of biomarker detection. Environment International 2002; 27: 647-654.
15	Burton GA, Gunnison D, Lanza GR. Survival of pathogenic bacteria in various freshwater
16	sediments Applied and environmental microbiology 1987; 53: 633-638.
17	Cole ML, Valiela I, Kroeger KD, Tomasky GL, Cebrian J, Wigand C, et al. Assessment of a
18	15N isotopic method to indicate anthropogenic eutrophication in aquatic ecosystems.
19	J. Environ. Qual 2004; 33.
20	Cross ID. The effects of nutrients and hydrology on shallow lake plankton at Attenborough
21	nature reserve, Nottinghamshire. Department of Geography, University of
22	Nottingham. PhD, 2009, pp. 383.
23	Furtado ALS, Casper P. Different methods for extracting bacteria from freshwater sediment
24	and a simple method to measure bacterial production in sediment samples. Journal of
25	Microbiological Methods 2000; 41: 249-257.

1	Grimalt JO, Albaiges J. Characterisation of the depositional environments of the Erbo Delta
2	(western Mediterranean) by the study of sedimentary lipid markers Marine Geology
3	1990; 95: 207-224.
4	Grimalt JO, Fernandez P, Bayona JM, Albaiges J. Assesment of fecal sterols and ketones as
5	indicators of urban sewage inputs to coastal waters. Environmental Science &
6	Technology 1990; 24: 357-363.
7	Heaton THE. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere-a
8	review. Chemical Geology 1986; 59: 87-102.
9	Isobe KO, Tarao M, Zakaria MP, Chiem NH, Minh LY, Takada H. Quantitative application
10	of fecal sterols using gas chromatography -mass spectrometry to investigate fecal
11	pollution in tropicakl waters:Western Malaysia and Mekong Delta, Vietnam
12	Environmental Science and Technology 2002; 36: 4497-4507.
13	Jones RI, King L, Dent MM, Maberly SC, Gibson CE. Nitrogen stable isotope ratios in
14	surface sediments, epilithon and macrophytes from upland lakes with differing
15	nutrient status. Freshwater Biology 2004; 49: 382-391.
16	Kendall C, Elliott EM, Wankel SD. Tracing anthropogenic inputs of nitrogen to ecosystems.
17	In: Lajtha RMaK, editor. Stable Isotopes in Ecology and Environmental Science.
18	Blackwell Publishing, 2007, pp. 375-449.
19	Leeming R, Ball A, Ashbolt N, Nichols P. Using faecal sterols from humans and animals to
20	distinguish faecal pollution in recieving waters. Water Research 1996; 30: 2893-2900.
21	Leng MJ, Lamb A.L., Heaton T.H.E., Marshall J.D., Wolfe B.B., Jones M.D, et al. Isotopes
22	in lake sediments In: Leng MJ, editor. Isotopes in Palaeoenvironmental Research.
23	Springer, Dordrecht, 2005, pp. 148-176 pp.
24	Meyers PA. Organic geochemical proxies of paleoceanographic, paleolimnologic, and
25	paleoclimatic processes. Organic Geochemistry 1997; 27: 213-250.

1	Meyers PA, Teranes JL. Sediment organic matter. In: Last WM, Smol JP, editors. Tracking
2	environmental change using lake sediments. : Physical and geochemical methods. 2.
3	Kluwer Academic Publishers, Dordrecht, 2001, pp. 239-269.
4	Mudge SM, Ball AS. Sewage. In: Morrison RD, Murphey BL, editors. Environmental
5	Forensics, Contaminant Specific Guide. Elsevier, Amsterdam, 2006, pp. 36-53.
6	Mudge SM, Bebianno MJAF, East JA, Barreira LA. Sterols in the Ria Formosa lagoon,
7	Portugal. Water Research 1999; 33: 1038-1048.
8	Mudge SM, Duce CE. Identifying the source, transport path and sinks of sewage derived
9	organic matter. Environmental Pollution 2005; 136: 209-220.
10	Obiri-Danso K, Jones K. Intertidal sediments as reservoirs for hippurate negative
11	campylobacters, salmonellae and faecal indicators in three EU recognised bathing
12	waters in North West England. Water Research 2000; 34: 519-527.
13	Peng X, Zhang G, Mai B, Hu J, Li K, Wang Z. Tracing anthropogenic contamination in the
14	Pearl River estuarine and marine environment of South China Sea using sterols and
15	other organic molecular markers. Marine Pollution Bulletin 2005; 50: 856-865.
16	Readman JW, Fillmann G, Tolosa I, Bartocci J, Mee LD. The use of steroid markers to assess
17	sewage contamination of the Black Sea. Marine Pollution Bulletin 2005; 50: 310-318.
18	Reeves AD, Patton D. Faecal sterols as indicators of sewage contamination in estuarine
19	sediments of the Tay Estuary, Scotland:an extended baseline survey Hydrology and
20	Earth System Sciences 2005; 9: 81-94.
21	Sayer CD, Roberts N. Establishing realistic restoration targets for nutrient-enriched shallow
22	lakes:linking diatom ecology and palaeoecology at the Attenborough Ponds, U.K.
23	Hydrobiologia 2001; 448: 117-142.
24	Seguel CG, Mudge SM, Salgado C, Toledo M. Tracing Sewage in the Marine Environment:
25	altered signatures in Concepcion Bay, Chile. Water Research 2001; 35: 4166-4174.

1	Shah VG, Hugh Dunstan R, Geary PM, Coombes P, Roberts TK, Von Nagy-Felsobuki E.
2	Evaluating potential applications of faecal sterols in distinguishing sources of faecal
3	contamination from mixed faecal samples. Water Research 2007; 41: 3691-3700.
4	Shah VKG, Dunstan H, Taylor W. An efficient diethyl ether-based soxhlet protocol to
5	quantify faecal sterols from catchment waters. Journal of Chromatography A 2006;
6	1108: 111-115.
7	Stenstrom TA, Carlander A. Occurrence and die-off of indictor organisms in the sediment in
8	two constructed wetlands. Water Science and Technology 2001; 44: 223-30.
9	Vane CH, Jones DG, Lister TR. Mercury Contamination in Surface Sediments and Sediment
10	Cores of the Mersey Estuary, UK. Marine Pollution Bulletin 2009; 58: 928-946.
11	
12	
13	
14	

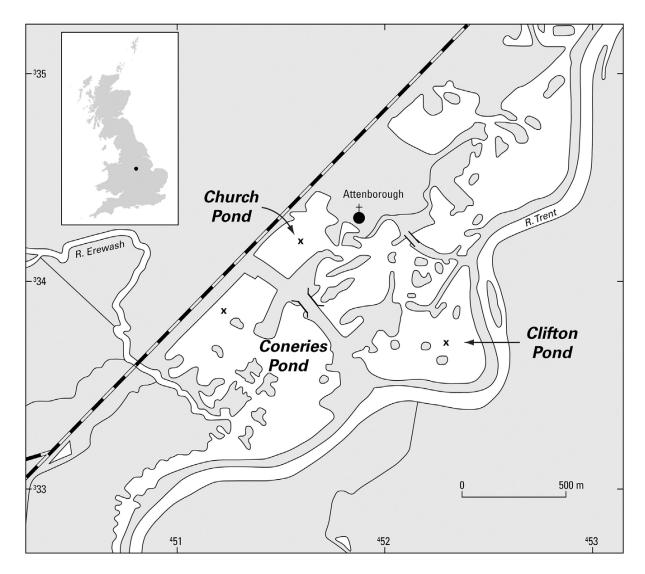


Fig 1. The Attenborough Nature Reserve Nottinghamshire, UK containing the Coneries,
Clifton and Church Ponds.

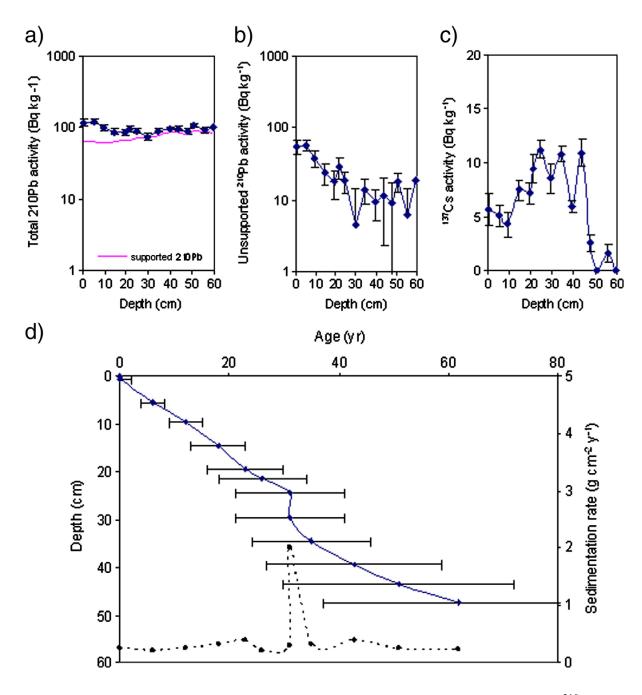


Fig 2. Fallout radionuclide concentrations in Church Pond core showing (a) total ²¹⁰Pb, (b)
unsupported ²¹⁰Pb, (c) ¹³⁷Cs concentrations versus depth, and (d) radiometric chronology
showing the CRS model ²¹⁰Pb dates.

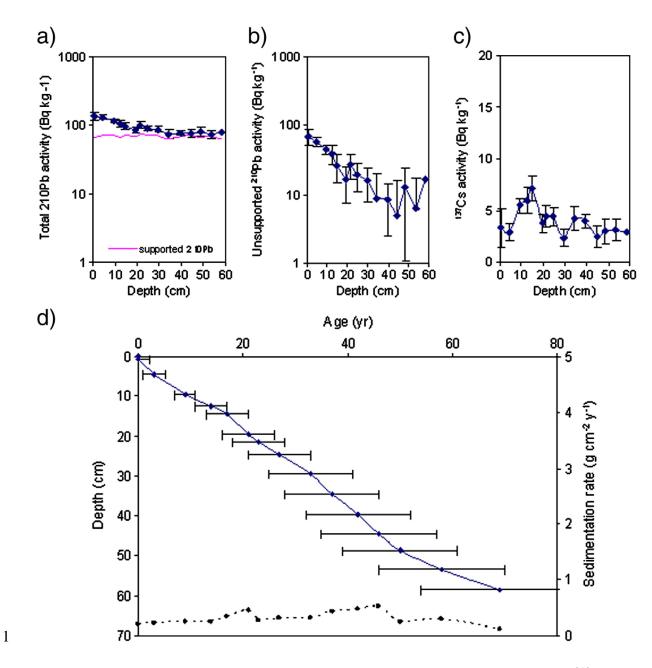


Fig 3. Fallout radionuclide concentrations in Clifton Pond core showing (a) total ²¹⁰Pb, (b)
unsupported ²¹⁰Pb, (c) ¹³⁷Cs concentrations versus depth, and (d) radiometric chronology
showing the CRS model ²¹⁰Pb dates.

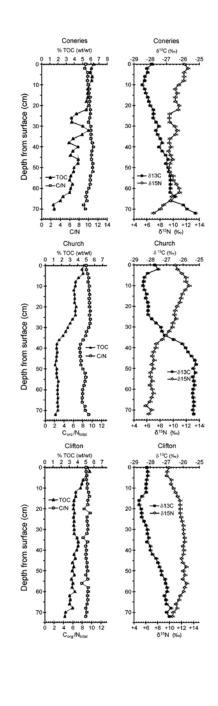
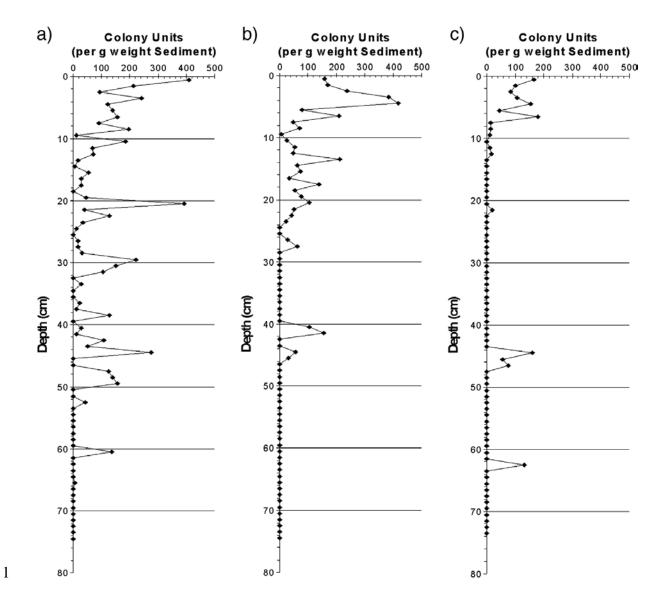



Fig 4. Comparison of organic carbon (TOC), organic carbon to nitrogen ratios (C/N), and
organic δ¹³C and δ¹⁵N values in sediment cores from Attenborough Ponds, Nottinghamshire,
U.K.

- •

2 Fig 5. Comparison of total coliform counts in sediment cores from Attenborough Ponds, (a)

3 Coneries Pond, (b) Church Pond and (c) Clifton Pond.

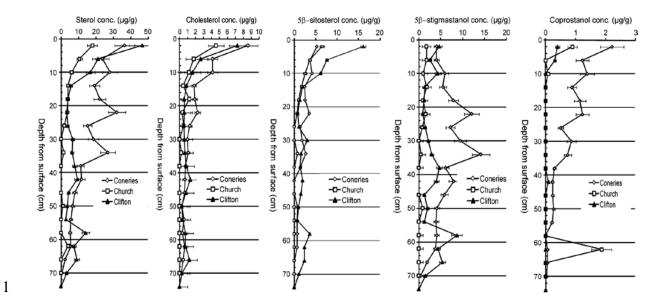
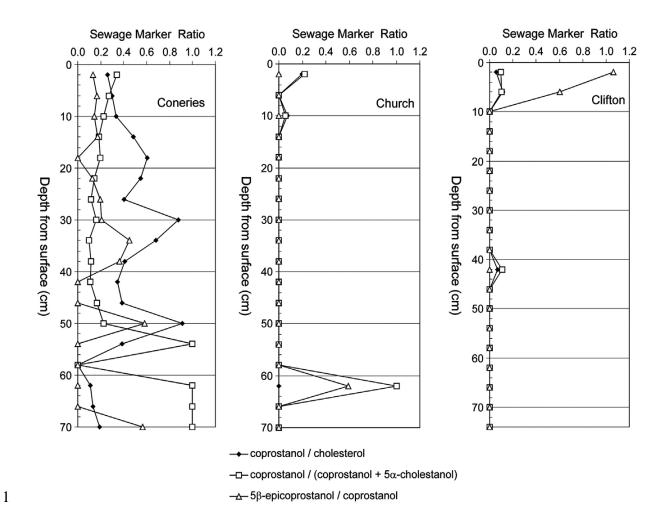
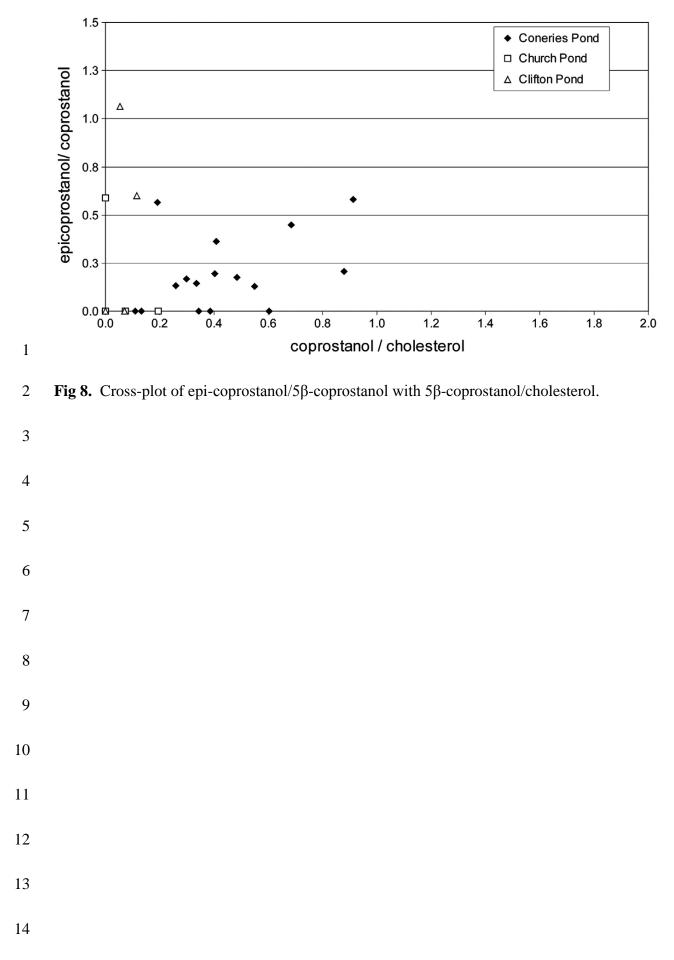




Fig 6. Variation in total sterol and faecal sterol concentrations in sediment cores from
Attenborough Ponds. In general, 5β-sitosterol is derived from plants, 5β-stigmastanol is
sourced from faecal matter from herbivorous animals and, coprostanol is from human sewage
pollution (See section 3.2 for additional interpretations).

- 2 Fig 7. Ratios of sterol sewage marker compounds in sediment cores from Attenborough
- 3 Ponds. Only Coneries Pond shows sustained sewage input.

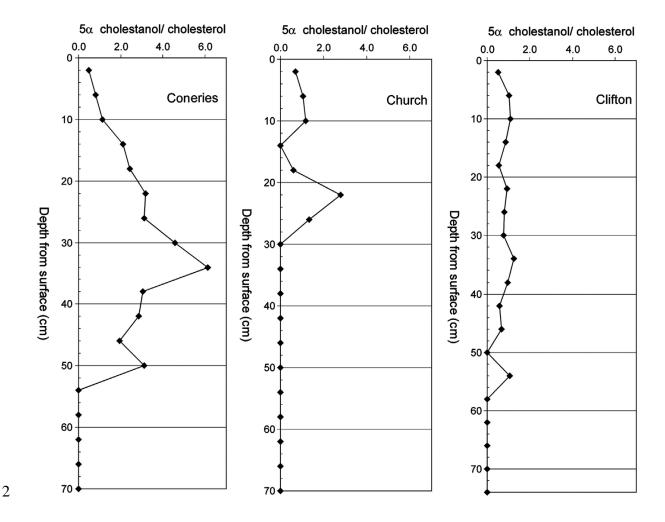


Fig 9. Variation in the ratio of 5α-cholestanol to cholesterol in sediment cores from
Attenborough Ponds.

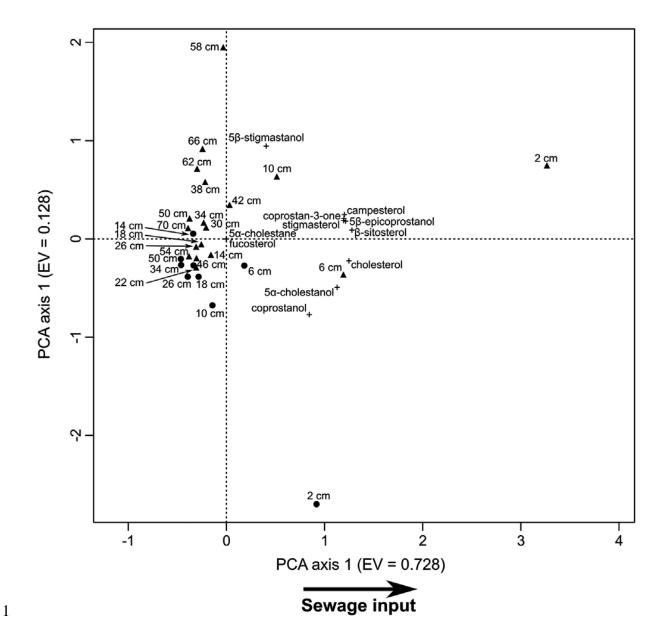


Fig 10. PCA axis one and two biplot for sterol sewage marker compounds Coneries Pond
core.

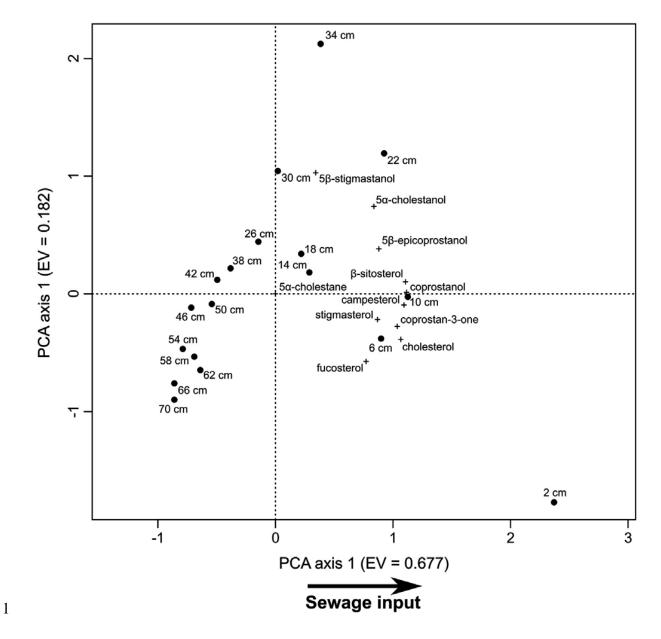
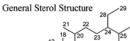
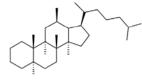
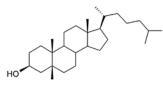
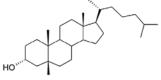
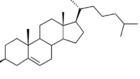
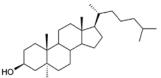




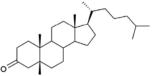
Fig 11. PCA axis one and two combined biplot for Clifton and Church Ponds with the
removal of the ordination outliner 62 cm at Church.

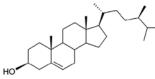


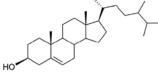

cholestane (5α-cholestane)

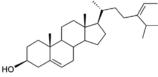

coprostanol (5_β-cholestan-3_β-ol)


 5β -epicoprostanol (5β -cholestan- 3α -ol)

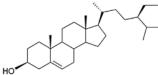

cholesterol (cholest-5-en-3B-ol)


 5α -cholestanol (5α -cholestan- 3β -ol)


coprostan-3-one (5 \beta-cholestan-3-one)


campesterol (24a-methyl-5-cholesten-3β-ol)

stigmasterol (3B-hydroxy-24-ethyl-5,22-cholestadiene)



fucosterol ((3B,24E)-stigmasta-5,24(28)-dien-3-ol)

2 **Appendix 1.** The structure of sterol and stanol sewage markers analysed in this study.

β-sitosterol (24-ethylcholest-5-en-3β-ol)

5β-stigmastanol (24α-ethyl-5α-cholestan-3β-ol)

1

HO