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Abstract 

 

Fisheries scientists habitually consider uncertainty in parameter values, but often 

neglect uncertainty about model structure. The importance of this latter source of 

uncertainty is likely to increase with the greater emphasis on ecosystem models in the 

move to an ecosystem approach to fisheries (EAF). It is therefore necessary to 

increase awareness about pragmatic approaches with which fisheries modellers and 

managers can account for model uncertainty and so we review current ways of 

dealing with model uncertainty in fisheries and other disciplines. These all involve 

considering a set of alternative models representing different structural assumptions, 

but differ in how those models are used. The models can be used to identify bounds 

on possible outcomes, find management actions that will perform adequately 

irrespective of the true model, find management actions that best achieve one or more 

objectives given weights assigned to each model, or formalise hypotheses for 

evaluation through experimentation. Data availability is likely to limit the use of 

approaches that involve weighting alternative models in an ecosystem setting, and the 

cost of experimentation is likely to limit its use. Practical implementation of the EAF 

should therefore be based on management approaches that acknowledge the 

uncertainty inherent in model predictions and are robust to it. Model results must be 

presented in a way that represents the risks and trade-offs associated with alternative 

actions and the degree of uncertainty in predictions. This presentation should not 

disguise the fact that, in many cases, estimates of model uncertainty may be based on 

subjective criteria. The problem of model uncertainty is far from unique to fisheries, 

and coordination among fisheries modellers and modellers from other communities 

will therefore be useful.  
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Introduction 

Implementing the ecosystem approach to fisheries (EAF: Garcia et al. 2003) will 

require, inter alia, stakeholder agreement about management objectives, and 

management systems designed to achieve these objectives. In many cases, EAF will 

also require models that predict the effects of human activities in terms of these 

objectives. Unfortunately, marine ecosystems are structurally complex, spatially and 

temporally variable, and difficult and costly to observe, all of which lead to 

considerable uncertainty in model predictions. Fisheries scientists have been at the 

forefront of attempts to account for uncertainty in the management of living resources 

(Patterson et al. 2001; Harwood and Stokes 2003). However, effort has largely 

focused on uncertainty in parameter values and the process uncertainty that arises 

from natural variation, whereas uncertainties about model structure have received less 

attention. For example, Halpern et al.’s (2006) review of methods to evaluate rules for 

spacing marine reserves given different levels of uncertainty did not consider 

uncertainties in model structure. 

Neglecting model uncertainty can lead to under-representation of uncertainty in 

model predictions, with important implications for management. For example, 

management that aims to minimise the risk of particular outcomes or to be robust to 

uncertainty might require very different management actions as the perceived level of 

uncertainty changes. Fishery modellers and managers must therefore be well-

equipped to deal with the various uncertainties that can influence model predictions. 

Our aim is to review approaches to model uncertainty and suggest practical ways to 

deal with it in developing the EAF. In the next section we define model uncertainty 

and highlight its importance in ecosystem dynamics models. In the following sections, 

we review approaches for addressing model uncertainty, including approaches 
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adopted in other disciplines attempting to make predictions about complex systems. 

Finally we discuss the presentation of results that incorporate uncertainty, pragmatic 

approaches to dealing with model uncertainty in the short term, and strategies for 

reducing model uncertainty over the longer term. 

 

Model uncertainty in ecosystem dynamics models. 

There are many sources of uncertainty in resource dynamics models, and these 

have been classified in various ways by Francis and Shotton (1997), Charles (1998), 

Reagan et al. (2002), Harwood and Stokes (2003) and Mangel (2006). Our focus is on 

“model uncertainty” which arises because any single, apparently satisfactory, model 

can be misleading. For example, Fig. 1 shows a linear model relating recruitment of a 

commercially exploited fish species to sea-surface temperature.  The model predicts 

negative recruitment at temperatures below 2˚C (Hill et al. 2005) and is clearly 

unsuitable for predicting the response to temperatures beyond a limited range. 

Although model uncertainty largely concerns model structure, it can also include 

uncertainties about the values of parameters that determine a model’s behaviour, but 

are not easily estimated. For example, the parameter M in Virtual Population Analysis 

(VPA) attempts to summarise all the sources of natural mortality. In contrast, 

multispecies VPA estimates predation mortality due to other modelled species and 

therefore relaxes the assumptions inherent in the value of this parameter (see 

Magnússon 1995). Other models are formulated so that their behaviour can be 

changed by altering a key parameter (such as a shape parameter in a functional 

relationship; Yodzis 1994). Model uncertainty also overlaps with process uncertainty 

as it can also concern the shape of the error distribution (e.g. normal versus 

lognormal; Halley and Inchausti 2002).  
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Models are mathematical abstractions of non-mathematical processes and there 

will be uncertainty about whether a given model structure is an appropriate 

representation of a real system. According to Patterson et al. (2001), fisheries 

scientists must give “more attention … to examining the sensitivity to alternative 

assumptions and model structures.” Predictive models, especially in ecology, are 

rarely intended to provide an all encompassing description of how a system actually 

works, but they are intended to forecast how certain characteristics of the system 

respond to specific sets of conditions. It is therefore less important that a model is 

exactly “right” about how a system functions than that it captures the responses of 

interest.  Importantly, it must do this for the range of plausible input values.  

There are numerous models that aim to predict the dynamics of exploited marine 

ecosystems. Plagányi (in press) reviews twenty such models that, in order of 

decreasing complexity, are broadly categorized as 1) “whole ecosystem models” that 

attempt to account for all trophic levels, e.g., Ecopath with Ecosim (EwE: Christensen 

and Walters 2004); 2) “dynamic system models” that represent both bottom-up and 

top-down processes, e.g., “Bay Model 2” (Fulton et al. 2004); 3) “dynamic multi-

species models” (also known as “minimally realistic models”) that represent a limited 

number of species with important interactions, e.g., GADGET 

(http://www.hafro.is/gadget, accessed 19th March 2007); and 4) “extended single-

species assessment models” that take a few interactions into account, for example by 

treating predators as additional fisheries (e.g. Hollowed et al. 2000).   

Ultimately, all ecosystem dynamics models simplify the structure of the food-web, 

the nature of ecological interactions, and the demographic structure of populations. 

Predictions arising from such models are likely to be particularly uncertain. The 

complexity of the systems leads to complexity in models and a plethora of potential 
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assumptions, but there are often insufficient data to evaluate models of high 

complexity. However, as Plagányi (in press) notes, the treatment of uncertainty in 

such models “has lagged unsatisfactorily behind other aspects of model development” 

A number of applications using EwE exemplify the consequences of model 

uncertainty in ecosystem modeling. Mackinson et al. (2003) showed how six 

alternative hypotheses about the functional response of cetaceans to variations in the 

availability of their main prey led to different outcomes under simulated harvest 

regimes for both the cetaceans and the prey.  Watters et al. (2003) explored how a 

pelagic ecosystem might respond to climate forcing under two different hypotheses of 

how physical and ecological processes in the system are linked.  Both studies 

identified results that were robust to the alternative hypotheses and others that were 

sensitive. For example, Mackinson et al. (2003) found that intense fishing on the prey 

always had a longer lasting, negative impact on cetaceans than direct removals of 

cetaceans themselves, while depleted cetacean populations recovered more slowly as 

limitations to foraging were increased. Watters et al. (2003) found that climate trends 

always caused trends in the biomasses of animals at middle and upper trophic levels 

but that the direction of trends was sensitive to the alternative hypotheses.  Pinnegar et 

al. (2005) used EwE to explore the implications of nine alternative models of the 

same food-web that differed in the number of functional groups included and which 

weak predator-prey links were considered in the model. They showed that Ecosim 

predictions about food-web responses to, and recoveries from, intense pulses of 

fishing mortality are very sensitive to model complexity and “taxonomic bias” (where 

functional groups are aggregated or disaggregated on the basis of particular interest in 

mammals, fishes, or invertebrates).   
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The developers of widely distributed software packages for ecosystem modelling 

have included functionality that allows some uncertainties to be addressed. For 

example, EwE includes the Ecoranger routine to find alternative parameter 

combinations that satisfy Ecopath’s mass-balance assumptions, and the sensitivity of 

Ecosim models to initial biomass estimates can be assessed using Monte Carlo 

simulation (Christensen and Walters 2004). GADGET allows the analyst to select and 

compare different forms of key functions (Begley 2005).  Despite the availability of 

such tools, the practice of considering model uncertainty in implemented ecosystem 

models appears to be relatively rare. 

 

Approaches to Uncertainty I: Adaptive management 

Adaptive or experimental management seeks to reduce uncertainty through 

experimentation. This approach identifies candidate management actions, which are 

then implemented as experimental treatments in the exploited system (Walters and 

Hilborn 1976). The role of alternative structural models in this approach is to identify 

appropriate management actions and to represent the alterative hypotheses about the 

system. It is not necessary to fully characterize uncertainty in model predictions, just 

to determine whether a candidate management action could credibly achieve the 

desired management objectives given plausible hypotheses about the operation of the 

system. The credibility of alternative hypotheses is determined through the analysis of 

experimental results. Examples of experimental management suggest that it will not 

completely eliminate model uncertainty, and Walters and Martell (2004), who discuss 

the use of adaptive management in EAF in detail, conclude that the risks and 

investment involved make it economically or socially unacceptable in many cases. 

Furthermore, adaptive management cannot easily consider the full range of uncertain 
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processes (e.g. climate change and regime shift). Nevertheless, in some cases, 

adaptive approaches can help to weight hypotheses, thus improving the 

characterization of uncertainty. We provide two examples of this (Sainsbury 1988; 

Sainsbury et al. 1997; McAllister and Kirchner 2002) in a later section.  

Approaches to Uncertainty II: Robust Management 

A pragmatic approach to uncertainty in general, that is particularly relevant to 

model uncertainty, is to identify management actions that perform adequately 

(robustly) across the plausible range of ecosystem structures and parameter values 

(e.g. Ludwig et al. 1993; Charles 1998). The shift in focus from identifying “optimal” 

management actions, as implied by concepts such as maximum sustainable yield 

(MSY), to “adequate” management actions acknowledges both the trade-offs and the 

uncertainties that are inherent in managing complex systems. It is unlikely that all 

possible management objectives (e.g. profitability, social benefits and the potentially 

conflicting requirements of different natural components of the ecosystem) can be 

optimised simultaneously or that all model structures would suggest the same 

optimum.  

The concept of robust management is embodied in Operational Management 

Procedures (OMPs: Kell et al. 2006). This approach, as defined by Punt and Donovan 

(in press), has seven distinct steps:   

1. Identify and prioritize the management objectives (usually specified in 

national and international laws, standards and agreements) in qualitative 

terms.  

2. Translate these qualitative objectives into quantitative performance measures. 

The number of performance measures should be kept small. Miller (1956) 
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suggested that the human mind might be able to simultaneously compare no 

more than about seven pieces of information. Our own experience is that when 

decision makers are confronted with a large number of performance measures 

they tend to focus on a small number of “important” ones anyway. Therefore 

seven seems to be a reasonable upper limit for the number of performance 

measures that we can expect to be given equal consideration. 

3. Develop and parameterize ‘operating’ models representing plausible dynamics 

of the resource or system. Model uncertainty is dealt with by including 

alternative structural assumptions in the set of operating models. 

4. Identify candidate management procedures (rules for analyzing data and 

determining management actions) and monitoring strategies. 

5. Simulate the future performance of each management procedure by applying it 

to the resources or systems represented in the operating models.  

6. Summarize the performance of each management procedure in terms of the 

performance measures identified in step 2. 

7. Identify the management procedure most likely to meet the management 

objectives. 

The OMP approach is exemplified by the development of the International Whaling 

Commission’s (IWC’s) management procedures for whale stocks. These management 

procedures are based on single-species population dynamics models, but they were 

tested using operating models that considered some of the effects of ecosystem 

variability. More recently, the Commission for the Conservation of Antarctic Marine 

Living Resource (CCAMLR) has begun a programme of work to identify 

management procedures for aspects of the management of krill that are robust to 
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uncertainties about the current status of the krill stock and its interactions with 

predators and the fishery. This section explores these two cases in more detail. 

The CCAMLR approach 

The CCAMLR is responsible for managing fisheries in the Southern Ocean. Its 

objectives include facilitating the “rational use” of marine resources; the maintenance 

of harvested populations at levels that ensure stable recruitment; the restoration of 

depleted species to these levels; the maintenance of ecological relationships between 

harvested, dependent and related species; and the prevention of changes to the 

ecosystem that are not potentially reversible within two to three decades (Constable et 

al. 2000). The last two objectives are the basis for an EAF.  

The CCAMLR’s implementation of an EAF in its main fishery for Antarctic krill 

(Euphausia superba, Euphausiidae) includes setting precautionary catch limits 

intended to account for the needs of predators, and the development of a monitoring 

programme that uses krill predators to detect the effects of the fishery (Constable 

2004).  Precautionary catch limits are determined for, and applied to, large areas 

designed for reporting catch statistics (e.g., FAO Statistical Subareas). In addition, the 

CCAMLR recognises the need to subdivide the precautionary krill catch limit for the 

Scotia Sea-Antarctic Peninsula region among small-scale management units (SSMUs) 

to minimise possible local effects on krill predators (Hewitt et al. 2004a). At present 

the effects of krill harvesting on krill predators cannot be quantified since current 

catches are relatively small compared to the precautionary limit, with no observed 

effects. It is therefore particularly important to account for model uncertainty when 

evaluating ways to subdivide the full krill catch limit. The CCAMLR has adopted 

various principles of the OMP approach in its ongoing work to address this problem. 

A number of operating models have been developed and demonstrated, but the 
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quantification of management objectives is incomplete. Furthermore, the candidate 

management actions being considered at present are not management procedures as 

generally understood (i.e., regular stock assessments that are used to revise catch or 

effort limits according to a harvest control rule). Rather, they are options for 

subdividing a catch limit estimated from a separate stock assessment (e.g., Hewitt et 

al. 2004b). However regular reassessments of the data used to provide the basis for 

such subdivisions are being actively considered.   

At a recent CCAMLR workshop, two ecosystem dynamics models (with 

acronyms KPFM and SMOM) were used to evaluate six candidate options (see Hewitt 

et al. 2004a) for subdividing the precautionary krill catch limit in the Scotia Sea-

Antarctic Peninsula region (SC-CAMLR 2006; Plagányi in press). The evaluations 

considered potential effects on the krill stock, predator populations breeding within 

SSMUs, and fishery performance. Both models represented the krill population and 

several predator populations in each SSMU, as well as the movement of krill among 

SSMUs. There were, however, important differences between the KPFM and SMOM, 

including the number of predator populations explicitly modelled in each SSMU, the 

main source of stochasticity in the system, the mechanism by which krill availability 

affects predator dynamics, and the nature of competition among predator species.  The 

workshop explored three key sources of uncertainty: the functional relationship 

between krill availability and predator breeding success; the relative influence, on 

krill dynamics, of advection (both among SSMUs and from outside them) versus local 

production; and the juvenile and adult survival rates of predators.  In all three cases, 

the workshop agreed on plausible bounds to these uncertainties. 

The two models addressed the three sources of uncertainty between them, 

although neither model was formulated to deal with all three simultaneously at the 
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time of the workshop.  With SMOM, the focus was on the 1st and 3rd sources of 

uncertainty, and a “reference set” of parameters consisting of 3 (lowest plausible 

value, average value, highest plausible value) * N (number of predator taxa) * P 

(number of uncertain parameters) parameter combinations was used. With KPFM, the 

focus was on the 1st and 2nd sources of uncertainty, and four parameter combinations, 

representing each combination of high versus low transport rates (Hill et al. in press) 

and high versus low sensitivity to krill availability in all predator populations, were 

used. Multiple stochastic simulations (e.g., to include recruitment variability) using 

each parameter combination were performed with both models. The output included 

trajectories of abundance for each modelled population in each SSMU for each model 

run. These were plotted either as individual trajectories (Fig. 2) or as 95% probability 

envelopes. These plots indicate the range of plausible outcomes, but not the 

probability of any particular outcome.  It is possible that more extreme results would 

have arisen from combinations of high and low settings not considered in these 

simulations. The use of “reference sets” allows a comprehensive evaluation of 

multiple parameter combinations, but could easily generate high numbers of 

parameter combinations (for example, in this case the values for the these parameters 

for up to 47 predator populations could be allowed to vary independently). Ultimately, 

the workshop made compromises between a comprehensive evaluation and 

practicality. 

Model output was also presented in terms of trade-off plots showing fisheries 

performance versus ecosystem performance for each SSMU (e.g., Fig. 3). These plots 

were generated for a range of performance measures including the mean catch, the 

spatial distribution of the catch relative to its historical distribution, and the species-

specific probability of depletion below or recovery to above predefined thresholds.  
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Although no attempt has been made to date to quantify the probabilities of alternative 

models, the approach taken nevertheless allows decision makers to evaluate the trade-

offs among potential outcomes.   

CCAMLR has not yet completed this work programme and no management 

decisions have been made on the basis of ecosystem dynamics models. Indeed, the 

final set of performance measures is yet to be agreed, and there are likely to be other 

plausible models of the system and other important sources of uncertainty. However, 

this workshop demonstrated some important principles for dealing with model 

uncertainty, namely: 

1. the formulation of models so that different assumptions about ecosystem 

structure can be represented through different parameterisations of the same 

model;  

2. the parsimonious attempt to bracket major uncertainties with parameters 

representing the extreme cases;  

3. the use of stochastic simulations to capture other sources of uncertainty (e.g., 

recruitment variability); and  

4. the use of more than one basic operating model. 

 

 

The IWC approach 

The IWC is responsible for the management of commercial and subsistence 

whaling worldwide. Its objectives for commercial whaling are to ensure that the risks 

of extinction to individual stocks are not seriously increased by exploitation, and to 

maintain the status of stocks to allow the highest continuing yield as long as the 

environment permits (IWC, 1981). The IWC’s current approach for commercial 
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whaling, known as the ‘Revised Management Procedure’ (RMP), was developed 

following the ‘moratorium’ on commercial whaling that took effect in 1986. The full 

management system (the ‘Revised Management System’, RMS) consists of three 

components: (a) a generic management procedure that could be applied to any baleen 

whale population with known stock structure (referred to as the ‘Catch Limit 

Algorithm’, CLA), (b) the rules used to handle situations in which stock structure is 

uncertain (which constitute the RMP), and (c) other non-scientific issues such as 

enforcement. The CLA is conservative in the face of uncertainty because it prohibits 

the harvesting of stocks below 54% of the estimated pre-exploitation level, and 

because it determines the catch limit as the lower 40.2th percentile of a posterior 

distribution. Increased uncertainty therefore leads to lower catch limits. 

Both generic and case-specific simulation trials have been used by the IWC’s 

Scientific Committee. During the development of the RMP, simulations based on a 

“generic” baleen whale stock examined a range of uncertainties. The aim of these 

simulations was to ensure that the performance of the RMP would be ‘adequate’ (in 

terms of the trade-off between extinction risk and long-term catch) irrespective of the 

true dynamics of the population being managed. Although the CLA and RMP are 

generic and can, in principle, be applied to any stock of baleen whales harvested on 

their feeding grounds application of the RMP requires that case-specific 

(implementation) simulation trials be developed to ensure that performance is 

adequate for the uncertainties most relevant to each case. The process developed by 

IWC (2005a) to interpret the results of case-specific trials assigns “plausibility 

weights” to each of these trials (see next section). A management action (a variant of 

the RMP related to how catches are allocated spatially) is then selected so that 
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conservation performance is adequate on all simulation trials considered to have 

‘high’ plausibility. 

Operating models have been developed to consider a wide range of uncertainties 

(e.g. IWC 1992; Punt and Donovan in press), arguably more so than for any other 

marine renewable resource; examples are provided in the following list. 

1. Bias in the assessment model on which the CLA is based. Bias arises because the 

assessment model is structurally different from the operating models (the model 

underlying the CLA is age- and sex-aggregated, while the operating models are 

age-, sex- and occasionally spatially-structured). Furthermore, the estimates of 

abundance used by the CLA, usually from scientific surveys, are sometimes made 

to be biased in simulations, and this bias may change over time. 

2. Changes over time in biological parameters. Simulation trials have been used to 

examine the implications of carrying capacity and productivity increasing and 

decreasing over time, in part to mimic the implications of climate change and 

ecosystem shifts. The CLA assumes that carrying capacity and productivity are 

time-invariant.  

3. Episodic events. Simulation trials have been used to examine the implications of 

large-scale increases in natural mortality that occur, on average, once every 50 

years. Half of the population is assumed to die when such an event occurs. 

Perhaps the major source of model uncertainty considered during the development 

of the RMP relates to the case-specific ‘implementation’ trials constructed to ensure 

that performance is adequate for a given species in a region (generally a part of an 

ocean basin such as the western North Pacific). To date, implementation trials have 

been developed for southern minke whales (Balaenoptera bonaerensis, 

Balaenopteridae), northern minke whales (Balaenoptera acutorostrata, 
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Balaenopteridae) in the western North Pacific and the North Atlantic, and Bryde’s 

whales (Balaenoptera brydei, Balaenopteridae) in the western North Pacific. In 

contrast to the generic simulation trials used when developing the RMP, most of the 

parameters of the operating models used in ‘implementation’ trials are estimated by 

fitting the operating models to the actual data for the species and region concerned, 

and the models are spatially-structured.  

The approach outlined above was also applied to develop ‘Strike Limit 

Algorithms’ (SLAs) for aboriginal subsistence whaling. To date SLAs, have been 

developed for the Bering-Chukchi-Beaufort Seas stock of bowhead whales (Balaena 

mysticetus, Balaenidae) and the Eastern North Pacific stock of grey whales 

(Eschrichtius robustus, Eschrichtiidae) (IWC 2003, 2005b). Although, technically, the 

way SLAs were selected for these two cases was the same as for commercial whaling, 

there were some notable conceptual differences. For example, only case-specific trials 

were used for the aboriginal whaling case. This is because there are only a small 

number of aboriginal subsistence operations identified by the IWC, and it is unlikely 

that more will be ‘accepted’ (Punt and Donovan in press), and because the objectives 

for aboriginal subsistence whaling (‘need satisfaction’) differ from those for 

commercial whaling (‘catch maximization’). 

The approach developed by the IWC Scientific Committee has been applied 

elsewhere. In South Africa, the approach has been adopted in totality and 

management procedures have been developed for the hake, anchovy, pilchard and 

rock lobster resources (e.g. Geromont et al. 1999). These management procedures 

prescribe how the data on which scientific management advice is to be based must be 

collected and analysed, and how Total Allowable Catches are to be determined from 

those analyses. In contrast to the situation in South Africa, the process of simulating 
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the performance of management procedures has been used in other countries, such as 

Australia, to guide the selection of the assessment methods that are most likely to 

provide robust, accurate and precise estimates of the quantities of interest to 

management (Punt 2006; Punt et al. 2002). 

Similarities and differences 

For both the IWC and CCAMLR cases, the key outputs from the analyses are 

based on different models related to trade-offs between conservation- and use-related 

objectives.  The IWC used an initial set of simulations to identify a generic RMP that 

is robust to a range of uncertainties, followed by more specific simulations to 

establish the trade-offs associated with uncertainties about stock structure and 

therefore to identify variants of the generic RMP that perform adequately for specific 

regions and species. The CCAMLR sets regional krill catch limits with a 

precautionary single species model and is using ecosystem dynamics models to 

identify robust ways of subdividing this limit. However, while the IWC has attempted 

to assign weights to alternative structural assumptions when selecting among RMP 

variants, the CCAMLR’s approach has been to bracket uncertainty. The former 

approach allows a quasi-quantitative assessment of risk whereas the latter is less 

informative and perhaps better suited to eliminating management actions that are 

likely to perform poorly than to choosing between better performing candidates. 

Approaches to Uncertainty III: Model Weighting 

It is difficult, but useful and arguably necessary, to quantify the plausibility of a 

model relative to others, particularly if those models have markedly different 

implications. Butterworth et al. (1996) proposed the following four-level scheme to 

assign “plausibility ranks” to the hypotheses underlying alternative models: 
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1. how strong is the basis for the hypothesis in the data for the species or region 

under consideration; 

2. how strong is the basis for the hypothesis in the data for a similar species or 

another region; 

3. how strong is the basis for the hypothesis for any species; and 

4. how strong or appropriate is the theoretical basis for the hypothesis? 

This scheme was presented to the IWC Scientific Committee.  Although the scheme 

provides a formal structure within which to assign weights to models, it has not been 

used, largely because of concerns regarding the validity of the likelihood functions 

that are needed to apply the first level of the scheme.  Instead, the Committee has used 

a less rigorous approach, involving a “Delphi method” (e.g., Linstone and Turoff 

1975), in which the Committee assigns a plausibility ranking of “high”, “medium”, 

“low”, or “no agreement” (“no agreement” being treated as “medium”, IWC 2005a) to 

models.   

If a valid likelihood function can be constructed (i.e., level one of the above 

scheme), the Bayesian approach is well suited to assigning weights to alternative 

models that use the same data. In Bayesian statistics, unobservable quantities are 

treated as random variables, and Bayes’ theorem or rule (see below) is used to define 

probability density functions for the model parameters. These probability density 

functions convey the plausibility or degree of support for particular parameter values. 

Unobservable, discrete items such as alternative scientific hypotheses can also be 

treated as random variables. Bayesian probabilities can therefore be calculated for 

alternative scientific hypotheses whereby the probability reflects the plausibility of a 

hypothesis relative to one or more alternatives (Patterson 1999; McAllister and 

Kirchner 2002; Parma 2002).   
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The posterior probability specified by Bayes theorem or rule is directly 

proportional to the product of the prior probability for the hypothesis, and the 

probability of obtaining the observed data presuming that the hypothesis is true, i.e.:   

 

( ) ( ) ( )  trueis  assuming Prob  ProbPrior   ProbPosterior HHH D×∝ , 

 

where H is a hypothesis and D is a set of observed data. The prior probability reflects 

the credibility of H relative to its alternatives before evaluating the probability of the 

data given the hypothesis. Prior probabilities may be formulated on the basis of expert 

judgment or the analysis of other relevant datasets that are not included in the term 

which indicates the probability of observing D (Punt and Hilborn 1997). The 

probability of observing D given H typically has the same mathematical form as the 

likelihood function. The Bayes factor (Kass and Raftery 1995): 
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2

1
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H
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D

=  

is one way of evaluating the credibility of hypothesis H1 relative to that of alternative 

hypothesis H2 (e.g. Brodziak and Legault, 2005). 

The probabilistic weighting of hypotheses provided by Bayes’ rule provides a 

framework that has been applied to decision problems in fisheries management, 

particularly in attempts to deal with model uncertainty (Walters and Hilborn 1978; 

Sainsbury 1988; McAllister et al. 1994; McAllister and Kirchner 2002).  The steps 

needed to apply this framework to decision analytic problems parallel those of the 

OMP approach and are as follows (see McAllister et al. 1999 for further details). 

1.  Identify the management objectives. 
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2.  Formulate a set of decision options. 

3. Formulate a small number of quantitative performance measures to evaluate 

the extent to which the objectives are met  

4.  Formulate alternative hypotheses for system behaviour (see next section for 

examples). 

5.  Use Bayes’ rule to compute probabilities for each alternative hypothesis 

formulated in Step 4 and for their (uncertain) parameters. 

6. Evaluate the potential consequences of implementing each decision option in 

terms of the performance measures. This evaluation is done using the 

alternative models and posterior probability density functions for parameters 

in these alternatives. Thus, for each decision option evaluated, a posterior 

probability distribution of outcomes should be computed for each of the 

performance measures. 

7.  Summarize the results obtained in Step 6 for the purpose of conveying them to 

decision makers (e.g., in decision tables, Hilborn et al. 1993; McAllister and 

Kirchner 2002). Typically, this would show the potential outcomes of each 

decision option under each alternative hypothesis and the probability assigned 

to each hypothesis, thus providing an objective method to weight the results 

obtained under each hypothesis.  

There are other approaches for weighting models including information-theoretic 

criteria such as Akaike weights.  Also, pattern oriented modelling (POM) has been 

promoted as a way of developing plausible models of complex systems (Grimm and 

Berger 2004; Grimm et al. 2005; Grimm and Railsback 2005). Most applications of 

POM make use of agent-based models, which are not widely used for modelling 

exploited marine ecosystems (but see Shin and Cury 2001; Shin et al. 2004). 



 22

However, the principles of POM can be applied more generally. POM seeks to 

replicate the characteristic patterns of observed systems at a range of scales and 

hierarchical levels. The plausibility of models is judged against their ability to capture 

the full set of “essential” patterns of a system in the most parsimonious way, and their 

ability to predict secondary characteristics of the system that were not explicitly 

considered in model formulation (Grimm and Railsback 2005). This approach is data 

intensive, requiring sufficient observations to establish the characteristic patterns at a 

range of scales. While it has not been used to weight models, the principles imply that 

models could be weighted on a combination of model simplicity, the degree of pattern 

replication, and the extent to which replicated patterns are considered characteristic of 

the observed system. 

Weighting alternative models leads to consideration of model averaging, where 

the weights determine how much each alternative model contributes to the overall 

expectation. Burnham and Anderson (1998) recommend model averaging when the 

goal of an analysis is to “get the best set of parameters in common to all models” but 

they caution against such averaging if the competing models lead to “definite, and 

differing, interpretations.” Such caution is particularly important if the competing 

models imply different strategies and tactics for achieving a set of management 

objectives.  

Applications of the Bayesian approach to weight alternative models 

There are a number of examples in which Bayesian methods have been used to 

assign plausibility weights to alternative models in fishery management problems. 

These mainly concern single-species stock dynamics. However, one of the earliest 

examples (Sainsbury 1988; Sainsbury et al. 1997) attempted to distinguish among 

competing models of the interactions between harvesting and fish community 
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structure. Following intensive pair trawl fishing on the northwest shelf of Australia 

since the 1960s, the abundance of the two most commercially valuable species had 

declined considerably by the mid 1980s while that of two low value species had 

increased. The Bayesian approach was applied to evaluate the probability of four 

alternative models which explained the changes in terms of: (a) fishing and no species 

interactions, (b) fishing and the less valuable species negatively impacting the more 

valuable species, (c) fishing and the more valuable species negatively impacting the 

less valuable species, or (d) fishing causing reductions in habitat for the more valuable 

species and increases in habitat for the less valuable species. The two best-supported 

models were approximately equally probable given the available data in the mid-

1980s (Sainsbury 1988), and an experimental fisheries management regime was 

implemented in the late 1980s based on the results of a decision analysis that 

considered yield of information and economic value as performance measures.  The 

experimental regime was not strictly implemented, but, by 1990, it appeared that the 

habitat modification hypothesis was most probable (Sainsbury et al. 1997; Table 1). 

Data collected in the 1990s provided further support for this hypothesis (Sainsbury, 

pers. comm.). The results suggested that trap fishing should replace trawling to 

achieve a recovery in fish community structure and the fishery for the more valuable 

species.  

Michielsens and McAllister (2004) used Bayesian hierarchical modelling to 

jointly analyse stock-recruitment datasets for several Atlantic salmon (Salmo salar, 

Salmonidae) populations and extrapolate the results to Baltic stocks for which such 

data were unavailable. These analyses evaluated the central tendency and cross-stock 

variance in the steepness parameter of the stock-recruitment relationship, and 

considered Beverton-Holt and Ricker models as alternative stock-recruit functions. In 
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subsequent population dynamic modelling of Baltic salmon stocks, the posterior 

probabilities for the two alternative stock-recruit models have been used as priors.  

Because the posterior for the Beverton-Holt model was much higher (i.e., 0.999) only 

this model has been applied to provide management advice (ICES 2004; 2006).  The 

posterior median for steepness in the Beverton-Holt model was considerably less than 

that in the Ricker model (i.e., 0.72 vs. 1.15) (Michielsens and McAllister 2004). The 

application of these model weightings supported lower exploitation rates than might 

have been the case if the analysis had not been performed and both models were 

assumed to be equally likely by default. 

Brodziak and Legault (2005) considered twelve alternative stock-recruitment 

models for each of three overfished groundfish stocks. These models differed in terms 

of functional form (Beverton-Holt versus Ricker), error structure, and the nature of 

prior information. An approximation to the Bayes’ factor (Kass and Raftery 1995) 

was used to compute weights for each model. Finally, weighted averages for each 

stock were calculated using only those models that provided identifiable parameters. 

This restriction excluded most of the Ricker models and all Beverton-Holt models 

without prior information on unfished recruitment levels. The models that were 

included in the average for each stock generally provided similar estimates of the 

spawning biomass and fishing mortality rates that produce MSY, and, therefore, the 

averaged estimates appeared to usefully account for model uncertainty (Table 2).  

Nevertheless, Brodziak and Legault (2005) acknowledged that the results, in terms of 

fishing mortalities, were sensitive to the prior mean assumed for the steepness 

parameter, which was not varied in the study. It is not clear whether model averaging 

would have been appropriate had the prior mean been varied. 
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Brandon and Wade (2006) also used Bayes’ factors to assign plausibility weights 

to: (a) a model of the Bering-Chukchi-Beaufort Seas bowhead whale stock that 

initiates projections from an equilibrium in 1848 and assumes that carrying capacity 

and the parameters of the density-dependence function have not changed over time, 

and that the historical catches are known without error (e.g. Punt and Butterworth, 

1999), (b) a density-dependent model that started the population projection in 1978, 

and (c) a density-independent model that started the population projection in 1978. 

Although the density-independent model was assigned the highest posterior 

probability, none of the three models could be considered implausible (e.g., using 

criteria developed by Jefferys 1961 and Kass and Raftery 1995). Brandon and Wade 

(2006) used the results of their analyses to construct model-averaged posterior 

distributions for key model outputs. As expected, the posterior distributions calculated 

using model-averaging indicated greater uncertainty than the posterior distributions 

based on the model that had the highest posterior probability. 

McAllister and Kirchner (2002) computed posterior probabilities for four models 

attributing a decline in orange roughy (Hoplostethus atlanticus, Trachichthyidae) 

catches off Namibia to (a) fishery removals (b) temporary events unrelated to the 

fishery, (c) temporary dispersal triggered by fishing, and (d) long-term dispersal. 

Rather than providing relatively precise unimodal distributions for stock biomass, the 

initially equally probable alternative models resulted in bimodal marginal posterior 

distributions indicating that, overall, the stock was either heavily depleted or lightly 

fished (McAllister and Kirchner 2002). The posterior probabilities for the four 

alternative models were used in a Bayesian decision analysis to evaluate the potential 

consequences of various fisheries management options (Table 3). When considered 

across the four hypotheses, the chance of recovery without a major reduction in 
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fishing effort was found to be very low, and the Namibian Minister of Fisheries 

consequently lowered the catch quotas on all fishing grounds considerably. A few 

years after one fishing ground was closed altogether, monitoring detected a major re-

aggregation of fish on the closed ground only (C. Kirchner pers. comm.), indicating 

that the apparent decline may have been, at least partly, due to temporary dispersal of 

the fish stocks in response to intensive fishing.   

Patterson (1999) presented a method for integrating VPA-based stock assessment, 

reference point estimation, and management simulation using Bayesian methods to 

compute posterior distributions for parameters, and posterior probabilities for 

alternative model structures. The model structures considered were the stock-

recruitment function (Beverton-Holt versus Ricker) and the shape of the observation 

error distribution for surveys (normal, lognormal or gamma). For Norwegian spring-

spawning herring (Clupea harengus, Clupeidae), this process indicated high posterior 

support for the normal error distribution model, but was unable to distinguish between 

the stock-recruitment functions. Nonetheless, all alternative models were included in 

the assessment and management simulation processes weighted by their posterior 

probabilities. Patterson (1999) found that the uncertainty resulting from the inclusion 

of three error models (Fig. 4) was greater than that suggested by an ad-hoc 

comparison of the results from individual parametric bootstraps using each error 

distribution. 

Approaches to model uncertainty IV: Examples from related disciplines 

In this section we consider approaches used to address model uncertainty in 

weather forecasting, climate prediction and ocean biogeochemistry. These disciplines 

also use models to make predictions about complex systems and must account for 

uncertainties arising from simplifications about processes and scale, as well as from 
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limited knowledge about the interactions between processes.  Numerical weather 

prediction (NWP) models represent atmospheric processes and are used to forecast 

the weather over a period of hours to days ahead (Davies et al. 2005). For predictions 

more than 10 days ahead, including climate forecasts, it is necessary to use coupled 

atmosphere-ocean-sea ice global climate models (GCMs). Ocean biogeochemistry 

(OBGC) models are used primarily to estimate the air-sea fluxes of gases like CO2, 

N2O, or CH4, and biological processes like primary production on time scales from 

one to millions of years (e.g. Maier-Reimer 1993; Suntharalingam and Sarmiento 

2000; Carr et al. 2005). OBGC models are based on the conservation of elements in 

the ocean (e.g. carbon, oxygen, nutrients), which are subject to changes driven by 

physical, chemical, and biological processes. The elements are also affected by input 

from the atmosphere and rivers, and output from sedimentation. 

Both NWP and OBGC models represent physical processes through the 

application of the laws of physics to fundamental variables such as temperature, 

pressure and density. Uncertainty arises because these fine scale processes are 

modelled at relatively coarse spatial and temporal scales. For example, atmospheric 

processes, such as cumulus clouds, rain showers, and flow over small hills, occur on 

scales well below those of state-of-the-art global NWP models. In OBGC models, 

assumptions about parameters such as vertical diffusivity strongly influence the 

modelled response of the ocean to changes in the atmospheric concentration of gases 

such as anthropogenic CO2. The range of vertical transport rates in different models 

led to a 40% difference in estimated oceanic CO2 uptake in the 1990s (Orr et al. 2001; 

Doney et al. 2004). Further uncertainty arises when the models incorporate processes 

that are less firmly rooted in fundamental laws of nature. This includes the 

representation of cloud structure and movement in NWP models and biological 
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processes in OBGC models. The simplest OBGC models represent only the biological 

processes that lead to the export of organic matter to the deep ocean based on the 

surface nutrient, light, and temperature conditions (e.g. Maier-Reimer 1993). The 

most complex models cover the range of size and functionality of plankton and 

bacteria in the ocean (e.g. Gregg et al. 2003; Le Quéré et al. 2005).  

It is common practice in weather forecasting and climate prediction to estimate 

uncertainty by considering multiple runs of single models (Bourke et al. 2005) or of 

several models that vary in formulation. When these models begin from the same 

initial state, this is known as the ensemble approach. NWP models differ in a number 

of ways. Some solve the equations of atmospheric motion on a regular grid covering 

the globe. Others solve them in a ‘spectral’ form, where the atmospheric variables are 

held as a number of waves around the Earth. The models also differ in terms of how 

they handle processes such as clouds, flow over orography, and long and short wave 

radiation in the atmosphere. Ensemble runs of GCMs can provide broad, regional 

guidance on temperature and precipitation for several months ahead (Vialard et al. 

2005). Multi-model ensemble analysis is now a standard feature of climate research, 

and was a key element of the recent Intergovernmental Panel on Climate Change 

(IPCC) fourth Assessment Report (www.ipcc.ch, accessed 19th March 2007). All 

members of the ensemble are subject to the same forcing scenario, such as the set of 

greenhouse gas emission scenarios used within IPCC. Members of the ensemble may 

differ in their formulation, or random noise applied to the initial state, or both. 

Different formulations can include or exclude processes such as interactive vegetation 

(Cox et al. 2000). Thus, the ensemble can be used to consider different levels of 

model complexity. 



 29

Meteorologists and climatologists are only just starting to consider how to deal 

with the output of an ensemble of models. The IPCC has used twenty models to 

investigate past climate change and how the climate may evolve in the future. These 

models differ in many ways including horizontal resolution and the representation of 

clouds, sea ice, oceans and the inclusion of vegetation. Current estimates of future 

conditions are based on the averaged output of all twenty models with the standard 

deviation of this estimate used to represent uncertainty (IPCC 2007; Fig. 5). However, 

more sophisticated means are being considered to deal with the output of so many 

models (Mueller et al. 2005). For example, the models can be weighted according to 

how they represent various elements of the present climate, such as pressure at mean 

sea level or temperature. Alternatively, the models can be weighted according to how 

well they reproduce aspects of the climate of recent decades. Of course, the ability of 

a model to replicate the past may not be a good indicator of how it will deal with 

changes in the future as a result of different forcing factors, but methods for assessing 

confidence in climate predictions will be a major focus in future research. 

Ocean biogeochemistry models that focus on carbon have been evaluated during 

four phases of the international Ocean Carbon-cycle Model Intercomparison Project 

(OCMIP). In the earlier phases, models were primarily compared with each other and 

the first representation of uncertainty was the range of model results (Orr et al. 2001). 

It was acknowledged at the time that this under-represented uncertainty because the 

protocols for model comparison restricted the diversity of models considered, and the 

models shared common elements that could all have bias in the same direction (e.g. 

the low resolution of their grids). In later phases, models were compared with a whole 

suite of observations (Dutay et al. 2002; Doney et al. 2004).  In this case, much of the 

data collection was triggered by the publication of results from the initial phases of 
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the model intercomparison. Extreme models were developed to bracket the full 

uncertainty suggested by the observations. For example, the uptake of observed CFCs 

and bomb 14C was clearly overestimated in a model with excessive mixing, and 

underestimated in one with low mixing (Matsumoto et al. 2004), but these estimates 

usefully define bounds for the uptake of anthropogenic CO2 (Fig. 6). On the other 

hand, it is suspected that uncertainty is greatly under-represented by the existing 

models of biological processes (Le Quéré et al. 2005). The development of biological 

models is a very active field of research, with a corresponding focus on producing 

validation datasets to define constraints on the biological components (e.g. Rivkin and 

Legendre 2001; Buitenhuis et al. 2006). 

The OCMIP has demonstrated a community approach to model development and 

evaluation. Model comparison identifies where uncertainties have the greatest effects 

on results and coordination ensures that data collection addresses these uncertainties 

and their implications. However, the OCMIP has concentrated on bracketing 

uncertainty because there are limited data with which to assign weights to alternative 

hypotheses (Doney et al. 2004). 

This summary suggests that other disciplines are at a similar stage as fisheries 

science in dealing with model uncertainty; it is recognised as an issue and various 

approaches have been developed, although none provides a truly quantitative 

description of uncertainty in models of complex systems. The ensemble approach in 

particular has been recognised as potentially useful in modelling marine ecosystems 

(DeYoung et al. 2004). This approach currently allows the comparison of predictions 

arising from a suite of different models which can include differing levels of 

complexity. Thus, if output variables are standardized to facilitate comparisons, whole 

ecosystem models (e.g. Shannon et al. 2004) could be run alongside minimally 
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realistic models (e.g. Punt and Butterworth 1995). However, more progress is needed 

to ensure that the output is not biased by the choice of ensemble members. 

Presenting results 

Whipple et al. (2000) identified the uncertainty associated with complex 

ecosystem models as a limitation to their usefulness in management. Yet the 

ecosystem approach to fisheries implies a willingness to attempt management despite 

this uncertainty. The communication of model results, and their associated 

uncertainties, to decision makers is a critical step in this process. 

The OMP and Bayesian decision analytic approaches make it clear that model 

predictions should be presented in terms of performance measures that assess whether 

management objectives have been achieved. Models of complex systems can forecast 

the dynamics of a plethora of metrics (e.g. Fulton et al. 2005) and produce 

overwhelming amounts of information, especially when the basic outputs are 

accompanied by estimates of uncertainty. Therefore, the performance measures must 

be limited in number, to around seven. Ideally, these measures should also include 

quantities that can be monitored in the real system so that model results could, in 

principle at least, be validated. More detailed results should be made available as 

required, but the initial summary, which is all that might be used for decision-making, 

must be accessible to decision makers.  

It is tempting to assume that uncertainty can always be expressed in quantitative 

terms (such as risk, posterior distributions, probability intervals, and critical 

percentiles) and approaches to model uncertainty that include explicit weighting of 

alternative models make this more likely. However, the probabilities suggested by 

these approaches are not absolute, but relative to the alternatives included in the 

analysis. Furthermore, different models might favour different management options 
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and presenting results in the form of summary statistics such as averages might be 

misleading. 

Further complexities are added when it is not possible to weight models. An 

unweighted set of models gives equal prominence to extreme models, but it could be 

inappropriate to make decisions on the basis of ‘worst case scenarios’ as this can lead 

to the selection of management actions based on a highly implausible model.  

Butterworth et al. (1996) liken this to refusing to cross the road because of the small, 

but plausible, risk of being run over. 

Given these issues, it is imperative that analysts are realistic about the limitations 

of their approaches and present their results as the best use of available knowledge 

rather than as being definitive. Ultimately, making decisions about the management of 

complex systems involves risks and trade-offs. The role of models is to facilitate these 

hard decisions by making predictions that emphasise the risks and uncertainties 

involved.  

Discussion 

Limitations and pragmatic approaches  

Model uncertainty should be taken into account when predicting the response of 

marine ecosystems to harvesting. Examples from single species population models 

show that relying on a single ‘best model’ under-represents overall uncertainty (e.g. 

Patterson 1999, Brandon and Wade 2006), and recent studies have also demonstrated 

how predictions from ecosystem models are sensitive to underlying structural 

assumptions (e.g., Mackinson et al. 2003; Watters et al. 2003; Pinnegar et al. 2005). 

Indeed, May (1988) suggests that model construction itself may tell us more about the 

psychology of scientists than about ecology. The ideal is, therefore, to replace implicit 
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and opaque “psychological” choices about model structures with an explicit and 

transparent evaluation of the various ways in which the system could behave.  

Promising approaches to dealing with model uncertainty establish sets of 

alternative models and assign probabilities to each member of the set. These 

probabilities reflect the credibility or plausibility of one model relative to alternatives 

in the set. Several examples already exist where this has been accomplished using the 

Bayesian approach, but even in these cases the initial set of models and assumptions 

about prior distributions rely on subjective judgement to some extent. Furthermore, 

the model with the highest posterior support might still be a poor representation of the 

actual system dynamics, and models that were not included could potentially make 

better predictions. Other limitations to the Bayesian approach arise because of data 

constraints and model complexity, and because Bayes’ rule cannot be used to assign 

posterior weights to models that use different data sources.  However, models can be 

weighted by prior probabilities even when the models require different datasets for 

parameter estimation. A relatively simple implementation is to treat alternative 

models as random variables in Monte Carlo simulations with the probability of 

inclusion determined by some quantitative or qualitative assessment of apriori 

plausibility (Hill et al. 2006).  

Existing quantitative approaches to model weighting depend on a model’s ability 

to mimic historical data, which is not necessarily a good indicator of its ability to 

predict the behaviour of the system under potentially different future conditions. For 

example, if historical stock sizes have been reasonably high, a comparison of models 

with and without depensation is likely to place greater weight on the simpler model 

that ignores depensation. However, this may be inappropriate if the analysis considers 

management actions that lead to stock sizes lower than historically observed. Finally, 
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data limitations are severe for complex ecosystem models. It might never be possible 

to properly weight hypotheses about fishery-ecosystem interactions without data 

collection in an adaptive management context. 

The ideal of a completely objective approach and even the use of weighted models 

is constrained by practical difficulties. However, the requirement to implement EAFs 

in the near future, as called for by the 2002 World Summit on Sustainable 

Development, suggests that attention must be given to using current approaches and 

knowledge in pragmatic ways. In our opinion, this requires the use of management 

approaches that can be shown to be robust to uncertainty as well as practical ways of 

assessing uncertainty. Approaches that identify robust management actions are well 

established and have been applied in single-species contexts. Implementing such 

approaches in ecosystem contexts will require “operating models” of ecosystem 

dynamics to test the robustness of proposed management actions. To the best of our 

knowledge, the recent CCAMLR workshop represents the only attempt to use 

ecosystem dynamics models to identify robust management actions. This workshop 

did not attempt to weight alternative models. However, this is not the same as 

assigning equal weight to all models.  

While the current state-of-the-art is far from the ideal, we cannot ignore model 

uncertainty in developing EAFs. Based on our consideration of fisheries and related 

disciplines, we believe that the following represents current best practice in 

representing uncertainty in the structural form of models of ecosystem dynamics: 

1. Identify the purpose of the modelling exercise in terms of management 

objectives, and the performance measures by which the attainment of these 

objectives will be assessed (including the period of time over which the 

performance measures are to be calculated). 
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2. Identify the key uncertainties about the system. This should occur during the 

process of assembling information and formulating models; it is necessary to 

identify and highlight uncertainties rather than to make assumptions that 

constrain the models to a single view of any important process. 

2. Develop models or parameterisations that represent plausible limits to each 

key uncertainty. Consider more than one basic model structure. 

3. Always include models, assumptions and parameterisations that are not on the 

bounds (and hence may be more plausible), and ensure that the choice of 

models, parameter values, and assumptions is balanced given the purpose of 

the modelling.  For example, McAllister and Kirchner (2002) ensured that two 

models implying low current stock abundance of orange roughy were balanced 

by two that implied high current stock abundance but low availability.   

4. Establish the full range of model behaviours by considering different 

combinations of models and parameters.  Sensitivity analysis is useful at this 

stage to determine the importance of each source of uncertainty 

5. Consider the interaction between models and data. Specifically, do the models 

capture the full range of potential conditions, or just the conditions represented 

by the data? If the latter is the case, it may be advisable to consider adopting 

plausible future scenarios that extend outside of the range of historic data, as 

may occur, for example, under current predictions for climate change. 

6. Ensure that each model is logically consistent. For example, assumptions or 

fixed values for key parameters in an ecosystem model will also need to be 

made in models used to derive prior density functions for the ecosystem 

model’s input parameters. 
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7. Weight models by plausibility if information exists to do this. Ideally this 

weighting would be on the basis of posterior probability, but a more subjective 

weighting by prior probability might be necessary. 

8. Run each model multiple times to incorporate the effects of parameter 

uncertainty and natural variability.  

9. Avoid averaging model results unless the distribution of results suggested by 

all models is unimodal.  

10. If it is possible to weight models, present the results in terms of the risk that 

each management objective will not be met. If it is not possible to weight 

models, present the results in terms of the trade-offs associated with each 

management action for each alternative model.  

11. Make sure the assumptions and limitations of the approach are presented along 

with the results. 

Improving models and establishing protocols 

Models are formalised statements of scientific hypotheses and part of the ongoing 

process of improving understanding which, in itself, should eventually reduce 

uncertainty. As the OCMIP demonstrates, model comparisons can help to focus data 

collection by identifying the areas where model uncertainty has the greatest effect on 

predictions. Sainsbury’s (1988) analysis sparked an experimental fishing regime with 

spatial and temporal replication and contrasting fishing “treatments.”  Ultimately, this 

experiment yielded informative data that provided preferential support to one of the 

hypotheses considered in the original study, and implied a management strategy that 

might achieve the objectives of restoring the fish community structure and recovering 

the fishery for valuable species.  
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Observation networks on the scale of those set up to study the Earth system will 

be of limited use in reducing model uncertainty in resource dynamics models because 

the spatial and temporal scales of ecosystem dynamics are smaller than whole-Earth 

models. Thus observation is best concentrated on local monitoring systems that, over 

time, can provide feedback with which to refine models and reduce uncertainty. 

However, large-scale international coordination within the fisheries science 

community might be useful in defining and refining the general types of models that 

should be included in a set of alternative models. Specific details of such models will 

require expertise about the local system, but global-scale coordination can help to 

ensure that the set of models considered when implementing an EAF are balanced and 

not simply a reflection of localised conventional wisdom. As with the OCMIP, global-

scale coordination could allow the testing and refinement of general models through 

confrontation with comparative data collected from multiple systems. This would 

build on recent meta-analyses of fisheries data that have produced valuable insights at 

large spatial scales (e.g. Liermann and Hilborn 1997; Myers et al. 2001) and could 

potentially facilitate the rapid evaluation of process models such as foraging arena 

theory (Walters and Martell 2004). 

Finally, we note that model uncertainty is common to most modelling disciplines. 

There is therefore a need for continued dialogue amongst practitioners in different 

fields. An example of such collaboration is the Ecosystem Modelling Committee 

established by the North Pacific Research Board (NPRB). This Committee consists of 

modellers from a wide range of disciplines and has developed a set of criteria for 

evaluating ecosystem models (http://doc.nprb.org/web/BSIERP/BSIERP_2007RFP-

Full-proposals.PDF) based on evaluation techniques from a range of modelling sub-
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disciplines. Concordance with these criteria will be used as part of the basis for 

selecting an Integrated Bering Sea Ecosystem Project by the NPRB. 
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Table 1 The prior and posterior support for each of four alternative hypotheses to 

explain observed changes on the North West Shelf of Australia. The hypotheses were 

arbitrarily assigned equal prior probabilities, which were used to calculate posterior 

probabilities, first with data available in 1985 and then with data from five years of 

experimental management upto 1990. Modified with permission from Sainsbury et al. 

(1997, their Table 1). 

 

 Probability 

Hypothesis  Prior 1985 1990

(a) No species interactions 0.25 0.01 0.02

(b) Less valuable species negatively affect more 

valuable species 

0.25 0.52 0.33

(c) More valuable species negatively affect less valuable 

species 

0.25 0.01 0.03

(d) Habitat effects 0.25 0.46 0.62
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Table 2 Spawning stock biomass (SMSY: thousands of metric tons) and fishing 

mortality rate (FMSY: per year) associated with MSY for Georges Bank Atlantic cod 

(Gaduus morhua, Gadidae) based on five stock-recruitment models (RBH: 

informative recruitment prior with uncorrelated Beverton-Holt; RABH: informative 

recruitment prior with autocorrelated Beverton-Holt; RZBH informative recruitment 

and steepness priors with uncorrelated Beverton-Holt; RZABH informative 

recruitment and steepness priors with autocorrelated Beverton-Holt; SRK informative 

slope at origin prior with uncorrelated Ricker). Modified with permission from 

Brodziak and Legault (2005, their Table 4). 

 

 

Model Posterior probability

[-2 log (Bj)] 

SMSY FMSY Evidence against

RBH 0.34 [1.4] 193.7 (36.2) 0.21 (0.03) None 

RABH 0.15 [3.5] 176.1 (39.3) 0.23 (0.05) Positive 

RZBH 0.33 [1.4] 188.7 (33.6) 0.22 (0.02) None 

RZABH 0.16 [3.4] 172.7 (34.6) 0.23 (0.03) Positive 

SRK 0.01 [8.9] 87.5 (57.4) 0.69 (0.01) Strong 

Model average 184.7 (38.2) 0.23 (0.06) 

80% credibility 

interval 

(135.8, 233.6) (0.15, 0.31) 

Note Bj is the Bayes’ factor evaluating the credibility of model j relative to all 

alternative models. 
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Table 3 An example decision table resulting from a Bayesian decision analysis in 

which four alternative hypotheses to explain reduced orange roughy yields were 

examined. For each total allowable catch (TAC) policy and fishing ground, the 10th 

percentile (with median value in parentheses) of the expected mature biomass in 2010 

as a proportion of the unexploited biomass is shown for each of the alternative 

hypotheses (see text for details), and all hypotheses combined (and weighted by 

posterior probability). The probabilities associated with each hypothesis are also 

given. Modified with permission from McAllister and Kirchner (2002, their Table 5). 

 

Ground TAC Hypothesis a Hypothesis b Hypothesis c Hypothesis d Combined 

Johnies       

 Probability <0.01 0.02 <0.01 0.98

 500 mt 0.13 (0.35) 0.60 (0.82) 0.64 (0.86) 0.06 (0.11) 0.07 (0.12)

 1000 mt 0.01 (0.16) 0.55 (0.77) 0.61 (0.83) 0.01 (0.07) 0.02 (0.08)

 1500 mt 0.01 (0.06) 0.51 (0.74) 0.57 (0.79) 0.003 (0.04) 0.01 (05)

 2000 mt 0.01 (0.04) 0.46 (0.69) 0.54 (0.75) 0.002 (0.01) 0.01 (0.02)

Frankies   

 Probability <0.01 0.25 0.37 0.37

 0 mt 0.29 (0.44) 0.64 (0.84) 0.68 (0.91) 0.11 (0.15) 0.46 (0.60)

 1000 mt 0.01 (0.07) 0.53 (0.73) 0.61 (0.85) 0.003  (0.04) 0.36 (0.51)

 2000 mt 0.01 (0.03) 0.41 (0.63) 0.55 (0.78) 0.001  (0.01) 0.31 (0.45)

Rix   

 Probability 0.25 0.13 0.45 0.17

 500 mt 0.21 (0.46) 0.40 (0.66) 0.52 (0.74) 0.14 (0.29) 0.36 (0.58)

 1000 mt 0.02 (0.26) 0.22 (0.55) 0.41 (0.65) 0.01 (0.16) 0. 22 (0.46)
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 1500 mt 0.01 (0.10) 0.06 (0.43) 0.28 (0.57) 0.005 (0.06) 0.14 (0.35) 

 2000 mt 0.01 (0.05) 0.02 (0.32) 0.16 (0.48) 0.004 (0.03) 0.08 (0.28) 

Hotspot       

 Probability <0.01 0.12 0.01 0.87  

 200 mt 0.03 (0.24) 0.61 (0.85) 0.44 (0.71) 0.05 (0.10) 0.12 (0.20) 

 250 mt 0.01 (0.17) 0.59 (0.84) 0.39 (0.68) 0.04 (0.09) 0.11 (0.19) 

 500 mt 0.006 (0.03) 0.51 (0.79) 0.18 (0.57) 0.003 (0.06) 0.07 (0.15) 
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Figure 1 A model with limited predictive ability. The model explains 41% of the 

observed variability in recruitment of mackerel icefish at South Georgia (I, data 

labelled by year of recruitment) as a linear function of sea surface temperature (SST) 

when the cohort was spawned. Reproduced with permission from Hill et al. (2005, 

their Fig. 5).   

 

Figure 2 Population trajectories generated by a spatially resolved ecosystem 

dynamics model (KPFM). The panels show output for three of the four modelled 

predator taxa in two of the fifteen spatial units (SSMUs) considered. Grey and black 

lines result from two competing management options. The multiple lines within each 

group represent the effect of uncertainties concerning krill transport rates and predator 

functional responses, as well as stochastic krill recruitment variation. Reproduced 

with permission from SC-CAMLR (2006, their Fig. 4a). 

 

Figure 3 An example of the presentation of uncertainty in ecosystem model (KPFM) 

predictions. The figure indicates the trade off between a fishery performance measure 

and an ecosystem performance measure (the probability that the whale stock will 

remain above a threshold) in one of fifteen modelled spatial units (SSMUs) for each 

of six candidate management options.  

 

Figure 4 Bayes posterior probability of different model structures relating to (a) 

stock-recruit functions and (b) observation error distributions assessed; and (c) 

cumulative probability that a catch will exceed a specified harvest control law, based 

on the posterior probabilities from a Bayesian analysis incorporating structural and 
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parameter uncertainties. Modified with permission from Patterson (1999, his Figs 3 & 

6).   

 

Figure 5 An example of the presentation of model uncertainty to decision makers. 

The right hand side of the figure shows global surface temperature increase (relative 

to 1980 to 1999) predictions under two forcing scenarios (atmospheric CO2 

maintained at year 2000 concentrations, and A2: emissions increasing to 3.8 times 

1990 levels by 2100). The central line for each scenario is the average over an 

ensemble of 20 models, while the shading represents the standard deviation of these 

averages. Adapted with permission from IPCC (2007, their Fig. SPM-5). 

 

Figure 6 A representation of model uncertainty in OGBC models. Symbols with error 

bars are observed values (± 2 standard deviations) while the numbered symbols are 

mean estimates derived from various models. The estimates are of North Pacific Deep 

Water (diamonds, lower observation) and North Atlantic Deep Water (triangles, upper 

observation) versus Circumpolar Deep Water delta-14-C respectively. Reproduced 

with permission from Matsumoto et al. (2004, their Fig. 2).   
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FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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FIGURE 6 

 

 

 

 

 

  


