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Abstract
Complete river flow time series are indispensable to the sustainable management of water 
resources and even very short gaps can severely compromise data utility. Suitably-flagged flow 
estimates, derived via judicious infilling, are thus highly beneficial. The UK National River Flow 
Archive provides stewardship of and access to daily river flow records from over 1500 gauging 
stations and, whilst the majority are sensibly complete, historical validation reveals a significant 
quantity of gaps. A full assessment of the suitability of existing techniques for infilling such gaps is 
lacking. This paper therefore presents an appraisal of various simple infilling techniques, including 
regression, scaling and equipercentile analysis, according to their ability to generate daily flow 
estimates for 25 representative UK gauging stations. All of the techniques rely upon data transfer 
from donor stations and results reveal that the equipercentile and multiple regression approaches 
perform best. Case studies offer further insight and an example of infilling is presented, along 
with areas of future study. The results demonstrate the potential for developing generic infilling 
methodologies to ensure a consistent and auditable approach towards infilling, which could find 
wider application both within the UK and internationally.

Introduction

River flow records are a vitally important asset, critical to the 
sustainable management of water resources worldwide and 
serving as both indicators of past hydrological variability and 
fundamental contributors to hydrological models for future 
behaviour prediction. The completeness of such records is 
a crucial component of their utility. Even very short gaps 
preclude the calculation of important summary statistics, 
such as monthly runoff totals or n-day minimum flows, and 
inhibit the analysis and interpretation of flow variability. 
Consequently, in many cases, including suitably flagged 
estimates of flow is preferable to leaving gaps (Marsh, 2002).
 Within the UK, the National River Flow Archive 
(NRFA; http://www.ceh.ac.uk/data/nrfa) acts as the main 
hydrometric archive, collating data from all principal 
monitoring network operators. Daily mean river flows are 
assimilated for over 1500 gauging stations and these data are 
stored, analysed and disseminated to a wide range of users 
(Dixon, 2010). Whilst the majority of these flow records 
have high percentage completeness (Marsh and Hannaford, 
2008), historical validation reveals a significant number of 
gaps within the time series, ranging in length from a single 
day to a number of months. Such gaps in recorded flows are 
an inevitable consequence of factors such as essential gauging 
station maintenance, equipment malfunction, human error, 
changes in instrumentation and data processing issues.
 A previously observed decline in the completeness 
of river flow data submitted to the NRFA (Marsh, 2002) 
can in part be attributed to a lack of standardised infilling 
guidance which, in its absence, discouraged the infilling of 
gaps. The introduction of a Service Level Agreement between 
the NRFA and its data providers in 2002, the aims of which 
include advancing the completeness of data submitted to the 
archive, has been reflected in a demonstrable improvement 
in completeness (Dixon, 2010). Nevertheless, historical data 
gaps remain and short sequences of missing daily mean flows 
(which appear readily amenable to infilling) regularly occur 

in data submitted to the NRFA. This highlights a pressing 
need for informed infilling guidance, to ensure consistency in 
approach towards data gaps. Simple, quick-to-apply infilling 
techniques that perform well across an extensive range of 
catchments could therefore find wide applicability, limiting 
the resources required to infill data to an appropriate accuracy 
whilst significantly improving the overall utility of time 
series. There is thus a strong need to assess existing infilling 
techniques in terms of their ability to estimate observed 
flows. Such an appraisal could be translated into guidance 
for hydrometric measuring authorities, as well as potentially 
holding relevance for both the wider river flow data user 
community within the UK and internationally. Such guidance 
would not be applicable to all occurrences of missing data; 
in particular, it would not be appropriate for extreme flows, 
which warrant separate attention.
 Existing infilling techniques, developed either 
exclusively for infilling or alternatively for record extension, 
were assessed for applicability (Table 1). The term ‘target’ 
indicates the gauging station record that requires infilling. 
Many techniques rely upon data transfer from other gauging 
stations, a widespread approach within hydrology, and 
these stations are referred to as ‘donors’. What constitutes 
a good donor is arguably a research topic in its own right, 
but common considerations include proximity and similarity 
(in terms of responsiveness and catchment physiography) 
to the target (Rees, 2008). Where available, multiple donors 
can enhance the likelihood of capturing the many influences 
affecting a target, but a single donor could be adequate 
if located very close to the target or on a major upstream 
tributary (Hughes and Smakhtin, 1996). 
 To discern whether or not an infilling technique is 
widely applicable, techniques need to be tested across a broad 
range of scenarios. To date, the vast majority of studies have 
limited their analyses to a small number of case-study targets 
(for example: Gyau-Boakye and Schultz, 1994; Elshorbagy et 
al., 2000), but the marked variability in hydrological regimes 
and prevalence of anthropogenic influences across the UK 
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necessitates consideration of a higher number of targets. 
In this study, techniques will therefore be tested on a large 
sample of representative UK gauging stations.
 Previous studies have focused on either a single 
technique or a small number of techniques all belonging 
to the same general approach (for instance, regression 
techniques: Hirsch, 1982; scaling techniques: Kottegoda and 
Elgy, 1977). An unprecedented aspect of this study is the 
inclusion of a large number of techniques, spanning a variety 
of statistical formulations.
 The relative performance of infilling techniques 
can be compared through infilling artificially created gaps 
(for example, Gyau-Boakye and Schultz, 1994), but this 
methodology is highly dependent upon the period in which 
the gaps are established. An alternative approach, followed by 
this study, is to compare the ability of techniques to simulate 
entire target flow records (for example, Elshorbagy et al., 
2000), providing an indication of techniques which can be 
expected to perform better for any given gap.

Data and methodology

A representative sample of 25 NRFA target stations was 
selected from around the UK, incorporating both very 
responsive (including urban) and groundwater-fed rivers 
(Figure 1). Associated primary and secondary donors were 
selected from both nested and neighbouring catchments, 
since network density means geographically local donors 
are difficult to find in some parts of the country. Donors 
were chosen using NRFA catchment and station metadata, 
according to factors such as location, base flow index (BFI; 
Gustard et al., 1992) and regime similarity (Table 2). 
 Ten infilling techniques, embracing equipercentile, 
scaling and regression approaches, were tested according to 
their ability to simulate the target daily mean flow records 
(Table 3). Hydrological modelling of target flow series was Figure 1  Map of the UK showing the target station locations by NRFA ID.

Table 1. Existing infilling techniques.

Method  Summary      Example reference

Manual	 	 Gaps	are	infilled	through	visual	comparison	with	 	 Rees	(2008)
inference	 donor	flows.	Accuracy	should	be	fairly	assured	for
	 	 short	gaps	with	no	rainfall	events,	or	alternatively
	 	 for	longer	gaps	during	stable	recessions,	but	other
	 	 scenarios	would	lead	to	increased	difficulty	and
	 	 subjectivity.

Serial	 	 These	include	linear,	polynomial	and	spline	 	 Rees	(2008)
interpolation	 interpolation	and	are	likely	to	only	be	successful
techniques	 throughout	stable	periods.

Scaling	 	 Donor	flows	are	multiplied	by	a	scaling	factor,	such		 Kottegoda	and	Elgy	(1977)
factors	 	 as	the	ratio	of	the	donor	and	target	catchment	areas
	 	 or	a	weighting	based	upon	the	linear	distance
	 	 between	the	target	and	donor.

Equipercentile	 The	percentile	value	of	the	donor	flow	on	any	given	 Hughes	and	Smakhtin
technique	 day	is	assumed	equal	to	the	percentile	value	of	the	 (1996)
	 	 target	flow.	Flow	gaps	are	estimated	by	calculating
	 	 the	donor	flow	percentile	values	and	using	the
	 	 existing	target	flow	data	to	derive	the	flow
	 	 equivalent	to	this	percentile	value	at	the	target.

Linear	 	 A	regression	equation	between	the	target	and	a	 	 Hirsch	(1982)
regression	 donor	is	derived,	commonly	via	the	least	squares
	 	 method,	and	used	to	calculate	absent	target	flows.
	 	 Flows	may	first	be	transformed,	for	example,	via
	 	 the	logarithmic	transformation.

Hydrological	 This	can	vary	from	black-box	modelling,	whereby	 	 Khalil	et al.	(2001)
modelling	 the	inputs	to	the	model	are	related	to	the	outputs
	 	 with	no	consideration	of	the	processes	involved,	to
	 	 the	much	more	complex	process-based	models	and
	 	 use	of	artificial	neural	networks.
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Table 2 Target and associated donor stations.

Target River and location Catchment BFI Primary Secondary
station  area (km2)  donor  donor
NRFA ID       

 
7001	 Findhorn	at	Shenachie	 415.6	 0.36	 7002	 	 7004
15003	 Tay	at	Caputh	 3210	 0.64	 15007	 	 15006
21026	 Tima	Water	at	Deephope	 31	 0.26	 21017	 	 21007
25003	 Trout	Beck	at	Moor	House	 11.4	 0.14	 23009	 	 76014
27071	 Swale	at	Crakehill	 1363	 0.46	 27007	 	 27034
28031	 Manifold	at	Ilam	 148.5	 0.54	 28008	 	 28046
29002	 Great	Eau	at	Claythorpe	Mill	 77.4	 0.89	 29003	 	 29001
33006	 Wissey	at	Northwold	 274.5	 0.82	 33007	 	 33019
33039	 Bedford	Ouse	at	Roxton	 1660	 0.57	 33037	 	 33015
35003	 Alde	at	Farnham	 63.9	 0.37	 35002	 	 35013
38014	 Salmon	Brook	at	Edmonton	 20.5	 0.29	 38022	 	 38021
38030	 Beane	at	Hartham	 175.1	 0.75	 38004	 	 33033
39101	 Aldbourne	at	Ramsbury	 53.1	 0.97	 39077	 	 39037
41029	 Bull	at	Lealands	 40.8	 0.38	 41016	 	 41003
43017	 West	Avon	at	Upavon	 84.6	 0.71	 53013	 	 53002
46003	 Dart	at	Austins	Bridge	 247.6	 0.52	 46005	 	 46008
54029	 Teme	at	Knightsford	Bridge	 1480	 0.54	 54008	 	 55014
55029	 Monnow	at	Grosmont	 354	 0.50	 56012	 	 55013
63004	 Ystwyth	at	Pont	Llolwyn	 169.6	 0.40	 55008	 	 63001
69017	 Goyt	at	Marple	Bridge	 183	 0.53	 69007	 	 69015
74001	 Duddon	at	Duddon	Hall	 85.7	 0.30	 74007	 	 74008
76003	 Eamont	at	Udford	 396.2	 0.52	 76004	 	 76015
85004	 Luss	Water	at	Luss	 35.3	 0.28	 86001	 	 85003
93001	 Carron	at	New	Kelso	 137.8	 0.26	 4005	 	 4006
96002	 Naver	at	Apigill	 477	 0.42	 2002	 	 3002

Table 3 Infilling techniques tested by this study. In order to account for any flow records containing zero flows,   
 the log-transformation took the form of ln(flow+1). Techniques were applied to datasets comprising days   
 when observed flows existed for both the target and primary donor (single donor techniques) or all three   
 stations (dual donor techniques).

Acronym Name Details

LR	 Linear	regression		 Least-squares	linear	regression	between	target	and	primary	donor.

LR	Log	 Linear	regression	log	 As	above	but	using	log-transformed	flows.

M1	 MOVE.1	 MOVE.1	regression	between	target	and	primary	donors	(Hirsch,	1982).

M1	Log	 MOVE.1	log	 As	above	but	using	log-transformed	flows.

Equi	 Equipercentile	 Equipercentile	technique	applied	using	percentiles	derived
	 	 	 from	the	primary	donor	flows.
CA	 Catchment	area	scaling	 Catchment	area	scaling	technique	applied	using	the	catchment	areas	
	 	 	 of	the	target	and	primary	donor.

LTM	 Long-term	mean	 Long-term	mean	scaling	technique	applied	using	long-term	mean	flow	
	 	 	 values	of	the	target	and	primary	donor	flows.

MR	 Multiple	regression	 Least-squares	linear	regression	between	target	and	both	donors.

MR	Log	 Multiple	regression	log	 As	above	but	using	log-transformed	flows.

W.Equi	 Weighted	 Equipercentile	technique	applied	using	each	of	the	donor	records	 	
	 equipercentile	 and	taking	the	average	of	the	resulting	estimates	for	each	date.	 	

not considered since, despite its potential to offer highly 
accurate estimates, current methods are too resource-intensive 
for rapid application to a large number of stations. Model 
calibration requirements also constrain portability between 
catchments. Simple manual inference and serial interpolation 
techniques were also omitted as, despite their undoubted 
practical utility, they are heavily reliant upon subjective 
decisions and cannot be easily automated and objectively 
compared within a testing framework. A final criterion was 
to utilise only river flow data, avoiding dependence on other 
datasets (in particular, catchment rainfall) which may not 
always be readily available to users.
 Technique performance was evaluated according 
to three commonly used indices, the choice of which was 
informed by the recommendations of studies which have 
assessed performance indictors (Legates and McCabe, 1999; 
Moriasi et al., 2007):

Nash-Sutcliffe Model Efficiency Coefficient (NSE; Nash 
and Sutcliffe, 1970):

       (1)
Values can range from –∞ to 1, with higher values implying 
greater accuracy and values below zero indicating that the 
estimated series is less accurate than if the mean of the 
observed series had been used. The statistic is widely used 
and, as a standardised statistic, has the advantage of being 
easily comparable across different catchments. 

Root Mean Square Error (RMSE):

 
      (2) 



4

Lower values indicate better performance, but comparing 
values between different targets is limited since differing 
variance between targets is not accounted for.

Percent Bias (PBIAS): 

 
      (3)

This index highlights consistent under- or over-estimation 
of target flows, which would likely correlate to poorer 
performance.

 In addition to the above statistics, the means of the 
absolute residuals between the observed and estimated flows 
were calculated for each target station and compared using 
the non-parametric Wilcoxon test, to indicate whether a given 
technique generated estimated series with significantly lower 
means of residuals than those generated by other techniques.

Results

The overall performance of the techniques is demonstrated 
via box plots of the NSE and PBIAS values derived for the 
25 series estimated by each technique (Figure 2), whilst their 
performance for each individual target is illustrated via bar 
plots of the NSE values for each series and technique (Figure 
3). The RMSE values indicate analogous results to the NSE 
values so the latter was chosen to present results since, as 
a standardised statistic, it is easier to compare across the 
different targets.
 In terms of the NSE value box plots, the interquartile 
ranges and bottom whiskers exceed 0.5 for all of the 
techniques, albeit to varying degrees. Some techniques have 
outlying values which fall below zero, results which are 
important for differentiating between how widely applicable 
the techniques are. The most favourable techniques are 

Figure 2  Box plots of (a) NSE and (b) PBIAS values for the 25 series  
 estimated by each technique. Whiskers extend to the most   
 extreme values which are no more than 1.5 multiplied by   
 the interquartile range away from the box.

Figure 3. Bar plots of NSE values for each target and each technique.
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the equipercentile and multiple donor techniques, none of 
which have outliers falling below 0.5 and all of which have 
lower quartile, median and upper quartile values of a higher 
magnitude than the other techniques. Not only do these 
techniques therefore have wider application, but they also 
produce estimated series of greater accuracy.
 The PBIAS values are generally of low magnitude 
for the majority of techniques, except the CA technique, 
which is conspicuous for its heavily biased estimates. Those 
techniques based upon log-transformed flows also exhibit 
some bias. This can be linked to failure of these techniques to 
maintain the mean of the observed series in their estimates.
 For some individual targets, the techniques perform 
very similarly, although to differing degrees. For example, 
all techniques produce NSE values exceeding 0.94 for target 
54029 and between 0.72 and 0.82 for target 25003. For 
other targets, there is much greater variability in technique 
performance (for example, 33039 and 76003), a finding which 
is further explored later (see first case study). In certain cases, 
the multiple donor techniques offer clear improvement (for 
example, stations 33006 and 38014).
 There are particular stations for which specific 
techniques lead to distinctly lower NSE values, most 
prominent of these being M1 Log for targets 46003 and 76003 
(see second case study), CA and LTM for targets 35003 and 
38030 and CA for targets 27071 and 43017. Overall, CA is a 
comparatively poorer technique, having most of the lowest 
NSE values associated with it as well as the highest PBIAS 
values. Moreover, its NSE values have the lowest lower 
quartile, median and upper quartile magnitudes of all the 
techniques, in addition to the greatest number of both outliers 
and outliers falling below zero. 
 The results of the Wilcoxon significance testing 
(Figure 4) further reinforce the findings so far. The 
equipercentile and multiple donor techniques more frequently 
produce significantly lower means of residuals than the other 
techniques, whilst all of the techniques outperform the CA 
technique for the vast majority (in some cases all) of the 
targets.

and highlights the value of using a large sample of target 
gauging stations. The catchment area scaling technique 
essentially seems too simple to capture the influences 
affecting the target and even very closely related stations 
seldom exhibit a linear relationship with catchment area 
(Hughes and Smakhtin, 1996).
 In some cases, data transfer from multiple donors 
offers an improvement over a single donor, endorsing the 
general argument of multiple donors being more capable of 
capturing the many influences affecting target flows. In many 
other cases, however, the single and multiple techniques yield 
sensibly identical performances, such that there is no marked 
advantage to including multiple donors. With respect to the 
influence of donor choice on technique performance, there 
are two clear results. Firstly, for the five targets with NSE 
values exceeding 0.9 under all single donor techniques, the 
primary donors are either upstream, downstream or nested 
compared to the targets and the multiple donor techniques 
offer no further improvement in these cases. Secondly, none 
of the techniques succeed in producing estimated series with 
NSE values exceeding 0.9 when neither donor is upstream, 
downstream or nested. This suggests that the relative 
locations of the donors could be a critical factor in technique 
performance and work is ongoing to investigate this further. 
Future work will also interpret the results according to base 
flow index, to determine whether a target’s catchment regime 
affects technique performance, as well as whether base flow 
index is a reliable factor in donor identification.
 The general conclusions that can be drawn from the 
overall results could contribute to broad infilling guidelines, 
but assessing technique performance for individual targets 
exposes other areas of discussion. Two case studies are 
therefore now presented, the first looking at using localised 
data and the second covering technique performance at 
different flow magnitudes. An infilling example is also shown.

First case study: Salmon Brook at Edmonton (38014)
The Salmon Brook at Edmonton gauging station (38014) 
represents a small, impervious catchment in the south of 
the UK. The site originally comprised a compound broad-
crested weir structure, known to be less effective than the 
1980 replacement flat V weir (Marsh and Hannaford, 2008). 
This change is reflected in a marked quality difference 
between the pre-1980 and post-1980 data. Prior to 1980, 
the poorer data quality results in an adverse impact on the 
relationship between the target and donor flows, confirmed 
when comparing the NSE values derived under each of the 
techniques for the full datasets to those of the post-1980 data 
(Table 4). There is less of an increase in performance for the 
multiple donor techniques as, although the primary donor 
record extends back to 1954, the secondary donor record only 
starts in 1971.

Table 4. Comparison of NSE values for full and post-1980 datasets when 
estimating target series 38014.

Technique Full Dataset Post-1980 Dataset

LR	 	 0.813	 	 0.869
LR	Log	 	 0.777	 	 0.852
M1	 	 0.804	 	 0.864
M1	Log	 	 0.796	 	 0.861
Equi	 	 0.809	 	 0.863
CA	 	 0.760	 	 0.846
LTM	 	 0.774	 	 0.825
MR	 	 0.955	 	 0.965
MR	Log		 0.948	 	 0.957
W.Equi	 	 0.955	 	 0.963

Figure 4 Results of significance testing. Values at the intersection of  
 technique A (y-axis) and technique B (x-axis) indicate  the  
 percentage more (positive values) or less (negative values)  
 of targets for which A produced significantly lower means of  
 residuals compared to B (at the 5% level). Values are colour- 
 coded from red for -100% to green for +100%.

Discussion

Assessing the ability of the chosen infilling techniques to 
generate estimated target flow series has revealed certain 
techniques to noticeably outperform, or in the case of the 
catchment area scaling technique, underperform the other 
techniques for specific target stations. This is a key outcome, 
since it associates wider applicability to the former techniques 
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This is therefore a clear example of when localising donor 
data can be expected to improve the accuracy of estimates 
for flow gaps. As well as the replacement or modification 
of gauging structures, the homogeneity of UK flow records 
has been affected by changes relating to instrumentation, 
land use and artificial influences. These may also necessitate 
the use of localised data and highlight the need to maintain 
comprehensive user guidance information alongside 
hydrometric records (Dixon, 2010). Other means of localising 
datasets are to consider wet and dry epochs separately 
(Hughes and Smakhtin, 1996) or to group flows according 
to the month or season that they correspond to, which has 
been demonstrated to offer significant improvement (Raman 
et al., 1995). Ongoing work by the authors is exploring such 
approaches, by applying the same infilling techniques to both 
full and localised datasets.

Second case study: Eamont at Udford (76003)
The Eamont at Udford gauging station (76003) in north-
west England gauges a catchment artificially influenced by 
storage in lakes and reservoirs. In this case, the single donor 
techniques regressing log-transformed flows performed 
markedly more poorly than their counterparts regressing 
non-transformed flows. As would logically be expected, 
however, visual inspection of the estimated series intimates 
that log-transforming the flows can yield greater accuracy at 
lower flows, despite less accuracy at higher flows. By way 
of example, Figure 5 displays all regression-based estimates 
for a higher flow period and a lower flow period. The visual 
disparity between the MR and MR Log estimates is less 
apparent, but RMSEs for LR, M1 and MR are all lower 
(higher) during the higher (lower) flow period than those for 
LR Log, M1 Log and MR Log.
 The RMSEs of the entire estimated series were 
calculated separately for lower and higher observed flows 
(Table 5). Better performance of regression-based techniques 
is evident at higher flows when flows are not transformed, 
whereas log-transforming flows gives equivalent or better 
performance than non-transforming flows at lower flows. 
Lower (higher) flows were simply defined as lower (higher) 
than the observed series mean, excluding the lowest (highest) 
5% of flows, and varying these groupings could enhance this 
distinction. The RMSEs also imply larger residuals for higher 
compared to lower flows. The considerable discrepancies 
identified by the performance indicators between LR and LR 

Figure 5 Estimated and observed flows at target 76003 during a  
 higher flow (left panel, linear scale) and a lower flow period  
 (right panel, logarithmic scale).

Table 5 RMSE values of estimates for target station 76003, derived via   
 regression-based techniques and calculated separately according   
 to the magnitude of the observed flows.

RMSE
Dataset LR LR Log M1 M1 Log MR       MR Log

Lower	flows	 411.4					318.3							366.6										364.3	 132.7	 		132.2
Higher	flows	 621.4	 	794.8							634.8	 			1070.0	 204.9	 		239

Log and M1 and M1 Log can thus be attributed to squaring 
the differences between the observed and estimated values, 
which attaches greater weight to larger differences and biases 
the indicators towards the better performance of LR and M1 
at higher flows.
 Ongoing work by the authors is investigating a 
novel methodology of grouping estimates according to flow 
magnitude and assessing technique performance separately 
for each group. This may allow easier identification of 
instances when particular techniques surpass others at 
certain flow magnitudes and could also isolate favourable 
technique combinations. A number of studies has previously 
advocated that a single technique is unlikely to be optimal 
for all occasions of missing data (for example: Hughes and 
Smakhtin, 1996; Gyau-Boakye and Schultz, 1994).

Application example
The South Tyne at Haydon Bridge (23004) is part of the UK 
benchmark catchment network, often used within climate 
change detection studies (for example: Hannaford and 
Marsh, 2008). As such, it is particularly important that its 
record be as complete as possible. A nearby upstream station 
at Featherstone (23006) is a suitable primary donor, also 
representing a natural flow regime of similar responsiveness. 
Due to artificial influences acting on other nearby stations, 
a secondary donor is more difficult to establish, therefore 
an infilling attempt will be made using the equipercentile 
technique, concluded as arguably the best of the single donor 
techniques.
 In 1972, a low flow control was installed at Haydon 
Bridge, with low flows prior to this being of limited accuracy 
(Marsh and Hannaford, 2008), evident when inspecting the 
earlier record. Consequently, a localised target dataset of 
post-1971 flows was used. Equipercentile flow estimates 
were derived to infill a three-month long gap in the record in 

Figure 6 Top: Observed 1972 flows for the South Tyne at Haydon Bridge  
 (23004) and estimated flows under equipercentile and   
 CA techniques, based upon donor of South Tyne at Featherstone  
 (23006). Bottom: Rainfall from the Met Office rain gauge 14284.
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1972, which reflects the installation of this control (Figure 
6). Catchment area estimates were also calculated, to offer 
comparison between better and poorer techniques.
 This example serves to successfully illustrate the 
purpose of this study. It presents a data gap in a flow record 
which appears amenable to an infilling attempt, since a good 
donor exists and, based on recorded rainfall patterns and 
catchment response, the majority of the missing flows could 
be expected to be mid-range (estimates for the very low 
observed flows at the end of the gap should be treated with 
more caution as these infilling techniques are not suggested 
for estimating extreme low or high flows). A simple infilling 
technique is then applied, producing reliable infill estimates. 
The results of this study are also reflected, in that the 
equipercentile estimates clearly suggest greater accuracy than 
the CA estimates.

Conclusion

Complete flow records are a vitally important resource but 
difficult to attain, given the many ways in which data gaps 
can arise. Simple infilling techniques that can be rapidly 
deployed across large numbers of records would find 
wide applicability and be highly beneficial in improving 
consistency and confidence in the approach towards reducing 
data gaps.
 This study has assessed ten techniques, all relying 
on single or multiple donor station data transfer, according 
to their ability to generate estimated flow series for 25 
representative UK target stations. Key findings concern the 
importance of the geographical locations of donor stations 
relative to target stations and the overall better performance 
of the equipercentile and multiple donor techniques versus 
the overall poorer performance of the catchment area scaling 
technique. The aim of this study has not, however, been to 
pinpoint a single optimal technique, but to investigate the 
ranges of applicability of each of the techniques. Testing 
a large sample of stations has thus allowed identification 
of cases where there are notable discrepancies between 
technique performances, highlighting the wider applicability 
of certain techniques.
 More detailed work is underway to examine issues 
such as the influence of donor station choice, the potential for 
techniques to perform differently at varying flow magnitudes 
and the improvement that localising datasets could offer. 
Case-by-case analysis will allow interpretation of results 
according to the different catchment characteristics and 
flow regimes of the target stations. Future work will also 
explore more applications of infilling, to further examine the 
practicalities of implementing the key findings of this study.
 Backed by the support of national archives, 
hydrometric measuring agencies are often best placed to 
derive realistic flow estimates for data gaps, given their 
detailed knowledge of gauging stations. Within the UK, 
the findings of this study and future work will allow the 
development of general infilling guidance appropriate to 
the wide range of flow regimes that exist and embracing a 
range of techniques, with local hydrological conditions and 
the hydrometric experience of measuring agencies guiding 
the method choice and application. It is hoped that this 
research will therefore help initiate systematic infilling of 
contemporary flow data which, coupled with clear flagging 
of estimates, will greatly improve the utility of flow series 
to end users. Moreover, consistent infilling methodologies 
will facilitate retrospective improvement of key national flow 
records, through the infilling of gaps, correction of erroneous 
periods and reviewing existing estimates within historical data.

 Outside the sphere of operational hydrometry, the 
adoption of a consistent and tested approach to river flow 
data infilling offers many potential benefits to scientists and 
practitioners, both within the UK and more widely. Finally, 
it must be emphasised that the ability of simple infilling 
techniques to generate reliable infill estimates, as illustrated 
by the infilling example presented within this study, does not 
replace the need to maximise the quality and completeness of 
observed data.
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